This patent application is related to co-pending U.S. patent application Ser. No. 09/444,138, filed Nov. 20, 1999, which is hereby incorporated by reference.
1. Field of the Invention
The present invention relates to reconstruction, a display and analysis of vascular tree structures and more specifically relates to reconstruction and of a moving cardiovascular tree structure from sequences of and geographic images and analysis of such a reconstructed moving model.
2. Discussion of Related Art
It is generally known in the art to display a reconstructed three-dimensional representation of a vascular tree structure from multiple two-dimensional radiographic images of the subject vascular tree structure. Co-pending patent application 09/444,138 teaches particular methods for accurately reconstructing a three-dimensional representation of a vascular tree structure from pairs of two-dimensional radiographic images each representing a view from a particular imaging angle. Such a three-dimensional reconstructed representation may be derived from, for example, a pair of images generated in a biplane radiographic imaging system or from a pair of images generated by a single plane radiographic imaging system positioned at each of two distinct viewing angles.
Such a three-dimensional reconstructed representation of a vascular tree structure is useful, as known in the art, for visualizing the vascular structure and for quantitative analysis of various measured attributes and parameters of selected portions of the vascular tree structure. For example, as discussed in co-pending patent application 09/444,138 such quantitative analysis and visualization is helpful for clinical procedures involving vascular implants and bypass procedures.
As presently practiced in the art, such visualization and quantitative analysis are applied only to a single, static frame of radiographic images—i.e., a snapshot in time. For example, biplane angiographs providing one static image of a coronary vascular structure in each of two viewing angles may be used to construct an accurate three-dimensional representation of the coronary vascular structure in one particular position corresponding to the static frame snapshot of the images. However, as commonly known in the art, vascular tree structures, especially coronary vascular structures, are in movement as blood is circulated through the structures.
In particular, coronary arteries and veins are dynamic, curvilinear structures that have a great degree of individual to individual variability and tortuosity. In the cardiovascular arena, percutaneous catheter-based interventional (i.e., therapeutic) procedures include a variety of coronary interventions, such as the placement of metal stents, atherectomy, radiation emitting catheters, devices to trap embolization of atherosclerotic debris, and placement of pacing electrodes in the coronary venous system. These procedures presently use two-dimensional X-ray based imaging as the sole or the major imaging modality for procedure guidance and quantification of key parameters. With the complex motions of the heart during each contraction, the degree of curvilinearity of coronary arteries undergoes a considerable change. Dynamic variations of coronary vascular curvilinearity have been very difficult to study because the forms of coronary angiographic imaging used clinically represent vascular structure only in two-dimensional format. Such a format does not provide anything but a rough semi-quantitative approach for studying the normal and changing curvilinearity of this coronary vascular tree and also limits the ability to quantify the degree of straightening caused by equipment transiently or permanently placed in coronary arteries during therapeutic procedures. Therefore, a quantitative description of coronary geometry and motion is required both for the mathematical modeling of arterial mechanics and for the evaluation and performance of a variety of current and emerging therapeutic procedures.
Some prior solutions have suggested coronary arterial movement analysis using bifurcation points or 3-D vessel centerlines of the coronary arterial tree. To facilitate the assessment of coronary arterial movements, it is necessary to recover the 3-D information of the coronary arterial tree throughout the cardiac cycle. These techniques provide limited analysis of a discrete set of points (the selected bifurcation points) of the arterial tree. Thorough analysis of the entire arterial tree, or arbitrary selected portions of the tree are not feasible when only discrete points are captured for analysis.
Other solutions suggest computer assisted techniques for estimation of the 3-D coronary arteries from biplane projection data have been reported. These methods were based on the known or standard X-ray geometry of projections, placement of landmarks, or the known vessel shape and on iterative identification of matching structures in two or more views. These reported techniques require a high degree of accuracy in the imaging equipment to record precise angles of imaging. Such accurate calibration is rare and generally not feasible in practical applications of such systems.
