The present disclosure relates to systems and methods for monitoring various types of physiological activity in a subject. In particular, the disclosure relates to systems and methods for monitoring neurological activity in a subject and, more particularly, to detecting and classifying events occurring in the subject that are, or appear similar to, epileptic events. The disclosure also relates particularly to methods and systems for monitoring electroencephalographical and photoplethysmographical activity in a subject and, more particularly, to determining a therapeutic window of a treatment, and detecting, predicting, classifying neuroelectrical, vestibular, cochlear, cardiac, and pulmonary events and conditions occurring in the subject, and using the detection, prediction, and classification, combined with the determined therapeutic window to optimize treatment.
Epilepsy is considered the world's most common serious brain disorder, with an estimated 50 million sufferers worldwide and 2.4 million new cases occurring each year.
Epilepsy is a condition of the brain characterized by epileptic seizures that vary from brief and barely detectable seizures to more conspicuous seizures in which a sufferer vigorously shakes. Epileptic seizures are unprovoked, recurrent, and due to unexplained causes.
Additionally, epilepsy is but one of a variety of physiopathologies that have neurological components. Among these, epilepsy, inner ear disorders, and certain sleep disorders affect tens of millions of patients and account for a variety of symptoms with effects ranging from mild discomfort to death. Vestibular disorders, sometimes caused by problems with signaling between the inner ear's vestibular system and the brain, and other times caused by damage or other issues with the physical structures in the inner ear, can cause dizziness, blurred vision, disorientation, falls, nausea, and other symptoms that can range from uncomfortable to debilitating. Cochlear disorders are commonly associated with changes in the ability to hear, including hearing loss and tinnitus, and may be temporary, long-lasting, or permanent. Sleep apnea, meanwhile, is a sleep disorder in which breathing may stop while a person is sleeping. Sleep apnea may be obstructive in nature (e.g., the physiology of the throat may block the airway), or may be neurological (central sleep apnea) in nature. The effects of sleep apnea may be relatively minor (e.g., snoring, trouble sleeping, etc.) and lead to poor sleep quality, irritability, headaches, trouble focusing, and the like, or can be more severe including causing neurological damage or even cardiac arrest and death.
Diagnosing these disorders can be challenging, especially where, as with epilepsy or sleep apnea, diagnosis typically requires detailed study of both clinical observations and electrical and/or other signals in the patient's brain and/or body. Diagnosing epilepsy typically requires detailed study of both clinical observations and electrical and/or other signals in the patient's brain and/or body. Particularly with respect to studying electrical activity in the patient's brain (e.g., using electroencephalography to produce an electroencephalogram (EEG)), such study usually requires the patient to be monitored for some period of time. The monitoring of electrical activity in the brain requires the patient to have a number of electrodes placed on the scalp, each of which electrodes is typically connected to a data acquisition unit that samples the signals continuously (e.g., at a high rate) to record the signals for later analysis. Medical personnel monitor the patient to watch for outward signs of epileptic or other events, and review the recorded electrical activity signals to determine whether an event occurred, whether the event was epileptic in nature and, in some cases, the type of epilepsy and/or region(s) of the brain associated with the event. Because the electrodes are wired to the data acquisition unit, and because medical personnel must monitor the patient for outward clinical signs of epileptic or other events, the patient is typically confined to a small area (e.g., a hospital or clinical monitoring room) during the period of monitoring, which can last anywhere from several hours to several days. Moreover, where the number of electrodes placed on or under the patient's scalp is significant, the size of the corresponding wire bundle coupling the sensors to the data acquisition unit may be significant, which may generally require the patient to remain generally inactive during the period of monitoring, and may prevent the patient from undertaking normal activities that may be related to the onset of symptoms.
While ambulatory encephalograms (aEEGs) allow for longer-term monitoring of a patient outside of a clinical setting, aEEGs are typically less reliable than EEGs taken in the clinical setting, because clinical staff do not constantly monitor the patient for outward signs of epileptic events or check if the electrodes remain affixed to the scalp and, as a result, are less reliable when it comes to determining the difference between epileptic and non-epileptic events.
The use of EEG in the determination of whether an individual has epilepsy, the type of epilepsy, and its location (or foci) in the brain is fundamental in the diagnostic pathway of individuals suspected of epilepsy. Unfortunately, while the EEG offers a rich source of information relating to the disease, the EEG signal can suffer from a poor signal to noise ratio, is, for the most part, manually reviewed by trained clinical personnel, and the review is limited to a short period of monitoring, either in-patient, as described above, or ambulatory recordings, each being no more than seven days in duration. As a result of these limitations, the current diagnosis paradigm suffers from the following deficiencies: (1) the limited recording window (up to 7 days) may not be adequate to capture the clinical relevant events in the EEG due to the infrequency of the epileptic events; (2) clinical events thought to be epileptic may be confused for other, non-epileptic events, such as drug side-effects or psychogenic seizures that are of non-epileptic origin. The reporting of these clinical events is done via subjective patient feedback or paper/electronic seizure diaries. These have been demonstrated to be highly unreliable; (3) the lack of long-term monitoring of the patients after administration of the treatment (e.g., drugs) creates an ambiguity in the disease state of the individual. For example, many events reported subjectively by the patient may be either (a) epileptic, (b) drug side-effects, and/or (c) of non-epileptic origin. Proper treatment of the patient must be based on determining an objective and accurate characterization of the disease state across the care continuum of the patient; (4) inaccurate self-reporting of seizure incidence can result in over- or under-medicalization of the patient; and (5) human review of the multiple streams of data required to determine if each individual event is (a) epileptic, (b) caused by a drug side-effect; and/or (c) non-epileptic in origin is not possible because (i) the sheer volume of data requiring review when long-term monitoring is performed and (ii) the inability to extract patterns of behavior/biomarkers across multiple streams of data.
Diagnosing sleep disorders, such as sleep apnea, which may be episodic and/or intermittent in nature, presents similar challenges. Typically, sleep apnea is diagnosed following a sleep study in which a patient spends a night under observation by a sleep specialist who monitors the patient's breathing and other body functions while the patient sleeps. This monitoring can also include monitoring of electrical activity in the patient's brain (e.g., EEG). Unfortunately, being in an unfamiliar environment, an unfamiliar bed, and being tethered to a variety of sensors can interfere with the ability of the patient to sleep comfortably or normally, and can, therefore, sometimes affect the reliability of the resulting diagnosis.
Vestibular and cochlear disorders may be similarly episodic and/or intermittent in nature and, therefore, may present similar challenges in terms of diagnosis.
Importantly, the episodic and/or intermittent nature of these conditions makes it inherently difficult to predict when these conditions, or events caused by these conditions will occur, how frequently they will occur, how long they will last, and how and for how long they will affect the short- and long-term well-being of the patient experiencing them.
Further, treatment of these disorders is hardly an exact science. For example, the standard of care for an individual with either suspected or diagnosed epilepsy is to administer one or more anti-epileptic drugs (AEDs) in an effort to minimize or eliminate epileptic seizures in the individual. Typically, such drugs are administered in oral form and taken regularly (e.g., daily) at a dosage that is determined by the treating physician (e.g., neurologist). The specific dose and administration frequency that is effective for a particular patient is specific to the patient and is generally determined by titrating the dose until a perceived effective dose is determined.
One problem with this approach is that the on-going prescription of these AEDs is based on subjective reports by the patient on the perceived incidence and severity of the recurring seizures and drug side-effects. These subjective reports can vary in accuracy across individuals and may or may not be an accurate representation of the individual's state away from a clinic; for example, many types of epileptic seizures are extremely subtle, and the individual may not remember or recognize the seizure (e.g., absence seizures). Similarly, side effects from certain AEDs may be mistaken as seizures and reported as such to the treating physician. As a result of these deficiencies, AEDs are frequently administered or prescribed at sub-therapeutic levels (i.e., insufficient dose to control the condition), at super-therapeutic levels that induce side effects worse than the condition they may or may not control at those levels, or at therapeutic levels that nevertheless cause undesirable side-effects, even when a side-effect-free therapeutic level could be prescribed. Treatments using neurostimulator devices, such as vagal nerve stimulators, require similar experimentation with titration and timing in order to achieve a therapeutic level that is free of, or at least minimizes, side-effects.
Treatment regimens for other disorders including sleep apnea and cochlear and vestibular disorders may suffer from similar challenges when intervention is pharmacological or neurostimulatory in nature.
It is desirable to have a safe, reliable, and comfortable method of detecting the occurrence of epileptic seizures to enable monitoring of seizure frequency and severity with a view to diagnosing epilepsy and/or determining appropriate seizure control strategies.
It is desirable to have a safe, reliable, and comfortable method of determining the side-effect free therapeutic treatment regimen, whether of an oral medication, an intravenous medication (e.g., administered by portable pump), application of a neurostimulator device, or other treatments such as medications administered by inhalation.
It is also desirable to have a safe, reliable, and comfortable method of detecting, predicting, and classifying both the occurrence of these conditions and related events, and the effects, both immediate and future, of these events on the patient. It is still further desirable to treat these conditions appropriately in view of the effects on the patient and to do so using an optimized treatment regimen.
Any discussion of documents, acts, materials, devices, articles, or the like which has been included in the present background is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present disclosure as it existed before the priority date of each claim of this application.
Embodiments of the present disclosure relate to the monitoring and classification of electrical activity in body tissue of a subject using an array of sensors disposed on or in the patient's body, in cooperation with computer algorithms programmed to detect and classify events of interest. Certain embodiments relate, for example, to electrode arrays implanted in a head of a subject to monitor brain activity such as epileptic brain activity, and coupled to processor devices configured to monitor and classify the brain activity to determine when events occur and/or whether any particular type of event is an epileptic event and/or what type of event has occurred, if not an epileptic event. However, the sensor arrays according to the present disclosure may be for implanting in a variety of different locations of the body, may sense electrical signals, including those generated by electrochemical sensors, and may cooperate with processing devices in various instances in which monitoring and classification of electrical or chemical activity is desired in the human nervous system.
Other embodiments of the present disclosure relate to the monitoring and classification of biomarkers in body tissue of a subject using an array of sensors disposed on or in the patient's body, in cooperation with computer algorithms programmed to detect, predict, and/or classify events of interest, monitor and adjust treatment protocols to determine the presence and absence of side-effects and therapeutic effect of the treatment protocols, and apply the treatment protocols according to detected and/or predicted events to mitigate or treat the effects of the events of interest. Certain embodiments relate, for example, to electrode arrays (e.g., electroencephalograph (EEG) sensors) implanted in a head of a subject to monitor brain activity that may be indicative of epileptic brain activity, auditory and vestibular system function, and other activity that may relate to conditions and disorders. The electrode arrays and other sensors, including photoplethysmography sensors (referred to herein for convenience as “PPG sensors”), may be coupled to processor devices configured to monitor and classify the brain activity to determine when events occur and/or whether any particular type of event is, for example, an epileptic event and/or what type of event has occurred, if not an epileptic event. However, the sensor arrays according to the present disclosure may be for implanting in a variety of different locations of the body, may sense other electrical signals, and may cooperate with processing devices in various instances in which monitoring and classification of electrical activity is desired in the human nervous, auditory, and pulmonary systems.
Various aspects of the systems and methods are described throughout this specification. Unless otherwise specified, aspects of any embodiment that are compatible with another embodiment described herein are considered as contemplated and disclosed embodiments herein. For example, a feature of a particular embodiment described herein, if that feature would be recognized by a person of ordinary skill in the art to be compatible with the features of a second embodiment described herein, should be considered as a possible feature of the second embodiment. Further, embodiments describing features as optional should be considered as disclosing said embodiments both with and without the optional features, and with various optional features in any combination that, in view of this description, would be recognized by a person of ordinary skill in the art as being compatible.
Throughout the present disclosure, embodiments are described in which various elements are optional—present in some, but not all, embodiments of the system. Where such elements are depicted in the accompanying figures and, specifically, in figures depicting block diagrams, the optional elements are generally depicted in dotted lines to denote their optional nature.
One set of embodiments of a sub-system described herein is directed to detecting and categorizing various events (e.g., seizures, apnea events, etc.) and symptoms (changes in blood pressure, heart rate, blood oxygen saturation, etc.) as clinical events, sub-clinical events, and/or side-effects of treatment. By way of example, and not limitation, the sub-system, using a static or trained AI model may determine, using EEG data and photoplethysmography data (PPG data), in addition, in embodiments, to microphone and/or accelerometer data, that a patient has just experienced or is experiencing a generalized tonic-clonic (i.e., grand mal) seizure.
Another set of embodiments of the sub-system described herein is directed to measuring, tracking, and predicting both the events (e.g., seizures, apnea events, etc.) and the well-being of the patients before, during, and after the events, and recommending or administering treatments to alleviate or mitigate the effects on the patient that are associated with those events. By way of example, and not limitation, the sub-system, using a static or trained AI model may determine, using EEG data and PPG data, that a patient has just experienced, is experiencing, or will experience (i.e., the system may predict) a generalized tonic-clonic (i.e., grand mal) seizure. The sub-system may also determine that the patient experiences or is likely to experience hypoxia during generalized tonic-clonic seizures, leading to generalized or specific symptoms of hypoxia that are the direct result of the seizures such as fatigue, numbness, nausea, etc. As such, the sub-system may recommend that oxygen be provided to the patient to address the hypoxia and, thereby, improve the overall well-being of the patient, and decrease the recovery time after the seizure. As will become apparent, the sub-system may make recommendations to the patient, to a care giver, to a physician, etc., or may adjust a treatment device (e.g., a neurostiumulator device, a drug pump, etc.) depending on the conditions to be treated, the events that are detected, and the patient's past experience, as reported both by the patient and by the computational analyses of the data from the EEG and PPG sensors.
A second sub-system described herein is directed to determining and optimizing a therapeutic window for treating the condition in question, whether that condition is epilepsy, a vestibular or cochlear disorder, a sleep disorder, such as apnea, or the like. The second sub-system may monitor for changes in various biomarkers over time and/or during specific time periods to determine whether a pharmacological intervention or other treatment for a condition is having a positive effect on the condition (e.g., lessening severity or frequency of events), is having a negative effect on the condition (e.g., increasing severity or frequency of events), is causing side-effects, or is having no effect at all. The second sub-system, as a result of these analyses, may recommend or implement a change in the dose or timing of the pharmacological intervention, a change in the intensity, timing, or other parameters of a neurostimulator application (such as vagal nerve stimulators, epicranial stimulation, etc.), or other changes to a treatment device or regimen according to the particular condition being treated. In doing so, the sub-system may continue to monitor the patient to iteratively determine a “treatment window” that has maximal benefit to the patient, while minimizing or eliminating some or all side-effects. As will be apparent in view of the description below, the patient (e.g., via a user interface) or a physician or clinician (e.g., via an external device) may adjust the target therapeutic effect within the treatment window to arrive at the desired balance between absence of symptoms and presence of side-effects. For example, in patients with epilepsy, it is common that the patient would like to have their seizures minimized, even at the expense of the side-effects. That is, the patient may be happy to live with the side-effects of treatment, if it allows them to be seizure-free.
