Methods and systems for early signal attenuation detection and processing

Information

  • Patent Grant
  • 10820842
  • Patent Number
    10,820,842
  • Date Filed
    Thursday, June 18, 2020
    4 years ago
  • Date Issued
    Tuesday, November 3, 2020
    4 years ago
Abstract
Provided are methods and apparatus for receiving sensor data from an analyte sensor of a sensor monitoring system, processing the received sensor data with time corresponding calibration data, outputting the processed sensor data, detecting one or more adverse conditions associated with the sensor monitoring system, disabling the output of the sensor data during the adverse condition time period, determining that the one or more detected adverse conditions is no longer present in the sensor monitoring system, retrieving the sensor data during the adverse condition time period, processing the retrieved sensor data during the adverse condition time period, and outputting the processed retrieved sensor data.
Description
BACKGROUND

Analyte, e.g., glucose monitoring systems including continuous and discrete monitoring systems generally include a small, lightweight battery powered and microprocessor controlled system which is configured to detect signals proportional to the corresponding measured glucose levels using an electrometer. RF signals may be used to transmit the collected data. One aspect of certain analyte monitoring systems include a transcutaneous or subcutaneous analyte sensor configuration which is, for example, at least partially positioned through the skin layer of a subject whose analyte level is to be monitored. The sensor may use a two or three-electrode (work, reference and counter electrodes) configuration driven by a controlled potential (potentiostat) analog circuit connected through a contact system.


An analyte sensor may be configured so that a portion thereof is placed under the skin of the patient so as to contact analyte of the patient, and another portion or segment of the analyte sensor may be in communication with the transmitter unit. The transmitter unit may be configured to transmit the analyte levels detected by the sensor over a wireless communication link such as an RF (radio frequency) communication link to a receiver/monitor unit. The receiver/monitor unit may perform data analysis, among other functions, on the received analyte levels to generate information pertaining to the monitored analyte levels.


SUMMARY

Devices and methods for analyte monitoring, e.g., glucose monitoring, and/or therapy management system including, for example, medication infusion device are provided. Embodiments include transmitting information from a first location to a second, e.g., using a telemetry system such as RF telemetry. Systems herein include continuous analyte monitoring systems, discrete analyte monitoring system, and therapy management systems.


Embodiments include receiving sensor data from an analyte sensor of a sensor monitoring system, processing the received sensor data with time corresponding calibration data, outputting the processed sensor data, detecting one or more adverse conditions associated with the sensor monitoring system, disabling the output of the sensor data during a adverse condition time period, determining that the one or more detected adverse conditions is no longer present in the sensor monitoring system, retrieving the sensor data during the adverse condition time period, processing the retrieved sensor data during the adverse condition time period, and outputting the processed retrieved sensor data.


Embodiments include detecting a condition unsuitable for calibration of an analyte sensor for a predetermined time period, disabling output of information associated with the analyte sensor, determining a successful calibration of the analyte sensor, retrieving one or more parameters associated with the successful calibration, processing sensor data during the time period of disabled output of information with the one or more parameters associated with the successful calibration, and displaying the processed sensor data for the time period of disabled information output.


Embodiments include an interface configured to receive sensor data, a first memory configured to store the received sensor data, a processor coupled to the memory and configured to process the stored sensor data, a second memory coupled to the processor and configured to store the processed sensor data, and a display unit coupled to the second memory and configured to display the processed sensor data, where the processor is further configured to detect a condition unsuitable for calibration of a sensor for a predetermined time period, disable display of processed sensor data, determine a successful calibration of the sensor, retrieve one or more parameters associated with the successful calibration, process the sensor data during the time period of disabled display of sensor data with the one or more parameters associated with the successful calibration, and display the processed sensor data for the time period of disabled information output.


These and other objects, features and advantages of the present disclosure will become more fully apparent from the following detailed description of the embodiments, the appended claims and the accompanying drawings.


INCORPORATION BY REFERENCE

The following patents, applications and/or publications are incorporated herein by reference for all purposes: U.S. Pat. Nos. 4,545,382; 4,711,245; 5,262,035; 5,262,305; 5,264,104; 5,320,715; 5,509,410; 5,543,326; 5,593,852; 5,601,435; 5,628,890; 5,820,551; 5,822,715; 5,899,855; 5,918,603; 6,071,391; 6,103,033; 6,120,676; 6,121,009; 6,134,461; 6,143,164; 6,144,837; 6,161,095; 6,175,752; 6,270,455; 6,284,478; 6,299,757; 6,338,790; 6,377,894; 6,461,496; 6,503,381; 6,514,460; 6,514,718; 6,540,891; 6,560,471; 6,579,690; 6,591,125; 6,592,745; 6,600,997; 6,605,200; 6,605,201; 6,616,819; 6,618,934; 6,650,471; 6,654,625; 6,676,816; 6,730,200; 6,736,957; 6,746,582; 6,749,740; 6,764,581; 6,773,671; 6,881,551; 6,893,545; 6,932,892; 6,932,894; 6,942,518; 7,167,818; and 7,299,082; U.S. Published Application Nos. 2004/0186365; 2005/0182306; 2007/0056858; 2007/0068807; 2007/0227911; 2007/0233013; 2008/0081977; 2008/0161666; and 2009/0054748; U.S. patent application Ser. Nos. 11/831,866; 11/831,881; 11/831,895; 12/102,839; 12/102,844; 12/102,847; 12/102,855; 12/102,856; 12/152,636; 12/152,648; 12/152,650; 12/152,652; 12/152,657; 12/152,662; 12/152,670; 12/152,673; 12/363,712; 12/131,012; 12/242,823; 12/363,712; 12/393,921; 12/495,709; 12/698,124; 12/699,653; 12/699,844; 12/714,439; 12/761,372; and 12/761,387 and U.S. Provisional Application Nos. 61/230,686 and 61/227,967.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a block diagram of a data monitoring and management system for practicing one or more embodiments of the present disclosure;



FIG. 2 is a block diagram of the transmitter unit of the data monitoring and management system shown in FIG. 1 in accordance with one embodiment of the present disclosure;



FIG. 3 is a block diagram of the receiver/monitor unit of the data monitoring and management system shown in FIG. 1 in accordance with one embodiment of the present disclosure;



FIG. 4 illustrates analyte sensor data processing in accordance with one embodiment of the present disclosure;



FIG. 5 illustrates analyte sensor data processing in accordance with one embodiment of the present disclosure;



FIG. 6 illustrates backfilling gaps in sensor data in one embodiment of the present disclosure; and



FIGS. 7A and 7B illustrate backfill of gaps of a period of uncalibrated sensor data in one embodiment.





DETAILED DESCRIPTION

Before the present disclosure is described in additional detail, it is to be understood that this disclosure is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges is also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, the preferred methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.


It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise.


The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.


As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure.


The figures shown herein are not necessarily drawn to scale, with some components and features being exaggerated for clarity.


As described in further detail below, in accordance with the various embodiments of the present disclosure, there is provided a method and system for positioning a controller unit within a transmission range for close proximity communication, transmitting one or more predefined close proximity commands, and receiving a response packet in response to the transmitted one or more predefined close proximity commands. For example, in one aspect, close proximity communication includes short range wireless communication between communication components or devices, where the communication range is limited to about 10 inches or less, about 5 inches or less, or about 2 inches or less, or other suitable, short range or distance between the devices. The close proximity wireless communication in certain embodiments includes a bi-directional communication where a command sending communication device, when positioned within the short communication range or in close proximity to the command receiving communication device, is configured to transmit one or more commands to the command receiving communication device (for example, when a user activates or actuates a transmit command button or switch). In response, the command receiving communication device may be configured to perform one or more routines associated with the received command, and/or return or send back a response data packet or signal to the command sending communication device. Example of such functions and or commands may include, but not limited to activation of certain functions or routines such as analyte related data processing, and the like.



FIG. 1 illustrates a data monitoring and management system such as, for example, analyte (e.g., glucose) monitoring system 100 in accordance with one embodiment of the present disclosure. The subject invention is further described primarily with respect to a glucose monitoring system for convenience and such description is in no way intended to limit the scope of the invention. It is to be understood that the analyte monitoring system may be configured to monitor a variety of analytes, e.g., lactate, and the like.


Analytes that may be monitored include, for example, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be monitored. More than one analyte may be monitored by a single system, e.g. a single analyte sensor.


The analyte monitoring system 100 includes a sensor unit 101, a data processing and transmitter unit 102 coupleable to the sensor unit 101, and a primary receiver unit 104 which is configured to communicate with the data processing and transmitter unit 102 via a bi-directional communication link 103. The primary receiver unit 104 may be further configured to transmit data to a data processing terminal 105 for evaluating the data received by the primary receiver unit 104. Moreover, the data processing terminal 105 in one embodiment may be configured to receive data directly from the data processing and transmitter unit 102 via a communication link which may optionally be configured for bi-directional communication. Accordingly, data processing and transmitter unit 102 and/or receiver unit 104 may include a transceiver.