In another prior solution, a method based on motion and multiple views acquired in a single-plane imaging system was proposed. In these solutions, the motion transformations of the heart model consist only of rotation and scaling. By incorporation of the center-referenced method and initial depth coordinates and center coordinates, a 3-D skeleton of coronary arteries was obtained. This prior solution presumes a simplified model of the motion of the heart. In fact, cardiac movement is far more complex. Heart motion during contraction and relaxation actually involves five specific movements: translation, rotation, wringing, accordion-like motion, and movement toward to the center of chamber. The simplified model employed by this prior solution cannot therefore accurately model the true motion of the heart nor therefore of the cardiac arterial tree structure.
Other knowledge-based or rule-based systems have been proposed for 3-D reconstruction of coronary arteries by use of the model of a vascular network model. Because the rules or knowledge base were organized for certain specific conditions, it is not likely to generalize the 3-D reconstruction process to arbitrary projection data. These knowledge based systems utilize the knowledge of certain known heart conditions. These prior solutions do not therefore easily adapt to generalized aspects of cardiac motion nor to related arterial tree motion.
In yet another prior solution, the 3-D coronary arteries were reconstructed from a set of X-ray perspective projections by use of an algorithm from computed tomography. Due to the motion of heart, only a limited number of projections can be acquired. Therefore, accurate reconstruction and quantitative measurement are not easily achieved.
Closed-form solution of the 3-D reconstruction problem using a linear approach is suggested by still other prior solutions. Unfortunately, actual data are always corrupted by noise or errors and the linear approach based techniques may not be sufficiently accurate from noisy data.
In view of these various problems, optimal estimation has been explicitly investigated by still other prior solutions. A two-step approach has been proposed for an optimal estimation for a 3-D structure based on maximum-likelihood and minimum-variance estimation. Preliminary estimates computed by the linear algorithm were used as initial estimates for the process of optimal estimation. The second step to then refine the preliminary estimate can encounter mathematical problems if the preliminary estimate is too inaccurate as is often the case. In essence, the second refinement can get “trapped” in a sub-optimal mathematical solution by such an inaccurate preliminary estimate.
No presently practiced imaging techniques are known to provide for accurate reconstruction of a moving three-dimensional representation of a vascular tree structure. Neither is it presently known to provide for quantitative analysis of selected segments of such a reconstructed, moving three-dimensional representation of a vascular tree structure.
It is evident from the above discussion that a need exists for improved visualization and quantitative analysis techniques for reconstruction, display and analysis of a three-dimensional representation of a moving vascular tree structure. In particular, a need exists for improved techniques for visualizing and analyzing movements of a coronary vascular tree structure through a cardiac cycle from sequences of angiographic images.
The present invention solves the above and other problems, thereby advancing the state of the useful arts, by providing methods and associated systems for reconstructing, visualizing and analyzing a three-dimensional representation of a moving vascular tree structure from time varying sequences of radiographic images thereof. A broad purpose of the invention is to provide a novel patient-specific 4-D (e.g., 1-D in time varying space plus 3-D geometry) vascular model and to provide quantitative display tools to improve patient outcomes and enhance patient safety during, for example, percutaneous catheter-based interventions. In addition, these dynamic vascular trees can be displayed for an in-room advanced visual interface for the operator to better understand the target for intervention.
The invention broadly consists of three major processes (1) reconstruction of moving vascular tree throughout its motion cycle, (2) establishment of temporal correspondence with the smoothness constraints, and (3) kinematic and deformation analysis of the reconstructed 3-D moving vascular trees throughout its movement cycle.
Still more specifically, as applied to cardiovascular tree structures, the present invention provides methods and systems for reconstructing a moving coronary arterial tree throughout its cardiac cycle movement, establishment of temporal correspondence between sequences of imaging frames, and quantitative analysis of various kinematic and deformation measures of the reconstructed, displayed three-dimensional moving coronary arterial tree.