Of course, it will become apparent that these two sub-systems may be deployed cooperatively such that a treatment for the condition can be optimized while monitoring, detecting, and predicting both the onset of clinical events and the ancillary effects of those clinical events, and mitigating or treating the ancillary effects of those clinical events. For example, the second sub-system may be used to optimize a patient's treatment for epilepsy by finding an optimal treatment regimen to minimize (or optimize) the severity and/or frequency of seizure events while minimizing (or optimizing) any side-effects of the treatment regimen. That is, it is not necessary to minimize the events or the side-effects, but rather, in some implementations the goal may be to maximize patient well-being even if events and/or side-effects remain higher than the possible minimum. In another example, the second sub-system may be used to optimize a patient's treatment for epilepsy by finding an optimal treatment regimen to minimize the severity and/or frequency of seizure events and, thereafter, the first sub-system may be used to detect or predict seizure events that still occur, to determine or predict measures of patient well-being as a result of those seizure events, and/or to recommend or implement therapeutic interventions to mitigate those effects and/or support the well-being of the patient in view of those effects. In another example, the first sub-system may be used to detect seizure events, to determine measures of patient well-being as a result of those seizure events. The second sub-system may be used to try to reduce the overall severity and frequency of those events, while concurrently addressing potential side-effects, by optimizing the patient's treatment regimen. In another example, the first sub-system may be used to detect or predict seizure events, to determine or predict measures of patient well-being as a result of those seizure events, and/or to recommend or implement therapeutic interventions to mitigate those effects and/or support the well-being of the patient in view of those effects. Once support of the patient in view of seizure events that are occurring and/or predicted is achieved, the second sub-system may be used to try to reduce the overall severity and frequency of those events by optimizing the patient's treatment regimen. Of course, there is no requirement that the two sub-systems be used sequentially, as it should be apparent from the present description that the two sub-systems may operate concurrently and/or iteratively to achieve their respective objectives.
Moreover, the first sub-system 104A may adapt and/or retrain itself to recognize patient-specific patterns in the biomarkers that may be either related to the patient's condition and symptoms (e.g., related to the patient's epilepsy), or caused by the second sub-system 104B being active and changing the behavior of the patient's condition and symptoms (e.g., via the applied therapy).
While described herein primarily with respect to epilepsy, it will be clear from the description that the systems and methods herein, especially with respect to embodiments related to
Various signals detectable within EEG data may signal an ictal event, as specific patterns of electrical activity in various regions of the brain are associated with the onset, duration, and offset of a seizure event. Such biomarker patterns are referred to as epileptiforms. Additionally, shorter duration biomarkers including “spikes,” having durations between 30 and 80 ms, and “sharps,” having durations between 70 and 200 ms, may occur between seizures. The various biomarkers associated with ictal activity may be indicative of the types of seizures occurring. For example, absence seizures are frequently associated with generalized “spike” activity, though spike activity is not exclusive to absence seizures. Features of epileptiforms may signal additional biomarkers, and interictal (between seizure), pre-ictal, and post-ictal EEG data may provide additional biomarker information related to detection and/or prediction of seizures. At the same time, PPG data may include biomarker data related to interictal, pre-ictal, post-ictal (and ictal) state of the patient. For instance, oxygen desaturation is known to occur in a significant portion of focal seizures, including those without convulsive activity, before, during, or after a seizure. Similarly, changes in blood pressure, heart rate, or heart rate variability—all detectable within PPG data—can occur before, during, or after a seizure event. By observing EEG data and PPG data concurrently, over periods of time, additional relationships between biomarkers in EEG data and PPG data can reveal relationships and patterns that facilitate the detection and, perhaps more importantly, prediction of ictal events, and, in some embodiments establish biomarkers relating to drug side-effects and quality of life metrics that may relate to the long-term use of the applied therapeutic treatment(s). For example, it may be desirable to minimize compromised sleep for individuals with epilepsy taking drugs to treat their disease, as many of the anti-epileptic drugs negatively impact sleep quality if taken excessively or at the wrong times of day. Other biomarkers may, in embodiments, be detected from microphone and/or accelerometer data, as will become clear from the following description.
Biomarkers present in EEG data and PPG data may be telling, for example, with respect to sleep disorders. EEG data can provide information about a variety of biomarkers related to sleep disorders, including, by way of example and not limitation, the stage of sleep that a patient is in, how frequently the patient changes from one stage of sleep to another, transitions from one stage of sleep to another, EEG spindle magnitude, EEG spindle duration, EEG spindle frequency, EEG spindle prevalence, and EEG desaturation events. At the same time, PPG data can provide information regarding a variety of biomarkers relevant to events related to sleep disorders and, especially, sleep apnea. Sleep apnea is the repetitive pausing of breathing occur more than normal. As such, this compromised respiration can affect a number of the biomarkers that are detectable from PPG data such as heart rate, heart rate variability, blood pressure, respiration rate, and blood oxygen saturation, some or all of which may be associated with desaturation events related to compromised respiration. Other biomarkers may, in embodiments, be detected from microphone and/or accelerometer data, as will become clear from the following description.
Similarly, biomarkers present in EEG data and PPG data may be indicative of cochlear and/or vestibular disorders. EEG data can provide information about biomarkers related to these disorders and, in particular, biomarkers such as hearing thresholds, cognitive effort, and hearing perception. PPG data, meanwhile, can provide information about systemic infections that may propagate to the cochlear or vestibular system by, for example, detecting the changes in respiration, blood oxygen saturation levels, heart rate variability, and blood pressure biomarkers that can indicate systemic infections. PPG data may also provide direct evidence of vestibular system dysfunction, as dysfunction in the vestibular system can be accompanied by a change (i.e., a drop) in the patient's blood pressure. Other biomarkers may, in embodiments, be detected from microphone and/or accelerometer data, as will become clear from the following description.
The processor device 104 in system 100B is depicted as including the first and second sub-systems, 104A and 104B, respectively. While depicted in
The following description of the sensor array 102 is illustrative in nature. While one of skill in the art would recognize a variety of sensor arrays that may be compatible with the described embodiments, the sensor arrays 102 explicitly described herein may have particular advantages and, in particular, the sensor arrays 102 may include the sensors described in U.S. patent application Ser. No. 16/124,152 (U.S. Patent Application Publication No. 2019/0053730 A1) and U.S. patent application Ser. No. 16/124,148 (U.S. Pat. No. 10,568,574) the specifications of each being hereby incorporated herein by reference, for all purposes.
With reference to
With reference to
The electrode device 110 includes a number of features to assist in removably securing the shaft 130 at least partially in the recess 2042 in the cranium 204 (or a recess in any other bone or tissue structure where electrical monitoring and/or stimulation may be carried out). These features include, among other things, the anchor elements 134a-d. The anchor elements 134a-d are generally in the form of flexible and/or compressible lugs or barbs, which are configured to distort as the shaft 130 is inserted into the recess 2042 such that the anchor elements 134a-d press firmly against and grip the inner surfaces defining the recess 2042.
In this embodiment, referring to
The shaft body 131 is formed of a first material, the first material being an elastomeric material and more specifically a first silicone material in embodiments. The anchor elements 134a-d are formed of a second material, the second material being an elastomeric material and more specifically a second silicone material in embodiments. The first and second materials have different properties. In particular, the second material has a lower durometer than the first material. Accordingly, the second material is softer than the first material and thus the anchor elements 134a-d are formed of softer material than the shaft body 131. By forming the shaft body 131 of a relatively hard elastomeric material, the shaft body can be flexible and compressible, yet still substantially retain its shape on insertion into the recess 2042 in the bone. The stiffening core provided by the conductive element 132 also assists in this regard. On the other hand, by forming the anchor elements 134a-d of a relatively soft elastomeric material, the anchor elements are more flexible and compressible, which can allow easier removal of the shaft 130 from the recess 2042 after use of the electrode device 110. Indeed, the soft material may be provided such that anchor elements 134a-d distort significantly upon removal of the shaft 130 from the recess 2042.
The anchor elements 134a-d are configured to remain intact during removal of the shaft 130 from the recess 2042. Thus, no part of the electrode device may be left behind in the body after removal. The anchor elements 134a-d remain connected to the outer surface of the shaft body 131 during and after removal. Further, the anchor elements substantially retain their original shape and configuration after removal of the electrode device from the recess 2042.
As discussed above, the electrode device 110 includes a lead 140 that is connected to the head 120 of the electrode device 110, a conductive wire 111 extending through the lead 140 and the head 120, and electrically connecting to the conductive element 132. With reference to
In this embodiment, in addition to the shaft body 131 being integrally formed, in one-piece, with the head 120, the lead 140 is also integrally formed, in one-piece, with the head 120. A continuous body of elastomeric material is therefore provided in the electrode device 110, which continuous body of elastomeric material extends across the lead 140, the head 120 and the shaft body 130. The continuous body of elastomeric material covers the conductive wire 111 within the lead 140 and the head 120, covers the proximal end surface 135 of the conductive element 132 within the head 120 and surrounds sides of the conductive element 132 of the shaft 130. The arrangement is such that the lead 140, head 120 and shaft 130 are permanently fixed together and cannot be disconnected during normal use. Following manufacture, no parts of the electrode device 110 may need to be connected together by a user such as a surgeon. The one-piece nature of the electrode device 110 may increase strength and cleanliness of the electrode device 110 and may also improve ease of use.
Referring to
The strain relief portion 121 is curved. The curvature is provided to match a curvature of the cranium 204 such that a reduced pressure, or no pressure, is applied by the strain relief portion 121 to the skull when the electrode device is implanted in position.
As can be seen in
With reference to
In this embodiment, referring to
With reference to
In this embodiment, the implantable body 158 is formed of an elastomeric material such as medical grade silicone. Each electrode 160 comprises an annular portion of conductive material that extends circumferentially around a portion of the implantable body 158. More specifically, each electrode 160 comprises a hollow cylinder of conductive material that extends circumferentially around a portion of the implantable body 158 and, in particular, a portion of the elastomeric material of the implantable body 158. The electrodes 160 may be considered ‘ring’ electrodes.
Referring back to the embodiment of
In alternative embodiments, a different number of straps 165 may be employed, e.g., one, three, four or more straps 165. Where a greater number straps 165 is employed, the width of each strap 165 may be reduced. The straps 165 may be distributed evenly around the circumference of each electrode 160 or distributed in an uneven manner. Nevertheless, in some embodiments, the straps 165 may be omitted, ensuring that all of the outer electrode surface is exposed for electrical contact with tissue, around a circumference of the electrode 160.
As indicated above, the implantable body 158 is formed of an elastomeric material such as silicone. The elastomeric material allows the implantable body 158 to bend, flex and stretch such that the implantable body 158 can readily contort as it is routed to a target implantation position and can readily conform to the shape of the body tissue at the target implantation position. The use of elastomeric material also ensures that any risk of trauma to the subject is reduced during implantation or during subsequent use.
In embodiments of the present disclosure the electrical connection 167 to the electrodes 160 comprises relatively fragile platinum wire conductive elements. With reference to
As indicated above, a reinforcement device 168 is also provided in the electrode device 157, which reinforcement device 168 extends through the implantable body 158 and is provided to limit the degree by which the length of the implantable body 158 can extend under tension. The reinforcement device 168 can take the bulk of the strain placed on the electrode device 157 when the electrode device 157 is placed under tension. The reinforcement device 168 is provided in this embodiment by a fiber (e.g., strand, filament, cord or string) of material that is flexible and which has a high tensile strength. In particular, a fiber of ultra-high-molecular-weight polyethylene (UHMwPE), e.g., Dyneema™, is provided as the reinforcement device 168 in the present embodiment. The reinforcement device 168 extends through the implantable body 158 in the length direction of the implantable body 158 and is generally directly encased by the elastomeric material of the implantable body 158.
The reinforcement device 168 may comprise a variety of different materials in addition to or as an alternative to UHMwPE. The reinforcement device may comprise other plastics and/or non-conductive material such as a poly-paraphenylene terephthalamide, e.g., Kevlar™. In some embodiments, a metal fiber or surgical steel may be used.
Similar to the electrical connection 167, the reinforcement device 168 also has a wave-like shape and, more specifically, a helical shape in this embodiment, although other non-linear shapes may be used. The helical shape of the reinforcement device 168 is different from the helical shape of the electrical connection 167. For example, as evident from
When the implantable body 168 is placed under tension, the elastomeric material of the implantable body will stretch, which in turns causes straightening of the helical shapes of both the electrical connection 167 and the reinforcement device 168. As the electrical connection 167 and the reinforcement device straighten 168, their lengths can be considered to increase in the direction of elongation of the implantable body 158. Thus, the lengths of each of the electrical connection 167 and the reinforcement device 168, in the direction of elongation of the implantable body 158, are extendible when the implantable body 158 is placed under tension.
For each of the electrical connection 167 and the reinforcement device 168, a theoretical maximum length of extension in the direction of elongation of the implantable body 158 is reached when its helical shape (or any other non-linear shape that may be employed) is substantially completely straightened. However, due to the differences in the helical shapes of the electrical connection 167 and the reinforcement device 168, the maximum length of extension of the reinforcement device 168 is shorter than the maximum length of extension of the electrical connection 167. Therefore, when the implantable body 158 is placed under tension, the reinforcement device 168 will reach its maximum length of extension before the electrical connection 167 reaches its maximum length of extension. Indeed, the reinforcement device 168 can make it substantially impossible for the electrical connection 167 to reach its maximum length of extension. Since the electrical connection 167 can be relatively fragile and prone to breaking, particularly when placed under tension, and particularly when it reaches a maximum length of extension, the reinforcement device 168 can reduce the likelihood that the electrical connection 167 will be damaged when the implantable body 158 is placed under tension. In contrast to the electrical connection 167, when the reinforcement device 168 reaches its maximum length of extension, its high tensile strength allows it to bear a significant amount of strain placed on the electrode device 157, preventing damage to the electrical connection 167 and other components of the electrode device 157.