Also shown in FIG. 1 is an optional secondary receiver unit 106 which is operatively coupled to the communication link and configured to receive data transmitted from the data processing and transmitter unit 102. Moreover, as shown in the Figure, the secondary receiver unit 106 is configured to communicate with the primary receiver unit 104 as well as the data processing terminal 105. Indeed, the secondary receiver unit 106 may be configured for bi-directional wireless communication with each or one of the primary receiver unit 104 and the data processing terminal 105. As discussed in further detail below, in one embodiment of the present disclosure, the secondary receiver unit 106 may be configured to include a limited number of functions and features as compared with the primary receiver unit 104. As such, the secondary receiver unit 106 may be configured substantially in a smaller compact housing or embodied in a device such as a wrist watch, pager, mobile phone, PDA, for example. Alternatively, the secondary receiver unit 106 may be configured with the same or substantially similar functionality as the primary receiver unit 104. The receiver unit may be configured to be used in conjunction with a docking cradle unit, for example for one or more of the following or other functions: placement by bedside, for re-charging, for data management, for night time monitoring, and/or bi-directional communication device.


In one aspect sensor unit 101 may include two or more sensors, each configured to communicate with data processing and transmitter unit 102. Furthermore, while only one, data processing and transmitter unit 102, communication link 103, and data processing terminal 105 are shown in the embodiment of the analyte monitoring system 100 illustrated in FIG. 1. However, it will be appreciated by one of ordinary skill in the art that the analyte monitoring system 100 may include one or more sensors, multiple transmitter units 102, communication links 103, and data processing terminals 105. Moreover, within the scope of the present disclosure, the analyte monitoring system 100 may be a continuous monitoring system, or semi-continuous, or a discrete monitoring system. In a multi-component environment, each device is configured to be uniquely identified by each of the other devices in the system so that communication conflict is readily resolved between the various components within the analyte monitoring system 100.


In one embodiment of the present disclosure, the sensor unit 101 is physically positioned in or on the body of a user whose analyte level is being monitored. The sensor unit 101 may be configured to continuously sample the analyte level of the user and convert the sampled analyte level into a corresponding data signal for transmission by the data processing and transmitter unit 102. In certain embodiments, the data processing and transmitter unit 102 may be physically coupled to the sensor unit 101 so that both devices are integrated in a single housing and positioned on the user's body. The data processing and transmitter unit 102 may perform data processing such as filtering and encoding on data signals and/or other functions, each of which corresponds to a sampled analyte level of the user, and in any event data processing and transmitter unit 102 transmits analyte information to the primary receiver unit 104 via the communication link 103. Examples of such integrated sensor and transmitter units can be found in, among others, U.S. patent application Ser. No. 12/698,124, incorporated herein by reference.


In one embodiment, the analyte monitoring system 100 is configured as a one-way RF communication path from the data processing and transmitter unit 102 to the primary receiver unit 104. In such embodiment, the data processing and transmitter unit 102 transmits the sampled data signals received from the sensor unit 101 without acknowledgement from the primary receiver unit 104 that the transmitted sampled data signals have been received. For example, the data processing and transmitter unit 102 may be configured to transmit the encoded sampled data signals at a fixed rate (e.g., at one minute intervals) after the completion of the initial power on procedure. Likewise, the primary receiver unit 104 may be configured to detect such transmitted encoded sampled data signals at predetermined time intervals. Alternatively, the analyte monitoring system 100 may be configured with a bi-directional RF (or otherwise) communication between the data processing and transmitter unit 102 and the primary receiver unit 104.


Additionally, in one aspect, the primary receiver unit 104 may include two sections. The first section is an analog interface section that is configured to communicate with the data processing and transmitter unit 102 via the communication link 103. In one embodiment, the analog interface section may include an RF receiver and an antenna for receiving and amplifying the data signals from the data processing and transmitter unit 102, which are thereafter, demodulated with a local oscillator and filtered through a band-pass filter. The second section of the primary receiver unit 104 is a data processing section which is configured to process the data signals received from the data processing and transmitter unit 102 such as by performing data decoding, error detection and correction, data clock generation, and data bit recovery.


In operation, upon completing the power-on procedure, the primary receiver unit 104 is configured to detect the presence of the data processing and transmitter unit 102 within its range based on, for example, the strength of the detected data signals received from the data processing and transmitter unit 102 and/or a predetermined transmitter identification information. Upon successful synchronization with the corresponding data processing and transmitter unit 102, the primary receiver unit 104 is configured to begin receiving from the data processing and transmitter unit 102 data signals corresponding to the user's detected analyte level. More specifically, the primary receiver unit 104 in one embodiment is configured to perform synchronized time hopping with the corresponding synchronized data processing and transmitter unit 102 via the communication link 103 to obtain the user's detected analyte level.


Referring again to FIG. 1, the data processing terminal 105 may include a personal computer, a portable computer such as a laptop or a handheld device (e.g., personal digital assistants (PDAs)), and the like, each of which may be configured for data communication with the receiver via a wired or a wireless connection. Additionally, the data processing terminal 105 may further be connected to a data network (not shown) for storing, retrieving and updating data corresponding to the detected analyte level of the user.


Within the scope of the present disclosure, the data processing terminal 105 may include an infusion device such as an insulin infusion pump (external or implantable) or the like, which may be configured to administer insulin to patients, and which may be configured to communicate with the receiver unit 104 for receiving, among others, the measured analyte level. Alternatively, the receiver unit 104 may be configured to integrate or otherwise couple to an infusion device therein so that the receiver unit 104 is configured to administer insulin therapy to patients, for example, for administering and modifying basal profiles, as well as for determining appropriate boluses for administration based on, among others, the detected analyte levels received from the data processing and transmitter unit 102.


Additionally, the data processing and transmitter unit 102, the primary receiver unit 104 and the data processing terminal 105 may each be configured for bi-directional wireless communication such that each of the data processing and transmitter unit 102, the primary receiver unit 104 and the data processing terminal 105 may be configured to communicate (that is, transmit data to and receive data from) with each other via the wireless communication link 103. More specifically, the data processing terminal 105 may in one embodiment be configured to receive data directly from the data processing and transmitter unit 102 via the communication link 103, where the communication link 103, as described above, may be configured for bi-directional communication.


In this embodiment, the data processing terminal 105 which may include an insulin pump, may be configured to receive the analyte signals from the data processing and transmitter unit 102, and thus, incorporate the functions of the receiver 104 including data processing for managing the patient's insulin therapy and analyte monitoring. In one embodiment, the communication link 103 may include one or more of an RF communication protocol, an infrared communication protocol, a Bluetooth® enabled communication protocol, an 802.11x wireless communication protocol, or an equivalent wireless communication protocol which would allow secure, wireless communication of several units (for example, per HIPPA requirements) while avoiding potential data collision and interference.



FIG. 2 is a block diagram of the transmitter of the data monitoring and detection system shown in FIG. 1 in accordance with one embodiment of the present disclosure. Referring to the Figure, the data processing and transmitter unit 102 in one embodiment includes an analog interface 201 configured to communicate with the sensor unit 101 (FIG. 1), a user input 202, and a temperature measurement section 203, each of which is operatively coupled to a transmitter processor 204 such as a central processing unit (CPU). As can be seen from FIG. 2, there are provided four contacts, three of which are electrodes—work electrode (W) 210, guard contact (G) 211, reference electrode (R) 212, and counter electrode (C) 213, each operatively coupled to the analog interface 201 of the data processing and transmitter unit 102 for connection to the sensor unit 101 (FIG. 1). In one embodiment, each of the work electrode (W) 210, guard contact (G) 211, reference electrode (R) 212, and counter electrode (C) 213 may be made using a conductive material that is either printed or etched or ablated, for example, such as carbon which may be printed, or a metal such as a metal foil (e.g., gold) or the like, which may be etched or ablated or otherwise processed to provide one or more electrodes. Fewer or greater electrodes and/or contact may be provided in certain embodiments.


Further shown in FIG. 2 are a transmitter serial communication section 205 and an RF transmitter 206, each of which is also operatively coupled to the transmitter processor 204. Moreover, a power supply 207 such as a battery is also provided in the data processing and transmitter unit 102 to provide the necessary power for the data processing and transmitter unit 102. In certain embodiments, the power supply 207 also provides the power necessary to power the sensor 101. In other embodiments, the sensor is a self-powered sensor, such as the sensor described in U.S. patent application Ser. No. 12/393,921, incorporated herein by reference. Additionally, as can be seen from the Figure, clock 208 is provided to, among others, supply real time information to the transmitter processor 204.


In one embodiment, a unidirectional input path is established from the sensor unit 101 (FIG. 1) and/or manufacturing and testing equipment to the analog interface 201 of the data processing and transmitter unit 102, while a unidirectional output is established from the output of the RF transmitter 206 of the data processing and transmitter unit 102 for transmission to the primary receiver unit 104. In this manner, a data path is shown in FIG. 2 between the aforementioned unidirectional input and output via a dedicated link 209 from the analog interface 201 to serial communication section 205, thereafter to the processor 204, and then to the RF transmitter 206. As such, in one embodiment, via the data path described above, the data processing and transmitter unit 102 is configured to transmit to the primary receiver unit 104 (FIG. 1), via the communication link 103 (FIG. 1), processed and encoded data signals received from the sensor unit 101 (FIG. 1). Additionally, the unidirectional communication data path between the analog interface 201 and the RF transmitter 206 discussed above allows for the configuration of the data processing and transmitter unit 102 for operation upon completion of the manufacturing process as well as for direct communication for diagnostic and testing purposes.