This patent or patent application file contains at least one drawing executed in color. Copies of the patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
a–2c respectively show an example of a manually identified 2-D coronary arterial tree superimposed to the corresponding image, the initially identified 2-D model corresponding thereto and the corresponding final 2-D coronary arterial tree.
a–4b depict corresponding points from two views.
a and 6b provide an exemplary pair of angiograms from two angles.
c shows a first reconstruction of the arterial tree represented by
d shows a refined reconstruction of the arterial tree represented by
a and 7b show a refined reconstructed arterial tree and a skeletal representation thereof, respectively.
a and 9b show two sequences of six images of an arterial tree for each of two viewing angles, respectively.
c–9k show the color coded results of an exemplary 3-D reconstruction of the sequences of
a and 10b show two sequences of six images of an arterial tree for each of two viewing angles, respectively.
c–10k show the color coded results of an exemplary 3-D reconstruction of the sequences of
Throughout this patent application, references are made to vascular and arterial tree structures as well as cardiovascular structures. As the terms relate to the present invention, all such vascular and arterial tree structures may be considered equivalent. Applications of the present invention are readily apparent in analysis of cardiovascular structures. Other applications for other vascular and arterial structures are similarly apparent to those of ordinary skill in the art. References herein to cardiac structures and motion should therefore be understood not as limitations on the application of the invention nor as limitations on the structures or methods of the claimed invention. Rather, all references to any particular vascular or arterial structure should be broadly understood to represent any arterial or vascular structure for which cine images of motion can be generated.
Reconstruction of Moving Coronary Arterial Tree
A first aspect of the present invention provides methods and associated systems for 3-D reconstruction of a vascular tree structure. Prior methods taught by co-pending patent application Ser. No. 09/444,138 are enhanced and extended herein to accurately reconstruct the moving coronary arterial trees throughout the cardiac cycle based on two sequences of cine angiograms acquired from a biplane or single-plane imaging system. The present reconstruction method broadly comprises four major steps: (A) acquisition of two angiogram sequences based on a single-plane or biplane imaging system, (B) identification of 2-D coronary arterial trees and feature extractions including bifurcation points, vessel diameters, and vessel directional vectors in the two image sequences, (C) determination of transformation in terms of a global Tg and a local transformation Tk matrices based on the identified vessel features, and (D) calculation of moving 3-D coronary arterial trees based on the transformations and extracted vessel features.
It will be readily recognized by those of ordinary skill in the art that the analysis aspects and features of the invention discussed herein below may be applied to a reconstructed 3-D representation of the moving arterial tree reconstructed according to any reconstruction technique. This particular reconstruction technique is therefore merely one possible reconstruction technique believed to generate an accurate 3-D representation of an arterial tree.
A. Image Acquisition
After routine cardiac catheterization is initiated, a standard coronary arteriogram may be completed in two standard views; one injection in a biplane system and two injections in a single plane imaging system. Such images may be acquired at a rate of 15 frames per second in each view throughout the cardiac cycle in each of the two views. The images may be selected with the aid of the superimposed electrocardiogram (ECG) signals and transferred to an appropriate personal computer or workstation for the 3-D reconstruction process. The images may be at a resolution of 512×512 matrix with a pixel color depth of one byte per pixel or any other desired resolution and pixel color depth.
Radiographic systems and methods are common for generating such images. However, those of ordinary skill in the art will recognize that numerous other imaging systems and methods may be employed to provide requisite 2-D images. For example, magnetic resonance imaging (MRI) systems and techniques generate images applying very different principles and methods. Computer tomography (CT) techniques and systems use computer image enhancement techniques to create 2-D images. All such sources of images are useful in association with the reconstruction aspects, features, methods and systems of the present invention.
B. Segmentation and Feature Extraction of 2-D Coronary Arterial Trees throughout the Cardiac Cycle
An interactive, computer-based, semi-automatic system based on the technique of deformation model and segmentation may be employed as known in the art for the identification of the 2-D coronary arterial tree in the acquired angiograms. The required user interaction involves only the indication of several points inside the lumen, near the projection of each vessel centerline in the angiogram. After identifying such points, a spline-curve may be formed based on the selected points. The spline-curve may serve as the initial centerline of a corresponding vessel. An m by m operator (ridge operator) may be applied to convolve the given image by which the pixel is selected if it is a local minimum on intensity. By use of the deformation model, the identified pixels serve as the external forces to act on the initial model curve such that it will be gradually deformed and finally reside on the real centerline of the vessel.
Co-pending patent application Ser. No. 09/444,138 provides a detailed discussion of such processes of feature extraction for a single, static pair of angiograms.