In consideration of other components of the electrode device 157 that are protected from damage by the reinforcement device 168, it is notable that the implantable body 158 can be prone to damage or breakage when it is placed under tension. The elastomeric material of the implantable body 158 has a theoretical maximum length of extension in its direction of elongation when placed under tension, the maximum length of extension being the point at which the elastomeric material reaches its elastic limit. In this embodiment, the maximum length of extension of the reinforcement device 168 is also shorter than the maximum length of extension of the implantable body 158. Thus, when the implantable body 158 is placed under tension, the reinforcement device 168 will reach its maximum length of extension before the implantable body 158 reaches its maximum length of extension. Indeed, the reinforcement device 168 can make it substantially impossible for the implantable body 158 to reach its maximum length of extension. Since elastomeric material of the implantable body 158 can be relatively fragile and prone to breaking, particularly when placed under tension, and particularly when it reaches its elastic limit, the reinforcement device 168 can reduce the likelihood that the implantable body 158 will be damaged when it is placed under tension.
In this embodiment, the helical shapes of the reinforcement device 168 and the electrical connection 158 are provided in a concentric arrangement. Due to its smaller diameter, the reinforcement device 168 can locate radially inside of the electrical connection 167. In view of this positioning, the reinforcement device 168 provides a form of strengthening core to the implantable body 158. The concentric arrangement can provide for increased strength and robustness while offering optimal surgical handling properties, with relatively low distortion of the implantable body 158 when placed under tension.
As indicated, the reinforcement device 168 is directly encased by the elastomeric material of the implantable body 158. The helically-shaped reinforcement device 168 therefore avoids contact with material other than the elastomeric material in this embodiment. The helically shaped reinforcement device is not entwined or intertwined with other strands or fibers, for example (e.g., as opposed to strands of a rope), ensuring that there is a substantial amount of give possible in relation to its helical shape. The helical shape can move to a straightened configuration under tension as a result, for example.
The arrangement of the reinforcement device 168 is such that, when the implantable body 158 is placed under tension, the length of the reinforcement device 168 is extendible by about 20% of its length when the implantable body 158 is not under tension. Nevertheless, in embodiments of the present disclosure, a reinforcement device 168 may be used that is extendible by at least 5%, at least 10%, at least 15%, at least 20% or at least 25% or otherwise, of the length of the reinforcement device when the implantable body 158 is not under tension. The maximum length of extension of the reinforcement device 168 in the direction of elongation of the implantable body 158 may be about 5%, about 10%, about 15%, about 20% or about 25% or otherwise of its length when the implantable body 158 is not under tension.
As represented in
As indicated, the electrical connection 167 in this embodiment comprises relatively fragile platinum wire conductive elements. At least 4 platinum wires are provided in the electrical connection 167 to each connect to a respective one of the four electrodes 160. The wires are twisted together and electrically insulated from each other. Connection of a platinum wire of the electrical connection 167 to the most distal of the electrodes 160 is illustrated in
The reinforcement device 168 extends through the hollow center of each of the electrodes 160. The reinforcement device 168 extends at least from the distal most electrode 160, and optionally from a region adjacent the distal tip 159 of the implantable body 158, to a position adjacent the amplifier 163. In some embodiments, the reinforcement device 168 may also extend between the amplifier 163 and the processing unit 144. In some embodiments, the reinforcement device 168 may extend from the distal tip 159 and/or the distal most electrode 160 of the implantable body 158 to the processing unit 144.
To prevent the reinforcement device 168 from slipping within or tearing from the elastomeric material of the implantable body 158, a series of knots 169 are formed in the reinforcement device 168 along the length of the reinforcement device 168. For example, with reference to
In the present embodiment for example, as illustrated in
With reference to
So that the anchors 164 do not impede implantation of the electrode device 157, or removal of the electrode device 157 after use, each anchor 164 is compressible. The anchors 164 are compressible (e.g., foldable) to reduce the degree by which the anchors 164 projects radially outwardly from the implantable body 158. To further reduce the degree by which the anchors 164 project radially outwardly from the implantable body 158 when compressed, a recess 171 is provided in a surface of the implantable body 158 adjacent each anchor 164. The anchor 164 is compressible into the recess 171. In this embodiment, the anchors 164 project from a bottom surface of the respective recess 171 and the recess 171 extends on both proximal and distal sides of the anchor 164. Accordingly, the anchors 164 can be compressed into the respective recesses in either a proximal or distal direction. This has the advantage of allowing the anchors 164 to automatically move into a storage position in the recess 171 when pulled across a tissue surface or a surface of a implantation tool such as delivery device, in either of a proximal and a distal direction.
The electrode device 157 of the present embodiment is configured for use in monitoring electrical activity in the brain and particularly for monitoring electrical activity relating to epileptic events in the brain. The electrode device 157 is configured to be implanted at least partially in a subgaleal space between the scalp and the cranium. At least the electrodes 160 and adjacent portions of the implantable body 158 are located in the subgaleal space.
An illustration of the implantation location of the electrodes 160 is provided in
The local processing device 144 may be implanted under skin tissue. With reference to
The data processed and stored by the local processing device 144 may be raw EEG data or partially processed (e.g. partially or fully compressed) EEG data, for example. The EEG data may be transmitted from the local processing device 144 wirelessly, or via a wire, to the processor device 104 for further processing and analyzing of the data. The processor device 104 may analyze EEG signals (or other electrical signals) to determine if a target event has occurred. Data regarding the event may be generated by the processor device 104 on the basis of the analysis, as described further herein. In one example, the processor device 104 may analyze brain activity signals to determine if a target event such as an epileptic event has occurred and data regarding the epileptic event (e.g., classification of the event) may be generated by the processor device 104 on the basis of the analysis.
By carrying out data analysis externally to the sensor array 102, using the processor device 104 (whether separate from the sensor array 102 or integrated with the sensor array, as described with reference to
With reference to embodiments implementing the PPG sensor 108,
As will be understood, in embodiments in which it is implemented, the PPG sensor 108 may use low-intensity infrared (IR) light to detect various biomarkers of the patient. Blood absorbs IR light more strongly than other, surrounding tissues and, as a result, changes in blood flow may be sensed as changes in the intensity of transmitted or reflected IR light. While the intricacies and details of the operation of a PPG sensor will not be elaborated upon in this specification, as a person of ordinary skill in the art will readily appreciate the design and operation of these devices, it should be understood generally that the PPG sensor 108 may be used to measure and/or determine any variety of biomarkers, including, but not limited to: heart rate, heart rate variability, blood pressure, cardiac output, respiration rate, and blood oxygen saturation.
With reference to
The data processed and stored by the local processing device 143 may be raw PPG data (i.e., unprocessed signal data) or processed PPG data (e.g., data from which the desired biomarkers have already been extracted), for example. The PPG data may be transmitted from the local processing device 143 wirelessly, or via a wired connection, to the processor device 104 for further processing and analyzing of the data. The processor device 104 may analyze PPG data, by itself or with the EEG data, to determine a state of the patient. Data regarding the patient state may be generated by the processor device 104 on the basis of the analysis, as described further herein. In one example, the processor device 104 may analyze brain activity signals and biomarkers to determine a current condition of the patient and/or predict a future condition of the patient.
By carrying out data analysis externally to the PPG sensor 108, using the processor device 104, (whether separate from the sensor array 102 or integrated with the sensor array, as described with reference to
Turning now to
With reference now to
The optional therapeutic device 255 may be a device that provides therapeutic support to the patient to treat or mitigate the effects of the patient's condition or of events related to the patient's condition. For example, the therapeutic device 255 may administer a therapy on a regular basis to help treat the underlying condition, or in response to a detected event (e.g., after a seizure) to facilitate or accelerate the dissipation of after effects of the event. The therapeutic device 255 may, in some embodiments, be a drug pump that delivers timed, measured doses of a pharmacological agent (i.e., a drug) to the patient, while in other embodiments the therapeutic device 255 may be an oxygen generator configured to increase (or, potentially, decrease) the patient's oxygen levels according to predicted or determined need. In still other embodiments, the therapeutic device 255 may be a continuous positive airway pressure (CPAP) device or an adaptive servo ventilation device, each of which may be employed for mitigating obstructive sleep apnea, which may increase of decrease pressure according to detected. In further embodiments, the therapeutic device 255 may be a neurostimulator device (e.g., a vagal nerve stimulation device, a hypoglossal nerve stimulation device, an epicranial and/or transcranial electrical stimulation device, an intracranial electrical stimulation device, a phrenic nerve stimulator, a cardiac pacemaker, etc.) configured to apply or adjust (e.g., amplitude, frequency of the signal, frequency of the stimulus application, etc.) a neurostimulation signal. Cardiac pacemakers and phrenic nerve stimulators, respectively, may be used to ensure proper cardiac and diaphragmatic function, ensuring that the patient continues to have adequate cardiac and/or respiratory function.
Referring again to
The microphone 250 may detect the patient's voice, in embodiments, with the goal of determining one or more of: pauses in vocalization; stutters; periods of extended silence; abnormal vocalization; and/or other vocal abnormalities that, individually or in combination with data from the sensor array 102, the accelerometer 252, and/or self-reported data received via the user interface 106, may assist algorithms executing within the processor device 104 in determining whether the patient has experienced an event of interest and, if so, classifying the event as described herein. In embodiments, the microphone 250 may also detect other noises in the patient's environment that may be indicative that the patient experienced an event of interest. For example, the microphone 250 may detect the sound of glass breaking, which may indicate that the patient has dropped a glass. Such an indication, in conjunction with electrical signals detected by the sensor array 102, may provide corroboration that the patient has, in fact, experienced an event of interest.
In embodiments, such as that of
In the embodiments of
The accelerometer 252 may detect tremors, pauses in movement, gross motor movement (e.g., during a tonic-clonic seizure), falls (e.g., during an atonic or drop seizure or a tonic seizure), repeated movements (e.g., during clonic seizures), twitches (e.g., during myoclonic seizures), and other motions or movements that, in combination with data from the sensor array 102, the microphone 250, and/or self-reported data received via the user interface 106, may assist algorithms executing with the processor device 104 in determining whether the patient has experienced an invent of interest and, if so, classifying the event. In embodiments, the accelerometer 252 may act as an additional microphone 250 or may act as the only microphone 250.
Like the microphone 250, the accelerometer 252 may be in any of a variety of positions on the patient including, but not limited to, the patient's head, arm, torso, leg, hand, or neck. In some embodiments, there may be multiple accelerometers, to detect motions in different parts of the body. In some embodiments, an accelerometer 252 may be integrated with the sensor array 102 and placed on or beneath the scalp of the patient with the sensor array 102, while in others an accelerometer 252 may be integrated with the processor device 104.
Together, the sensor array 102 and, if present, the microphone(s) 250 and/or accelerometer(s) 252 may provide data from which biomarker data related to the patient(s) may be extracted. The system 100 may be configured to determine a variety of biomarkers depending on the inclusion and/or placement of the various sensor devices (i.e., the sensor array 102 and, if present, the microphone(s) 250 and/or accelerometer(s) 252). By way of example, and not limitation, muscle tone biomarker data may be determined from a combination of electromyography data (i.e., from the electrode devices 110 in the sensor array 102) and accelerometer data collected by one or more accelerometers 252 disposed on the head and/or arms of the patient; unsteadiness biomarker data may be determined from accelerometer data collected by one or more accelerometers 252 disposed on the head and/or arms of the patient; posture biomarker data may be determined from accelerometer data collected by one or more accelerometers 252 disposed on the head and/or arms of the patient; mood disruption biomarker data may be determined from microphone data collected by one or more microphones 250; loss of coordination biomarker data may be determined from accelerometer data collected by one or more accelerometers 252 disposed on the head and/or arms of the patient; speech production biomarker data may be determined from microphone data collected by one or more microphones 250; epileptiform activity biomarker data may be determined from EEG data received from one or more electrode devices 110 in the sensor array 102; jaw movement biomarker data may be determined from a combination of electromyography data and microphone data collected by one or more devices (e.g., electrode devices 110 and/or accelerometers 252) disposed on the patient; fatigue biomarker data may be determined from accelerometer data collected by one or more accelerometers 252 disposed on the head of the patient; dizziness biomarker data may be determined from accelerometer data collected by one or more accelerometers 252 disposed on the head and/or arms of the patient; vomiting biomarker data may be determined from a combination of electromyography data, microphone data, and/or accelerometer data collected by one or more devices (e.g., electrode devices 110, microphones 250, accelerometers 252) disposed on the patient; sleep biomarker data may be determined from EEG data received from one or more electrode devices 110 in the sensor array 102, etc.
The processor device 104 receives data from the sensor array 102, the PPG sensor 108 (in embodiments related to
The communication circuitry 256 may be any transceiver and/or receiver/transmitter pair that facilitates communication with the various devices from which the processor device 104 receives data and/or transmits data. The communication circuitry 256 is communicatively coupled, in a wired or wireless manner, to each of the sensor array 102, the microphone 250, the accelerometer 252, and the user interface 106. Additionally, the communication circuitry 256 is coupled to the microprocessor 258, which, in addition to executing various routines and instructions for performing analysis, may also facilitate storage in the memory 260 of data received, via the communication circuitry 256, from the sensor array 102, the microphone 250, the accelerometer 252, and the user interface 106.
The memory 260 may include both volatile memory (e.g., random access memory (RAM)) and non-volatile memory, in the form of either or both of magnetic or solid state media. In addition to an operating system (not shown), the memory 260 may store sensor array data 262 received from the sensor array 102, PPG data 267 received from the PPG sensor 108 (in embodiments related to
In embodiments related to
As will be described in greater detail below, the memory 260 may also store a model 270 for detecting and classifying events of interest according to a set of feature values 272 extracted from the sensor array data 262, the accelerometer data 264, the microphone data 266, and the user report data 268. Classification results 274 (and, by extension, detected events) output by the model 270 may be stored in the memory 260. A data pre-processing routine 271 may provide pre-processing of the sensor array data 262, the user report data 268 and, if present, the accelerometer data 264 and/or microphone data 266. As will be understood (and, in part, described below), the data pre-processing routine 271 may provide a range of pre-processing steps including, for example, filtering and extraction from the data of the feature values 272. Of course, it should be understood that wherever a routine, model, or other element stored in memory is referred to as receiving an input, producing or storing an output, or executing, the routine, model, or other element is, in fact, executing as instructions on the microprocessor 258. Further, those of skill in the art will appreciate that the model or routine or other instructions would be stored in the memory 260 as executable instructions, which instructions the microprocessor 258 would retrieve from the memory 260 and execute. Further, the microprocessor 258 should be understood to retrieve from the memory 260 any data necessary to perform the executed instructions (e.g., data required as an input to the routine or model), and to store in the memory 260 the intermediate results and/or output of any executed instructions.