As discussed above, the transmitter processor 204 is configured to transmit control signals to the various sections of the data processing and transmitter unit 102 during the operation of the data processing and transmitter unit 102. In one embodiment, the transmitter processor 204 also includes a memory (not shown) for storing data such as the identification information for the data processing and transmitter unit 102, as well as the data signals received from the sensor unit 101. The stored information may be retrieved and processed for transmission to the primary receiver unit 104 under the control of the transmitter processor 204. Furthermore, the power supply 207 may include a commercially available battery, which may be a rechargeable battery.


In certain embodiments, the data processing and transmitter unit 102 is also configured such that the power supply section 207 is capable of providing power to the transmitter for a minimum of about three months of continuous operation, e.g., after having been stored for about eighteen months such as stored in a low-power (non-operating) mode. In one embodiment, this may be achieved by the transmitter processor 204 operating in low power modes in the non-operating state, for example, drawing no more than approximately 1 μA of current. Indeed, in one embodiment, a step during the manufacturing process of the data processing and transmitter unit 102 may place the data processing and transmitter unit 102 in the lower power, non-operating state (i.e., post-manufacture sleep mode). In this manner, the shelf life of the data processing and transmitter unit 102 may be significantly improved. Moreover, as shown in FIG. 2, while the power supply unit 207 is shown as coupled to the processor 204, and as such, the processor 204 is configured to provide control of the power supply unit 207, it should be noted that within the scope of the present disclosure, the power supply unit 207 is configured to provide the necessary power to each of the components of the data processing and transmitter unit 102 shown in FIG. 2.


Referring back to FIG. 2, the power supply section 207 of the data processing and transmitter unit 102 in one embodiment may include a rechargeable battery unit that may be recharged by a separate power supply recharging unit (for example, provided in the receiver unit 104) so that the data processing and transmitter unit 102 may be powered for a longer period of usage time. Moreover, in one embodiment, the data processing and transmitter unit 102 may be configured without a battery in the power supply section 207, in which case the data processing and transmitter unit 102 may be configured to receive power from an external power supply source (for example, a battery) as discussed in further detail below.


Referring yet again to FIG. 2, the temperature measurement section 203 of the data processing and transmitter unit 102 is configured to monitor the temperature of the skin near the sensor insertion site. The temperature reading is used to adjust the analyte readings obtained from the analog interface 201. In certain embodiments, the RF transmitter 206 of the transmitter unit 102 may be configured for operation in the frequency band of approximately 315 MHz to approximately 322 MHz, for example, in the United States. In certain embodiments, the RF transmitter 206 of the transmitter unit 102 may be configured for operation in the frequency band of approximately 400 MHz to approximately 470 MHz. Further, in one embodiment, the RF transmitter 206 is configured to modulate the carrier frequency by performing Frequency Shift Keying and Manchester encoding. In one embodiment, the data transmission rate is about 19,200 symbols per second, with a minimum transmission range for communication with the primary receiver unit 104.


Referring yet again to FIG. 2, also shown is a leak detection circuit 214 coupled to the guard electrode (G) 211 and the processor 204 in the transmitter unit 102 of the data monitoring and management system 100. The leak detection circuit 214 in accordance with one embodiment of the present disclosure may be configured to detect leakage current in the sensor unit 101 to determine whether the measured sensor data are corrupt or whether the measured data from the sensor 101 is accurate. Exemplary analyte systems that may be employed are described in, for example, U.S. Pat. Nos. 6,134,461, 6,175,752, 6,121,611, 6,560,471, 6,746,582, and elsewhere, the disclosure of each of which are incorporated by reference for all purposes.



FIG. 3 is a block diagram of the receiver/monitor unit of the data monitoring and management system shown in FIG. 1 in accordance with one embodiment of the present disclosure. Referring to FIG. 3, the primary receiver unit 104 includes an analyte test strip, e.g., blood glucose test strip, interface 301, an RF receiver 302, an input 303, a temperature monitor section 304, and a clock 305, each of which is operatively coupled to a receiver processor 307. As can be further seen from the Figure, the primary receiver unit 104 also includes a power supply 306 operatively coupled to a power conversion and monitoring section 308. Further, the power conversion and monitoring section 308 is also coupled to the receiver processor 307. Moreover, also shown are a receiver serial communication section 309, and an output 310, each operatively coupled to the receiver processor 307.


In one embodiment, the test strip interface 301 includes a glucose level testing portion to receive a manual insertion of a glucose test strip, and thereby determine and display the glucose level of the test strip on the output 310 of the primary receiver unit 104. This manual testing of glucose may be used to calibrate the sensor unit 101 or otherwise. The RF receiver 302 is configured to communicate, via the communication link 103 (FIG. 1) with the RF transmitter 206 of the transmitter unit 102, to receive encoded data signals from the transmitter unit 102 for, among others, signal mixing, demodulation, and other data processing. The input 303 of the primary receiver unit 104 is configured to allow the user to enter information into the primary receiver unit 104 as needed. In one aspect, the input 303 may include one or more keys of a keypad, a touch-sensitive screen, or a voice-activated input command unit. The temperature monitor section 304 is configured to provide temperature information of the primary receiver unit 104 to the receiver processor 307, while the clock 305 provides, among others, real time information to the receiver processor 307.


Each of the various components of the primary receiver unit 104 shown in FIG. 3 is powered by the power supply 306 which, in one embodiment, includes a battery. Furthermore, the power conversion and monitoring section 308 is configured to monitor the power usage by the various components in the primary receiver unit 104 for effective power management and to alert the user, for example, in the event of power usage which renders the primary receiver unit 104 in sub-optimal operating conditions. An example of such sub-optimal operating condition may include, for example, operating the vibration output mode (as discussed below) for a period of time thus substantially draining the power supply 306 while the processor 307 (thus, the primary receiver unit 104) is turned on. Moreover, the power conversion and monitoring section 308 may additionally be configured to include a reverse polarity protection circuit such as a field effect transistor (FET) configured as a battery activated switch.


The serial communication section 309 in the primary receiver unit 104 is configured to provide a bi-directional communication path from the testing and/or manufacturing equipment for, among others, initialization, testing, and configuration of the primary receiver unit 104. Serial communication section 104 can also be used to upload data to a computer, such as time-stamped blood glucose data. The communication link with an external device (not shown) can be made, for example, by cable, infrared (IR) or RF link. The output 310 of the primary receiver unit 104 is configured to provide, among others, a graphical user interface (GUI) such as a liquid crystal display (LCD) for displaying information. Additionally, the output 310 may also include an integrated speaker for outputting audible signals as well as to provide vibration output as commonly found in handheld electronic devices, such as mobile telephones presently available. In a further embodiment, the primary receiver unit 104 also includes an electro-luminescent lamp configured to provide backlighting to the output 310 for output visual display in dark ambient surroundings.


Referring back to FIG. 3, the primary receiver unit 104 in one embodiment may also include a storage section such as a programmable, non-volatile memory device as part of the processor 307, or provided separately in the primary receiver unit 104, operatively coupled to the processor 307. The processor 307 may be configured to synchronize with a transmitter, e.g., using Manchester decoding or the like, as well as error detection and correction upon the encoded data signals received from the transmitter unit 102 via the communication link 103.


Periodic calibration of the sensor unit 101 (FIG. 1) of an analyte monitoring system 100, in some embodiments, may be required for accurate calculation of a user's analyte level. Calibration, in some aspects, is used to ensure the analyte related data signals received at a transmitter unit 102 (and further transmitted to a receiver unit, such as the primary receiver unit 104) are correctly converted to corresponding analyte levels. Exemplary calibration protocols, routines and techniques are described, for example, in U.S. Pat. No. 7,299,082, U.S. patent application Ser. No. 11/537,991 filed Oct. 2, 2006, U.S. patent application Ser. No. 12/363,706 filed Jan. 30, 2009 and in U.S. patent application Ser. No. 12/363,712 filed Jan. 30, 2009, the disclosures of each of which are herein incorporated by reference for all purposes.


There are time periods where the sensor characteristics or the user's physiological condition renders the condition unsuitable for a sensor calibration event. For example, the sensor may be configured for periodic calibration, such as, after 2 hours after insertion, 10 hours after insertion, 12 hours after insertion, 24 hours after insertion, 48 hours after insertion, or 72 hours after insertion, or one or more combinations thereof. If a predetermined calibration event is triggered but a successful calibration does not result, after a certain time period (for example, a predetermined grace period during which to calibrate), the receiver unit may no longer display the monitored and processed glucose information.


Other conditions may also result in rendering the condition unsuitable for sensor calibration including, but not limited to, detection of a failure mode of a sensor, sensor data values being outside a predetermined range, rate of change of sensor data values being above a predetermined threshold, a temperature measurement outside a predetermined range, or any combination thereof.