The identified centerlines and the branching relationships may be used for construction of the vessel hierarchy in each angiogram by their labeling according to the appropriate anatomy and connectivity among the primary and secondary coronary arteries.
After the 2-D coronary arterial tree on the image acquired at the first time frame is obtained, it may be used as the initial 2-D arterial tree model for identification of the coronary arterial tree on the angiogram acquired at the next time frame. The ridge operator and deformable model may be employed as described previously such that the initial model curve is gradually aligned with the real centerline of vessel. Such a procedure may be performed iteratively to identify the 2-D coronary arterial trees with the associated coronary features in each angiogram sequences.
Element 108 is then operable to align the 2D model of the present displayed pair of images according to the deformation discussed herein. Specifically, the 2D model is adjusted according to smoothness constraints and other constraints as discussed further herein below. Following the automatic deformation and smoothing of element 108, element 110 and 112 are operable to optionally receive user input to adjust the automatically determined projection. In particular, element 110 determines whether the user desires to make such adjustments and if so, element 112 receives user input to define any such adjustments.
Element 114 is then operable determine parameters of the reconstruction process (identify bifurcation points, vessel diameters and direction vectors) and to construct the 3D representation of the vascular tree corresponding to the present time varying image pair. Element 116 then determines if this was the last image in the time varying sequences of images. If not, the process continues by looping back to element 100 to process the next pair of images from the time varying sequences of images.
a shows an example of a manually identified 2-D coronary arterial tree superimposed to the corresponding image.
C. Determination of Transformations Characterizing Two Pairs of Angiographic Views
By use of a biplane or single-plane system for image acquisitions, the spatial relationship between any two views can be characterized by a transformation in the forms of a rotation matrix R and a translation vector {right arrow over (t)} with the X-ray source (or focal spot) served as the origin of 3-D coordinate space. In the first view, let (ui, vi) denote the image coordinates of the i-th object point, located at position (xi, yi, zi). Therefore, ui=Dxi/zi, vi=Dyi/zi, where D is the perpendicular distance between the X-ray focal spot and the image plane. Let (ξi, ηi) denote the scaled image coordinates, defined as ξi=ui/D=xi/zi, ηi=vi/D=yi/zi. The second projection view of the biplane imaging system can be describe in terms of a second pair of image and object coordinate systems u′v′ and x′y′z′ defined in an analogous manner. Scaled image coordinates (ξi, ηi) in the second view for the i-th object point at position (x′i, y′i, z′i) are given by Ξ′i=u′i/D′=x′i/z′i, η′i=v′i/D′=y′i/z′i. The geometrical relationship between the two views can be characterized by
As in co-pending patent application Ser. No. 09/444,138, the transformation may be calculated based on the identified bifurcation points and direction vectors of the 2-D coronary arterial trees in each view. The required prior information (i.e., the intrinsic parameters of each single-plane imaging system) including: (1) the distance between each focal spot and its image plane, SID (focal-spot to imaging-plane distance), (2) the pixel size, psize (e.g., 0.3 mm/pixel), (3) the distance {overscore (ƒƒ)}′ between the two focal spots or the known 3-D distance between two points in the projection images, and (4) iso-center distance (with respect to which the rotary motion of the gantry arm rotates) relative to the focal spot. Given the set of 2-D bifurcation points and directional vectors extracted from the pair of images, an “optimal” estimate of the transformation and 3-D object point structures may be obtained by minimizing:
where n denotes the number of pairs of corresponding points extracted from the two images and P and P′ denote the sets of 3-D object position vectors {right arrow over (p)}i =(xi, yi, zi) and {right arrow over (p)}′i=(x′i, y′i, z′i) respectively, {right arrow over (v)}i and {right arrow over (v)}′i, denote the respective 2-D vessel directional vectors of bifurcations in each views, and v={{right arrow over (v)}1, {right arrow over (v)}2, . . . , {right arrow over (v)}n} and v′={{right arrow over (v)}′1, {right arrow over (v)}′2, . . . , {right arrow over (v)}′n} denote the projections of calculated 3-D vessel directional vectors of bifurcations in two views, respectively.
A coarse-to-fine processing is employed to accurately determine the transformation associated with each pair of angiograms throughout the cardiac cycle.