In embodiments, the data pre-processing routine 271 may also extract from the sensor array data 262, the PPG data 267 (in embodiments related to
The data stored in the sensor array data 262, the PPG data 267 (in embodiments related to
Events need not be contemporaneous to be relevant or related, or to be feature values input into the model. Put another way, the model 270 may consider temporal relationships between non-contemporaneous events in detecting and/or classifying an event. By way of example and not limitation, an electrical activity event (e.g., EEG signals) indicating a seizure may be classified as a particular type of event if preceded by the ingestion of medication, and as a different type of event if not preceded by the ingestion of the medication. Other examples of non-contemporaneous events preceding a seizure that are precursors are patient subjective reports of auras or optical lights, shortness of breath or increased cardiac pulse rate, and acoustic biomarkers suggesting the alteration of speech patterns. Additionally, the system 100 and, in particular, the model 270, may identify pre- and/or post-seizure events, such as unsteady balance, falls, slurred speech, or brain activity patterns that are indicative of a pre- and/or post-seizure event.
Of course, contemporaneous events may also be relevant. For example, accelerometer data indicative of a generalized tonic-clonic (i.e., grand mal) seizure may be classified as such if it is accompanied by contemporaneous electrical activity indicative of such a seizure.
The memory 260 may also store a treatment strategy routine 273, in embodiments depicted in
As described above and throughout this specification, the interplay between biomarkers derived from the EEG data 262, the PPG data 267 (where present), the accelerometer data 264, and the microphone data 266, may provide insight into neurological, cardiac, respiratory, and even inflammatory function in the patient. Measurement of these functions can improve the detection and classification of events and conditions. Measurement of these functions can also improve understanding of patient-specific physiological changes that result from the condition or the events associated with the condition.
Specifically, biomarkers that can be extracted from the PPG data 267 may improve clinical or sub-clinical seizure detection, as changes in biomarkers in the PPG data 267 may coincide or have specific temporal relationships with biomarkers in the EEG data 262 and with events detected in the accelerometer data 264 and/or the microphone data 266. At the same time, biomarkers in the PPG data 267 may be used to determine if changes to blood oxygen levels, and cardiac and respiratory function are related to seizure activity or drug side-effects, which can assist in the optimization of treatment dose and timing to maximize therapeutic effect while minimizing side-effects. In addition, while biomarkers in the EEG data 262 may provide sufficient data, in some instances, to determine whether a seizure (or an event related to another condition, such as sleep apnea) is occurring or has occurred, the additional cardiac-related biomarker information extracted from the PPG data 267 may inform whether the seizure is cardiac induced or, instead, is causing cardiac changes (i.e., may determine a cause-effect relationship between seizure events and cardiac function). PPG-related biomarkers may also help sub-classify clinical and sub-clinical seizures as those that are ictal hypoxemic and those that are not.
Biomarkers extracted from the PPG data 267 may also be used to characterize blood oxygenation, cardiac, and respiratory changes before, at the onset of, during, and after seizures. These seizure-related effects on the patient can include respiratory changes that include obstructive apnea, tachypnea, bradypnea, and hypoxemia.
Additionally, the combination of biomarkers extracted from the PPG data 267 and the EEG data 262 may facilitate detection of SUDEP (sudden unexplained death in epilepsy) or SUDEP-precipitating events. That is, by monitoring the patient's heart-rate, blood pressure, and/or blood oxygenation, in combination with EEG data 262, the system 100 may detect a SUDEP or SUDEP-precipitating event. In so doing, the system 100 may generate alerts or alarms for the patient, for the caregivers or physicians of the patient, or for bystanders. The system 100 may also activate connected therapeutic devices such as neurostimulators (vagal, transcranial, epicranial, intracranial, etc.) or cardiac defibrillators to counter or prevent SUDEP events when they are detected.
Patients, particularly those suffering from epilepsy and/or sleep disorders, can also benefit from characterization of sleep quality. The systems and methods described herein utilize biomarkers extracted from the PPG data 267, alone or with the EEG data 262, to characterize sleep quality (e.g., capture a sleep quality score). The scoring can be combined with indicators of sleep cycle data in the EEG data 262. A more holistic representation of the sleep quality for the individual can be developed by including information from the user report data 268 entered by the patient via the user interface 106 after the patient wakes. The sleep quality score for the patient can be used, for example by the treatment strategy routine 273, to make recommendations to caregivers or physicians regarding the adjustment of dosage and timing of medication or other treatments (e.g., VNS) such that treatment is titrated to reach clinical efficacy but move away from the dosage impacting sleep quality. In some embodiments in which the processor 104 is communicatively coupled to a therapeutic device 255, the treatment strategy routine 273 may implement adjustments to the therapeutic device. Such implementation may, in some embodiments, require the processor device 104 to communicate first with a physician (e.g., sending a request or alert to a device in the possession of the physician) to receive confirmation of the adjustment.
In view of these considerations, it is considered that while some objectives of the system 100 may be achieved using the model 270 according to known data about the patient and/or the condition, other objectives of the system 100 must necessarily implement a trained artificial intelligence (AI) model to achieve maximum benefit.
Turning now to
The PPG sensor 108 detects, using a photodetector circuit, light that is transmitted through or reflected from the patient after the light interacts with the blood just beneath the surface of the patient's skin. The PPG sensor 108 may be any type of PPG sensor suitable for disposal on the patient and, in particular, suitable for operation from a portable power source such as a battery. The PPG sensor 108 may be disposed at any of a variety of positions on the patient including, but not limited to, the patient's finger, toe, forehead, earlobes, nasal septum, wrist, ankle, arm, torso, leg, hand, or neck. In some embodiments, the PPG sensor 108 may be integrated with the sensor array 102 and placed on or beneath the scalp of the patient with the sensor array 102, while in others the PPG sensor 108 may be integrated with the processor device 104, and still in others the PPG sensor 108 may be distinct from both the sensor array 102 and the processor device 104. Of course, while depicted in the accompanying figures as a single PPG sensor, the PPG sensor 108 may be one or more PPG sensors, disposed as connected or distinct units on a variety of positions on the patient (so-called multi-site photoplethysmography). In embodiments implementing multiple PPG sensors, the multiple PPG sensors may be of the same type, or may be different, depending on the location of each on the patient, the environment in which each is disposed, the location of each in the hardware (e.g., separate from other devices or integrated with the processor device 104, for example), etc.
The optional therapeutic device 255 may be a device that provides therapeutic support to the patient to treat or mitigate the effects of the patient's condition or of events related to the patient's condition. For example, the therapeutic device may administer a therapy prior to a predicted event (e.g., prior to a predicted seizure), or in response to a detected event (e.g., after a seizure) to facilitate or accelerate the dissipation of after effects of the event. The therapeutic device 255 may, in some embodiments, be a drug pump that delivers timed, measured doses of a pharmacological agent (i.e., a drug) to the patient, while in other embodiments the therapeutic device 255 may be an oxygen generator configured to increase (or, potentially, decrease) the patient's oxygen levels according to predicted or determined need. In still other embodiments, the therapeutic device 255 may be a continuous positive airway pressure (CPAP) device or an adaptive servo ventilation device, each of which may be employed for mitigating obstructive sleep apnea, which may increase of decrease pressure according to detected or predicted events. In further embodiments, the therapeutic device 255 may be a neurostimulator device (e.g., a vagus nerve stimulation device, a hypoglossal nerve stimulation device, an epicranial and/or transcranial electrical stimulation device, an intracranial electrical stimulation device, a phrenic nerve stimulator, a cardiac pacemaker, etc.) configured to apply or adjust (e.g., amplitude, frequency of the signal, frequency of the stimulus application, etc.) a neurostimulation signal. Cardiac pacemakers and phrenic nerve stimulators, respectively, may be used to ensure proper cardiac and diaphragmatic function, ensuring that the patient continues to have adequate cardiac and/or respiratory function.
The processor device 104 receives data from the sensor array 102, the PPG sensor 108, and the user interface 106 and, using the received data, may detect, classify, monitor, and/or predict events of interest. The processor device 104 includes communication circuitry 256, a microprocessor 258, and a memory device 260. The microprocessor 258 may be any known microprocessor configurable to execute the routines necessary for detecting, classifying, monitoring, and/or predicting events of interest, including, by way of example and not limitation, general purpose microprocessors (GPUs), RISC microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), and field-programmable gate arrays (FPGAs).
The communication circuitry 256 may be any transceiver and/or receiver/transmitter pair that facilitates communication with the various devices from which the processor device 104 receives data and/or transmits data. The communication circuitry 256 is communicatively coupled, in a wired or wireless manner, to each of the sensor array 102, the PPG sensor 108, the therapeutic device 255 (in embodiments implementing it), and the user interface 106. Additionally, the communication circuitry 256 is coupled to the microprocessor 258, which, in addition to executing various routines and instructions for performing analysis, may also facilitate storage in the memory 260 of data received, via the communication circuitry 256, from the sensor array 102, the PPG sensor 108, the therapeutic device 255, and the user interface 106. In embodiments, the communication circuitry 256 may also communicate with other processors or devices, as will be described elsewhere in this specification.
The memory 260 may include both volatile memory (e.g., random access memory (RAM)) and non-volatile memory, in the form of either or both of magnetic or solid state media. In addition to an operating system (not shown), the memory 260 may store sensor array data 262 (i.e., EEG data) received from the sensor array 102, PPG data 267 received from the PPG sensor 108, and user report data 268 received from the user (e.g., patient, caregiver, etc.) via the user interface 106. In particular, where the condition and events relate to epilepsy, the user report data 268 may include reports from the user, received via the user interface 106, of: perceived seizures/epileptic events; characteristics or features of perceived seizures/epileptic events such as severity and/or duration, perceived effects on memory, or other effects on the individual's well-being (such as their ability to hold a cup or operate a vehicle); other types of physiological symptoms (e.g., headaches, impaired or altered vision, involuntary movements, disorientation, falling to the ground, repeated jaw movements or lip smacking, etc.); characteristics or features of other symptoms (e.g., severity and/or duration); medication ingestion information (e.g., medication types, dosages, and/or frequencies/timing); perceived medication side-effects; characteristics or features of medication side effects (e.g., severity and/or duration), and other user reported information (e.g., food and/or drink ingested, activities performed (e.g., showering, exercising, working, brushing hair, etc.), tiredness, stress levels, etc.), as well as the timing of each. Where the condition relates to a sleep disorder, the user report data 268 may include reports from the user, received via the user interface 106, of: perceived tiredness or lethargy, perceived wakefulness (e.g., at night), perceived sleep apnea events such as waking up gasping for breath, perceived sleep quality, perceived shortness of breath, cognitive decrement or slowness after poor sleep, as well as the severity, speed of onset, and other factors related to each of these. Where the condition relates to a vestibular or cochlear disorder, the user report data 268 may include reports from the user, received via the user interface 106, of: perceived changes in hearing threshold, perceived cognitive effort required to hear, and perceived dizziness or vertigo, as well as the severity, speed of onset, and other factors related to each of these.
As will be described in greater detail below, in the sub-system 104A, the memory 260 may also store a model 270 for detecting and predicting both events and the effects of those events, according to a set of feature values 272 extracted from the sensor array data 262, the PPG data 267, and the user report data 268. Classification results 274 (and, by extension, detected and predicted events and associated effects) output by the model 270 may be stored in the memory 260. A data pre-processing routine 271 may provide pre-processing of the sensor array data 262, the user report data 268, and the PPG data 267. As will be understood (and, in part, described below), the data pre-processing routine 271 may provide a range of pre-processing steps including, for example, filtering and extraction from the data of the feature values 272. Of course, it should be understood that wherever a routine, model, or other element stored in memory is referred to as receiving an input, producing or storing an output, or executing, the routine, model, or other element is, in fact, executing as instructions on the microprocessor 258. Further, those of skill in the art will appreciate that the model or routine or other instructions would be stored in the memory 260 as executable instructions, which instructions the microprocessor 258 would retrieve from the memory 260 and execute. Further, the microprocessor 258 should be understood to retrieve from the memory 260 any data necessary to perform the executed instructions (e.g., data required as an input to the routine or model), and to store in the memory 260 the intermediate results and/or output of any executed instructions.
In embodiments, the data pre-processing routine 271 may also extract from the sensor array data 262 and the PPG data 267, one or more biomarkers. The one or more biomarkers may be included among the feature values that are provided as inputs to the model 270, in embodiments, in order for the model 270 to output detected and/or classified events and associated effects to the classification results 274.
The data stored in the sensor array data 262, the PPG data 267, and the user report data 268 is stored with corresponding time stamps such that the data may be correlated between data types. For example, each value in the sensor array data 262 should have a corresponding time stamp such that the PPG data 266 and user report data 268 for the same time can be compared, allowing the various types of data to be lined up and analyzed for any given time period, and so that time relationships between events occurring and biomarkers present in the various types of data may be analyzed to look for relationships between them whether temporally concurrent or merely temporally related. With respect to the user report data 268, there may be multiple time stamps for any particular user report, including, for example, the time that the user filled out the user report and the time of the event or information (e.g., drug ingestion) that the user was reporting (as reported by the user).
Events need not be contemporaneous to be relevant or related, or to be feature values input into the model. Put another way, the model 270 may consider temporal relationships between non-contemporaneously recorded data in detecting, classifying, or predicting an event or the effects of an event. By way of example and not limitation, an electrical activity event (e.g., EEG signals) indicating a seizure may be classified as a particular type of event if preceded by the ingestion of medication, and as a different type of event if not preceded by the ingestion of the medication. Other examples of non-contemporaneous events preceding a seizure that are precursors are patient subjective reports of auras or optical lights, shortness of breath or increased cardiac pulse rate. Additionally, the system 100 and, in particular, the model 270, may identify pre- and/or post-event conditions, such as decreased blood oxygenation, dizziness, or other symptoms that are likely to occur according to patient history or other biomarkers present in the EEG data 262, the PPG data 267, and/or the user reports 268.
Of course, contemporaneous events may also be relevant. For example, EEG data indicative of a generalized tonic-clonic (i.e., grand mal) seizure, when accompanied contemporaneously by a drop in blood oxygenation as detected by the PPG sensor may indicate the immediate presence of an after-effect of the seizure or even of seizure-induced apnea.