FIG. 4 illustrates analyte sensor data processing in accordance with one embodiment of the present disclosure. Referring to FIG. 4, a transmitter unit 102 (FIG. 1) in operational contact with a sensor 101 receives analyte related sensor data (410) corresponding to a measured level of a biological fluid of the user. For example, the sensor 101 (FIG. 1) may be an analyte sensor configured to detect and measure the concentration of an analyte in a biological fluid, such as the blood of a user. Upon receipt of the analyte related sensor data, the transmitter unit 102 further transmits the analyte related sensor data to a receiver unit, such as primary receiver unit 104 (FIG. 1). It is to be noted that the reference to analyte related sensor data herein and throughout specification includes, for example, current signal received from the analyte sensor, as well as the current signal which has undergone predetermined data processing routines including, for example, filtering, clipping, digitizing, and/or encoding, and/or any other further processing and/or conditioning. In one aspect, the primary receiver unit 104 determines whether the sensor is calibrated and is in acceptable condition for further data processing (420). When sensor related conditions are unsuitable for calibration, the analyte related sensor data is stored (450) in a memory, for example, in the primary receiver unit 104.


Referring still to FIG. 4, if the sensor data is calibrated and in condition for further data processing, the sensor data is further processed (430) and output for display (440) to a user on a display unit 310 (FIG. 3) of the primary receiver unit 104. In one embodiment, the display of the processed sensor data comprises a graphical representation of the processed sensor data. In other embodiments, the processed sensor data may be displayed as numerical values, visual indicators, auditory outputs, or combinations thereof. In one aspect, the processing routine described in conjunction with FIG. 4 is performed or executed in, for example, the transmitter unit 102, the secondary receiver unit 106 (FIG. 1), or the data processing terminal 105 (FIG. 1) of the analyte monitoring system 100 (FIG. 1) based on analyte data received from the sensor 101.



FIG. 5 illustrates analyte sensor data processing in accordance with one embodiment of the present disclosure. Referring to FIG. 5, in one embodiment, transmitter unit 102 (FIG. 1) receives analyte related sensor data (510) from a sensor 101 (FIG. 1). Upon receipt of the analyte related sensor data, the transmitter unit 102 transmits the analyte related sensor data (or processed, digitized, and/or filtered signals) to the primary receiver unit 104 (FIG. 1). The primary receiver unit 104 is configured to determine if calibration of the sensor data is suitable—that is, whether the conditions necessary for sensor calibration are met (520).


Still referring to FIG. 5, if it is determined that the sensor 101 is not calibrated or calibration condition for calibrating the sensor 101 is not met, in one aspect, the primary receiver unit stores the analyte related sensor data in a memory (550) and temporarily disables display of the sensor data (560) to the user (for example, if a calibration event has not occurred and the calibration grace period has expired). On the other hand, if the sensor 101 is calibrated, the sensor data is processed (530) by the primary receiver unit 104 and the processed sensor data is output to the user (540), for example via a display unit 310 (FIG. 3) of the primary receiver unit 104. In one aspect, the processing routine described in conjunction with FIG. 5 is performed or executed in, for example, the transmitter unit 102, the secondary receiver unit 106, or the data processing terminal 105 of the analyte monitoring system 100 based on analyte data received from the sensor 101 (FIG. 1).


In one aspect, the display or output of processed sensor data may be disabled if a required calibration event is unsuccessful over a permitted time period (for example, including a predetermined grace period measured from the scheduled calibration). Thereafter, upon successful calibration, the system resumes display of the processed and calibrated analyte sensor data. However, there may be a time period or a gap in the output display during which the necessary calibration did not occur in a timely manner. For example, as shown in FIG. 7A, if sensor data is displayed as a graphical display, during time periods where the analyte monitoring system 100 was not properly calibrated, analyte related sensor data was not processed and/or displayed, resulting in a gap in the graphical display.



FIG. 6 illustrates backfilling gaps in sensor data in one embodiment of the present disclosure. Referring to FIG. 6, when a scheduled calibration event fails and the associated grace period for calibration does not occur, the output display of the processed, calibrated sensor data is disabled (610). Referring to FIG. 6, once the system recovers after a successful calibration event, the calibrated sensor data is once again displayed (and stored). Furthermore, in one aspect, based on the parameters associated with the successful calibration, the previously unprocessed data during the display time out period may be retrieved (for example, the previously stored analyte related sensor signals during this period) and processed using calibration data, such as a sensitivity ratio for conversion of analyte related sensor data to analyte levels. For example, in one aspect, the subset of analyte related sensor data that were previously unprocessed or uncalibrated due to unsuccessful contemporaneous calibration may be processed using, for example, calibration data such as the sensitivity ratio determined from the most recent successful calibration event, and thereafter, the gap in output display illustrating the processed and calibrated signals may be filled.


In one aspect, once successful calibration of the sensor data occurs, the calibration parameters from this calibration event may be used to process the sensor data during the period of disabled output or display (620). Upon successful processing of the sensor data during the period of disabled output, the processed sensor data during this time period is backfilled, or the gap in the processed continuous sensor data are filled in the display (630). By way of an example, FIGS. 7A and 7B illustrate the replacement of a period of unprocessed sensor data with corresponding backfilled processed sensor data, in one embodiment.


In one embodiment, the backfilled processed sensor data is displayed immediately upon calculation. In another embodiment, the backfilled processed sensor data is not displayed immediately, but rather, after waiting a predetermined period of time. The backfilled processed sensor data may not be displayed immediately to avoid possible unnecessary or incorrect action by a user in response to the backfilled processed sensor data. In this manner, in one aspect, the user or a healthcare provider may be provided with a continuous set of analyte data from the analyte monitoring system without any gaps in the processed signals for further analysis and/or therapy management.


In this manner, in accordance with the embodiments of the present disclosure, gaps in monitored analyte levels using an analyte monitoring system due to, for example, inability to promptly calibrate the sensor, system malfunction, sensor dislodging, signal errors associated with the sensor, transmitter unit, receiver unit, and the like, or any other variables or parameters that result in the inability of the analyte monitoring system to display or output the real-time monitored analyte level, may be retrospectively filled or reprocessed so that the data gap is closed and the continuously monitored analyte level does not have any or substantially missing data. That is, in embodiments of the present disclosure, upon correction or rectification of the condition or conditions/parameters which resulted in the analyte monitoring system disabling the output results associated with the monitored real time analyte levels, the parameters associated with the correction or rectification may be used to retrospectively correct or process data or signals so that the missing gaps in analyte related data may be processed and backfilled.


In this manner, advantageously, in aspects of the present disclosure, additional robustness may be provided to the user and/or the healthcare provider to improve therapy or health management decisions.


In one embodiment, a method may include receiving sensor data from an analyte sensor of a sensor monitoring system, processing the received sensor data with time corresponding calibration data, outputting the processed sensor data, detecting one or more adverse conditions associated with the sensor monitoring system, disabling the output of the sensor data during an adverse condition time period, determining that the one or more detected adverse conditions is no longer present in the sensor monitoring system, retrieving the sensor data during the adverse condition time period, processing the retrieved sensor data during the adverse condition time period, and outputting the processed retrieved sensor data.


In one aspect, outputting the processed sensor data may include displaying the sensor data in one or more of a graphical, numerical, pictorial, audible, vibratory, or one or more combinations thereof.


The one or more detected adverse conditions may include one or more of a sensor instability condition, a calibration failure condition, or a monitoring system failure condition.


The sensor instability condition may include one or more of an early signal attenuation condition of the sensor, sensor misposition error, sensor communication error, temperature measurement outside a predetermined range, or a combination thereof.


The calibration failure condition may include one or more of an analyte level exceeding a predetermined threshold, a rate of change of analyte level exceeding a predetermined threshold, a signal error associated with the reference data, a data unavailability condition, or a combination thereof.


Furthermore, the method may include storing the processed sensor data with the associated time information based on the analyte level detection time by the sensor.


In another embodiment, a method may include detecting a condition unsuitable for calibration of an analyte sensor for a predetermined time period, disabling output of information associated with the analyte sensor, determining a successful calibration of the analyte sensor, retrieving one or more parameters associated with the successful calibration, processing sensor data during the time period of disabled output of information with the one or more parameters associated with the successful calibration, and displaying the processed sensor data for the time period of disabled information output.


The sensor data may be analyte concentration data.


The analyte concentration data may include blood glucose concentration data.


The sensor data may be processed in substantially real-time.


The condition unsuitable for calibration may include one or more of a failure mode of a sensor, sensor data outside a predetermined acceptable range, a rate of change of sensor data above a predetermined level, a requirement for calibration of a sensor, a temperature measurement outside a predetermined range, or any combination thereof.


The processed sensor data for the time period of disabled information output may be displayed substantially immediately upon processing.


The processed sensor data for the time period of disabled information output may be displayed only after waiting a predetermined period of time.


In another embodiment, an apparatus may include an interface configured to receive sensor data, a first memory configured to store the received sensor data, a processor coupled to the memory and configured to process the stored sensor data, a second memory coupled to the processor and configured to store the processed sensor data, and a display unit coupled to the second memory and configured to display the processed sensor data, wherein the processor is further configured to detect a condition unsuitable for calibration of a sensor for a predetermined time period, disable display of processed sensor data, determine a successful calibration of the sensor, retrieve one or more parameters associated with the successful calibration, process the sensor data during the time period of disabled display of sensor data with the one or more parameters associated with the successful calibration, and display the processed sensor data for the time period of disabled information output.


