Methods and systems for enrolling biometric data

Information

  • Patent Grant
  • 10346699
  • Patent Number
    10,346,699
  • Date Filed
    Friday, February 17, 2017
    8 years ago
  • Date Issued
    Tuesday, July 9, 2019
    6 years ago
Abstract
Methods and systems for enrolling biometric data that is easier to use and provides a more positive end user experience. Additionally, machine readable medium storing instructions configurable to achieve the results when executed by a computing device are also provided.
Description
BACKGROUND OF THE INVENTION

Personal verification systems utilize a variety of systems and methods to protect information and property and to authenticate authorized users. Some protection systems rely on information acquired by biometric sensors relating to the biometric features of a user's body. The use of biometric information for authentication is advantageous, because each biometric feature is unique to the user. Any biometric feature can be used, including facial features, a retinal image, palm print, fingerprint, or signature. Where the biometric feature is a fingerprint, the biometric sensor obtains information representative of the user's fingerprint.


U.S. Pat. No. 7,599,530 issued Oct. 6, 2009 for “Method for Matching Ridge Orientation;” describes methods for processing finger biometric data; U.S. Pat. No. 7,616,787 issued Nov. 10, 2009, for “Methods for Finger Biometric Processing and Associated Finger Biometric Sensors;” describes methods for fingerprint biometric processing that include scoring information for spot properties. Additionally, U.S. Pat. Nos. 6,289,114 and 6,459,804 to Mainguet describe a method for image reconstruction from slices obtained using a thermal slide sensor. In this work, image slices are stitched together to form a fingerprint image. Stitching is based on alignment of consecutive slices using correlation. U.S. Pat. No. 7,197,168 to Russo describes methods and systems for biometric image assembly from multiple partial biometric frame scans. Published U.S. Patent Application US2003/0123714 A1 to O'Gorman et al. discloses another approach for image reconstruction. In O'Gorman, the sequence of images provided by the slide sensor is processed to generate an image of the fingerprint. However, only a subset of the image, which they define as a slice, is used in the reconstruction. This sub-image has the same number of columns as the original image but fewer rows. Correlation is based on a sub-image of the slice, which is referred to as a frame. This sub-image has the same number of columns as the sensor but fewer rows than the slice. A frame in a slice is correlated with similar frames in an adjacent slice to determine the extent of overlap between them.


A common feature of user enrollment processes employed with biometric sensing is that the end user is aware of the enrollment process and must cooperate with it. The enrollment process itself can be a significant impediment to acceptance of biometric technology, because users must first locate and execute the enrollment application, then successfully enroll their fingers before the technology can be used for future authentication. For many users this is too cumbersome.


There is a need, therefore, for methods and systems for enrolling biometric data that are easier to use and provide a more positive user experience.


SUMMARY OF THE INVENTION

Methods and systems for enrolling biometric data that is easier to use and provides a more positive end user experience. Additionally, machine readable medium storing instructions configurable to achieve the results when executed by a computing device are also provided.


An aspect of the disclosure is directed to a tangible machine readable medium storing instructions that, when executed by a computing device, cause the computing device to perform a method of compiling a record. The methods comprising: obtaining a first fingerprint view at a first time without prompting a user to position a finger for sensing; creating a single record containing the obtained fingerprint view; and determining whether the record of the obtained fingerprint view reaches a target threshold value. Additionally, one or more subsequent fingerprint views can be obtained at one or more subsequent times without prompting a user and then added to the record that is initially created. In some instances, one or more subsequent fingerprint views at one or more subsequent times are added to the record after the step of determining whether the record of the obtained fingerprint view reaches a threshold value when the threshold value is not achieved. Thereafter, a fingerprint enrollment interface can be presented to a user after the step of determining whether the record of the obtained fingerprint view reaches a threshold value when the threshold value is achieved. In some instances, the fingerprint enrollment interface is presented to the user automatically, while in other instances, the fingerprint enrollment interface is presented and semi-automatically. In still other aspects, the one or more subsequent fingerprint views can be added to the record when all or a portion of the subsequent fingerprint view is not duplicative of the first fingerprint view or another view in the record. Additionally one or more subsequent fingerprint views can be deleted, either before or after adding to a record, when the subsequent fingerprint view is duplicative of the fingerprint views in the record. In some cases, the target threshold value is determined by at least one of a user, an administrator and a network provider. Thus, for example, in cases where a user requires a high degree of authenticity, the threshold value can be set high. Additionally, the process of compiling a record is concludable when one or more process is completed: (1) a target amount of an area of a finger is collected, (2) a threshold number of views are collected; (3) a threshold amount of time has passed; and (4) consistent fingerprint information is no longer sensed.