The memory 260 may also store a treatment strategy routine 273, in embodiments. The treatment strategy routine 273 may include pre-programmed treatment strategies recommended or implemented according to the biomarkers extracted from the EEG data 262, the PPG data 267, the feature values 272, the user reports 268, and/or the classification results 274. For example, the treatment strategy routine 273 may be programmed to recommend to the patient or a caregiver, or to implement (e.g., via the treatment device 255), increased supplemental oxygen for the patient if the PPG data 267 show decreased blood oxygen levels, if the classification results 274 produced by the model 270 include that the patient has just suffered a seizure and that the likely effects of that seizure are decreased blood oxygen levels, or if the classification results 274 include a prediction that the patient is about to have a seizure that is likely to result in decreased blood oxygen levels. As another example, the biomarkers extracted as feature values 272 from the EEG data 262 and the PPG data 267 may result in classification results 274 indicative of an impending seizure. The treatment strategy routine 273 may be programmed to adjust the parameters of a vagus nerve stimulator (VNS) system (e.g., treatment device 255) in order to prevent the seizure or lessen the severity of the seizure. In still another example, the model 270 may, based on feature values 272 extracted from the EEG data 262 and the PPG data 267, output classification results 274 indicating that the patient is having frequent sleep apnea episodes. The treatment strategy routine 273 may be programmed to recommend to the patient that the patient increase the pressure on a CPAP device or adjust the settings on a hypoglossal nerve stimulation device or, in embodiments in which the processor device 104 is communicatively coupled to the therapeutic device 255 (e.g., the CPAP device, adaptive servo ventilation device, or the hypoglossal nerve stimulation device), to adjust the settings on the therapeutic device 255 directly to decrease the frequency or severity of the sleep apnea events.
As described above and throughout this specification, the interplay between biomarkers derived from the EEG data 262 and the PPG data 267 may provide insight into neurological, cardiac, respiratory, and even inflammatory function in the patient. Measurement of these functions can improve the detection of events and conditions and, through understanding temporal relationships between biomarkers that might presage certain events, can improve the prediction of these events and conditions. Measurement of these functions can also improve understanding of patient-specific physiological changes that result from the condition or the events associated with the condition.
Specifically, biomarkers that can be extracted from the PPG data 267 may improve clinical or sub-clinical seizure detection, as changes in biomarkers in the PPG data 267 may coincide or have specific temporal relationships with biomarkers in the EEG data 262. At the same time, biomarkers in the PPG data 267 may be used to determine if changes to blood oxygen levels, and cardiac and respiratory function are related to seizure activity or drug side effects, which can assist in the optimization of treatment dose and timing to maximize therapeutic effect while minimizing side-effects. In addition, while biomarkers in the EEG data 262 may provide sufficient data, in some instances, to determine whether a seizure is occurring or has occurred, the additional cardiac-related biomarker information extracted from the PPG data 267 may inform whether the seizure is cardiac induced or, instead, is causing cardiac changes (i.e., may determine a cause-effect relationship between seizure events and cardiac function). PPG-related biomarkers may also help sub-classify clinical and sub-clinical seizures as those that are ictal hypoxemic and those that are not.
Biomarkers extracted from the PPG data 267 may also be used to characterize blood oxygenation, cardiac, and respiratory changes before, at the onset of, during, and after seizures. Characterizing these changes and, in particular, changes before or at the onset of seizure events in a particular patient or group of patients can facilitate or improve prediction of seizure events, potentially giving patients time to prepare (e.g., situate themselves in safer positions or surroundings, alert caregivers or bystanders, etc.) or even to take action that might prevent or lessen the severity of an impending seizure event, while characterizing changes before, during, and after events may allow patients and caregivers to take action to prevent or lessen the severity of the effects of a seizure event on short- and long-term patient well-being. These seizure-related effects on the patient can include respiratory changes that include obstructive apnea, tachypnea, bradypnea, and hypoxemia.
Quantifying the impact of events (seizure events, apnea events, vestibular events, etc.) on vital functions such as respiration and cardiac functions, as well as on recovery and long-term impact to patient health, especially paired with prediction (pre-ictal detection) and characterization of events, can allow patients, caregivers, and physicians to mitigate these impacts. In particular, qualitative and quantitative detection and characterization of post-ictal state (for seizures) or after-effects of events related to other conditions (e.g., sleep apnea events), when combined with prediction and/or detection of the events themselves can lead to therapies and strategies for reducing the clinical impact of the events and improving the overall well-being of the patients.
Additionally, the combination of biomarkers extracted from the PPG data 267 and the EEG data 262 may facilitate detection of SUDEP (sudden unexplained death in epilepsy) or SUDEP-precipitating events. That is, by monitoring the patient's heart-rate, blood pressure, and/or blood oxygenation, in combination with EEG data 262, the system 100 may detect and/or predict a SUDEP or SUDEP-precipitating event. In so doing, the system 100 may generate alerts or alarms for the patient, for the caregivers or physicians of the patient, or for bystanders. The system 100 may also activate connected therapeutic devices such as neurostimulators or cardiac defibrillators to counter or prevent SUDEP events when they are detected or predicted.
Patients, particularly those suffering from epilepsy and/or sleep disorders, can also benefit from characterization of sleep quality. The systems and methods described herein utilize biomarkers extracted from the PPG data 267, alone or with the EEG data 262, to characterize sleep quality (e.g., capture a sleep quality score). The scoring can be combined with indicators of sleep cycle data in the EEG data 262. A more holistic representation of the sleep quality for the individual can be developed by including information from the user report data 268 entered by the patient via the user interface 106 after the patient wakes. The sleep quality score for the patient can be used, for example by the treatment strategy routine 273, to make recommendations to caregivers or physicians regarding the adjustment of dosage and timing of medication or other treatments (e.g., VNS) such that treatment is titrated to reach clinical efficacy but move away from the dosage impacting sleep quality. In some embodiments in which the processor 104 is communicatively coupled to a therapeutic device 255, the treatment strategy routine 273 may implement adjustments to the therapeutic device. Such implementation may, in some embodiments, require the processor device 104 to communicate first with a physician (e.g., sending a request or alert to a device in the possession of the physician) to receive confirmation of the adjustment.
The systems and methods described herein may utilize the novel combinations of biomarkers derived from the EEG data 262 and the PPG data 267 to create forecasting models that provide outputs that forecast not only particular events (e.g., seizures, apnea desaturations, etc.), but also forecast the severity of the event, ictal cardiac and respiratory changes, types of ictal respiratory changes (e.g., central apnea, hypoxemia, etc.), likely impact to post-ictal well-being of the individual, clustering of events, systemic inflammatory markers (such as those that can lead to middle or inner ear inflammation, cochlear or vestibular dysfunction, etc.), and sleep apnea events, among others. As alluded to, the forecasting of these events and effects can allow the system 100 to recommend and/or implement interventions and treatments that can reduce the severity of the event or its effects, reduce the clinical impact of the event or effects on the patient's well-being, or hasten the patient's recovery from the event or its effects.
In view of these considerations, it is considered that while some objectives of the system 100 may be achieved using the model 270 according to known data about the patient and/or the condition, other objectives of the system 100 must necessarily implement a trained artificial intelligence (AI) model to achieve maximum benefit.
Throughout the remainder of this specification, the phrase “evaluative functions” will be used to refer to the collective potential outputs of the various embodiments including at least: detecting and/or classifying events that are occurring; detecting and/or classifying events that have occurred; predicting and/or classifying events that are about to occur; detecting and/or classifying measures of pre-event patient well-being related to events that are occurring, have occurred, or are predicted to occur; detecting and/or classifying measures of intra-event patient well-being related to events that are occurring, have occurred, or are predicted to occur; detecting and/or classifying measures of post-event patient well-being related to events that are occurring, have occurred, or are predicted to occur.
In embodiments, one or more chemical biomarkers may be detected within the system 100, in addition to or instead of other biomarkers determined by the sensor array 102, the PPG sensor 108 (in
The trained AI model 302 may be created by an adaptive learning component configured to “train” an AI model (e.g., create the trained AI model 302) to detect and classify events of interest using as inputs raw or pre-processed (e.g., by the data pre-processing routine 271) data from the sensor array data 262 and the PPG data 267 (in the embodiments of
The trained AI model 302 may be created and trained based upon example (e.g., “training data”) inputs or data (which may be termed “features” and “labels”) in order to make valid and reliable predictions for new inputs, such as testing level or production level data or inputs. In supervised machine learning, a machine learning program operating on a server, computing device, or other processor(s), may be provided with example inputs (e.g., “features”) and their associated, or observed, outputs (e.g., “labels”) in order for the machine learning program or algorithm to determine or discover rules, relationships, or other machine learning “models” that map such inputs (e.g., “features”) to the outputs (e.g., “labels”), for example, by determining and/or assigning weights or other metrics to the model across its various feature categories. Such rules, relationships, or other models may then be provided subsequent inputs in order for the model, executing on the server, computing device, or other processor(s), to predict, based on the discovered rules, relationships, or model, an expected output.
In unsupervised learning, the server, computing device, or other processor(s), may be required to find its own structure in unlabeled example inputs, where, for example, multiple training iterations are executed by the server, computing device, or other processor(s) to train multiple generations of models until a satisfactory model (e.g., a model that provides sufficient prediction accuracy when given test level or production level data or inputs) is generated. The disclosures herein may use one or both of such supervised or unsupervised machine learning techniques.
The external device 278 may be a workstation, a server, a cloud computing platform, or the like, configured to receive data from one or more processor devices 104 associated with one or more respective patients. The external device 278 may include communication circuitry 275, coupled to a microprocessor 277 that, in turn, is coupled to a memory 279. The microprocessor 277 may be any known microprocessor configurable to execute the routines necessary for detecting and classifying events of interest, including, by way of example and not limitation, general purpose microprocessors (GPUs), RISC microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), and field-programmable gate arrays (FPGAs).
The communication circuitry 275 may be any transceiver and/or receiver/transmitter pair that facilitates communication with the various devices from or to which the external device 278 receives data and/or transmits data. The communication circuitry 256 is coupled to the microprocessor 277, which, in addition to executing various routines and instructions for performing analysis, may also facilitate storage in the memory 279 of data received, via the communication circuitry 275, from the processor devices 104 of the one or more patients.
The memory 279 may include both volatile memory (e.g., random access memory (RAM)) and non-volatile memory, in the form of either or both of magnetic or solid state media. In addition to an operating system (not shown), the memory 279 may store received data 281 received from the processor devices 104, including the sensor array data 262, the accelerometer data 264 received from the accelerometer(s) 252, the microphone data 266 received from the microphone(s) 250, and user report data 268 received from the user via the user interface 106.
Like the processor device 104, the external device 278 may have, stored in its memory 279, the static model 270 or the trained AI model 302, as well as data pre-processing routines 271. The microprocessor 277 may execute the data pre-processing routines 271 to refine, filter, extract biomarkers from, etc. the received data 281 and to output feature values 272 (which, in embodiments, include biomarkers or relationships between biomarkers). The microprocessor 277 may also execute the model 270, 302, receiving as inputs the feature values 272 and outputting classification results 274. One or more reporting routines 283 stored on the memory 279, when executed by the microprocessor 277, may facilitate outputting reports for use by the patient(s) or by medical personnel, such as physicians, to review the data and or treat the patient(s).
The embodiments depicted in
The trained AI model 302 may be created by an adaptive learning component configured to “train” an AI model (e.g., create the trained AI model 302) to detect and classify events of interest (i.e., perform the evaluative functions) using as inputs raw or pre-processed (e.g., by the data pre-processing routine 271) data from the sensor array data 262 and, optionally, the user reports 268, and PPG data 267. As described herein, the adaptive learning component may use a supervised or unsupervised machine learning program or algorithm. The machine learning program or algorithm may employ a neural network, which may be a convolutional neural network (CNN), a deep learning neural network, or a combined learning module or program that learns in two or more features or feature datasets in a particular area of interest. The machine learning programs or algorithms may also include natural language processing, semantic analysis, automatic reasoning, regression analysis, support vector machine (SVM) analysis, decision tree analysis, random forest analysis, K-Nearest neighbor analysis, naïve Bayes analysis, clustering, reinforcement learning, and/or other machine learning algorithms and/or techniques. Machine learning may involve identifying and recognizing patterns in existing data (i.e., training data) such as temporal correlations between biomarkers in the EEG data 262 and the PPG data 267, in order to facilitate making predictions for subsequent data.
The trained AI model 302 may be created and trained based upon example (e.g., “training data”) inputs or data (which may be termed “features” and “labels”) in order to make valid and reliable predictions for new inputs, such as testing level or production level data or inputs. In supervised machine learning, a machine learning program operating on a server, computing device, or other processor(s), may be provided with example inputs (e.g., “features”) and their associated, or observed, outputs (e.g., “labels”) in order for the machine learning program or algorithm to determine or discover rules, relationships, or other machine learning “models” that map such inputs (e.g., “features”) to the outputs (e.g., “labels”), for example, by determining and/or assigning weights or other metrics to the model across its various feature categories. Such rules, relationships, or other models may then be provided subsequent inputs in order for the model, executing on the server, computing device, or other processor(s), to predict, based on the discovered rules, relationships, or model, an expected output.
In unsupervised learning, the server, computing device, or other processor(s), may be required to find its own structure in unlabeled example inputs, where, for example, multiple training iterations are executed by the server, computing device, or other processor(s) to train multiple generations of models until a satisfactory model (e.g., a model that provides sufficient prediction accuracy when given test level or production level data or inputs) is generated. The disclosures herein may use one or both of such supervised or unsupervised machine learning techniques.
The external device 278 may be a workstation, a server, a cloud computing platform, or the like, configured to receive data from one or more processor devices 104 associated with one or more respective patients. The external device 278 may include communication circuitry 275, coupled to a microprocessor 277 that, in turn, is coupled to a memory 279. The microprocessor 277 may be any known microprocessor configurable to execute the routines necessary for producing the evaluative results, including, by way of example and not limitation, general purpose microprocessors (GPUs), RISC microprocessors, digital signal processors (DSPs), application specific integrated circuits (ASICs), and field-programmable gate arrays (FPGAs).
The communication circuitry 275 may be any transceiver and/or receiver/transmitter pair that facilitates communication with the various devices from or to which the external device 278 receives data and/or transmits data. The communication circuitry 256 is coupled to the microprocessor 277, which, in addition to executing various routines and instructions for performing analysis, may also facilitate storage in the memory 279 of data received, via the communication circuitry 275, from the processor devices 104 of the one or more patients.