Let {right arrow over (p)}ki=(xki, yki, zki) denote the i-th bifurcation point, where i=1, . . . , nk, identified in the first view acquired at the k-th time frame of m instances throughout the cardiac cycle, where k=1, . . . , m. Similarly, let, {right arrow over (p)}′ki=(x′ki, y′ki, z′ki) denote the i-th bifurcation point corresponding to {right arrow over (p)}ki identified in the second view at the k-th time frame. Based on the corresponding bifurcation points and vessel directional vectors extracted from the cardiac cycle, the global transformation in terms of a rotation matrix Rg and a translation vector {right arrow over (t)}g can then be calculated. Since the relationship between the two views can be characterized by a rotation matrix R and a translation vector {right arrow over (t)}=[tx, ty, tz] as shown in the above equations can be expressed as:
where m denotes the number of time frames between the end-diastole and end-systole, {right arrow over (c)}k denotes the respective k-th column vectors of matrix Rg, Rg−1 is the inverse matrix of Rg, and [{right arrow over (a)}]xy ([{right arrow over (a)}]x′y′) denotes the projection of a 3-D vector a onto x-y (x′-y′) plane.
The calculated Rg and {right arrow over (t)}g are the estimates that characterize the two image sequences. When a biplane system is employed, each pair of angiograms may be acquired almost simultaneously throughout the cardiac cycle. Therefore, the global transformation is feasible to define each pair of images acquired from different time frames. When a single-plane system is adopted, the two image sequences may be acquired independently (i.e., two separate injections) corresponding to two different single cardiac cycles. Hence, the global transformation may not truly characterize every pair of images throughout the cardiac cycle; especially for those image pairs near the end-systolic time frame. By use of the global estimates, a refinement process is employed to calculate the new transformation in terms of Rk and {right arrow over (t)}k=(tk
subject to the constraints
∥Rk−Rg∥≦δr
where {right arrow over (c)}k
D. Calculation of 3-D Coronary Artery Skeleton
After the transformation (Rk, {right arrow over (t)}k) that defines every pair of two views in the image sequences was obtained, this information may be used to establish the point correspondences on each pair of 2-D vessel centerlines and calculate 3-D structures of coronary arterial tree. The transformation in conjunction with the epi-polar constraints and vessel hierarchy may be employed as the framework for calculation.
Referring now to
A typical example of initial correspondence establishment by use of epi-polar constraints where points A, B, C, and D at the first view are defined by finding the intersections between the 2-D curve associated with left anterior descending artery (LAD) artery and respective epi-polar lines defined by a, b, c, and d at the second view as shown in
When the epi-polar line is “tangential” relative to the 2-D vessel centerline curve, the accuracy of the calculated intersection point becomes sensitive to any small errors in epi-polar line derived based on the calculated transformation. To overcome the problem, a refinement process as shown in
where
denote the set of parametric variables, the set of 3-D object position vectors, and the set of 3-D vessel directional vectors to be optimized, respectively, nk denotes the number of points of the 2-D vessel centerline at the k-th time frame,
are the respective spline-curve model and extracted 2-D vessel centerline points in two views,
denote the respective spline-curve model and extracted 2-D directional vectors of vessel centerlines in each view,
denote the projection of the calculated 3-D directional vector on the respective image planes, {right arrow over (c)}k
on vessel centerline are computed as indicated below where the 2-D pair correspondence (ξki, ηki) are substituted by the 2-D spline-curve function ƒ(ski)=(ƒx(ski), ƒy(ski)). Based on the equations, the vessel centerline correspondences are globally established by incorporating the entire vessel shape in terms of directions and locations that will yield more accurate results than those obtained by only use of epi-polar constraints with local vessel segment points; especially when epi-polar line and vessel segment are tangential.
c and 6d show the results of 3-D left coronary arterial (LCA) reconstructed from a pair of angiograms as shown in
With the point correspondences on 2-D vessel centerlines (ξkj, ηkj) and
and the transformation (Rk, {right arrow over (t)}k) at the k-th time frame, the 3-D vessel centerline points of coronary arteries (xkj, ykj, zkj)'s can then be calculated based on the following equations:
where
and rk
After the 3-D vessel centerlines and lumen diameters are obtained, the anatomical morphology of coronary arterial tree can then be generated by a surface based reproduction technique. The 3-D lumen surface is modeled on the basis of a sequence of cross-sectional contours. Each contour Si along the vessel is represented by a di-mm circular disk centered at and perpendicular to the 3-D vessel centerline. The surfaces between every pair of consecutive contour Si and Si+1 are generated based on a number of polygonal patches. With the modeled lumen surfaces, the morphology of reconstructed coronary arterial tree can be easily reproduced by employing well known techniques of computer graphics.
