Analyte, e.g., glucose monitoring systems including continuous and discrete monitoring systems generally include a small, lightweight battery powered and microprocessor controlled system which is configured to detect signals proportional to the corresponding measured glucose levels using an electrometer. RF signals may be used to transmit the collected data. One aspect of certain analyte monitoring systems include a transcutaneous or subcutaneous analyte sensor configuration which is, for example, at least partially positioned through the skin layer of a subject whose analyte level is to be monitored. The sensor may use a two or three-electrode (work, reference and counter electrodes) configuration driven by a controlled potential (potentiostat) analog circuit connected through a contact system.
An analyte sensor may be configured so that a portion thereof is placed under the skin of the patient so as to contact analyte of the patient, and another portion or segment of the analyte sensor may be in communication with the transmitter unit. The transmitter unit may be configured to transmit the analyte levels detected by the sensor over a wireless communication link such as an RF (radio frequency) communication link to a receiver/monitor unit. The receiver/monitor unit may perform data analysis, among other functions, on the received analyte levels to generate information pertaining to the monitored analyte levels.
Devices and methods for analyte monitoring, e.g., glucose monitoring, and/or therapy management system including, for example, medication infusion device are provided. Embodiments include transmitting information from a first location to a second, e.g., using a telemetry system such as RF telemetry. Systems herein include continuous analyte monitoring systems, discrete analyte monitoring system, and therapy management systems.
Embodiments include receiving sensor data from an analyte sensor of a sensor monitoring system, processing the received sensor data with time corresponding calibration data, outputting the processed sensor data, detecting one or more adverse conditions associated with the sensor monitoring system, disabling the output of the sensor data during a adverse condition time period, determining that the one or more detected adverse conditions is no longer present in the sensor monitoring system, retrieving the sensor data during the adverse condition time period, processing the retrieved sensor data during the adverse condition time period, and outputting the processed retrieved sensor data.
Embodiments include detecting a condition unsuitable for calibration of an analyte sensor for a predetermined time period, disabling output of information associated with the analyte sensor, determining a successful calibration of the analyte sensor, retrieving one or more parameters associated with the successful calibration, processing sensor data during the time period of disabled output of information with the one or more parameters associated with the successful calibration, and displaying the processed sensor data for the time period of disabled information output.
Embodiments include an interface configured to receive sensor data, a first memory configured to store the received sensor data, a processor coupled to the memory and configured to process the stored sensor data, a second memory coupled to the processor and configured to store the processed sensor data, and a display unit coupled to the second memory and configured to display the processed sensor data, where the processor is further configured to detect a condition unsuitable for calibration of a sensor for a predetermined time period, disable display of processed sensor data, determine a successful calibration of the sensor, retrieve one or more parameters associated with the successful calibration, process the sensor data during the time period of disabled display of sensor data with the one or more parameters associated with the successful calibration, and display the processed sensor data for the time period of disabled information output.
These and other objects, features and advantages of the present disclosure will become more fully apparent from the following detailed description of the embodiments, the appended claims and the accompanying drawings.
The following patents, applications and/or publications are incorporated herein by reference for all purposes: U.S. Pat. Nos. 4,545,382; 4,711,245; 5,262,035; 5,262,305; 5,264,104; 5,320,715; 5,509,410; 5,543,326; 5,593,852; 5,601,435; 5,628,890; 5,820,551; 5,822,715; 5,899,855; 5,918,603; 6,071,391; 6,103,033; 6,120,676; 6,121,009; 6,134,461; 6,143,164; 6,144,837; 6,161,095; 6,175,752; 6,270,455; 6,284,478; 6,299,757; 6,338,790; 6,377,894; 6,461,496; 6,503,381; 6,514,460; 6,514,718; 6,540,891; 6,560,471; 6,579,690; 6,591,125; 6,592,745; 6,600,997; 6,605,200; 6,605,201; 6,616,819; 6,618,934; 6,650,471; 6,654,625; 6,676,816; 6,730,200; 6,736,957; 6,746,582; 6,749,740; 6,764,581; 6,773,671; 6,881,551; 6,893,545; 6,932,892; 6,932,894; 6,942,518; 7,167,818; and 7,299,082; U.S. Published Application Nos. 2004/0186365; 2005/0182306; 2007/0056858; 2007/0068807; 2007/0227911; 2007/0233013; 2008/0081977; 2008/0161666; and 2009/0054748; U.S. patent application Ser. Nos. 11/831,866; 11/831,881; 11/831,895; 12/102,839; 12/102,844; 12/102,847; 12/102,855; 12/102,856; 12/152,636; 12/152,648; 12/152,650; 12/152,652; 12/152,657; 12/152,662; 12/152,670; 12/152,673; 12/363,712; 12/131,012; 12/242,823; 12/363,712; 12/393,921; 12/495,709; 12/698,124; 12/699,653; 12/699,844; 12/714,439; 12/761,372; and 12/761,387 and U.S. Provisional Application Nos. 61/230,686 and 61/227,967.
Before the present disclosure is described in additional detail, it is to be understood that this disclosure is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges is also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure.
The figures shown herein are not necessarily drawn to scale, with some components and features being exaggerated for clarity.
As described in further detail below, in accordance with the various embodiments of the present disclosure, there is provided a method and system for positioning a controller unit within a transmission range for close proximity communication, transmitting one or more predefined close proximity commands, and receiving a response packet in response to the transmitted one or more predefined close proximity commands. For example, in one aspect, close proximity communication includes short range wireless communication between communication components or devices, where the communication range is limited to about 10 inches or less, about 5 inches or less, or about 2 inches or less, or other suitable, short range or distance between the devices. The close proximity wireless communication in certain embodiments includes a bi-directional communication where a command sending communication device, when positioned within the short communication range or in close proximity to the command receiving communication device, is configured to transmit one or more commands to the command receiving communication device (for example, when a user activates or actuates a transmit command button or switch). In response, the command receiving communication device may be configured to perform one or more routines associated with the received command, and/or return or send back a response data packet or signal to the command sending communication device. Example of such functions and or commands may include, but not limited to activation of certain functions or routines such as analyte related data processing, and the like.
Analytes that may be monitored include, for example, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be monitored. More than one analyte may be monitored by a single system, e.g. a single analyte sensor.
The analyte monitoring system 100 includes a sensor unit 101, a data processing and transmitter unit 102 coupleable to the sensor unit 101, and a primary receiver unit 104 which is configured to communicate with the data processing and transmitter unit 102 via a bi-directional communication link 103. The primary receiver unit 104 may be further configured to transmit data to a data processing terminal 105 for evaluating the data received by the primary receiver unit 104. Moreover, the data processing terminal 105 in one embodiment may be configured to receive data directly from the data processing and transmitter unit 102 via a communication link which may optionally be configured for bi-directional communication. Accordingly, data processing and transmitter unit 102 and/or receiver unit 104 may include a transceiver.
Also shown in
In one aspect sensor unit 101 may include two or more sensors, each configured to communicate with data processing and transmitter unit 102. Furthermore, while only one, data processing and transmitter unit 102, communication link 103, and data processing terminal 105 are shown in the embodiment of the analyte monitoring system 100 illustrated in
In one embodiment of the present disclosure, the sensor unit 101 is physically positioned in or on the body of a user whose analyte level is being monitored. The sensor unit 101 may be configured to continuously sample the analyte level of the user and convert the sampled analyte level into a corresponding data signal for transmission by the data processing and transmitter unit 102. In certain embodiments, the data processing and transmitter unit 102 may be physically coupled to the sensor unit 101 so that both devices are integrated in a single housing and positioned on the user's body. The data processing and transmitter unit 102 may perform data processing such as filtering and encoding on data signals and/or other functions, each of which corresponds to a sampled analyte level of the user, and in any event data processing and transmitter unit 102 transmits analyte information to the primary receiver unit 104 via the communication link 103. Examples of such integrated sensor and transmitter units can be found in, among others, U.S. patent application Ser. No. 12/698,124, incorporated herein by reference.