The memory 279 may include both volatile memory (e.g., random access memory (RAM)) and non-volatile memory, in the form of either or both of magnetic or solid state media. In addition to an operating system (not shown), the memory 279 may store received data 281 received from the processor devices 104, including the sensor array data 262 received from the sensor array 102, the PPG data 267 received from the PPG sensor 108, and user report data 268 received from the user via the user interface 106.
Like the processor device 104, the external device 278 may have, stored in its memory 279, the static model 270 or the trained AI model 302, as well as data pre-processing routines 271. The microprocessor 277 may execute the data pre-processing routines 271 to refine, filter, extract biomarkers from, etc. the received data 281 and to output feature values 272 (which, in embodiments, include biomarkers or relationships between biomarkers). The microprocessor 277 may also execute the model 270, 302, receiving as inputs the feature values 272 and outputting classification results 274. One or more reporting routines 283 stored on the memory 279, when executed by the microprocessor 277, may facilitate outputting reports for use by the patient(s) or by medical personnel, such as physicians, to review the data and or treat the patient(s).
The embodiments depicted in
Unlike the systems 100 depicted in
The data collected by the sets 312A1-312AN of data collection hardware may be communicated to a modeling processor device 314. The modeling processor device 314 may be any computer workstation, laptop computer, mobile computing device, server, cloud computing environment, etc. that is configured to receive the data from the sets 312A1-312AN of data collection hardware and to use the data from the sets 312A1-312AN of data collection hardware to create the trained AI model 302. The modeling processor device 314 may receive the data from the sets 312A1-312AN of data collection hardware via wired connection (e.g., Ethernet, serial connection, etc.) or wireless connection (e.g., mobile telephony, IEEE 802.11 protocol, etc.), directly (e.g., a connection with no intervening devices) or indirectly (e.g., a connection through one or more intermediary switches, access points, and/or the Internet), between the communication circuitry 256 of the processor device 104 and the communication circuitry 316 of the modeling processor device 314. Additionally, though not depicted in
The modeling processor device 314 includes communication circuitry 316, in embodiments in which it is necessary, a microprocessor 318, and a memory device 320. Though it should be understood, the microprocessor 318 may be one or more stand-alone microprocessors, one or more shared computing resources or processor arrays (e.g., a bank of processors in a cloud computing device), one or more multi-core processors, one or more DSPs, one or more FPGAs, etc. Similarly, the memory device 320 may be volatile or non-volatile memory, and may be memory dedicated solely to the modeling processor device 314 or shared among a variety of users, such as in a cloud computing environment.
The memory 320 of the modeling processor device 314 may store as a first AI training set 322 (depicted in
In embodiments in which the adaptive learning component 324 implements unsupervised learning algorithms, the adaptive learning component 324, executed by the microprocessor 318, finds its own structure in the unlabeled feature values 328 and, therefrom, generates a first trained AI model 330.
In embodiments in which the adaptive learning component 324 implements supervised learning algorithms, the memory 320 may also store one or more classification routines 332 that facilitate the labeling of the feature values (e.g., by an expert, such as a neurologist, reviewing the feature values 328 and/or the first AI training set 322) to create a set of key or label attributes 334. The adaptive learning component 324, executed by the microprocessor 318, may use both the feature values 328 and the key or label attributes 334 to discover rules, relationships, or other “models” that map the features to the labels by, for example, determining and/or assigning weights or other metrics. The adaptive learning component 324 may output the set of rules, relationships, or other models as a first trained AI model 330.
Regardless of the manner in which the adaptive learning component 324 creates the first trained AI model 330, the microprocessor 318 may use the first trained AI model 330 with the first AI training set 322 and/or the feature values 328 extracted therefrom, or on a portion of the first AI training set 322 and/or a portion of the feature values 328 extracted therefrom that were reserved for validating the first trained AI model 330, in order to provide classification results 336 for comparison and/or analysis by a trained professional in order to validate the output of the model.
As should be apparent, the first AI training set 322 may include data from one or more of the sets 312A1-312AN of data collection hardware and, as a result, from one or more patients. Thus, the adaptive learning component 324 may use data from a single patient, from multiple patients, or from a multiplicity of patients when creating the first trained AI model 330. The population from which the patient or patients are selected may be tailored according to particular demographic (e.g., a particular type of suspected epilepsy, a particular age group, etc.), in some instances, or may be non-selective. In embodiments, at least some of the patients associated with the sets 312A1-312AN of data collection hardware from which the first AI training set 322 is created may be patients without any symptoms of the underlying condition(s) (e.g., epilepsy, sleep apnea, vestibular or cochlear disorders) and, as such, may serve to provide additional control data to the first AI training set 322.
In embodiments, the first trained AI model 330 may be transmitted to (or otherwise received—e.g., via portable storage media) to another set of data collection hardware (e.g., the system 300 depicted in any of
Any or all of the data stored in the memory device 260 of the set 342 of data collection hardware may be communicated from the set 342 of data collection hardware to the modeling processor device 314. As above, the modeling processor device 314 may receive the data from the set 342 of data collection hardware via wired connection (e.g., Ethernet, serial connection, etc.) or wireless connection (e.g., mobile telephony, IEEE 802.11 protocol, etc.), directly (e.g., a connection with no intervening devices) or indirectly (e.g., a connection through one or more intermediary switches, access points, and/or the Internet), between the communication circuitry 256 of the processor device 104 and the communication circuitry 316 of the modeling processor device 314. Additionally, though not depicted in
The received data may be stored in the memory 320 as a second AI training set 344 (depicted in
In embodiments in which the adaptive learning component 324 implements unsupervised learning algorithms, the adaptive learning component 324, executed by the microprocessor 318, finds its own structure in the unlabeled feature values 328 and, therefrom, generates a second trained AI model 346.
In embodiments in which the adaptive learning component 324 implements supervised learning algorithms, the memory 320 may also store one or more classification routines 332 that facilitate the labeling of the feature values (e.g., by an expert, such as a neurologist, reviewing the feature values 328 and/or the second AI training set 344) to create a set of key or label attributes 334. The adaptive learning component 324, executed by the microprocessor 318, may use both the feature values 328 and the key or label attributes 334 to discover rules, relationships, or other “models” that map the features to the labels by, for example, determining and/or assigning weights or other metrics. The adaptive learning component 324 may output an updated set of rules, relationships, or other models as a second trained AI model 346.
Regardless of the manner in which the adaptive learning component 324 iterates and/or updates the first trained AI model 330 to be the second trained AI model 346, the microprocessor 318 may use the second trained AI model 346 with the second AI training set 344 and/or the feature values 328 extracted therefrom, or on a portion of the second AI training set 344 and/or a portion of the feature values 328 extracted therefrom that were reserved for validating the second trained AI model 346, in order to provide classification results 348 for comparison and/or analysis by a trained professional in order to validate the output of the model. An error rate of the classification results 348 output by the second trained AI model 346 will be reduced relative to an error rate of the classification results 336 output by the first trained AI model 330. The second trained AI model 346 may be programmed into or communicated to the systems depicted, for example, in
The static model 270, and the trained AI model 302, may each be programmed to facilitate a determination of whether an individual is experiencing epileptic or other types of events, by detecting within the received data (e.g., the sensor array data 262, the PPG data 267 (in embodiments implementing the PPG sensor 108), the user report data 268 and, optionally, the accelerometer data 264 and/or microphone data 266) events of interest, extracting from the received data relevant biomarkers for seizure activity (or sleep apnea activity or cochlear or vestibular disorders, if PPG data are available), and classifying or categorizing the relevant biomarkers as one of several different types of events.
In an embodiment, the models 270 and 302 may be programmed or trained to classify detected events of interest as one of the following types:
(1) a clinical manifestation of epilepsy, in which the respective patient exhibits outward signs of a seizure, and for which the detected events indicate a seizure;
(2) a sub-clinical manifestation of epilepsy, in which the respective patient exhibits no outward signs of a seizure, but for which the detected events would indicate a seizure;
(3) a non-clinical event, in which the respective patient exhibits no outward signs of a seizure, and for which the detected events include abnormal activity that is not suggestive of a seizure, but indicates abnormal activity relative to baseline sensor activity;
(4) a non-event, in which the respective patient either reports a seizure but that sensors do not suggest either a type 1, 2, or 3 event, or detected events closely resemble a seizure, but can be ruled out as noisy data or data artifacts; or
(5) a medication side-effect.
In embodiments, particularly those including the PPG sensor 108 and corresponding PPG data 267) the models 270 and 302 may be programmed or trained to classify detected events of interest as sleep apnea events, epilepsy events, cochlear events, vestibular events, etc., and may also classify an origin and/or type of the event, a severity of the event, a duration of the event, etc.
In embodiments, the detected events are further classified within each of the seizure events 370 and the non-seizure events 372. Specifically, the classification results may indicate the type of event and/or the severity of the event and/or the duration of the event.
The non-seizure events 372 may similarly have a first set of events 392 that are classified by the static model 270 or by the trained AI model 330 or 346 as type 5 events (non-seizure events caused by medication side-effects), and may optionally include for each event a severity 394 and/or a duration 396. The non-seizure events 372 may also have a second set of events 398 that are classified by the static model 270 or by the trained AI model 330 or 346 as type 3 events (non-clinical), and may optionally include for each event a severity 400 and/or a duration 402. The non-seizure events 372 may also have a third set of events 404 that are classified by the static model 270 or by the trained AI model 330 or 346 as type 4 events (non-events).
Of course, in each of
Unlike the systems 100 depicted in
The data collected by the sets 312A1-312AN of data collection hardware may be communicated to a modeling processor device 314. The modeling processor device 314 may be any computer workstation, laptop computer, mobile computing device, server, cloud computing environment, etc. that is configured to receive the data from the sets 312A1-312AN of data collection hardware and to use the data from the sets 312A1-312AN of data collection hardware to create the trained AI model 302. The modeling processor device 314 may receive the data from the sets 312A1-312AN of data collection hardware via wired connection (e.g., Ethernet, serial connection, etc.) or wireless connection (e.g., mobile telephony, IEEE 802.11 protocol, etc.), directly (e.g., a connection with no intervening devices) or indirectly (e.g., a connection through one or more intermediary switches, access points, and/or the Internet), between the communication circuitry 256 of the processor device 104 and communication circuitry 316 of the modeling processor device 314. Additionally, though not depicted in
The modeling processor device 314 includes the communication circuitry 316, in embodiments in which it is necessary, a microprocessor 318, and a memory device 320. Though it should be understood, the microprocessor 318 may be one or more stand-alone microprocessors, one or more shared computing resources or processor arrays (e.g., a bank of processors in a cloud computing device), one or more multi-core processors, one or more DSPs, one or more FPGAs, etc. Similarly, the memory device 320 may be volatile or non-volatile memory, and may be memory dedicated solely to the modeling processor device 314 or shared among a variety of users, such as in a cloud computing environment.
The memory 320 of the modeling processor device 314 may store as a first AI training set 322 (depicted in
In embodiments in which the adaptive learning component 324 implements unsupervised learning algorithms, the adaptive learning component 324, executed by the microprocessor 318, finds its own structure in the unlabeled feature values 328 and, therefrom, generates a first trained AI model 330.
In embodiments in which the adaptive learning component 324 implements supervised learning algorithms, the memory 320 may also store one or more classification routines 332 that facilitate the labeling of the feature values (e.g., by an expert, such as a neurologist, reviewing the feature values 328 and/or the first AI training set 322) to create a set of key or label attributes 334. The adaptive learning component 324, executed by the microprocessor 318, may use both the feature values 328 and the key or label attributes 334 to discover rules, relationships, or other “models” that map the features to the labels by, for example, determining and/or assigning weights or other metrics. The adaptive learning component 324 may output the set of rules, relationships, or other models as a first trained AI model 330.
Regardless of the manner in which the adaptive learning component 324 creates the first trained AI model 330, the microprocessor 318 may use the first trained AI model 330 with the first AI training set 322 and/or the feature values 328 extracted therefrom, or on a portion of the first AI training set 322 and/or a portion of the feature values 328 extracted therefrom that were reserved for validating the first trained AI model 330, in order to provide classification results 336 for comparison and/or analysis by a trained professional in order to validate the output of the model.
As should be apparent, the first AI training set 322 may include data from one or more of the sets 312A1-312AN of data collection hardware and, as a result, from one or more patients. Thus, the adaptive learning component 324 may use data from a single patient, from multiple patients, or from a multiplicity of patients when creating the first trained AI model 330. The population from which the patient or patients are selected may be tailored according to particular demographic (e.g., a particular type of epilepsy, a particular age group, etc.), in some instances, or may be non-selective. In embodiments, at least some of the patients associated with the sets 312A1-312AN of data collection hardware from which the first AI training set 322 is created may be patients without any symptoms of the condition(s) in question and, as such, may serve to provide additional control data to the first AI training set 322.
In embodiments, the first trained AI model 330 may be transmitted to (or otherwise received—e.g., via portable storage media) to another set of data collection hardware (e.g., the system 300 depicted in of
Any or all of the data stored in the memory device 260 of the set 342 of data collection hardware may be communicated from the set 342 of data collection hardware to the modeling processor device 314. As above, the modeling processor device 314 may receive the data from the set 342 of data collection hardware via wired connection (e.g., Ethernet, serial connection, etc.) or wireless connection (e.g., mobile telephony, IEEE 802.11 protocol, etc.), directly (e.g., a connection with no intervening devices) or indirectly (e.g., a connection through one or more intermediary switches, access points, and/or the Internet), between the communication circuitry 256 of the processor device 104 and the communication circuitry 316 of the modeling processor device 314. Additionally, though not depicted in
The received data may be stored in the memory 320 as a second AI training set 344 (depicted in
In embodiments in which the adaptive learning component 324 implements unsupervised learning algorithms, the adaptive learning component 324, executed by the microprocessor 318, finds its own structure in the unlabeled feature values 328 and, therefrom, generates a second trained AI model 346.
In embodiments in which the adaptive learning component 324 implements supervised learning algorithms, the memory 320 may also store one or more classification routines 332 that facilitate the labeling of the feature values (e.g., by an expert, such as a neurologist, reviewing the feature values 328 and/or the second AI training set 344) to create a set of key or label attributes 334. The adaptive learning component 324, executed by the microprocessor 318, may use both the feature values 328 and the key or label attributes 334 to discover rules, relationships, or other “models” that map the features to the labels by, for example, determining and/or assigning weights or other metrics. The adaptive learning component 324 may output an updated set of rules, relationships, or other models as a second trained AI model 346.