III. Establishment of Temporal Correspondence with Smoothness Constraints
The process of “temporal correspondence” may be performed to characterize the motion trajectory of every vessel centerline point on the coronary artery moving from the end-diastolic to the end-systolic time frames. The “minimal principles” in physics state that certain quantities are minimized when a physical process takes place. Such a theory led to the derivation of Hamilton's Principle which can be stated as follows: “Of all the possible paths along which a dynamic system may move from one point to another within a specified time interval (consistent with any constraints), the actual path followed is that which minimizes the time integral of the difference between the kinetic and potential energies”. See for example, Y. C. Fung, Foundations of Solid Mechanics, Prentice-Hall Inc., Englewood Cliffs, N.J., 1965. Based on Hamilton's Principle, the problem of establishing temporal correspondence on each coronary artery can be modeled as searching the trajectory by which every artery spends minimal energy to change from its current position to a new position during contraction or relaxation and meanwhile maintains its shape similarity between every two consecutive time frames. Let k and k′ denote the end-diastolic and end-systolic time frames, respectively. For every 3-D coronary arterial tree reconstructed at the two time frames, its j-th artery at end-diastolic time frame lkj and at end-systolic time frame lk′j can be modeled as a sequence of nk points
where i=1, . . . , nk, and a sequence of nk. points
where i=1, . . . , nk′, respectively. To assess coronary arterial deformation, the temporal correspondences of each pairs of 3-D coronary artery lkj and lk′j moving between the end-diastolic time frames k and end-systolic time frame k′ must be established by using the equation as follows:
subject to constraints
where
denote the mass and module of elasticity at the arterial segment
respectively. The symbol Δtk,k′ is the elapsed time between the k-th and k′-th time frames. The function
defines the 3-D artery lk′j passing through the vessel centerline points
The symbol
denotes the set of parametric variables corresponding to the 3-D vessel centerline points of the artery
denote the tangent and normal vectors at point
The parametric curve function
defines the centerline points of the artery lkj. Similarly,
and
denote the respective first and second derivatives of parametric curve function
By assuming the uniform material density, the mass associated with each vessel centerline point is approximately proportional the area of cross section
The module of elasticity at one vessel centerline point is defined to be inverse proportional to the area of the cross section
Numerous standard mathematics library functions are readily available to those of ordinary skill in the art. For example, the subroutines ve17 and vf13 of Harwell Subroutine Library may be employed to solve the above equation. (Harwell Subroutine Library, vol. ½, AEA Technology, Harwell Laboratory, Oxfordshire, England, December 1995).
The first term in the above minimization equation defines the required minimal kinetic energy due to motion and the second term characterizes the minimal change in potential energy due to arterial segment stretching or foreshortening between k and k′ time frames. The local shape similarity between the two coronary arteries is characterized based on the last two terms by minimizing the total angle differences of tangent and normal vectors at every pair of corresponding points on the respective arteries. On the basis of the above minimization, the temporal correspondence of vessel centerline points between any two time frames (e.g., end-diastole and end-systole) can be established.