In one embodiment, the analyte monitoring system 100 is configured as a one-way RF communication path from the data processing and transmitter unit 102 to the primary receiver unit 104. In such embodiment, the data processing and transmitter unit 102 transmits the sampled data signals received from the sensor unit 101 without acknowledgement from the primary receiver unit 104 that the transmitted sampled data signals have been received. For example, the data processing and transmitter unit 102 may be configured to transmit the encoded sampled data signals at a fixed rate (e.g., at one minute intervals) after the completion of the initial power on procedure. Likewise, the primary receiver unit 104 may be configured to detect such transmitted encoded sampled data signals at predetermined time intervals. Alternatively, the analyte monitoring system 100 may be configured with a bi-directional RF (or otherwise) communication between the data processing and transmitter unit 102 and the primary receiver unit 104.
Additionally, in one aspect, the primary receiver unit 104 may include two sections. The first section is an analog interface section that is configured to communicate with the data processing and transmitter unit 102 via the communication link 103. In one embodiment, the analog interface section may include an RF receiver and an antenna for receiving and amplifying the data signals from the data processing and transmitter unit 102, which are thereafter, demodulated with a local oscillator and filtered through a band-pass filter. The second section of the primary receiver unit 104 is a data processing section which is configured to process the data signals received from the data processing and transmitter unit 102 such as by performing data decoding, error detection and correction, data clock generation, and data bit recovery.
In operation, upon completing the power-on procedure, the primary receiver unit 104 is configured to detect the presence of the data processing and transmitter unit 102 within its range based on, for example, the strength of the detected data signals received from the data processing and transmitter unit 102 and/or a predetermined transmitter identification information. Upon successful synchronization with the corresponding data processing and transmitter unit 102, the primary receiver unit 104 is configured to begin receiving from the data processing and transmitter unit 102 data signals corresponding to the user's detected analyte level. More specifically, the primary receiver unit 104 in one embodiment is configured to perform synchronized time hopping with the corresponding synchronized data processing and transmitter unit 102 via the communication link 103 to obtain the user's detected analyte level.
Referring again to
Within the scope of the present disclosure, the data processing terminal 105 may include an infusion device such as an insulin infusion pump (external or implantable) or the like, which may be configured to administer insulin to patients, and which may be configured to communicate with the receiver unit 104 for receiving, among others, the measured analyte level. Alternatively, the receiver unit 104 may be configured to integrate or otherwise couple to an infusion device therein so that the receiver unit 104 is configured to administer insulin therapy to patients, for example, for administering and modifying basal profiles, as well as for determining appropriate boluses for administration based on, among others, the detected analyte levels received from the data processing and transmitter unit 102.
Additionally, the data processing and transmitter unit 102, the primary receiver unit 104 and the data processing terminal 105 may each be configured for bi-directional wireless communication such that each of the data processing and transmitter unit 102, the primary receiver unit 104 and the data processing terminal 105 may be configured to communicate (that is, transmit data to and receive data from) with each other via the wireless communication link 103. More specifically, the data processing terminal 105 may in one embodiment be configured to receive data directly from the data processing and transmitter unit 102 via the communication link 103, where the communication link 103, as described above, may be configured for bi-directional communication.
In this embodiment, the data processing terminal 105 which may include an insulin pump, may be configured to receive the analyte signals from the data processing and transmitter unit 102, and thus, incorporate the functions of the receiver 104 including data processing for managing the patient's insulin therapy and analyte monitoring. In one embodiment, the communication link 103 may include one or more of an RF communication protocol, an infrared communication protocol, a Bluetooth® enabled communication protocol, an 802.11x wireless communication protocol, or an equivalent wireless communication protocol which would allow secure, wireless communication of several units (for example, per HIPPA requirements) while avoiding potential data collision and interference.
Further shown in
In one embodiment, a unidirectional input path is established from the sensor unit 101 (
As discussed above, the transmitter processor 204 is configured to transmit control signals to the various sections of the data processing and transmitter unit 102 during the operation of the data processing and transmitter unit 102. In one embodiment, the transmitter processor 204 also includes a memory (not shown) for storing data such as the identification information for the data processing and transmitter unit 102, as well as the data signals received from the sensor unit 101. The stored information may be retrieved and processed for transmission to the primary receiver unit 104 under the control of the transmitter processor 204. Furthermore, the power supply 207 may include a commercially available battery, which may be a rechargeable battery.
In certain embodiments, the data processing and transmitter unit 102 is also configured such that the power supply section 207 is capable of providing power to the transmitter for a minimum of about three months of continuous operation, e.g., after having been stored for about eighteen months such as stored in a low-power (non-operating) mode. In one embodiment, this may be achieved by the transmitter processor 204 operating in low power modes in the non-operating state, for example, drawing no more than approximately 1 μA of current. Indeed, in one embodiment, a step during the manufacturing process of the data processing and transmitter unit 102 may place the data processing and transmitter unit 102 in the lower power, non-operating state (i.e., post-manufacture sleep mode). In this manner, the shelf life of the data processing and transmitter unit 102 may be significantly improved. Moreover, as shown in
Referring back to
Referring yet again to
Referring yet again to
In one embodiment, the test strip interface 301 includes a glucose level testing portion to receive a manual insertion of a glucose test strip, and thereby determine and display the glucose level of the test strip on the output 310 of the primary receiver unit 104. This manual testing of glucose may be used to calibrate the sensor unit 101 or otherwise. The RF receiver 302 is configured to communicate, via the communication link 103 (
Each of the various components of the primary receiver unit 104 shown in
The serial communication section 309 in the primary receiver unit 104 is configured to provide a bi-directional communication path from the testing and/or manufacturing equipment for, among others, initialization, testing, and configuration of the primary receiver unit 104. Serial communication section 104 can also be used to upload data to a computer, such as time-stamped blood glucose data. The communication link with an external device (not shown) can be made, for example, by cable, infrared (IR) or RF link. The output 310 of the primary receiver unit 104 is configured to provide, among others, a graphical user interface (GUI) such as a liquid crystal display (LCD) for displaying information. Additionally, the output 310 may also include an integrated speaker for outputting audible signals as well as to provide vibration output as commonly found in handheld electronic devices, such as mobile telephones presently available. In a further embodiment, the primary receiver unit 104 also includes an electro-luminescent lamp configured to provide backlighting to the output 310 for output visual display in dark ambient surroundings.
Referring back to
Periodic calibration of the sensor unit 101 (
There are time periods where the sensor characteristics or the user's physiological condition renders the condition unsuitable for a sensor calibration event. For example, the sensor may be configured for periodic calibration, such as, after 2 hours after insertion, 10 hours after insertion, 12 hours after insertion, 24 hours after insertion, 48 hours after insertion, or 72 hours after insertion, or one or more combinations thereof. If a predetermined calibration event is triggered but a successful calibration does not result, after a certain time period (for example, a predetermined grace period during which to calibrate), the receiver unit may no longer display the monitored and processed glucose information.
Other conditions may also result in rendering the condition unsuitable for sensor calibration including, but not limited to, detection of a failure mode of a sensor, sensor data values being outside a predetermined range, rate of change of sensor data values being above a predetermined threshold, a temperature measurement outside a predetermined range, or any combination thereof.
Referring still to
Still referring to
In one aspect, the display or output of processed sensor data may be disabled if a required calibration event is unsuccessful over a permitted time period (for example, including a predetermined grace period measured from the scheduled calibration). Thereafter, upon successful calibration, the system resumes display of the processed and calibrated analyte sensor data. However, there may be a time period or a gap in the output display during which the necessary calibration did not occur in a timely manner. For example, as shown in
In one aspect, once successful calibration of the sensor data occurs, the calibration parameters from this calibration event may be used to process the sensor data during the period of disabled output or display (620). Upon successful processing of the sensor data during the period of disabled output, the processed sensor data during this time period is backfilled, or the gap in the processed continuous sensor data are filled in the display (630). By way of an example,
In one embodiment, the backfilled processed sensor data is displayed immediately upon calculation. In another embodiment, the backfilled processed sensor data is not displayed immediately, but rather, after waiting a predetermined period of time. The backfilled processed sensor data may not be displayed immediately to avoid possible unnecessary or incorrect action by a user in response to the backfilled processed sensor data. In this manner, in one aspect, the user or a healthcare provider may be provided with a continuous set of analyte data from the analyte monitoring system without any gaps in the processed signals for further analysis and/or therapy management.