Regardless of the manner in which the adaptive learning component 324 iterates and/or updates the first trained AI model 330 to be the second trained AI model 346, the microprocessor 318 may use the second trained AI model 346 with the second AI training set 344 and/or the feature values 328 extracted therefrom, or on a portion of the second AI training set 344 and/or a portion of the feature values 328 extracted therefrom that were reserved for validating the second trained AI model 346, in order to provide classification results 348 for comparison and/or analysis by a trained professional in order to validate the output of the model. An error rate of the classification results 348 output by the second trained AI model 346 will be reduced relative to an error rate of the classification results 336 output by the first trained AI model 330. The second trained AI model 346 may be programmed into or communicated to the system depicted, for example, in
The static model 270, and the trained AI model 302, may each be programmed to perform the evaluative functions by detecting within the received data (e.g., the sensor array data 262, the user report data 268, and the PPG data 267) relevant biomarkers for the condition(s) of interest (e.g., epilepsy/seizure activity, signs of vestibular or cochlear dysfunction, sleep disorder/apnea activity) and performing the evaluative functions based on the presence, absence, and/or temporal relationships between the relevant biomarkers. In various embodiments, the models 270 and 302 may be programmed or trained to perform one or more of the following evaluative functions:
(1) detecting a seizure;
(2) classifying a seizure as epileptic or cardiac in origin;
(3) classifying a seizure as ictal hypoxemic or not;
(4) predicting a seizure event;
(5) classifying a severity of a seizure event;
(6) determining a pre- or post-ictal impact of a seizure event on patient well-being;
(7) predicting a pre- or post-ictal impact of a seizure event on patient well-being (severity of the event, ictal cardiac changes; types of ictal respiratory changes);
(8) predicting a recovery time from post-ictal impacts of a seizure event on patient well-being;
(9) detecting an apnea event;
(10) classifying an apnea event as central or obstructive;
(11) detecting a tachypnea or a bradypnea event;
(12) predicting an apnea, tachypnea, or bradypnea event;
(13) determining an impact of an apnea, tachypnea, or bradypnea event on patient well-being;
(14) predicting a pre- or post-ictal impact of an apnea, tachypnea, or bradypnea event event on patient well-being;
(15) predicting a recovery time from post-ictal impacts of an apnea, tachypnea, or bradypnea event event on patient well-being;
(16) detecting a SUDEP event;
(17) predicting a SUDEP event;
(18) detecting a vestibular dysfunction;
(19) detecting a cochlear dysfunction;
(20) detecting inflammatory markers to predict systemic infection.
Of course, in each of
It should be understood that the system and, in particular, the adaptive learning component 324 (whether implemented in the separate modeling processor device 314), the data collection hardware 342, or even in the processor device 104 alongside the trained AI model 302, may be programmed to analyze the predicted event data (e.g., predicted seizure event data 372, predicted sleep disorder event data 387, predicted vestibular disorder event data 399A, predicted cochlear disorder event data 400A) relative to detected event data (e.g., detected seizure event data 371, detected sleep disorder event data 386, detected vestibular disorder event data 399, detected cochlear disorder event data 400) to determine the accuracy of the predictions made by the trained AI model 302. The results of the analysis may be used by the adaptive learning component 324 to further refine the trained AI model 302.
The method 410 may also include receiving, at the modeling processor device 314, from a second processor device 104 a second set of data (block 422). The second set of data may include sensor array data 262 from one or more first sensor arrays 102 disposed on a second patient, PPG data 267, in embodiments implementing the PPG sensor 108, and may further include one or both of second microphone data 266 from a first microphones 250 disposed on the second patient and second accelerometer data 264 received from a second accelerometer 252 disposed on the second patient. The method 410 may also include generating a second AI training set 344 based on the second set of data and on corresponding user reported data (block 424), including the user reports 268 also received from the second processor device 104. The method also include receiving a selection of one or more attributes of the second AI training set 344 as feature values 328 (block 426) and receiving one or more keys or labels 334 for the second AI training set 344 (block 428). The feature values 328 and the keys or labels 334 may be received via the classification routine 332. The modeling processor device 314 then trains a second iteration of a trained model 346, using the feature values and the one or more keys or labels for the second AI training set 344 (block 430).
The classification results 274 may then optionally be used to perform one or more actions (blocks 449A-C). For example, the classification results 274 may trigger the sending of an alert or alarm to a caregiver, to a physician, and/or to the patient (block 449A). In one specific, non-limiting example, the classification results 274 may indicate that the patient has a blood oxygen saturation level below a threshold—perhaps as the result of a seizure or a sleep apnea event—and may cause the processor device 104 to send an alert to the patient to administer supplemental oxygen. The alert may be delivered via the processor device 104, or via an external device 105. The processor device 104 may also alert a caregiver and/or physician by communicating with one or more external devices 105. In another specific, non-limiting example, the classification results 274 may indicate that the patient may be about to experience a seizure and may cause the processor device 104 to send an alert to the patient so that the patient can prepare (e.g., stop dangerous activities, alert bystanders, get to a safe position, etc.). The alert may be delivered via the processor device 104, or via an external device 105. The processor device 104 may also alert a caregiver and/or physician by communicating with one or more external devices 105.
The classification results 274 may also (or alternatively) trigger the control of the therapeutic device 255, in embodiments (block 449B). In one specific, non-limiting example, the classification results 274 may indicate that the patient is experiencing an obstructive sleep apnea episode and may cause the processor device 104 (e.g., using the treatment strategy routine 273) to communicate with a CPAP machine (e.g., the therapeutic device 255) to increase the airway pressure to relieve the obstruction causing the apnea episode. In another specific, non-limiting example, the classification results 274 may indicate that the patient may be about to experience a seizure and may cause the processor device 104 to communicate with a neurostimulator device (e.g., the therapeutic device 255) to cause the neurostimulator to apply (or adjust the application) of neurostimulation to prevent, or mitigate the effects of, the predicted impending seizure. In still another specific, non-limiting example, the classification results 274 may indicate that the patient may experience a seizure in the coming hours and may cause the processor device 104 to communicate with a drug pump device (e.g., the therapeutic device 255) cause the drug pump device to administer (or change the dose of) a drug to prevent, or mitigate the effects of, the predicted seizure.
Additionally or alternatively, the classification results 274 may trigger the processor device 104 to determine a recommended therapy (e.g., using the treatment strategy routine 273) and to transmit that strategy to the patient (e.g., via the processor device 104 or an external device 105), to a caregiver (e.g., via the external device 105), and/or to a physician (e.g., via the external device 105) (block 449C). In embodiments, the recommended therapy may be transmitted for the purpose of verifying (e.g., by the physician) a treatment prior to causing the processor device 104 to engage or adjust the therapeutic device 255 (e.g., prior to block 449B). In one specific, non-limiting example, the classification results 274 may indicate that the patient is in the early stages of a systemic infection that may jeopardize or have other negative effects on the patient's cochlear well-being. This may cause the processor device 104 to recommend evaluation by the physician, or to recommend a pharmacological intervention (e.g., an antibiotic), and to send the recommendation to the physician or caregiver (or even to the patient) via the external device 105 (or to the patient via the processor device 104 or the external device 105). In another specific, non-limiting example, the classification results 274 may indicate that the patient is likely to experience low blood oxygen saturation levels following a predicted seizure, and may therefore cause the processor 104 to send a recommendation to administer supplemental oxygen before and/or after the seizure event.
The non-limiting examples above should be understood as exemplary only. A person of skill in the art will readily appreciate, in view of the disclosures throughout this specification, that a variety of treatment strategies, alarms, alerts, etc. may be implemented in various situations according to the type of classification results that the system 100 is programmed to generate, and according to the specific therapeutic device(s) 255 that may be coupled thereto.
As may by now be understood, the presently disclosed method and system are amenable to a variety of embodiments, many of which have already been explicitly described, though additional embodiments will now be described with with reference to
As can be seen in
Like the sensor array 102, the processor device 104 is similarly amenable to a variety of embodiments.
As described throughout the specification, various embodiments of the system 100 may include one or both of microphones 250 and accelerometers 252. In various embodiments, the microphones 250 and/or accelerometers 252 may be separate from, but communicatively coupled to, the processor device 104. In embodiments, such as those described above with respect to
Various embodiments are contemplated in which any one of the embodiments 450A-E of the sensor array 102 may be communicatively coupled to any one of the embodiments 460A-E of the processor device 104. For example,
As can be seen in
Like the sensor array 102, the processor device 104 is similarly amenable to a variety of embodiments.
As described throughout the specification, the system 100 includes an EEG sensor array 102 and a PPG sensor 108. In various embodiments, the EEG sensor array 102 and the PPG sensor 108 may be separate from, but communicatively coupled to, the processor device 104, as depicted in
Various communication schemes are contemplated, as well.
The sensor array 102 may communicate data to the processor device 104 as the data are acquired by the sensor array 102 or periodically. For example, the sensor array 102 may store, in the memory 156 of the local processing unit 144, data as it is acquired from the electrode devices 110, biochemical sensors 282, and microphones 250 and/or accelerometers 252 that are part of the sensor array 102 and may periodically (e.g., every second, every minute, every half hour, every hour, every day, when the memory 156 is full, etc.) transmit the data to the processor device 104. In other embodiments, the sensor array 102 may store data until the processor device 104 is coupled to the sensor array 102 (e.g., via wireless or wired connection). The sensor array 102 may also store the data until the processor device 104 requests the transmission of the data from the sensor array 102 to the processor device 104. In these manners, the sensor array 102 may be optimized, for example, to preserve battery life, etc.
The external equipment may also be treatment equipment 474, in some embodiments depicted in
As described above, a second sub-system (e.g., the second sub-system 104B) directed to determining and optimizing a therapeutic window for treatment is also included in embodiments of the contemplated system. The second sub-system may operate sequentially or concurrently with the first sub-system that detects, predicts, and/or categorizes the events as described above, such that the data from the first sub-system is employed to determine an optimized therapeutic input (e.g., pharmacological, neurostimulatory, etc.) for treating the patient's condition(s).
In view of this, it should be understood that the systems and methods described herein may be adapted to detect, characterize, classify, and predict side-effects of therapeutic treatment, in addition to detecting, characterizing, and predicting events related specifically to the physiological condition. In doing so, the systems and methods may tailor treatment according not only to the presence and/or characteristics of detected and/or predicted events related to the physiological condition and the presence and/or characteristics of the detected and/or predicted effects of those events on patient well-being, but also on the presence and/or characteristics of detected and/or predicted side-effects associated with the therapeutic treatment.
Generally speaking, the analysis routine 500 relies on raw data regarding the number of clinical and side-effect events (e.g., from the classification results 274′) or scores derived from the classification results 274′ by the scoring routine 502, to output recommendations with respect to the optimal dose (in terms of quantity and/or frequency of a pharmacological treatment, amplitude and/or timing of a neurostimulatory treatment, etc.) of a treatment, as described below. In embodiments, the analysis routine 500 may output a recommendation that, in embodiments including a therapeutic device 255 coupled to the system, may be implemented by the therapeutic device control strategy routine 504. The therapeutic device control strategy routine 504 may use, as input to the routine, therapy regimen data 506, which may provide information about acceptable doses, timings, etc., related to the therapy in question. For example, the analysis routine 500 may output a recommendation to increase the dose of the therapy. The therapeutic device control strategy 504 may determine the current dosing regimen being applied, consult the data in the therapy regimen data 506, determine the next higher dose of the therapy, and implement that dose via the therapeutic device 255. Of course, in embodiments, it may be desirable to include a clinician or physician in the therapy control loop. In such embodiments, the analysis routine 500 may output a recommendation that is communicated to a caregiver or physician (e.g., via a message sent to the caregiver device 107A or the physician device 107B). The recommendation may be reviewed and/or approved by the recipient, who may implement the change to the therapy or, in embodiments in which a therapeutic device 255 is implemented, a message may be sent back to the therapeutic device control strategy routine 504 confirming the change, and the routine 504 may control the therapeutic device 255 accordingly.
In some embodiments of the algorithms implemented by the analysis routine 500, the analysis routine performs treatment optimization based strictly on the number of clinical events and the presence or absence of side-effects. Such embodiments are depicted in
If the increased therapy dose did not result in a decrease in events, the algorithm 510 determines whether the previous dose was classified as therapeutic (with a null value being treated as not therapeutic) (block 518). If the previous dose was not classified as therapeutic, then the algorithm 510 notes that the current does remains sub-therapeutic (block 520) and then looks at the received classification data to determine whether side-effects occurred during the observation window (block 522). If side-effects did occur during the observation window, even while the dose of the therapy was sub-therapeutic, then the algorithm 510 may output a recommendation to consider a different treatment (block 524). On the other hand, if the dose was sub-therapeutic and no side-effects are present, the algorithm 510 may output a recommendation to increase the therapy dose and/or frequency (block 526). This may be repeated until the therapy results in a decrease in events (i.e., until a dose is determined to be therapeutic).
If the increased therapy dose resulted in a decrease in events (block 516), the algorithm 510 notes that the dose is considered to be therapeutic (block 528) and then looks at the received classification data to determine whether side-effects occurred during the observation window (block 530). If no side-effects occurred, then the algorithm 510 may output a recommendation to increase the therapy dose and/or frequency (block 526). If, on the other hand, side-effects are present, algorithm 510 may output a recommendation to decrease the therapy dose and/or frequency (block 532).
If the increased therapy dose did not result in a decrease in events (block 516), the algorithm 510 may evaluate whether the previous dose was considered therapeutic (block 518) and, if so, may note that the current dose also remains therapeutic (i.e., fewer events than the baseline) (block 534). The algorithm 510 may then evaluate the received classification data to determine whether side-effects occurred during the observation window (block 536). If side-effects were present during the observation window, the algorithm 510 may output a recommendation to decrease the therapy dose and/or frequency (block 532). In contrast, if no side-effects were detected during the observation window, the algorithm 510 may output a recommendation to hold the therapy dose and/or frequency steady.
If the therapy dose was decreased previously (block 514), that would indicate that the therapy dose was therapeutic, but that side-effects were present during the observation window. Accordingly the algorithm 510 may continue to evaluate whether side-effects were present as a result of the decreased dose (block 540). If not, then the algorithm 510 may output a recommendation to hold the therapy dose and/or frequency steady (block 542). If side-effects remain present, then the algorithm 510 may output a recommendation to further decrease the therapy dose and/or frequency (block 544).