The sensor may be an analyte sensor.


The analyte sensor may be a glucose sensor.


The sensor data may correspond to analyte concentration data.


The analyte concentration data may include blood glucose concentration data.


Furthermore, the apparatus may be configured to process and display the sensor data substantially in real-time.


In one aspect, the condition unsuitable for calibration may include one or more of a failure mode of a sensor, sensor data outside a predetermined acceptable range, a rate of change of sensor data above a predetermined level, a requirement for calibration of a sensor, a temperature measurement outside a predetermined range, or any combination thereof.


The display unit may be configured to display the processed sensor data for the time period of disabled information output substantially immediately upon processing the sensor data.


The display unit may be configured to display the processed sensor data for the time period of disabled information output only after waiting a predetermined period of time.


Various other modifications and alterations in the structure and method of operation of this invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present disclosure and that structures and methods within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A method of backfilling one or more sensor data gaps in an analyte monitoring system comprising one or more processors and an analyte sensor, the method comprising: detecting, with the one or more processors, a failure mode condition, wherein the failure mode condition causes the one or more sensor data gaps to be outputted to a display of the analyte monitoring system;storing sensor data received from the analyte sensor for at least a portion of a time period associated with the failure mode condition;processing, with the one or more processors, the sensor data for the at least a portion of the time period associated with the failure mode condition; andin response to a correction of the failure mode condition, outputting the processed stored sensor data to the display of the analyte monitoring system such that the one or more sensor data gaps are at least partially filled by the processed stored sensor data.
  • 2. The method of claim 1, wherein the failure mode condition comprises signal errors associated with a transmitter unit of the analyte monitoring system or a receiver unit of the analyte monitoring system.
  • 3. The method of claim 1, wherein the failure mode condition comprises one or more of an inability to calibrate the sensor, a system malfunction, or a sensor dislodgement.
  • 4. The method of claim 1, wherein the failure mode condition comprises one or more of a sensor data value being outside a predetermined sensor data value range, a rate of change of one or more sensor data values being above a predetermined rate-of-change threshold, or a temperature measurement outside a predetermined temperature range.
  • 5. The method of claim 1, further comprising, in response to the correction of the failure mode condition, receiving the processed stored sensor data for the at least a portion of the time period associated with the failure mode condition.
  • 6. The method of claim 1, wherein outputting the processed stored sensor data to the display of the analyte monitoring system occurs immediately after the correction of the failure mode condition.
  • 7. The method of claim 1, further comprising, in response to the correction of the failure mode condition, waiting a predetermined period of time before outputting the processed stored sensor data to the display of the analyte monitoring system.
  • 8. The method of claim 1, wherein processing the sensor data is performed by one or more processors of a transmitter unit of the analyte monitoring system.
  • 9. The method of claim 1, wherein processing the sensor data is performed by one or more processors of a receiver unit of the analyte monitoring system.
  • 10. The method of claim 1, wherein storing the sensor data received from the analyte sensor includes storing time information associated with the failure mode condition.
  • 11. The method of claim 1, further comprising: receiving current sensor data from the analyte sensor;outputting a first graphical representation to the display of the analyte monitoring system, wherein the first graphical representation includes the current sensor data and the one or more sensor data gaps associated with the failure mode condition.
  • 12. The method of claim 11, wherein outputting the processed stored sensor data to the display of the analyte monitoring system comprises outputting a second graphical representation to the display of the analyte monitoring system, wherein the second graphical representation comprises the processed stored sensor data, and wherein the one or more sensor data gaps associated with the failure mode condition are at least partially filled in the second graphical representation.
  • 13. The method of claim 1, wherein the failure mode condition comprises an inability of the analyte monitoring system to display or output the sensor data.
  • 14. An analyte monitoring system comprising: an analyte sensor;one or more processors; anda memory device for storing instructions which, when executed by the one or more processors, causes the one or more processors to: detect a failure mode condition, wherein the failure mode condition causes one or more sensor data gaps to be outputted to a display of the analyte monitoring system,store sensor data received from the analyte sensor for at least a portion of a time period associated with the failure mode condition,process the sensor data for the at least a portion of the time period associated with the failure mode condition, andin response to a correction of the failure mode condition, output the processed stored sensor data to the display of the analyte monitoring system such that the one or more sensor data gaps are at least partially filled by the processed stored sensor data.
  • 15. The system of claim 14, wherein the failure mode condition comprises signal errors associated with a transmitter unit of the analyte monitoring system or a receiver unit of the analyte monitoring system.
  • 16. The system of claim 14, wherein the memory device stores instructions which, when executed by the one or more processors, further causes the one or more processors to wait a predetermined period of time before outputting the processed stored sensor data to the display of the analyte monitoring system.
  • 17. The system of claim 14, wherein the one or more processors comprise one or more processors of a transmitter unit of the analyte monitoring system.
  • 18. The system of claim 14, wherein the one or more processors comprise one or more processors of a receiver unit of the analyte monitoring system.
  • 19. The system of claim 14, wherein the memory device stores instructions which, when executed by the one or more processors, further causes the one or more processors to store time information associated with the failure mode condition.
  • 20. The system of claim 14, further comprising a receiver unit configured to receive current sensor data, wherein the memory device stores instructions which, when executed by one or more processors of the receiver unit, further causes the one or more processors of the receiver unit to output a first graphical representation to the display of the analyte monitoring system,and wherein the first graphical representation comprises the current sensor data and the one or more sensor data gaps associated with the failure mode condition.
  • 21. The system of claim 20, wherein the memory device stores instructions which, when executed by the one or more processors of the receiver unit, further causes the one or more processors of the receiver unit to output a second graphical representation to the display of the analyte monitoring system, wherein the second graphical representation comprises the processed stored sensor data, and wherein the one or more sensor data gaps associated with the failure mode condition are at least partially filled in the second graphical representation.
  • 22. The system of claim 14, wherein the failure mode condition comprises an inability of the analyte monitoring system to display or output the sensor data.
  • 23. A method of backfilling data in an analyte monitoring system comprising one or more processors and an analyte sensor, the method comprising: receiving analyte related sensor data;detecting, with the one or more processors, a failure mode condition, wherein the failure mode condition comprises an inability of the analyte monitoring system to display or output the analyte related sensor data during a time period;outputting to a display of the analyte monitoring system one or more sensor data gaps resulting from the inability of the analyte monitoring system to display the analyte related sensor data during the time period;storing the analyte related sensor data during at least a portion of the time period;processing, with the one or more processors, the analyte related sensor data; andin response to a correction of the failure mode condition, outputting the processed stored analyte related sensor data to the display of the analyte monitoring system such that the one or more sensor data gaps are at least partially filled by the stored analyte related sensor data.
  • 24. The method of claim 23, wherein the failure mode condition further comprises signal errors associated with a transmitter unit of the analyte monitoring system or a receiver unit of the analyte monitoring system.
  • 25. The method of claim 23, wherein the failure mode condition further comprises one or more of an inability to calibrate the sensor, a system malfunction, or a sensor dislodgement.
  • 26. The method of claim 23, further comprising, in response to the correction of the failure mode condition, receiving the processed stored analyte related sensor data for the at least a portion of the time period associated with the failure mode condition.
  • 27. The method of claim 23, wherein processing the analyte related sensor data is performed by one or more processors of a transmitter unit of the analyte monitoring system.
  • 28. The method of claim 23, wherein processing the analyte related sensor data is performed by one or more processors of a receiver unit of the analyte monitoring system.
  • 29. The method of claim 23, wherein storing the analyte related sensor data includes storing time information associated with the failure mode condition.
  • 30. The method of claim 23, further comprising: receiving current analyte related sensor data;outputting a first graphical representation to the display of the analyte monitoring system, wherein the first graphical representation includes the current analyte related sensor data and the one or more sensor data gaps associated with the failure mode condition, andwherein outputting the processed stored analyte related sensor data to the display of the analyte monitoring system comprises outputting a second graphical representation to the display of the analyte monitoring system, wherein the second graphical representation comprises the processed stored analyte related sensor data, and wherein the one or more sensor data gaps associated with the failure mode condition are at least partially filled in the second graphical representation.
RELATED APPLICATIONS

The present application is a continuation of U.S. patent application Ser. No. 16/228,910, filed Dec. 21, 2018, is a continuation of U.S. patent application Ser. No. 15/061,774, filed Mar. 4, 2016, now U.S. Pat. No. 10,198,844, which is a continuation of U.S. patent application Ser. No. 13/925,694, filed Jun. 24, 2013, now U.S. Pat. No. 9,310,230, which is a continuation of U.S. patent application Ser. No. 12/769,635, filed Apr. 28, 2010, now U.S. Pat. No. 8,483,967, which claims the benefit of U.S. Provisional Patent Application No. 61/173,600, filed Apr. 29, 2009, the disclosures of all of which are incorporated herein by reference in their entireties for all purposes.