A regularization solution may be obtained by minimizing an energy of the following form
where A is a set of indices to the sample data points, xi's are the locations of the data points, λ≦0 is a weighting factor and n≦1 is an integer number. The first term on the right hand side, called the closeness term, imposes the constraint from the data d. The second term, called the smoothness term or the regularizer, imposes the a priori smoothness constraint on the solution. It is desired to minimize both but they may not be each minimized simultaneously. The two constraints are balanced by λ. Any ƒ minimizing the above equation may be a smooth solution in the so-called Sobolev space W2n. In the Sobolev space, every point of ƒ is a function whose (n−1) derivative is absolutely continuous and whose n-th ƒ(n−1) derivative ƒn is square integrable. Different types of regularizer impose different types of smoothness constraints. The employed smoothness constraints function is a Bêzier surface function S(u, v) that is formed as the Cartesian product of Bêzier blending functions:
with Pj,l specifying the location of the (m+1) by (n+1) control points and subject to the constraints
where
denote the ns+1(ns>n) moving vessel centerline points at individual nc+1(nc>m) time frames, Ψ(S, p) denotes the distance between the point p to the surface function S, and λs≦0 is a constraints relaxation factor.
Bj,m(u) and Bl,n(v) are polynomial functions of degree one less than the number of control points used (i.e., at least a third order derivative function) and may be defined as
and the C(m,j) and C(l,n) represent the binomial coefficients
IV. Kinematic and Deformation Analysis of Moving Coronary Arterial Tree
As noted above, the analysis features and aspects of the present invention may be applied to any reconstructed 3-D representation of an arterial tree structure. The above-identified methods and structures for such reconstruction and smoothing are but one exemplary technique believed to generate highly accurate representations of the arterial structure. Numerous other methods and structure for generating such a 3-D representation will be readily apparent to those of ordinary skill in the art. In particular, rotational angiography systems and techniques are rapidly developing that are capable of generating 3-D representations of moving arterial tree structures.
The skeleton of a reconstructed 3-D vessel may be mathematically defined as a curve function ρ(s)=(x(s), y(s), z(s)) connecting all the 3-D centerline points. A right coronary arterial (RCA) tree shown in
subject to the constraints
ρ(si)=(x(si), y(si), z(si)),
0≦si≦1, i=0, 1, . . . , ns,
where ρ(si), i=0, . . . , ns, with (ns+1)≧4, denotes the individual vessel centerline points, and pj, j=0, . . . , m, denote the (m+1) control points with ns≧m≧3. The employed constraints ensure that the derived curve function will pass through the vessel centerline points. Bj,m(s) is a polynomial function of degree one less than the number of control points used (i.e., at least a third order derivative function) and is defined as above.
A. Motion Analysis
Based on the calculated parametric variables and function in the above equations, a trajectory of vessel centerline point can be defined by a function rij(u) on the basis of a Bêzier curve as follows:
subject to the constraints
where rij(uk), k=0, . . . , (nc−1), with nc≧4, denotes the i-th vessel centerline point
of the j-th vessel in the coronary artery tree moving throughout nc time frames during the cardiac cycle, and
denote the m+1 control points with nc≧m≧3. The employed constraints ensure that the derived curve function will pass through the vessel centerline pont moving through the spatial domain. Bg,m(u) is a polynomial function of degree one less than the number of control points as described in the above equations.
The displacement vector
which define the arterial movement of the 3-D vessel centerline point between the k-th and (k+1)-th time frames can be easily calculated as
On the basis of the path function
can be derived that define two other motion parameters in terms of velocity and acceleration for every vessel centerline point as
subject to the constraints
An alternate evaluation for the n-th derivative at u=0 is given by
and at u=1 by
B. Local Deformation Analysis
By use of such a spline-based curve modeling technique, one is able to apply the theory of differential geometry such as Frenet-Serret apparatus (F-S theory) or its variation to study the geometrical nature of the 3-D coronary artery or intracoronary device at any time frame during the cardiac cycle. See for example, R. S. Millman and G. D. Parker, Elements of Differential Geometry, Prentice-Hall Inc., Englewood Cliffs, N.J., 1977. A technique based on the F-S theory of differential geometry has been developed to study the geometrical nature or tortuosity of the 3-D coronary artery shape at any time frame in the cardiac cycle. The F-S theory consists of five components: three vector fields along the given curve (the tangent T(s), the normal N(s), and the bi-normal B(s) vectors) and two scalar valued functions (the curvature κ(s) and the torsion τ(s)) where s denotes the parametric variable defining the location of point on the curve function(s). The curvature κ(s0) measures the rate of change of the angle defined by the two neighboring tangents T(s0) and T(s0+δs) associated with the two points ρ(s0) and ρ(s0+δs). In other words, it characterizes the degree of bending pertinent to a local curve segment in the neighborhood between s0 and s0+δs (i.e., how rapidly the curve pulls away from the plane n perpendicular to the tangent vector at T(s0)). Similarly, the torsion at τ(s0) measures a rate of change (or twisting) at a point ρ(s0) how its trajectory twists out of the plane Ωt perpendicular to the normal vector B(s0)).