Another aspect of the disclosure is directed to a method of fingerprint enrollment comprising: obtaining a first fingerprint view at a first time without prompting a user to position a finger for sensing; creating a single record containing the obtained fingerprint view; and determining whether the record of the obtained fingerprint view reaches a target threshold value. Additionally, one or more subsequent fingerprint views can be obtained at one or more subsequent times without prompting a user and then added to the record that is initially created. In some instances, one or more subsequent fingerprint views at one or more subsequent times are added to the record after the step of determining whether the record of the obtained fingerprint view reaches a threshold value when the threshold value is not achieved. Thereafter, a fingerprint enrollment interface can be presented to a user after the step of determining whether the record of the obtained fingerprint view reaches a threshold value when the threshold value is achieved. In some instances, the fingerprint enrollment interface is presented to the user automatically, while in other instances, the fingerprint enrollment interface is presented and semi-automatically. In still other aspects, the one or more subsequent fingerprint views can be added to the record when all or a portion of the subsequent fingerprint view is not duplicative of the first fingerprint view or another view in the record. Additionally one or more subsequent fingerprint views can be deleted, either before or after adding to a record, when the subsequent fingerprint view is duplicative of the fingerprint views in the record. In some cases, the target threshold value is determined by at least one of a user, an administrator and a network provider. Thus, for example, in cases where a user requires a high degree of authenticity, the threshold value can be set high. Additionally, the process of compiling a record is concludable when one or more process is completed: (1) a target amount of an area of a finger is collected, (2) a threshold number of views are collected; (3) a threshold amount of time has passed; and (4) consistent fingerprint information is no longer sensed.


Still another aspect of the disclosure is directed to methods of authenticating a user. The methods comprise: obtaining a fingerprint input for authentication; comparing the fingerprint input for authentication to a template wherein the template is a single record having one or more fingerprint views obtained from a user during an enrollment process without prompting the user to position a finger for sensing to determine whether the fingerprint input achieves a threshold match of the template; if the comparison reaches the threshold match, affirming the authenticity of the fingerprint input, if the comparison does not reach a threshold match, disallowing the authenticity of the fingerprint input. Additionally, affirming the authenticity of the fingerprint input enables one or more of user authentication for a device, user authentication for an online transaction, user authentication for access to systems and services, user ability to replace a password or a PIN, physical access to a secured location, determination of time attendance, navigation of an electronic device touch screen, and non-repudiation for online transactions.


Yet another aspect of the disclosure is directed to a tangible machine readable medium storing instructions that, when executed by a computing device, cause the computing device to authenticate a user. This process comprises: obtaining a fingerprint input for authentication; comparing the fingerprint input for authentication to a template wherein the template is a single record having one or more fingerprint views obtained from a user during an enrollment process without prompting the user to position a finger for sensing to determine whether the fingerprint input achieves a threshold match of the template; if the comparison reaches the threshold match, affirming the authenticity of the fingerprint input, if the comparison does not reach a threshold match, disallowing the authenticity of the fingerprint input. Additionally, affirming the authenticity of the fingerprint input enables one or more of user authentication for a device, user authentication for an online transaction, user authentication for access to systems and services, user ability to replace a password or a PIN, physical access to a secured location, determination of time attendance, navigation of an electronic device touch screen, and non-repudiation for online transactions.


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.


Additional references of interest include, for example, U.S. Pat. No. 7,099,496 issued Aug. 29, 2006, to Benkley, for “Swiped Aperture Capacitive Fingerprint Sensing Systems and Methods;” U.S. Pat. No. 7,463,756 issued Dec. 9, 2008, to Benkley for “Finger Position Sensing Methods and Apparatus;” U.S. Pat. No. 7,751,601 issued Jul. 6, 2010, to Benkley for “Finger Sensing Assemblies and Methods of Making;” U.S. Pat. No. 7,460,697 issued Dec. 2, 2008 to Erhart for “Electronic Fingerprint Sensor with Differential Noise Cancellation;” U.S. Pat. No. 7,953,258 issued May 31, 2011, to Dean et al. for “Fingerprint Sensing Circuit Having Programmable Sensing Patterns;” and U.S. Pat. No. 6,941,001 issued Sep. 6, 2005, to Bolle for Combined Fingerprint Acquisition and Control Device.”





BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:



FIGS. 1A-D are top views of an electronic devices having a display;



FIG. 2 illustrates a sensing device configured for use with a display device;



FIGS. 3A-F illustrate an examples of portions of a fingerprint captured at various times and compiled into a complete fingerprint suitable for enrollment;



FIG. 4 illustrates a fingerprint with portions of the fingerprint captured at various times during an enrollment process; and



FIG. 5 illustrates in block diagram form an example of an enrollment process according to aspects of embodiments of the disclosed subject matter.