In this manner, in accordance with the embodiments of the present disclosure, gaps in monitored analyte levels using an analyte monitoring system due to, for example, inability to promptly calibrate the sensor, system malfunction, sensor dislodging, signal errors associated with the sensor, transmitter unit, receiver unit, and the like, or any other variables or parameters that result in the inability of the analyte monitoring system to display or output the real-time monitored analyte level, may be retrospectively filled or reprocessed so that the data gap is closed and the continuously monitored analyte level does not have any or substantially missing data. That is, in embodiments of the present disclosure, upon correction or rectification of the condition or conditions/parameters which resulted in the analyte monitoring system disabling the output results associated with the monitored real time analyte levels, the parameters associated with the correction or rectification may be used to retrospectively correct or process data or signals so that the missing gaps in analyte related data may be processed and backfilled.
In this manner, advantageously, in aspects of the present disclosure, additional robustness may be provided to the user and/or the healthcare provider to improve therapy or health management decisions.
In one embodiment, a method may include receiving sensor data from an analyte sensor of a sensor monitoring system, processing the received sensor data with time corresponding calibration data, outputting the processed sensor data, detecting one or more adverse conditions associated with the sensor monitoring system, disabling the output of the sensor data during an adverse condition time period, determining that the one or more detected adverse conditions is no longer present in the sensor monitoring system, retrieving the sensor data during the adverse condition time period, processing the retrieved sensor data during the adverse condition time period, and outputting the processed retrieved sensor data.
In one aspect, outputting the processed sensor data may include displaying the sensor data in one or more of a graphical, numerical, pictorial, audible, vibratory, or one or more combinations thereof.
The one or more detected adverse conditions may include one or more of a sensor instability condition, a calibration failure condition, or a monitoring system failure condition.
The sensor instability condition may include one or more of an early signal attenuation condition of the sensor, sensor misposition error, sensor communication error, temperature measurement outside a predetermined range, or a combination thereof.
The calibration failure condition may include one or more of an analyte level exceeding a predetermined threshold, a rate of change of analyte level exceeding a predetermined threshold, a signal error associated with the reference data, a data unavailability condition, or a combination thereof.
Furthermore, the method may include storing the processed sensor data with the associated time information based on the analyte level detection time by the sensor.
In another embodiment, a method may include detecting a condition unsuitable for calibration of an analyte sensor for a predetermined time period, disabling output of information associated with the analyte sensor, determining a successful calibration of the analyte sensor, retrieving one or more parameters associated with the successful calibration, processing sensor data during the time period of disabled output of information with the one or more parameters associated with the successful calibration, and displaying the processed sensor data for the time period of disabled information output.
The sensor data may be analyte concentration data.
The analyte concentration data may include blood glucose concentration data.
The sensor data may be processed in substantially real-time.
The condition unsuitable for calibration may include one or more of a failure mode of a sensor, sensor data outside a predetermined acceptable range, a rate of change of sensor data above a predetermined level, a requirement for calibration of a sensor, a temperature measurement outside a predetermined range, or any combination thereof.
The processed sensor data for the time period of disabled information output may be displayed substantially immediately upon processing.
The processed sensor data for the time period of disabled information output may be displayed only after waiting a predetermined period of time.
In another embodiment, an apparatus may include an interface configured to receive sensor data, a first memory configured to store the received sensor data, a processor coupled to the memory and configured to process the stored sensor data, a second memory coupled to the processor and configured to store the processed sensor data, and a display unit coupled to the second memory and configured to display the processed sensor data, wherein the processor is further configured to detect a condition unsuitable for calibration of a sensor for a predetermined time period, disable display of processed sensor data, determine a successful calibration of the sensor, retrieve one or more parameters associated with the successful calibration, process the sensor data during the time period of disabled display of sensor data with the one or more parameters associated with the successful calibration, and display the processed sensor data for the time period of disabled information output.
The sensor may be an analyte sensor.
The analyte sensor may be a glucose sensor.
The sensor data may correspond to analyte concentration data.
The analyte concentration data may include blood glucose concentration data.
Furthermore, the apparatus may be configured to process and display the sensor data substantially in real-time.
In one aspect, the condition unsuitable for calibration may include one or more of a failure mode of a sensor, sensor data outside a predetermined acceptable range, a rate of change of sensor data above a predetermined level, a requirement for calibration of a sensor, a temperature measurement outside a predetermined range, or any combination thereof.
The display unit may be configured to display the processed sensor data for the time period of disabled information output substantially immediately upon processing the sensor data.
The display unit may be configured to display the processed sensor data for the time period of disabled information output only after waiting a predetermined period of time.
Various other modifications and alterations in the structure and method of operation of this invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present disclosure and that structures and methods within the scope of these claims and their equivalents be covered thereby.