The calculation of curvature and torsion at every vessel centerline point s0 is characterized by the following equations:
where ρ(i)(s) denotes the i-th derivative with respect to s. Generally, the above equations define a microscopic approach to look in very small neighborhoods of points. Therefore they are regarded as primitives for assessing the local geometrical property of a curve.
C. Global Flexion Analysis
The analysis may be performed by comparing the coronary trees reconstructed at two different time frames k and k′. The enclosed angle θk (θk′) may be defined as the angle formed by two chords that extend from a point along the centerline to the location with the minimal length between a pre-defined length δd (e.g., 5 mm) and the next local minimal curvature δc in each direction as shown in
D. Dynamic Rendering
The kinematic and deformation measurements rij, r(1)ij, r(2)ij, κ(s), τ(s) and θflex may be color coded on the lumen of moving coronary arterial tree. Seven colors (red, orange, yellow, green, blue, cyanic, and purple) may be used to represent the magnitudes of each kinetic measurement. The magnitude of each measurement throughout the cardiac cycle are divided into 7 sub-regions corresponding to each color where the red color denotes the largest magnitude and purple color represents the smallest magnitude. Those of ordinary skill in the art will recognize that any number of colors and gradations of colors may be used to represent the dynamic measures.
V. Exemplary Results
In
The reconstructed 3-D moving coronary arterial trees with the kinematic analyses throughout the cardiac cycle are illustrated in
The deformation analyses in terms of curvature, torsion, and are illustrated in
Similarly, another example is shown of right coronary cine angiograms acquired between end-diastole and end-systole, also from a single-plane imaging, in
c–9k and 10c–10k show a sequence of time varying, color-coded displays indicating the value of a dynamic measure by the color coding at the corresponding section of the reconstructed 3-D arterial display. As noted above, the depiction of the time varying sequences of
While the invention has been illustrated and described in the drawings and foregoing description, such illustration and description is to be considered as exemplary and not restrictive in character, it being understood that only the preferred embodiment and minor variants thereof have been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected. In particular, those of ordinary skill in the art will recognize that the features of the invention to reconstruct a 3-D representation of cine-angiographic images (or cine images of other arterial tree structures) may be implemented as an appropriately programmed general or special purpose computer, as computational and imaging electronics and devices as may be commercially available or as custom computational and imaging devices and electronics, or as combinations of such software, firmware and hardware components. Such design choices among such a variety of means are well known to those of ordinary skill in the art.
The United States Government may own rights to the invention as research relevant to its development was funded by NIH Grant HL60220.
Number | Name | Date | Kind |
---|---|---|---|
4839822 | Dormond et al. | Jun 1989 | A |
4875165 | Fencil et al. | Oct 1989 | A |
4878115 | Elion | Oct 1989 | A |
5151856 | Halmann et al. | Sep 1992 | A |
5709206 | Teboul et al. | Jan 1998 | A |
5839440 | Liou et al. | Nov 1998 | A |
6047080 | Chen et al. | Apr 2000 | A |
6115485 | Dumoulin et al. | Sep 2000 | A |
6366800 | Vining et al. | Apr 2002 | B1 |
6501848 | Carroll et al. | Dec 2002 | B1 |
6546271 | Reisfeld | Apr 2003 | B1 |
6647135 | Bonnefous | Nov 2003 | B1 |
6718054 | Lorigo et al. | Apr 2004 | B1 |
20010031921 | Bonnefous | Oct 2001 | A1 |
20020136440 | Yim et al. | Sep 2002 | A1 |
20050249327 | Wink et al. | Nov 2005 | A1 |
Number | Date | Country |
---|---|---|
1210910 | Jun 2002 | EP |
Number | Date | Country | |
---|---|---|---|
20040066958 A1 | Apr 2004 | US |