US Referenced Citations (638)
Number Name Date Kind
3581062 Aston May 1971 A
3926760 Allen et al. Dec 1975 A
3949388 Fuller Apr 1976 A
4036749 Anderson Jul 1977 A
4055175 Clemens et al. Oct 1977 A
4129128 McFarlane Dec 1978 A
4245634 Albisser et al. Jan 1981 A
4327725 Cortese et al. May 1982 A
4344438 Schultz Aug 1982 A
4349728 Phillips et al. Sep 1982 A
4425920 Bourland et al. Jan 1984 A
4441968 Emmer et al. Apr 1984 A
4464170 Clemens et al. Aug 1984 A
4478976 Goertz et al. Oct 1984 A
4494950 Fischell Jan 1985 A
4509531 Ward Apr 1985 A
4527240 Kvitash Jul 1985 A
4538616 Rogoff Sep 1985 A
4619793 Lee Oct 1986 A
4671288 Gough Jun 1987 A
4703756 Gough et al. Nov 1987 A
4731726 Allen, III Mar 1988 A
4749985 Corsberg Jun 1988 A
4757022 Shults et al. Jul 1988 A
4759828 Young et al. Jul 1988 A
4777953 Ash et al. Oct 1988 A
4779618 Mund et al. Oct 1988 A
4847785 Stephens Jul 1989 A
4854322 Ash et al. Aug 1989 A
4890620 Gough Jan 1990 A
4925268 Iyer et al. May 1990 A
4953552 DeMarzo Sep 1990 A
4986271 Wilkins Jan 1991 A
4995402 Smith et al. Feb 1991 A
5000180 Kuypers et al. Mar 1991 A
5002054 Ash et al. Mar 1991 A
5019974 Beckers May 1991 A
5050612 Matsumura Sep 1991 A
5051688 Murase et al. Sep 1991 A
5055171 Peck Oct 1991 A
5082550 Rishpon et al. Jan 1992 A
5106365 Hernandez Apr 1992 A
5122925 Inpyn Jun 1992 A
5135004 Adams et al. Aug 1992 A
5165407 Wilson et al. Nov 1992 A
5202261 Musho et al. Apr 1993 A
5210778 Massart May 1993 A
5228449 Christ et al. Jul 1993 A
5231988 Wernicke et al. Aug 1993 A
5246867 Lakowicz et al. Sep 1993 A
5251126 Kahn et al. Oct 1993 A
5262035 Gregg Nov 1993 A
5262305 Heller et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5264105 Gregg et al. Nov 1993 A
5279294 Anderson et al. Jan 1994 A
5285792 Sjoquist et al. Feb 1994 A
5293877 O'Hara et al. Mar 1994 A
5299571 Mastrototaro Apr 1994 A
5320725 Gregg et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5340722 Wolfbeis et al. Aug 1994 A
5342789 Chick et al. Aug 1994 A
5356786 Heller et al. Oct 1994 A
5360404 Novacek et al. Nov 1994 A
5372427 Padovani et al. Dec 1994 A
5379238 Stark Jan 1995 A
5384547 Lynk et al. Jan 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5394877 Orr et al. Mar 1995 A
5402780 Faasse, Jr. Apr 1995 A
5408999 Singh et al. Apr 1995 A
5410326 Goldstein Apr 1995 A
5411647 Johnson et al. May 1995 A
5431160 Wilkins Jul 1995 A
5431921 Thombre Jul 1995 A
5462645 Albery et al. Oct 1995 A
5472317 Field et al. Dec 1995 A
5489414 Schreiber et al. Feb 1996 A
5497772 Schulman et al. Mar 1996 A
5507288 Bocker et al. Apr 1996 A
5509410 Hill et al. Apr 1996 A
5514718 Lewis et al. May 1996 A
5531878 Vadgama et al. Jul 1996 A
5552997 Massart Sep 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5582184 Erickson et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5593852 Heller et al. Jan 1997 A
5601435 Quv Feb 1997 A
5609575 Larson et al. Mar 1997 A
5628310 Rao et al. May 1997 A
5640954 Pfeiffer et al. Jun 1997 A
5653239 Pompei et al. Aug 1997 A
5665222 Heller et al. Sep 1997 A
5711001 Bussan et al. Jan 1998 A
5711861 Ward et al. Jan 1998 A
5726646 Bane et al. Mar 1998 A
5735285 Albert et al. Apr 1998 A
5748103 Flach et al. May 1998 A
5771891 Gozani Jun 1998 A
5772586 Heinonen et al. Jun 1998 A
5791344 Schulman et al. Aug 1998 A
5807375 Gross et al. Sep 1998 A
5875186 Belanger et al. Feb 1999 A
5899855 Brown May 1999 A
5914026 Blubaugh, Jr. et al. Jun 1999 A
5925021 Castellano et al. Jul 1999 A
5942979 Luppino Aug 1999 A
5951521 Mastrototaro et al. Sep 1999 A
5957854 Besson et al. Sep 1999 A
5961451 Reber et al. Oct 1999 A
5964993 Blubaugh, Jr. et al. Oct 1999 A
5965380 Heller et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5972199 Heller et al. Oct 1999 A
5987353 Khatchatrian et al. Nov 1999 A
5995860 Sun et al. Nov 1999 A
6001067 Shults et al. Dec 1999 A
6004278 Botich et al. Dec 1999 A
6022315 Iliff Feb 2000 A
6024699 Surwit et al. Feb 2000 A
6028413 Brockmann Feb 2000 A
6049727 Crothall Apr 2000 A
6052565 Ishikura et al. Apr 2000 A
6066243 Anderson et al. May 2000 A
6083710 Heller et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6091976 Pfeiffer et al. Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6096364 Bok et al. Aug 2000 A
6103033 Say et al. Aug 2000 A
6117290 Say et al. Sep 2000 A
6119028 Schulman et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6121611 Lindsay et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6129823 Hughes et al. Oct 2000 A
6134461 Say et al. Oct 2000 A
6141573 Kurnik et al. Oct 2000 A
6143164 Heller et al. Nov 2000 A
6159147 Lichter et al. Dec 2000 A
6162611 Heller et al. Dec 2000 A
6175752 Say et al. Jan 2001 B1
6200265 Walsh et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6254586 Mann et al. Jul 2001 B1
6270455 Brown Aug 2001 B1
6275717 Gross et al. Aug 2001 B1
6283761 Joao Sep 2001 B1
6284478 Heller et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309884 Cooper et al. Oct 2001 B1
6314317 Willis Nov 2001 B1
6329161 Heller et al. Dec 2001 B1
6348640 Navot et al. Feb 2002 B1
6359270 Bridson Mar 2002 B1
6359444 Grimes Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6366794 Moussy et al. Apr 2002 B1
6377828 Chaiken et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6440068 Brown et al. Aug 2002 B1
6471689 Joseph et al. Oct 2002 B1
6478736 Mault Nov 2002 B1
6484045 Holker et al. Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6493069 Nagashimada et al. Dec 2002 B1
6498043 Schulman et al. Dec 2002 B1
6514718 Heller et al. Feb 2003 B2
6546268 Ishikawa et al. Apr 2003 B1
6551494 Heller et al. Apr 2003 B1
6554798 Mann et al. Apr 2003 B1
6558321 Burd et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6565509 Say et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6572542 Houben et al. Jun 2003 B1
6574490 Abbink et al. Jun 2003 B2
6576101 Heller et al. Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
6579690 Bonnecaze et al. Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6591125 Buse et al. Jul 2003 B1
6595919 Bemer et al. Jul 2003 B2
6605200 Mao et al. Aug 2003 B1
6605201 Mao et al. Aug 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6610012 Mault Aug 2003 B2
6633772 Ford et al. Oct 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6648821 Lebel et al. Nov 2003 B2
6654625 Say et al. Nov 2003 B1
6658396 Tang et al. Dec 2003 B1
6659948 Lebel et al. Dec 2003 B2
6668196 Villegas et al. Dec 2003 B1
6675030 Ciurczak et al. Jan 2004 B2
6676816 Mao et al. Jan 2004 B2
6687546 Lebel et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6702857 Brauker et al. Mar 2004 B2
6733446 Lebel et al. May 2004 B2
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6743635 Neel et al. Jun 2004 B2
6746582 Heller et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6770030 Schaupp et al. Aug 2004 B1
6789195 Prihoda et al. Sep 2004 B1
6790178 Mault et al. Sep 2004 B1
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6837858 Cunningham et al. Jan 2005 B2
6862465 Shults et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6881551 Heller et al. Apr 2005 B2
6892085 McIvor et al. May 2005 B2
6895265 Silver May 2005 B2
6923763 Kovatchev et al. Aug 2005 B1
6931327 Goode, Jr. et al. Aug 2005 B2
6932894 Mao et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6942518 Liamos et al. Sep 2005 B2
6950708 Bowman, IV et al. Sep 2005 B2
6958705 Lebel et al. Oct 2005 B2
6968294 Gutta et al. Nov 2005 B2
6971274 Olin Dec 2005 B2
6974437 Lebel et al. Dec 2005 B2
6990366 Say et al. Jan 2006 B2
6997907 Safabash et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
6999854 Roth Feb 2006 B2
7003336 Holker et al. Feb 2006 B2
7003340 Say et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7015817 Copley et al. Mar 2006 B2
7016713 Gardner et al. Mar 2006 B2
7024245 Lebel et al. Apr 2006 B2
7025774 Freeman et al. Apr 2006 B2
7027848 Robinson et al. Apr 2006 B2
7027931 Jones et al. Apr 2006 B1
7041068 Freeman et al. May 2006 B2
7041468 Drucker et al. May 2006 B2
7046153 Oja et al. May 2006 B2
7052483 Woicik May 2006 B2
7056302 Douglas Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7092891 Maus et al. Aug 2006 B2
7098803 Mann et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7123950 Mannheimer Oct 2006 B2
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7153265 Vachon Dec 2006 B2
7155290 Von Arx et al. Dec 2006 B2
7171274 Starkweather et al. Jan 2007 B2
7179226 Crothall et al. Feb 2007 B2
7190988 Say et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7198606 Boecker et al. Apr 2007 B2
7207974 Safabash et al. Apr 2007 B2