The present application is a continuation of U.S. patent application Ser. No. 16/228,910, filed Dec. 21, 2018, is a continuation of U.S. patent application Ser. No. 15/061,774, filed Mar. 4, 2016, now U.S. Pat. No. 10,198,844, which is a continuation of U.S. patent application Ser. No. 13/925,694, filed Jun. 24, 2013, now U.S. Pat. No. 9,310,230, which is a continuation of U.S. patent application Ser. No. 12/769,635, filed Apr. 28, 2010, now U.S. Pat. No. 8,483,967, which claims the benefit of U.S. Provisional Patent Application No. 61/173,600, filed Apr. 29, 2009, the disclosures of all of which are incorporated herein by reference in their entireties for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3581062 | Aston | May 1971 | A |
3926760 | Allen et al. | Dec 1975 | A |
3949388 | Fuller | Apr 1976 | A |
4036749 | Anderson | Jul 1977 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4129128 | McFarlane | Dec 1978 | A |
4245634 | Albisser et al. | Jan 1981 | A |
4327725 | Cortese et al. | May 1982 | A |
4344438 | Schultz | Aug 1982 | A |
4349728 | Phillips et al. | Sep 1982 | A |
4425920 | Bourland et al. | Jan 1984 | A |
4441968 | Emmer et al. | Apr 1984 | A |
4464170 | Clemens et al. | Aug 1984 | A |
4478976 | Goertz et al. | Oct 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4509531 | Ward | Apr 1985 | A |
4527240 | Kvitash | Jul 1985 | A |
4538616 | Rogoff | Sep 1985 | A |
4619793 | Lee | Oct 1986 | A |
4671288 | Gough | Jun 1987 | A |
4703756 | Gough et al. | Nov 1987 | A |
4731726 | Allen, III | Mar 1988 | A |
4749985 | Corsberg | Jun 1988 | A |
4757022 | Shults et al. | Jul 1988 | A |
4759828 | Young et al. | Jul 1988 | A |
4777953 | Ash et al. | Oct 1988 | A |
4779618 | Mund et al. | Oct 1988 | A |
4847785 | Stephens | Jul 1989 | A |
4854322 | Ash et al. | Aug 1989 | A |
4890620 | Gough | Jan 1990 | A |
4925268 | Iyer et al. | May 1990 | A |
4953552 | DeMarzo | Sep 1990 | A |
4986271 | Wilkins | Jan 1991 | A |
4995402 | Smith et al. | Feb 1991 | A |
5000180 | Kuypers et al. | Mar 1991 | A |
5002054 | Ash et al. | Mar 1991 | A |
5019974 | Beckers | May 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5051688 | Murase et al. | Sep 1991 | A |
5055171 | Peck | Oct 1991 | A |
5082550 | Rishpon et al. | Jan 1992 | A |
5106365 | Hernandez | Apr 1992 | A |
5122925 | Inpyn | Jun 1992 | A |
5135004 | Adams et al. | Aug 1992 | A |
5165407 | Wilson et al. | Nov 1992 | A |
5202261 | Musho et al. | Apr 1993 | A |
5210778 | Massart | May 1993 | A |
5228449 | Christ et al. | Jul 1993 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5246867 | Lakowicz et al. | Sep 1993 | A |
5251126 | Kahn et al. | Oct 1993 | A |
5262035 | Gregg | Nov 1993 | A |
5262305 | Heller et al. | Nov 1993 | A |
5264104 | Gregg et al. | Nov 1993 | A |
5264105 | Gregg et al. | Nov 1993 | A |
5279294 | Anderson et al. | Jan 1994 | A |
5285792 | Sjoquist et al. | Feb 1994 | A |
5293877 | O'Hara et al. | Mar 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5320725 | Gregg et al. | Jun 1994 | A |
5322063 | Allen et al. | Jun 1994 | A |
5340722 | Wolfbeis et al. | Aug 1994 | A |
5342789 | Chick et al. | Aug 1994 | A |
5356786 | Heller et al. | Oct 1994 | A |
5360404 | Novacek et al. | Nov 1994 | A |
5372427 | Padovani et al. | Dec 1994 | A |
5379238 | Stark | Jan 1995 | A |
5384547 | Lynk et al. | Jan 1995 | A |
5390671 | Lord et al. | Feb 1995 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5394877 | Orr et al. | Mar 1995 | A |
5402780 | Faasse, Jr. | Apr 1995 | A |
5408999 | Singh et al. | Apr 1995 | A |
5410326 | Goldstein | Apr 1995 | A |
5411647 | Johnson et al. | May 1995 | A |
5431160 | Wilkins | Jul 1995 | A |
5431921 | Thombre | Jul 1995 | A |
5462645 | Albery et al. | Oct 1995 | A |
5472317 | Field et al. | Dec 1995 | A |
5489414 | Schreiber et al. | Feb 1996 | A |
5497772 | Schulman et al. | Mar 1996 | A |
5507288 | Bocker et al. | Apr 1996 | A |
5509410 | Hill et al. | Apr 1996 | A |
5514718 | Lewis et al. | May 1996 | A |
5531878 | Vadgama et al. | Jul 1996 | A |
5552997 | Massart | Sep 1996 | A |
5568806 | Cheney, II et al. | Oct 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5582184 | Erickson et al. | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5593852 | Heller et al. | Jan 1997 | A |
5601435 | Quv | Feb 1997 | A |
5609575 | Larson et al. | Mar 1997 | A |
5628310 | Rao et al. | May 1997 | A |
5640954 | Pfeiffer et al. | Jun 1997 | A |
5653239 | Pompei et al. | Aug 1997 | A |
5665222 | Heller et al. | Sep 1997 | A |
5711001 | Bussan et al. | Jan 1998 | A |
5711861 | Ward et al. | Jan 1998 | A |
5726646 | Bane et al. | Mar 1998 | A |
5735285 | Albert et al. | Apr 1998 | A |
5748103 | Flach et al. | May 1998 | A |
5771891 | Gozani | Jun 1998 | A |
5772586 | Heinonen et al. | Jun 1998 | A |
5791344 | Schulman et al. | Aug 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5875186 | Belanger et al. | Feb 1999 | A |
5899855 | Brown | May 1999 | A |
5914026 | Blubaugh, Jr. et al. | Jun 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5942979 | Luppino | Aug 1999 | A |
5951521 | Mastrototaro et al. | Sep 1999 | A |
5957854 | Besson et al. | Sep 1999 | A |
5961451 | Reber et al. | Oct 1999 | A |
5964993 | Blubaugh, Jr. et al. | Oct 1999 | A |
5965380 | Heller et al. | Oct 1999 | A |
5971922 | Arita et al. | Oct 1999 | A |
5972199 | Heller et al. | Oct 1999 | A |
5987353 | Khatchatrian et al. | Nov 1999 | A |
5995860 | Sun et al. | Nov 1999 | A |
6001067 | Shults et al. | Dec 1999 | A |
6004278 | Botich et al. | Dec 1999 | A |
6022315 | Iliff | Feb 2000 | A |
6024699 | Surwit et al. | Feb 2000 | A |
6028413 | Brockmann | Feb 2000 | A |
6049727 | Crothall | Apr 2000 | A |
6052565 | Ishikura et al. | Apr 2000 | A |
6066243 | Anderson et al. | May 2000 | A |
6083710 | Heller et al. | Jul 2000 | A |
6088608 | Schulman et al. | Jul 2000 | A |
6091975 | Daddona et al. | Jul 2000 | A |
6091976 | Pfeiffer et al. | Jul 2000 | A |
6093172 | Funderburk et al. | Jul 2000 | A |
6096364 | Bok et al. | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6117290 | Say et al. | Sep 2000 | A |
6119028 | Schulman et al. | Sep 2000 | A |
6120676 | Heller et al. | Sep 2000 | A |
6121009 | Heller et al. | Sep 2000 | A |
6121611 | Lindsay et al. | Sep 2000 | A |
6122351 | Schlueter, Jr. et al. | Sep 2000 | A |
6129823 | Hughes et al. | Oct 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6141573 | Kurnik et al. | Oct 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6159147 | Lichter et al. | Dec 2000 | A |
6162611 | Heller et al. | Dec 2000 | A |
6175752 | Say et al. | Jan 2001 | B1 |
6200265 | Walsh et al. | Mar 2001 | B1 |
6212416 | Ward et al. | Apr 2001 | B1 |
6219574 | Cormier et al. | Apr 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6254586 | Mann et al. | Jul 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6275717 | Gross et al. | Aug 2001 | B1 |