If the increased therapy dose did not result in a decrease in events, the algorithm 550 determines whether the previous dose was classified as therapeutic (with a null value being treated as not therapeutic) (block 558). If the previous dose was not classified as therapeutic, then the algorithm 550 notes that the current does remains sub-therapeutic (block 560) and then looks at the received classification data to determine whether side-effects occurred during the window (block 562). If side-effects did occur during the observation window, even while the dose of the therapy was sub-therapeutic, then the algorithm 550 may output a recommendation to consider a different treatment (block 564). On the other hand, if the dose was sub-therapeutic and no side-effects are present, the algorithm 550 may output a recommendation to increase the therapy dose and/or frequency (block 566). This may be repeated until the therapy results in a decrease in events (i.e., until a dose is determined to be therapeutic).
If the increased therapy dose resulted in a decrease in events (block 556), the algorithm 550 notes that the dose is considered to be therapeutic (block 568) and outputs a recommendation to increase the therapy dose and/or frequency (block 570). If, on the other hand, the increased therapy dose resulted in no corresponding decrease in events (block 556), and the previous dose was considered therapeutic (block 558), this indicates that a peak treatment effect has been reached, and the algorithm 550 determines whether side-effects are present (block 572). If no side-effects are present, then the algorithm 550 may output a recommendation hold the current dose of the therapy and not to make further adjustments. If, however, side-effects are determined to be present (block 572), then the algorithm 550 outputs a recommendation to decrease the therapy dose and/or frequency (block 576).
Where the algorithm 550 determines that the most recent adjustment was a decrease in the therapy dose (block 554), it is assumed that the reason for doing so was the establishment of a peak treatment effect, and the algorithm 550 checks to see if side-effects remain present after the decrease in the dose of the therapy (block 578). The algorithm 550 outputs a recommendation to hold the current dose of the therapy if no side-effects were observed (block 580) during the observation window, or to further decrease the therapy dose if the side-effects remain (block 582).
In contrast with
The algorithm 600 commences with initialization of values (block 602). In particular, a therapeutic window flag may be initialized to “false” or “null,” a peak effect of treatment flag or value may be initiated to “false” or “null,” and a counter value may be initiated to “0” or “false.” The algorithm 600 then receives classified events (block 604) from the most recent observation window.
The algorithm 600 may then employ the scoring routine 502 to score (block 606) the events in the received classified events. The scoring may be based on any number of different schemes, according to the particular condition (e.g., epilepsy, sleep apnea, etc.), the particular treatment (e.g., pharmacological, neurostimulatory, etc.), the types of side-effects experienced and/or expected, and the like. In various embodiments, clinical events and side-effect events may each be scored individually, and a composite score computed. For example, both clinical events and side-effect events may generate positive scores that, summed for the period, generate an overall score that can be employed by the analysis routine 500 to determine whether a therapy is having a positive effect (e.g., generating a decrease in clinical event scores that outweighs any increase in side-effect scores. Alternatively, clinical events and side-effects may each be scored based on a weighting system. By way of example, and without limitation, each clinical and/or side-effect event may be scored by applying weights to event types, seventies, durations, effects, and/or time elapsed between the scored event and the previous event (e.g., to consider whether events are becoming less frequent). In this way, certain types of clinical and/or side-effects may be treated as more serious, more severe events may be treated as more serious, and long duration events may be treated as more serious. Additionally, in embodiments, thresholds may be adopted for side-effect scores that, because of the severity of the side-effects, may cause treatment to cease or may cause the dose to be decreased.
In any event, once each of the events has been scored (block 606), the algorithm 600 may total the clinical event scores in the observation window (block 608) and may total the side-effect event scores in the window (block 610). If the counter value is “0” or “false” (block 612) indicating that the algorithm 600 is running for the first time, the counter is set to “1” or “true”, and the clinical event score is set as a baseline, and the starting therapy dose is applied (block 614. Thereafter—that is, when the counter value is “1” or “true” (block 612)— the algorithm 600 checks to see whether a peak effect of treatment has been established (block 616). If not, the algorithm 600 evaluates whether the clinical event score (or, in embodiments, the overall score) has decreased (block 618). If the event score did not decrease, and the lower boundary of the therapeutic window has not been established (i.e., is “null”) (block 620), then the algorithm 600 outputs a recommendation to increase the therapy dose and/or frequency (block 622), because the algorithm has determined that the current dose is sub-therapeutic.
On the other hand, if there is a decrease in the event score (block 618), and the lower boundary of the therapeutic window has not been established (i.e., is “null”) (block 624), then the algorithm 600 may set the current dose as the lower boundary of the therapeutic window (block 626) and may output a recommendation to increase the therapy dose and/or frequency (block 622). If there is a decrease in the event score (block 618), and the lower boundary of the therapeutic window has already been established (i.e., is not “null”) (block 624), then the algorithm 600 may output a recommendation to increase the therapy dose and/or frequency (block 622) (e.g., because the previous dose was already in the therapeutic window and the current dose continued to lower the clinical event score).
If the peak effect of treatment has not yet been established (block 616), the most recent observation window does not show a decrease in event score (block 618), and the lower boundary for the therapeutic window has already been established (block 620)— that is, if the current dose is in the therapeutic window but did not cause a further decrease in the clinical event score—then the previous dose is set as the peek effect of treatment (block 628). The algorithm 600 then evaluates whether side-effects are present (block 630). If not, then the previous dose is set as the optimal therapy dose (block 632); if so, then the algorithm 600 outputs a recommendation to decrease the therapy dose and/or frequency (block 634).
Once the peak effect of treatment has been set and a decrease in the dose has been implemented, the algorithm 600 evaluates the observation window events for side-effects (block 636). If no side-effects are present after lowering the dose, the optimal therapy level is set (block 638). If, on the other hand, side-effects remain after lowering the dose (block 636), the algorithm 600 evaluates whether lowering therapy dose again would result in going below the lower boundary of the treatment window (block 640). If so, the current therapy dose is set as the optimal therapy level (block 638); if not, then algorithm 600 outputs a recommendation to lower the therapy dose and/or frequency (block 634).
The side-effect score is compared to a side-effect score threshold if the previous dose resulted in a decrease in the event score and the lower boundary of the therapeutic window has been determined (i.e., when the dose is therapeutic and resulted in a further decrease in the event score). If a therapeutic dose of the therapy results in side-effects that exceed the threshold, then the algorithm 650 sets the previous dose as a peak effect of treatment and outputs a recommendation to decrease the dose and/or frequency to the dose and/or frequency of the prior observation window. Only if the therapeutic dose does not result in side-effects that exceed the threshold does the algorithm 650 output a recommendation to increase the therapy dose.
Of course, as should be understood, each of the algorithms 510, 550, 600, and 650 is exemplary in nature. The analysis routine 500 may implement any number of different algorithms, each of which may use the event classification results to optimize the therapeutic treatment of the condition in question according to specific needs, as would be readily appreciated by a person of skill in the art in view of the present description.
For example, the algorithms described above may be more tolerant of some or all side-effects than suggested by the algorithms described. As indicated in the description above, the patient and/or the clinician may indicate that some side-effects are tolerable if the clinical symptoms (e.g., seizures) abate. Some patients, for example, may be quite happy to accept certain side effects if the clinical symptoms of the underlying condition are eliminated or minimized. One way of accomplishing this may be to include in the scoring of side-effects lower weights for side-effect types that are tolerable by the patient, and higher (or infinite) weights for side-effects that are less tolerable (or entirely intolerable). In this manner, the algorithm may decrease the therapy dose and/or frequency when intolerable events (e.g., arrhythmias) occur at all, while moving toward or staying at the peak therapeutic effect when tolerable events occur. Of course, many variations on the precise implementation of such an algorithm can be readily envisioned in view of this specification.
It will also be understood that certain side-effects may abate as the therapy continues. That is, an increased dose and/or frequency of a treatment may cause increased side-effects temporarily, though the side-effects may abate as the patient's body equilibrates to the new dose and/or frequency of the treatment. Accordingly, algorithms are possible in which earlier side-effect events are weighted lower than later side-effect events, such that the scores of the later side-effect events, which are more likely to occur after the patient's body has equilibrated to some extent, dominate the overall side-effect score. At the same time, clinical efficacy of a treatment, especially a pharmacological therapy, may decline over time as the patient's body adjusts to tolerate the therapy. Accordingly, the system may monitor the number of events (e.g., the number of seizures, etc.) to determine if the efficacy is waning, and the treatment strategy routine 273 may adjust the treatment dose and/or timing to compensate, while taking into account the various considerations relating to side-effects. Further still, in embodiments, the system may receive data from a variety of patients and, as a result, may be configured to predict abatement of therapeutic efficacy (just as it may predict side-effects), and the treatment strategy routine 273 may proactively mitigate the decreasing therapeutic effects while controlling side-effects and maximizing patient well-being.
Still further, the treatment strategy routine 273, in embodiments, may be programmed such that certain side-effects trigger a change in the time of day of treatment administration, rather than a change in the dose and/or frequency of the treatment. As a non-limiting example, some pharmacological therapies may cause a change in wakefulness (e.g., may cause the patient to be more alert or more sleepy). The presence of such side-effects may cause the treatment strategy routine 273 to recommend and/or implement a change in the time of day that the treatment is administered, for example, by administering a drug that causes drowsiness before bedtime instead of first thing in the morning, or by administering a drug that causes wakefulness at a time other than before bedtime or during the night.
In still other embodiments, the treatment strategy routine 273 may recommend a series of sequential and/or concurrent pharmacological therapies. For example, over time, it may become apparent as different pharmacological agents (i.e., drugs) are used to treat the patient, that none of the pharmacological agents by itself sufficiently achieves that treatment goals of the patient (e.g., sufficient treatment of symptoms without unwanted or unacceptable side-effects, etc.), or that the treatment goals are met only briefly until the patient develops a tolerance for the medication. In embodiments, then, the treatment strategy routine 273 may recommend (or implement, via the therapeutic device 255) an increase in the dosage of the drug(s). Alternatively, however, the collected data may indicate that certain combinations and/or sequences of drugs may achieve better results (i.e., fewer, less frequent, and/or less severe symptoms; fewer, less frequent, and/or less severe side effects; etc.) than any one of the drugs by itself. Accordingly, the treatment strategy routine 273 may recommend that a first therapy be followed by a second therapy. In instances, the first and second therapies may overlap—such as when the second therapy is titrated up to a particular dose while the first therapy is titrated down to nothing; in other instances, the first therapy may be stopped (and the drug eliminated from the patient's system) before the second therapy is administered. Still further, the treatments, whether two or more, may be rotated in one order or another according to the patient's response to the various drugs, as monitored, classified, and/or detected by the systems and methods described herein.
While it should be readily appreciated by this point, the systems and methods herein may detect and classify events, recommend changes in treatment regimen and, in cases having a connected therapeutic device, may apply the change in treatment regimen.
As will by this point be appreciated, the two sub-systems 104A, 104B may be employed iteratively and/or concurrently to improve the training of the trained AI model 302. For example, in embodiments, the trained AI model 302 may generate classification results 336 including predicted events 372, 387, 399A, 400A that are based, in part, on the current therapeutic regimen. That is, the trained AI model 302 may be trained, at least in part, based on previous data relating treatment doses and times to the occurrence of events and side-effects, to determine predicted events and side-effects based on the detected events and the current treatment dose and times. The trained AI model 302 may thereafter determine whether the predicted data were accurate, and may adjust the model according to later data. The trained AI model 302 may, for instance, determine that previous changes in therapy levels resulted in corresponding changes in detected events and/or side-effects and, as a result, may determine that, based on most recently detected events and side-effects, and the current and/or newly applied therapy regimen, certain concomitant changes in future events and side-effects can be predicted. By iterating this process, the trained AI model 302 may continually update its predictions based on how the therapy applied affects the specific patient or, when data are accumulated across multiple patients, how the therapy applied affects a population of patients.
Additionally or alternatively, the treatment strategy routine 273 may use the predicted event classification data 372, 387, 399A, 400A to adjust the therapy regimen. Accordingly, while the algorithms 510, 550, 600, 650, 670 above generally output and/or apply therapy recommendations based on detected events (i.e., based on events that have already occurred) and by trying to effect a change based on previous events, in embodiments the treatment strategy routine 273 may employ other, similar algorithms based on the predicted event classification data 372, 387, 399A, 400A with the goal of outputting and/or applying therapy recommendations based on predicted events (i.e., based on events that have not yet occurred). In this way, as the trained AI model 302 improves its prediction of future events, the recommendations output by the treatment strategy routine 273 will likewise exhibit improved recommendations, thus improving the overall well-being of the patient.
This application claims the benefit of priority of International Patent Application PCT/AU21/51355, filed Nov. 16, 2021, entitled “METHOD AND SYSTEM FOR DETERMINATION OF TREATMENT THERAPEUTIC WINDOW, DETECTION, PREDICTION, AND CLASSIFICATION OF NEUROELECTRICAL, CARDIAC, AND PULMONARY EVENTS, AND OPTIMIZATION OF TREATMENT ACCORDING TO THE SAME,” which claims the benefit of priority of U.S. Patent Application 63/115,363, filed Nov. 18, 2020, and entitled “METHOD AND SYSTEM FOR CLASSIFICATION OF NEUROELECTRICAL EVENTS,” of U.S. Patent Application 63/158,833, filed Mar. 9, 2021, and entitled “METHOD AND SYSTEM FOR DETERMINATION OF TREATMENT THERAPEUTIC WINDOW, DETECTION, PREDICTION, AND CLASSIFICATION OF NEUROELECTRICAL, CARDIAC, AND PULMONARY EVENTS, AND OPTIMIZATION OF TREATMENT ACCORDING TO THE SAME,” of U.S. Patent Application 63/179,604, filed Apr. 26, 2021, and entitled “METHOD AND SYSTEM FOR DETERMINATION OF TREATMENT THERAPEUTIC WINDOW, DETECTION, PREDICTION, AND CLASSIFICATION OF NEUROELECTRICAL, CARDIAC, AND PULMONARY EVENTS, AND OPTIMIZATION OF TREATMENT ACCORDING TO THE SAME,” and of U.S. Patent Application 63/220,797, filed Jul. 12, 2021, and entitled “METHOD AND SYSTEM FOR DETERMINATION OF TREATMENT THERAPEUTIC WINDOW, DETECTION, PREDICTION, AND CLASSIFICATION OF NEUROELECTRICAL, CARDIAC, AND PULMONARY EVENTS, AND OPTIMIZATION OF TREATMENT ACCORDING TO THE SAME,” the specifications of which are each hereby incorporated by reference in its entirety and for all purposes.
Number | Date | Country | |
---|---|---|---|
63220797 | Jul 2021 | US | |
63179604 | Apr 2021 | US | |
63158833 | Mar 2021 | US | |
63115363 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/AU21/51355 | Nov 2021 | US |
Child | 18100853 | US |