7226442 Sheppard et al. Jun 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7286894 Grant et al. Oct 2007 B1
7299082 Feldman et al. Nov 2007 B2
7310544 Brister et al. Dec 2007 B2
7324012 Mann et al. Jan 2008 B2
7329239 Safabash et al. Feb 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7379765 Petisce et al. May 2008 B2
7381184 Funderburk et al. Jun 2008 B2
7402153 Steil et al. Jul 2008 B2
7424318 Brister et al. Sep 2008 B2
7429258 Angel et al. Sep 2008 B2
7455663 Bikovsky Nov 2008 B2
7460898 Brister et al. Dec 2008 B2
7462264 Heller et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7499002 Blasko et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7632228 Brauker et al. Dec 2009 B2
7635594 Holmes et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640048 Dobbles et al. Dec 2009 B2
7651596 Petisce et al. Jan 2010 B2
7651845 Doyle, III et al. Jan 2010 B2
7654956 Brister et al. Feb 2010 B2
7657297 Simpson et al. Feb 2010 B2
7697967 Stafford Apr 2010 B2
7699775 Desai et al. Apr 2010 B2
7711402 Shults et al. May 2010 B2
7713574 Brister et al. May 2010 B2
7715893 Karnath et al. May 2010 B2
7727147 Osorio et al. Jun 2010 B1
7731657 Stafford Jun 2010 B2
7736310 Taub Jun 2010 B2
7736344 Moberg et al. Jun 2010 B2
7763042 Iio et al. Jul 2010 B2
7766829 Sloan et al. Aug 2010 B2
7811231 Jin et al. Oct 2010 B2
7813809 Strother et al. Oct 2010 B2
7822454 Alden et al. Oct 2010 B1
7889069 Fifolt et al. Feb 2011 B2
7899545 John Mar 2011 B2
7914460 Melker et al. Mar 2011 B2
7938797 Estes May 2011 B2
7941200 Weinert et al. May 2011 B2
7946985 Mastrototaro et al. May 2011 B2
7972296 Braig et al. Jul 2011 B2
7976466 Ward et al. Jul 2011 B2
7978063 Baldus et al. Jul 2011 B2
8010174 Goode, Jr. et al. Aug 2011 B2
8010256 Oowada Aug 2011 B2
8192394 Estes et al. Jun 2012 B2
8282549 Brauker et al. Oct 2012 B2
8597570 Terashima et al. Dec 2013 B2
20010020124 Tamada Sep 2001 A1
20010037060 Thompson et al. Nov 2001 A1
20010037366 Webb et al. Nov 2001 A1
20010047604 Valiulis Dec 2001 A1
20020019022 Dunn et al. Feb 2002 A1
20020054320 Ogino May 2002 A1
20020095076 Krausman et al. Jul 2002 A1
20020103499 Perez et al. Aug 2002 A1
20020106709 Potts et al. Aug 2002 A1
20020111832 Judge Aug 2002 A1
20020128594 Das et al. Sep 2002 A1
20020133107 Darcey Sep 2002 A1
20020147135 Schnell Oct 2002 A1
20020161288 Shin et al. Oct 2002 A1
20020788748 Blackwell et al. Dec 2002
20030005464 Gropper et al. Jan 2003 A1
20030021729 Moller et al. Jan 2003 A1
20030023461 Quintanilla et al. Jan 2003 A1
20030028089 Galley et al. Feb 2003 A1
20030060692 Ruchti et al. Mar 2003 A1
20030060753 Starkweather et al. Mar 2003 A1
20030114897 Von Arx et al. Jun 2003 A1
20030147515 Kai et al. Aug 2003 A1
20030163351 Brown Aug 2003 A1
20030168338 Gao et al. Sep 2003 A1
20030199790 Boecker et al. Oct 2003 A1
20030208113 Mault et al. Nov 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20040010207 Flaherty et al. Jan 2004 A1
20040015102 Cummings et al. Jan 2004 A1
20040041749 Dixon Mar 2004 A1
20040054263 Moerman et al. Mar 2004 A1
20040060818 Feldman et al. Apr 2004 A1
20040063435 Sakamoto et al. Apr 2004 A1
20040064068 DeNuzzio et al. Apr 2004 A1
20040073266 Haefner et al. Apr 2004 A1
20040078215 Dahlin et al. Apr 2004 A1
20040106858 Say et al. Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040133390 Osorio et al. Jul 2004 A1
20040135684 Steinthal et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040147872 Thompson Jul 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171921 Say et al. Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040204868 Maynard et al. Oct 2004 A1
20040223985 Dunfiled et al. Nov 2004 A1
20040249253 Racchini et al. Dec 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20040254434 Goodnow et al. Dec 2004 A1
20040260478 Schwamm Dec 2004 A1
20040267300 Mace Dec 2004 A1
20050001024 Kusaka et al. Jan 2005 A1
20050003470 Nelson et al. Jan 2005 A1
20050004494 Perez et al. Jan 2005 A1
20050027177 Shin et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050038680 McMahon Feb 2005 A1
20050049179 Davidson et al. Mar 2005 A1
20050070774 Addison et al. Mar 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050096511 Fox et al. May 2005 A1
20050096516 Soykan et al. May 2005 A1
20050113886 Fischell et al. May 2005 A1
20050114068 Chey et al. May 2005 A1
20050116683 Cheng et al. Jun 2005 A1
20050137530 Campbell et al. Jun 2005 A1
20050173245 Feldman et al. Aug 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050184153 Auchinleck Aug 2005 A1
20050187442 Cho et al. Aug 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050204134 Von Arx et al. Sep 2005 A1
20050214892 Kovatchev et al. Sep 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050251033 Scarantino et al. Nov 2005 A1
20050277912 John Dec 2005 A1
20060001538 Kraft et al. Jan 2006 A1
20060001551 Kraft et al. Jan 2006 A1
20060010098 Goodnow et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060017923 Ruchti et al. Jan 2006 A1
20060020300 Nghiern et al. Jan 2006 A1
20060031094 Cohen et al. Feb 2006 A1
20060079740 Silver et al. Apr 2006 A1
20060091006 Wang et al. May 2006 A1
20060142651 Brister et al. Jun 2006 A1
20060154642 Scannell Jul 2006 A1
20060166629 Reggiardo Jul 2006 A1
20060173406 Haves et al. Aug 2006 A1
20060189863 Peyser et al. Aug 2006 A1
20060193375 Lee et al. Aug 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060224141 Rush et al. Oct 2006 A1
20060226985 Goodnow et al. Oct 2006 A1
20060247508 Fennell Nov 2006 A1
20060247985 Liamos et al. Nov 2006 A1
20060258929 Goode et al. Nov 2006 A1
20060272652 Stocker et al. Dec 2006 A1
20060290496 Peeters et al. Dec 2006 A1
20060293607 Alt et al. Dec 2006 A1
20070010950 Abensour et al. Jan 2007 A1
20070016381 Karnath et al. Jan 2007 A1
20070017983 Frank et al. Jan 2007 A1
20070027381 Stafford Feb 2007 A1
20070033074 Nitzan et al. Feb 2007 A1
20070060869 Tolle et al. Mar 2007 A1
20070060979 Strother et al. Mar 2007 A1
20070066956 Finkel Mar 2007 A1
20070073129 Shah et al. Mar 2007 A1
20070078320 Stafford Apr 2007 A1
20070078321 Mazza et al. Apr 2007 A1
20070078322 Stafford Apr 2007 A1
20070078818 Zvitz et al. Apr 2007 A1
20070093786 Goldsmith et al. Apr 2007 A1
20070149875 Ouyang et al. Jun 2007 A1
20070173706 Neinast et al. Jul 2007 A1
20070173709 Petisce et al. Jul 2007 A1
20070173710 Petisce et al. Jul 2007 A1
20070191702 Yodfat et al. Aug 2007 A1
20070203407 Hoss et al. Aug 2007 A1
20070203539 Stone et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070208246 Brauker et al. Sep 2007 A1
20070228071 Kamen et al. Oct 2007 A1
20070231846 Cosentino et al. Oct 2007 A1
20070232878 Kovatchev et al. Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070249922 Peyser et al. Oct 2007 A1
20070255321 Gerber et al. Nov 2007 A1
20070255348 Holtzclaw Nov 2007 A1
20080004904 Tran Jan 2008 A1
20080009692 Stafford Jan 2008 A1
20080033254 Karnath et al. Feb 2008 A1
20080039702 Hayter et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080060955 Goodnow Mar 2008 A1
20080061961 John Mar 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080092638 Brenneman et al. Apr 2008 A1
20080114228 McCluskey et al. May 2008 A1
20080125636 Ward et al. May 2008 A1
20080127052 Rostoker May 2008 A1
20080177149 Weinert et al. Jul 2008 A1
20080194934 Ray et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080201325 Doniger et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080228055 Sher Sep 2008 A1
20080234943 Ray et al. Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080242963 Essenpreis et al. Oct 2008 A1
20080254544 Modzelewski et al. Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080269714 Mastrototaro et al. Oct 2008 A1
20080269723 Mastrototaro et al. Oct 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080300572 Rankers et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306435 Karnath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20080312859 Skyggebjerg et al. Dec 2008 A1
20080319085 Wright et al. Dec 2008 A1
20090006061 Thukral et al. Jan 2009 A1
20090012377 Jennewine et al. Jan 2009 A1
20090018424 Karnath et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090040022 Finkenzeller Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090048503 Dalal et al. Feb 2009 A1
20090054747 Fennell Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090082693 Stafford Mar 2009 A1
20090085873 Betts et al. Apr 2009 A1
20090088787 Koike et al. Apr 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090131768 Simpson et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090131860 Nielsen May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Karnath et al. Jul 2009 A1