6283761 | Joao | Sep 2001 | B1 |
6284478 | Heller et al. | Sep 2001 | B1 |
6293925 | Safabash et al. | Sep 2001 | B1 |
6295506 | Heinonen et al. | Sep 2001 | B1 |
6306104 | Cunningham et al. | Oct 2001 | B1 |
6309884 | Cooper et al. | Oct 2001 | B1 |
6314317 | Willis | Nov 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6348640 | Navot et al. | Feb 2002 | B1 |
6359270 | Bridson | Mar 2002 | B1 |
6359444 | Grimes | Mar 2002 | B1 |
6360888 | McIvor et al. | Mar 2002 | B1 |
6366794 | Moussy et al. | Apr 2002 | B1 |
6377828 | Chaiken et al. | Apr 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6418332 | Mastrototaro et al. | Jul 2002 | B1 |
6424847 | Mastrototaro et al. | Jul 2002 | B1 |
6427088 | Bowman, IV et al. | Jul 2002 | B1 |
6440068 | Brown et al. | Aug 2002 | B1 |
6471689 | Joseph et al. | Oct 2002 | B1 |
6478736 | Mault | Nov 2002 | B1 |
6484045 | Holker et al. | Nov 2002 | B1 |
6484046 | Say et al. | Nov 2002 | B1 |
6493069 | Nagashimada et al. | Dec 2002 | B1 |
6498043 | Schulman et al. | Dec 2002 | B1 |
6514718 | Heller et al. | Feb 2003 | B2 |
6546268 | Ishikawa et al. | Apr 2003 | B1 |
6551494 | Heller et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558321 | Burd et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6560471 | Heller et al. | May 2003 | B1 |
6561978 | Conn et al. | May 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6564105 | Starkweather et al. | May 2003 | B2 |
6565509 | Say et al. | May 2003 | B1 |
6571128 | Lebel et al. | May 2003 | B2 |
6572542 | Houben et al. | Jun 2003 | B1 |
6574490 | Abbink et al. | Jun 2003 | B2 |
6576101 | Heller et al. | Jun 2003 | B1 |
6577899 | Lebel et al. | Jun 2003 | B2 |
6579690 | Bonnecaze et al. | Jun 2003 | B1 |
6585644 | Lebel et al. | Jul 2003 | B2 |
6591125 | Buse et al. | Jul 2003 | B1 |
6595919 | Bemer et al. | Jul 2003 | B2 |
6605200 | Mao et al. | Aug 2003 | B1 |
6605201 | Mao et al. | Aug 2003 | B1 |
6607509 | Bobroff et al. | Aug 2003 | B2 |
6610012 | Mault | Aug 2003 | B2 |
6633772 | Ford et al. | Oct 2003 | B2 |
6635014 | Starkweather et al. | Oct 2003 | B2 |
6648821 | Lebel et al. | Nov 2003 | B2 |
6654625 | Say et al. | Nov 2003 | B1 |
6658396 | Tang et al. | Dec 2003 | B1 |
6659948 | Lebel et al. | Dec 2003 | B2 |
6668196 | Villegas et al. | Dec 2003 | B1 |
6675030 | Ciurczak et al. | Jan 2004 | B2 |
6676816 | Mao et al. | Jan 2004 | B2 |
6687546 | Lebel et al. | Feb 2004 | B2 |
6689056 | Kilcoyne et al. | Feb 2004 | B1 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6695860 | Ward et al. | Feb 2004 | B1 |
6702857 | Brauker et al. | Mar 2004 | B2 |
6733446 | Lebel et al. | May 2004 | B2 |
6740075 | Lebel et al. | May 2004 | B2 |
6741877 | Shults et al. | May 2004 | B1 |
6743635 | Neel et al. | Jun 2004 | B2 |
6746582 | Heller et al. | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6770030 | Schaupp et al. | Aug 2004 | B1 |
6789195 | Prihoda et al. | Sep 2004 | B1 |
6790178 | Mault et al. | Sep 2004 | B1 |
6809653 | Mann et al. | Oct 2004 | B1 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6811533 | Lebel et al. | Nov 2004 | B2 |
6811534 | Bowman, IV et al. | Nov 2004 | B2 |
6813519 | Lebel et al. | Nov 2004 | B2 |
6837858 | Cunningham et al. | Jan 2005 | B2 |
6862465 | Shults et al. | Mar 2005 | B2 |
6873268 | Lebel et al. | Mar 2005 | B2 |
6881551 | Heller et al. | Apr 2005 | B2 |
6892085 | McIvor et al. | May 2005 | B2 |
6895265 | Silver | May 2005 | B2 |
6923763 | Kovatchev et al. | Aug 2005 | B1 |
6931327 | Goode, Jr. et al. | Aug 2005 | B2 |
6932894 | Mao et al. | Aug 2005 | B2 |
6936006 | Sabra | Aug 2005 | B2 |
6942518 | Liamos et al. | Sep 2005 | B2 |
6950708 | Bowman, IV et al. | Sep 2005 | B2 |
6958705 | Lebel et al. | Oct 2005 | B2 |
6968294 | Gutta et al. | Nov 2005 | B2 |
6971274 | Olin | Dec 2005 | B2 |
6974437 | Lebel et al. | Dec 2005 | B2 |
6990366 | Say et al. | Jan 2006 | B2 |
6997907 | Safabash et al. | Feb 2006 | B2 |
6998247 | Monfre et al. | Feb 2006 | B2 |
6999854 | Roth | Feb 2006 | B2 |
7003336 | Holker et al. | Feb 2006 | B2 |
7003340 | Say et al. | Feb 2006 | B2 |
7003341 | Say et al. | Feb 2006 | B2 |
7015817 | Copley et al. | Mar 2006 | B2 |
7016713 | Gardner et al. | Mar 2006 | B2 |
7024245 | Lebel et al. | Apr 2006 | B2 |
7025774 | Freeman et al. | Apr 2006 | B2 |
7027848 | Robinson et al. | Apr 2006 | B2 |
7027931 | Jones et al. | Apr 2006 | B1 |
7041068 | Freeman et al. | May 2006 | B2 |
7041468 | Drucker et al. | May 2006 | B2 |
7046153 | Oja et al. | May 2006 | B2 |
7052483 | Woicik | May 2006 | B2 |
7056302 | Douglas | Jun 2006 | B2 |
7074307 | Simpson et al. | Jul 2006 | B2 |
7081195 | Simpson et al. | Jul 2006 | B2 |
7092891 | Maus et al. | Aug 2006 | B2 |
7098803 | Mann et al. | Aug 2006 | B2 |
7108778 | Simpson et al. | Sep 2006 | B2 |
7110803 | Shults et al. | Sep 2006 | B2 |
7113821 | Sun et al. | Sep 2006 | B1 |
7123950 | Mannheimer | Oct 2006 | B2 |
7134999 | Brauker et al. | Nov 2006 | B2 |
7136689 | Shults et al. | Nov 2006 | B2 |
7153265 | Vachon | Dec 2006 | B2 |
7155290 | Von Arx et al. | Dec 2006 | B2 |
7171274 | Starkweather et al. | Jan 2007 | B2 |
7179226 | Crothall et al. | Feb 2007 | B2 |
7190988 | Say et al. | Mar 2007 | B2 |
7192450 | Brauker et al. | Mar 2007 | B2 |
7198606 | Boecker et al. | Apr 2007 | B2 |
7207974 | Safabash et al. | Apr 2007 | B2 |
7226442 | Sheppard et al. | Jun 2007 | B2 |
7226978 | Tapsak et al. | Jun 2007 | B2 |
7276029 | Goode, Jr. et al. | Oct 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7286894 | Grant et al. | Oct 2007 | B1 |
7299082 | Feldman et al. | Nov 2007 | B2 |
7310544 | Brister et al. | Dec 2007 | B2 |
7324012 | Mann et al. | Jan 2008 | B2 |
7329239 | Safabash et al. | Feb 2008 | B2 |
7364592 | Carr-Brendel et al. | Apr 2008 | B2 |
7366556 | Brister et al. | Apr 2008 | B2 |
7379765 | Petisce et al. | May 2008 | B2 |
7381184 | Funderburk et al. | Jun 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7424318 | Brister et al. | Sep 2008 | B2 |
7429258 | Angel et al. | Sep 2008 | B2 |
7455663 | Bikovsky | Nov 2008 | B2 |
7460898 | Brister et al. | Dec 2008 | B2 |
7462264 | Heller et al. | Dec 2008 | B2 |
7467003 | Brister et al. | Dec 2008 | B2 |
7471972 | Rhodes et al. | Dec 2008 | B2 |
7494465 | Brister et al. | Feb 2009 | B2 |
7497827 | Brister et al. | Mar 2009 | B2 |
7499002 | Blasko et al. | Mar 2009 | B2 |
7519408 | Rasdal et al. | Apr 2009 | B2 |
7583990 | Goode, Jr. et al. | Sep 2009 | B2 |
7591801 | Brauker et al. | Sep 2009 | B2 |
7599726 | Goode, Jr. et al. | Oct 2009 | B2 |
7613491 | Boock et al. | Nov 2009 | B2 |
7615007 | Shults et al. | Nov 2009 | B2 |
7632228 | Brauker et al. | Dec 2009 | B2 |
7635594 | Holmes et al. | Dec 2009 | B2 |
7637868 | Saint et al. | Dec 2009 | B2 |
7640048 | Dobbles et al. | Dec 2009 | B2 |
7651596 | Petisce et al. | Jan 2010 | B2 |
7651845 | Doyle, III et al. | Jan 2010 | B2 |
7654956 | Brister et al. | Feb 2010 | B2 |
7657297 | Simpson et al. | Feb 2010 | B2 |
7697967 | Stafford | Apr 2010 | B2 |
7699775 | Desai et al. | Apr 2010 | B2 |
7711402 | Shults et al. | May 2010 | B2 |
7713574 | Brister et al. | May 2010 | B2 |
7715893 | Karnath et al. | May 2010 | B2 |
7727147 | Osorio et al. | Jun 2010 | B1 |
7731657 | Stafford | Jun 2010 | B2 |
7736310 | Taub | Jun 2010 | B2 |
7736344 | Moberg et al. | Jun 2010 | B2 |
7763042 | Iio et al. | Jul 2010 | B2 |
7766829 | Sloan et al. | Aug 2010 | B2 |
7811231 | Jin et al. | Oct 2010 | B2 |
7813809 | Strother et al. | Oct 2010 | B2 |
7822454 | Alden et al. | Oct 2010 | B1 |
7889069 | Fifolt et al. | Feb 2011 | B2 |
7899545 | John | Mar 2011 | B2 |
7914460 | Melker et al. | Mar 2011 | B2 |
7938797 | Estes | May 2011 | B2 |
7941200 | Weinert et al. | May 2011 | B2 |
7946985 | Mastrototaro et al. | May 2011 | B2 |
7972296 | Braig et al. | Jul 2011 | B2 |
7976466 | Ward et al. | Jul 2011 | B2 |
7978063 | Baldus et al. | Jul 2011 | B2 |
8010174 | Goode, Jr. et al. | Aug 2011 | B2 |
8010256 | Oowada | Aug 2011 | B2 |
8192394 | Estes et al. | Jun 2012 | B2 |
8282549 | Brauker et al. | Oct 2012 | B2 |
8597570 | Terashima et al. | Dec 2013 | B2 |
20010020124 | Tamada | Sep 2001 | A1 |
20010037060 | Thompson et al. | Nov 2001 | A1 |
20010037366 | Webb et al. | Nov 2001 | A1 |
20010047604 | Valiulis | Dec 2001 | A1 |
20020019022 | Dunn et al. | Feb 2002 | A1 |
20020054320 | Ogino | May 2002 | A1 |
20020095076 | Krausman et al. | Jul 2002 | A1 |
20020103499 | Perez et al. | Aug 2002 | A1 |
20020106709 | Potts et al. | Aug 2002 | A1 |
20020111832 | Judge | Aug 2002 | A1 |
20020128594 | Das et al. | Sep 2002 | A1 |
20020133107 | Darcey | Sep 2002 | A1 |
20020147135 | Schnell | Oct 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20020788748 | Blackwell et al. | Dec 2002 | |
20030005464 | Gropper et al. | Jan 2003 | A1 |
20030021729 | Moller et al. | Jan 2003 | A1 |
20030023461 | Quintanilla et al. | Jan 2003 | A1 |
20030028089 | Galley et al. | Feb 2003 | A1 |
20030060692 | Ruchti et al. | Mar 2003 | A1 |
20030060753 | Starkweather et al. | Mar 2003 | A1 |
20030114897 | Von Arx et al. | Jun 2003 | A1 |
20030147515 | Kai et al. | Aug 2003 | A1 |
20030163351 | Brown | Aug 2003 | A1 |
20030168338 | Gao et al. | Sep 2003 | A1 |
20030199790 | Boecker et al. | Oct 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030212379 | Bylund et al. | Nov 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040015102 | Cummings et al. | Jan 2004 | A1 |
20040041749 | Dixon | Mar 2004 | A1 |
20040054263 | Moerman et al. | Mar 2004 | A1 |
20040060818 | Feldman et al. | Apr 2004 | A1 |
20040063435 | Sakamoto et al. | Apr 2004 | A1 |
20040064068 | DeNuzzio et al. | Apr 2004 | A1 |
20040073266 | Haefner et al. | Apr 2004 | A1 |
20040078215 | Dahlin et al. | Apr 2004 | A1 |
20040106858 | Say et al. | Jun 2004 | A1 |
20040122353 | Shahmirian et al. | Jun 2004 | A1 |
20040133390 | Osorio et al. | Jul 2004 | A1 |
20040135684 | Steinthal et al. | Jul 2004 | A1 |
20040138588 | Saikley et al. | Jul 2004 | A1 |
20040147872 | Thompson | Jul 2004 | A1 |
20040152622 | Keith et al. | Aug 2004 | A1 |
20040167801 | Say et al. | Aug 2004 | A1 |
20040171921 | Say et al. | Sep 2004 | A1 |
20040176672 | Silver et al. | Sep 2004 | A1 |
20040204687 | Mogensen et al. | Oct 2004 | A1 |
20040204868 | Maynard et al. | Oct 2004 | A1 |
20040223985 | Dunfiled et al. | Nov 2004 | A1 |
20040249253 | Racchini et al. | Dec 2004 | A1 |
20040254433 | Bandis et al. | Dec 2004 | A1 |
20040254434 | Goodnow et al. | Dec 2004 | A1 |
20040260478 | Schwamm | Dec 2004 | A1 |
20040267300 | Mace | Dec 2004 | A1 |
20050001024 | Kusaka et al. | Jan 2005 | A1 |
20050003470 | Nelson et al. | Jan 2005 | A1 |
20050004494 | Perez et al. | Jan 2005 | A1 |
20050027177 | Shin et al. | Feb 2005 | A1 |
20050031689 | Shults et al. | Feb 2005 | A1 |
20050038680 | McMahon | Feb 2005 | A1 |
20050049179 | Davidson et al. | Mar 2005 | A1 |
20050070774 | Addison et al. | Mar 2005 | A1 |
20050090607 | Tapsak et al. | Apr 2005 | A1 |
20050096511 | Fox et al. | May 2005 | A1 |
20050096516 | Soykan et al. | May 2005 | A1 |
20050113886 | Fischell et al. | May 2005 | A1 |
20050114068 | Chey et al. | May 2005 | A1 |
20050116683 | Cheng et al. | Jun 2005 | A1 |
20050137530 | Campbell et al. | Jun 2005 | A1 |
20050173245 | Feldman et al. | Aug 2005 | A1 |
20050176136 | Burd et al. | Aug 2005 | A1 |
20050182306 | Sloan | Aug 2005 | A1 |
20050184153 | Auchinleck | Aug 2005 | A1 |
20050187442 | Cho et al. | Aug 2005 | A1 |
20050195930 | Spital et al. | Sep 2005 | A1 |
20050204134 | Von Arx et al. | Sep 2005 | A1 |
20050214892 | Kovatchev et al. | Sep 2005 | A1 |
20050245799 | Brauker et al. | Nov 2005 | A1 |
20050251033 | Scarantino et al. | Nov 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20060001538 | Kraft et al. | Jan 2006 | A1 |
20060001551 | Kraft et al. | Jan 2006 | A1 |
20060010098 | Goodnow et al. | Jan 2006 | A1 |
20060015020 | Neale et al. | Jan 2006 | A1 |
20060015024 | Brister et al. | Jan 2006 | A1 |
20060017923 | Ruchti et al. | Jan 2006 | A1 |
20060020300 | Nghiern et al. | Jan 2006 | A1 |
20060031094 | Cohen et al. | Feb 2006 | A1 |
20060079740 | Silver et al. | Apr 2006 | A1 |
20060091006 | Wang et al. | May 2006 | A1 |
20060142651 | Brister et al. | Jun 2006 | A1 |
20060154642 | Scannell | Jul 2006 | A1 |
20060166629 | Reggiardo | Jul 2006 | A1 |
20060173406 | Haves et al. | Aug 2006 | A1 |
20060189863 | Peyser et al. | Aug 2006 | A1 |
20060193375 | Lee et al. | Aug 2006 | A1 |
20060222566 | Brauker et al. | Oct 2006 | A1 |
20060224141 | Rush et al. | Oct 2006 | A1 |
20060226985 | Goodnow et al. | Oct 2006 | A1 |
20060247508 | Fennell | Nov 2006 | A1 |
20060247985 | Liamos et al. | Nov 2006 | A1 |
20060258929 | Goode et al. | Nov 2006 | A1 |
20060272652 | Stocker et al. | Dec 2006 | A1 |
20060290496 | Peeters et al. | Dec 2006 | A1 |
20060293607 | Alt et al. | Dec 2006 | A1 |
20070010950 | Abensour et al. | Jan 2007 | A1 |
20070016381 | Karnath et al. | Jan 2007 | A1 |
20070017983 | Frank et al. | Jan 2007 | A1 |
20070027381 | Stafford | Feb 2007 | A1 |
20070033074 | Nitzan et al. | Feb 2007 | A1 |
20070060869 | Tolle et al. | Mar 2007 | A1 |
20070060979 | Strother et al. | Mar 2007 | A1 |
20070066956 | Finkel | Mar 2007 | A1 |
20070073129 | Shah et al. | Mar 2007 | A1 |
20070078320 | Stafford | Apr 2007 | A1 |
20070078321 | Mazza et al. | Apr 2007 | A1 |
20070078322 | Stafford | Apr 2007 | A1 |
20070078818 | Zvitz et al. | Apr 2007 | A1 |
20070093786 | Goldsmith et al. | Apr 2007 | A1 |
20070149875 | Ouyang et al. | Jun 2007 | A1 |
20070173706 | Neinast et al. | Jul 2007 | A1 |
20070173709 | Petisce et al. | Jul 2007 | A1 |