20090192751 Karnath et al. Jul 2009 A1
20090216100 Ebner et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Karnath et al. Oct 2009 A1
20090242425 Karnath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090298182 Schulat et al. Dec 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100076283 Simpson et al. Mar 2010 A1
20100093786 Watanabe et al. Apr 2010 A1
20100096259 Zhang et al. Apr 2010 A1
20100105999 Dixon et al. Apr 2010 A1
20100113897 Brenneman et al. May 2010 A1
20100141656 Krieftewirth Jun 2010 A1
20100146300 Brown Jun 2010 A1
20100152554 Steine et al. Jun 2010 A1
20100160759 Celentano et al. Jun 2010 A1
20100168538 Keenan et al. Jul 2010 A1
20100168540 Karnath et al. Jul 2010 A1
20100168541 Karnath et al. Jul 2010 A1
20100168542 Karnath et al. Jul 2010 A1
20100168543 Karnath et al. Jul 2010 A1
20100168544 Karnath et al. Jul 2010 A1
20100168545 Karnath et al. Jul 2010 A1
20100168546 Karnath et al. Jul 2010 A1
20100168657 Karnath et al. Jul 2010 A1
20100174168 Goode, Jr. et al. Jul 2010 A1
20100174266 Estes Jul 2010 A1
20100179399 Goode, Jr. et al. Jul 2010 A1
20100179402 Goode, Jr. et al. Jul 2010 A1
20100179405 Goode, Jr. et al. Jul 2010 A1
20100179408 Karnath et al. Jul 2010 A1
20100179409 Karnath et al. Jul 2010 A1
20100185065 Goode, Jr. et al. Jul 2010 A1
20100185071 Simpson et al. Jul 2010 A1
20100185072 Goode, Jr. et al. Jul 2010 A1
20100185073 Goode, Jr. et al. Jul 2010 A1
20100185074 Goode, Jr. et al. Jul 2010 A1
20100185075 Brister et al. Jul 2010 A1
20100185175 Kamen et al. Jul 2010 A1
20100198035 Karnath et al. Aug 2010 A1
20100198142 Sloan et al. Aug 2010 A1
20100213080 Celentano et al. Aug 2010 A1
20100217105 Yodfat et al. Aug 2010 A1
20100262201 He et al. Oct 2010 A1
20100313105 Nekoomaram et al. Dec 2010 A1
20100331642 Bruce et al. Dec 2010 A1
20110024043 Boock et al. Feb 2011 A1
20110024307 Simpson et al. Feb 2011 A1
20110027127 Simpson et al. Feb 2011 A1
20110027453 Boock et al. Feb 2011 A1
20110027458 Boock et al. Feb 2011 A1
20110028815 Simpson et al. Feb 2011 A1
20110028816 Simpson et al. Feb 2011 A1
20110031986 Bhat et al. Feb 2011 A1
20110077490 Simpson et al. Mar 2011 A1
20110148905 Simmons et al. Jun 2011 A1
20110178461 Chong et al. Jul 2011 A1
20110208027 Wagner et al. Aug 2011 A1
20110257895 Brauker et al. Oct 2011 A1
20110287528 Fern et al. Nov 2011 A1
20110320130 Valdes et al. Dec 2011 A1
20120078071 Bohm et al. Mar 2012 A1
20120108934 Valdes et al. May 2012 A1
20120165626 Irina et al. Jun 2012 A1
20120165640 Galley et al. Jun 2012 A1
20130035575 Mayou et al. Feb 2013 A1
20130235166 Jones et al. Sep 2013 A1
Foreign Referenced Citations (10)
Number Date Country
0098592 Jan 1984 EP
0127958 Dec 1984 EP
0320109 Jun 1989 EP
0390390 Oct 1990 EP
0396788 Nov 1990 EP
WO-0059370 Oct 2000 WO
WO-0152935 Jul 2001 WO
WO-0154753 Aug 2001 WO
WO-0382091 Oct 2003 WO
WO-2008001366 Jan 2008 WO
Non-Patent Literature Citations (48)
Entry
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526.
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics. vol. 4, No. 1,2002, pp. 25-33.
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10.
Brooks, S. L., et al., “Development of an On-line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987, pp. 45-56.
Cass, A. E.G., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, pp. 667-671.
Cheyne, E.H., et al., “Performance of a Continuous Glucose Monitoring System During Controlled Hypoglycaemia in Healthy Volunteers”, Diabetes Technology & Therapeutics, vol. 4, No. 5, 2002, pp. 607-613.
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on “Wired” Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244.
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5 No. 5, 2003, pp. 769-779.
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004.
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652.
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719.
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, p. 198.
Jovanovic, L., “The Role of Continuous Glucose Monitoring in Gestational Diabetes Mellitus”, Diabetes Technology & Therapeutics, vol. 2, Suppl. 1,2000, pp. S67-S71.
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients With Type 1 Diabetes?”, Diabetologia, vol. 45, 2002, pp. 250.
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304.
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549.
Lodwig, V., et al., “Continuous Glucose Monitoring with Glucose Sensors: Calibration and Assessment Criteria”, Diabetes Technology & Therapeutics, vol. 5, No. 4, 2003, pp. 573-587.
Lortz, J., et al., “What is Bluetooth? We Explain The Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74.
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658.
McGarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages.
McGarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376.
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532.
Morbiducci, U., et al., “Improved usability of the minimal model of insulin sensitivity based on an automated approach and genetic algorithms for parameter estimation”, Clinical Science, vol. 112, 2007, pp. 257-263.
Mougiakakou, S. G. , et al., “A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients”, Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2005, pp. 298-301.
Parker, R., et al., “Robust H∞ Glucose Control in Diabetes Using a Physiological Model”, AIChE Journal, vol. 46, No. 12, 2000, pp. 2537-2549.
Pickup, J. C., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346.
Pickup, J. C., et al., “In vivo molecular sensing in diabetes mellitus: an implantable glucose sensor with direct electron transfer”, Diabetologia, vol. 32, 1989, pp. 213-217.
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared t hrough Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272.
Quinn, C. P., et al., “Kinetics of glucose delivery to subcutaneous tissue in rats measured with 0.3-mm amperometric microsensors”, American Journal of Physiology, vol. 269, No. 1, 1995,E155-E161.
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Reviews™ in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241.
Sakakida, M., et al., “Development of ferrocene-mediated needle-type glucose sensor as a measure of true subcutaneous tissue glucose concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158.
Sakakida, M., et al., “Ferrocene-mediated needle-type glucose sensor covered with newly designed biocompatible m embrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322.
Salehi, C., et al., “A Telemetry-Instrumentation System for Longterm Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308.
Schmidtke, D. W., et al., “Measurement and modeling of the transient difference between blood and subcutaneous glucose concentrations in the rat after injection of insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299.
Shaw, G. W., et al., “In Vitro testing of a s imply constructed, h ighly s table glucose s ensor suitable for i mplantation in diabetic p atients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406.
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184.
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20.
Shichiri, M., et al., “Membrane d esign for extending the long-life of an implantable g lucose sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313.
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210.
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301.
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131.
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942.
Sternberg, R., et al., “Study and Development of Multilayer Needle-type Enzyme-based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40.
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261.
Turner, A.P.F., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985,pp. 85-115.
Updike, S. J., et al., “Principles of Long-term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous In vivo Monitoring, Chapter 4, 1997, pp. 117-137.
Velho, G., et al., “Strategies for calibrating a subcutaneous glucose sensor”, Biomedica Biochimica Acta, vol. 48, 1989,pp. 957-964.
Wilson, G. S., et al., “Progress toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617.
Related Publications (1)
Number Date Country
20200315506 A1 Oct 2020 US
Provisional Applications (1)
Number Date Country
61173600 Apr 2009 US
Continuations (4)
Number Date Country
Parent 16228910 Dec 2018 US
Child 16905276 US
Parent 15061774 Mar 2016 US
Child 16228910 US
Parent 13925694 Jun 2013 US
Child 15061774 US
Parent 12769635 Apr 2010 US
Child 13925694 US