20070173710 | Petisce et al. | Jul 2007 | A1 |
20070191702 | Yodfat et al. | Aug 2007 | A1 |
20070203407 | Hoss et al. | Aug 2007 | A1 |
20070203539 | Stone et al. | Aug 2007 | A1 |
20070203966 | Brauker et al. | Aug 2007 | A1 |
20070208246 | Brauker et al. | Sep 2007 | A1 |
20070228071 | Kamen et al. | Oct 2007 | A1 |
20070231846 | Cosentino et al. | Oct 2007 | A1 |
20070232878 | Kovatchev et al. | Oct 2007 | A1 |
20070235331 | Simpson et al. | Oct 2007 | A1 |
20070249922 | Peyser et al. | Oct 2007 | A1 |
20070255321 | Gerber et al. | Nov 2007 | A1 |
20070255348 | Holtzclaw | Nov 2007 | A1 |
20080004904 | Tran | Jan 2008 | A1 |
20080009692 | Stafford | Jan 2008 | A1 |
20080033254 | Karnath et al. | Feb 2008 | A1 |
20080039702 | Hayter et al. | Feb 2008 | A1 |
20080045824 | Tapsak et al. | Feb 2008 | A1 |
20080060955 | Goodnow | Mar 2008 | A1 |
20080061961 | John | Mar 2008 | A1 |
20080083617 | Simpson et al. | Apr 2008 | A1 |
20080092638 | Brenneman et al. | Apr 2008 | A1 |
20080114228 | McCluskey et al. | May 2008 | A1 |
20080125636 | Ward et al. | May 2008 | A1 |
20080127052 | Rostoker | May 2008 | A1 |
20080177149 | Weinert et al. | Jul 2008 | A1 |
20080194934 | Ray et al. | Aug 2008 | A1 |
20080194938 | Brister et al. | Aug 2008 | A1 |
20080197024 | Simpson et al. | Aug 2008 | A1 |
20080200788 | Brister et al. | Aug 2008 | A1 |
20080200789 | Brister et al. | Aug 2008 | A1 |
20080200791 | Simpson et al. | Aug 2008 | A1 |
20080201325 | Doniger et al. | Aug 2008 | A1 |
20080208025 | Shults et al. | Aug 2008 | A1 |
20080214918 | Brister et al. | Sep 2008 | A1 |
20080228051 | Shults et al. | Sep 2008 | A1 |
20080228054 | Shults et al. | Sep 2008 | A1 |
20080228055 | Sher | Sep 2008 | A1 |
20080234943 | Ray et al. | Sep 2008 | A1 |
20080242961 | Brister et al. | Oct 2008 | A1 |
20080242963 | Essenpreis et al. | Oct 2008 | A1 |
20080254544 | Modzelewski et al. | Oct 2008 | A1 |
20080262469 | Brister et al. | Oct 2008 | A1 |
20080269714 | Mastrototaro et al. | Oct 2008 | A1 |
20080269723 | Mastrototaro et al. | Oct 2008 | A1 |
20080287764 | Rasdal et al. | Nov 2008 | A1 |
20080296155 | Shults et al. | Dec 2008 | A1 |
20080300572 | Rankers et al. | Dec 2008 | A1 |
20080306434 | Dobbles et al. | Dec 2008 | A1 |
20080306435 | Karnath et al. | Dec 2008 | A1 |
20080306444 | Brister et al. | Dec 2008 | A1 |
20080312859 | Skyggebjerg et al. | Dec 2008 | A1 |
20080319085 | Wright et al. | Dec 2008 | A1 |
20090006061 | Thukral et al. | Jan 2009 | A1 |
20090012377 | Jennewine et al. | Jan 2009 | A1 |
20090018424 | Karnath et al. | Jan 2009 | A1 |
20090030294 | Petisce et al. | Jan 2009 | A1 |
20090036758 | Brauker et al. | Feb 2009 | A1 |
20090036763 | Brauker et al. | Feb 2009 | A1 |
20090040022 | Finkenzeller | Feb 2009 | A1 |
20090043181 | Brauker et al. | Feb 2009 | A1 |
20090048503 | Dalal et al. | Feb 2009 | A1 |
20090054747 | Fennell | Feb 2009 | A1 |
20090062633 | Brauker et al. | Mar 2009 | A1 |
20090076356 | Simpson et al. | Mar 2009 | A1 |
20090076360 | Brister et al. | Mar 2009 | A1 |
20090082693 | Stafford | Mar 2009 | A1 |
20090085873 | Betts et al. | Apr 2009 | A1 |
20090088787 | Koike et al. | Apr 2009 | A1 |
20090093687 | Telfort et al. | Apr 2009 | A1 |
20090099436 | Brister et al. | Apr 2009 | A1 |
20090124879 | Brister et al. | May 2009 | A1 |
20090124964 | Leach et al. | May 2009 | A1 |
20090131768 | Simpson et al. | May 2009 | A1 |
20090131769 | Leach et al. | May 2009 | A1 |
20090131776 | Simpson et al. | May 2009 | A1 |
20090131777 | Simpson et al. | May 2009 | A1 |
20090131860 | Nielsen | May 2009 | A1 |
20090137886 | Shariati et al. | May 2009 | A1 |
20090137887 | Shariati et al. | May 2009 | A1 |
20090143659 | Li et al. | Jun 2009 | A1 |
20090156924 | Shariati et al. | Jun 2009 | A1 |
20090163791 | Brister et al. | Jun 2009 | A1 |
20090178459 | Li et al. | Jul 2009 | A1 |
20090182217 | Li et al. | Jul 2009 | A1 |
20090192366 | Mensinger et al. | Jul 2009 | A1 |
20090192380 | Shariati et al. | Jul 2009 | A1 |
20090192722 | Shariati et al. | Jul 2009 | A1 |
20090192724 | Brauker et al. | Jul 2009 | A1 |
20090192745 | Karnath et al. | Jul 2009 | A1 |
20090192751 | Karnath et al. | Jul 2009 | A1 |
20090216100 | Ebner et al. | Aug 2009 | A1 |
20090216103 | Brister et al. | Aug 2009 | A1 |
20090240120 | Mensinger et al. | Sep 2009 | A1 |
20090240128 | Mensinger et al. | Sep 2009 | A1 |
20090240193 | Mensinger et al. | Sep 2009 | A1 |
20090242399 | Karnath et al. | Oct 2009 | A1 |
20090242425 | Karnath et al. | Oct 2009 | A1 |
20090247855 | Boock et al. | Oct 2009 | A1 |
20090247856 | Boock et al. | Oct 2009 | A1 |
20090298182 | Schulat et al. | Dec 2009 | A1 |
20090299155 | Yang et al. | Dec 2009 | A1 |
20090299156 | Simpson et al. | Dec 2009 | A1 |
20090299162 | Brauker et al. | Dec 2009 | A1 |
20090299276 | Brauker et al. | Dec 2009 | A1 |
20100076283 | Simpson et al. | Mar 2010 | A1 |
20100093786 | Watanabe et al. | Apr 2010 | A1 |
20100096259 | Zhang et al. | Apr 2010 | A1 |
20100105999 | Dixon et al. | Apr 2010 | A1 |
20100113897 | Brenneman et al. | May 2010 | A1 |
20100141656 | Krieftewirth | Jun 2010 | A1 |
20100146300 | Brown | Jun 2010 | A1 |
20100152554 | Steine et al. | Jun 2010 | A1 |
20100160759 | Celentano et al. | Jun 2010 | A1 |
20100168538 | Keenan et al. | Jul 2010 | A1 |
20100168540 | Karnath et al. | Jul 2010 | A1 |
20100168541 | Karnath et al. | Jul 2010 | A1 |
20100168542 | Karnath et al. | Jul 2010 | A1 |
20100168543 | Karnath et al. | Jul 2010 | A1 |
20100168544 | Karnath et al. | Jul 2010 | A1 |
20100168545 | Karnath et al. | Jul 2010 | A1 |
20100168546 | Karnath et al. | Jul 2010 | A1 |
20100168657 | Karnath et al. | Jul 2010 | A1 |
20100174168 | Goode, Jr. et al. | Jul 2010 | A1 |
20100174266 | Estes | Jul 2010 | A1 |
20100179399 | Goode, Jr. et al. | Jul 2010 | A1 |
20100179402 | Goode, Jr. et al. | Jul 2010 | A1 |
20100179405 | Goode, Jr. et al. | Jul 2010 | A1 |
20100179408 | Karnath et al. | Jul 2010 | A1 |
20100179409 | Karnath et al. | Jul 2010 | A1 |
20100185065 | Goode, Jr. et al. | Jul 2010 | A1 |
20100185071 | Simpson et al. | Jul 2010 | A1 |
20100185072 | Goode, Jr. et al. | Jul 2010 | A1 |
20100185073 | Goode, Jr. et al. | Jul 2010 | A1 |
20100185074 | Goode, Jr. et al. | Jul 2010 | A1 |
20100185075 | Brister et al. | Jul 2010 | A1 |
20100185175 | Kamen et al. | Jul 2010 | A1 |
20100198035 | Karnath et al. | Aug 2010 | A1 |
20100198142 | Sloan et al. | Aug 2010 | A1 |
20100213080 | Celentano et al. | Aug 2010 | A1 |
20100217105 | Yodfat et al. | Aug 2010 | A1 |
20100262201 | He et al. | Oct 2010 | A1 |
20100313105 | Nekoomaram et al. | Dec 2010 | A1 |
20100331642 | Bruce et al. | Dec 2010 | A1 |
20110024043 | Boock et al. | Feb 2011 | A1 |
20110024307 | Simpson et al. | Feb 2011 | A1 |
20110027127 | Simpson et al. | Feb 2011 | A1 |
20110027453 | Boock et al. | Feb 2011 | A1 |
20110027458 | Boock et al. | Feb 2011 | A1 |
20110028815 | Simpson et al. | Feb 2011 | A1 |
20110028816 | Simpson et al. | Feb 2011 | A1 |
20110031986 | Bhat et al. | Feb 2011 | A1 |
20110077490 | Simpson et al. | Mar 2011 | A1 |
20110148905 | Simmons et al. | Jun 2011 | A1 |
20110178461 | Chong et al. | Jul 2011 | A1 |
20110208027 | Wagner et al. | Aug 2011 | A1 |
20110257895 | Brauker et al. | Oct 2011 | A1 |
20110287528 | Fern et al. | Nov 2011 | A1 |
20110320130 | Valdes et al. | Dec 2011 | A1 |
20120078071 | Bohm et al. | Mar 2012 | A1 |
20120108934 | Valdes et al. | May 2012 | A1 |
20120165626 | Irina et al. | Jun 2012 | A1 |
20120165640 | Galley et al. | Jun 2012 | A1 |
20130035575 | Mayou et al. | Feb 2013 | A1 |
20130235166 | Jones et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
0098592 | Jan 1984 | EP |
0127958 | Dec 1984 | EP |
0320109 | Jun 1989 | EP |
0390390 | Oct 1990 | EP |
0396788 | Nov 1990 | EP |
WO-0059370 | Oct 2000 | WO |
WO-0152935 | Jul 2001 | WO |
WO-0154753 | Aug 2001 | WO |
WO-0382091 | Oct 2003 | WO |
WO-2008001366 | Jan 2008 | WO |
Entry |
---|
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526. |
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics. vol. 4, No. 1,2002, pp. 25-33. |
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10. |
Brooks, S. L., et al., “Development of an On-line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987, pp. 45-56. |
Cass, A. E.G., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, pp. 667-671. |
Cheyne, E.H., et al., “Performance of a Continuous Glucose Monitoring System During Controlled Hypoglycaemia in Healthy Volunteers”, Diabetes Technology & Therapeutics, vol. 4, No. 5, 2002, pp. 607-613. |
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on “Wired” Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244. |
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5 No. 5, 2003, pp. 769-779. |
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004. |
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652. |
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719. |
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, p. 198. |
Jovanovic, L., “The Role of Continuous Glucose Monitoring in Gestational Diabetes Mellitus”, Diabetes Technology & Therapeutics, vol. 2, Suppl. 1,2000, pp. S67-S71. |
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients With Type 1 Diabetes?”, Diabetologia, vol. 45, 2002, pp. 250. |
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304. |
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549. |
Lodwig, V., et al., “Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria”, Diabetes Technology & Therapeutics, vol. 5, No. 4, 2003, pp. 573-587. |
Lortz, J., et al., “What is Bluetooth? We Explain The Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74. |
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658. |
McGarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages. |
McGarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376. |
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532. |
Morbiducci, U., et al., “Improved usability of the minimal model of insulin sensitivity based on an automated approach and genetic algorithms for parameter estimation”, Clinical Science, vol. 112, 2007, pp. 257-263. |
Mougiakakou, S. G. , et al., “A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients”, Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2005, pp. 298-301. |
Parker, R., et al., “Robust H∞ Glucose Control in Diabetes Using a Physiological Model”, AIChE Journal, vol. 46, No. 12, 2000, pp. 2537-2549. |
Pickup, J. C., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346. |
Pickup, J. C., et al., “In vivo molecular sensing in diabetes mellitus: an implantable glucose sensor with direct electron transfer”, Diabetologia, vol. 32, 1989, pp. 213-217. |
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared t hrough Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272. |
Quinn, C. P., et al., “Kinetics of glucose delivery to subcutaneous tissue in rats measured with 0.3-mm amperometric microsensors”, American Journal of Physiology, vol. 269, No. 1, 1995,E155-E161. |
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Reviews™ in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241. |
Sakakida, M., et al., “Development of ferrocene-mediated needle-type glucose sensor as a measure of true subcutaneous tissue glucose concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158. |
Sakakida, M., et al., “Ferrocene-mediated needle-type glucose sensor covered with newly designed biocompatible m embrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322. |
Salehi, C., et al., “A Telemetry-Instrumentation System for Longterm Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308. |
Schmidtke, D. W., et al., “Measurement and modeling of the transient difference between blood and subcutaneous glucose concentrations in the rat after injection of insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299. |
Shaw, G. W., et al., “In Vitro testing of a s imply constructed, h ighly s table glucose s ensor suitable for i mplantation in diabetic p atients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406. |
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184. |
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20. |
Shichiri, M., et al., “Membrane d esign for extending the long-life of an implantable g lucose sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313. |
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210. |
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301. |
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131. |
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942. |
Sternberg, R., et al., “Study and Development of Multilayer Needle-type Enzyme-based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40. |
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261. |
Turner, A.P.F., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985,pp. 85-115. |
Updike, S. J., et al., “Principles of Long-term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous In vivo Monitoring, Chapter 4, 1997, pp. 117-137. |
Velho, G., et al., “Strategies for calibrating a subcutaneous glucose sensor”, Biomedica Biochimica Acta, vol. 48, 1989,pp. 957-964. |
Wilson, G. S., et al., “Progress toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617. |
Number | Date | Country | |
---|---|---|---|
20200315506 A1 | Oct 2020 | US |
Number | Date | Country | |
---|---|---|---|
61173600 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16228910 | Dec 2018 | US |
Child | 16905276 | US | |
Parent | 15061774 | Mar 2016 | US |
Child | 16228910 | US | |
Parent | 13925694 | Jun 2013 | US |
Child | 15061774 | US | |
Parent | 12769635 | Apr 2010 | US |
Child | 13925694 | US |