DETAILED DESCRIPTION OF THE INVENTION
I. Devices

A variety of electronic displays are used with electronic devices. Displays can operate using either emissive (pixels generate light), transmissive (light transmitted through pixels) and reflective (ambient light reflected) approaches. Display types may include, for example, liquid crystal displays (LCDs) which use liquid crystal cells that change transmission, or reflection in an applied electric field, organic light emitting diode (OLED) devices which utilize a light emitting diode (LED) in which an emissive electroluminescent film of organic compounds emits light in response to an electric current, and different types of electrophoretic displays in which pigmented particles are moved in response to an electric field (e.g. Gyricon, E-ink, etc.). Gyricon is a type of electronic paper developed at Xerox PARC and is a thin layer of transparent plastic in which millions of small beads are randomly disposed. The beads, somewhat line toner particles, are each contained an oil-filled cavity and are free to rotate within those cavities. The beads are bichromal with hemispheres of two contrasting colors and charged such that they exhibit an electrical dipole. When voltage is applied to the surface of the sheet, the beeds rotate to present one of the two colors to the viewer. Thus voltages can be applied to create images such as text and pictures. E-ink is another type of electronic paper manufactured by E Ink Corporation which was acquired by Prime View International.


The LCD panel typically consists of two sheets of glass separated by a sealed-in liquid crystal material. Both sheets have a thin transparent coating of conducting material, with the viewing side etched into segments with leads going to the edge of the display. Voltages applied between the front and back coatings disrupt the orderly arrangement of the molecules sufficiently to darken the liquid and form visible patterns.


Additionally, displays have been developed that can detect the presence and location of touch, e.g., by a finger, or passive object such as a stylus or digital pen, are commonly referred to as a touch screens. Touch screens have become a component of many computer and electronic devices. Many LCD displays are manufactured to include touch screen functionality. Touch screens can be attached or incorporated into to computers, networks, mobile telephones, video games, personal digital assistants (PDA), tablets, or any digital device. A variety of technologies are currently used to produce a device with touch screen capabilities. Technologies that enable touch screen functionality include: resistive touch screen panels; surface acoustic wave technology; capacitive sensing panels (e.g., using surface capacitance technology or projective capacitive touch technology, which uses either mutual capacitive sensors or self-capacitive sensors); infrared; optical imaging; dispersive signal technology; and acoustic pulse recognition. Touch screen functionality can be combined with a display in a device in many configurations. The touch screen sensing circuits can be incorporated directly in or on the layers of the display (using, for example, “in-cell” or “on-cell” approaches), built on a separate substrate which is laminated onto the display (e.g., using an “out-cell” approach), or laminated on a cover lens which protects the display in the device, or the sensing circuits can be incorporated directly on the back-side of this cover lens (“Touch-on-Lens”).


As will be appreciated by those skilled in the art, electronic devices can be configured to include a variety of components and features including: a display, a touch screen, a scratch-resistant cover (e.g., lens), storage, a system on a chip, a CPU core, a GPU core, memory, Wi-Fi connectivity (e.g., 902.11 b.g), Bluetooth, connectivity (e.g., USB connector), camera, audio, battery (e.g., built-in, rechargeable lithium-ion polymer battery), power connector, computer readable media, software, etc.


For purposes of illustrating the biometric enrollment process of the disclosure, a touch screen display currently employed by, for example, a smart phone is described. Such a touch screen typically comprises a 9 cm (3.5 in) liquid crystal display (LCD) with a scratch-resistant glass layer. The capacitive touch screen of the LCD is typically optimized for a bare finger, or multiple finger multi-touch, sensing. However, as will be appreciated by those skilled in the art, a variety displays as well as a variety of touch screen configurations and touch screen operated devices can be used without departing from the scope of the disclosure.


An LCD touch screen typically is an assembly that includes an LCD, a printed circuit board (PCB) on which input-output (I/O) connections and integrated circuits (ICs) performing various functions are mounted, a transparent touch screen circuit pattern on a transparent substrate, and a protective shield or coating applied on top of the touch screen circuitry. The touch screen circuitry is connected along with the LCD display to the PCB. The touch screen circuitry is typically incorporated into the assembly using one of two methods. In a first method, the touch screen circuitry is incorporated directly into or onto the LCD, then a protective shield or coating (e.g. cover lens) is located above the LCD/Touch screen combination. In a second method, the touch screen circuitry is applied onto the protective coating or shield (e.g. cover lens) and then the resulting structure is mounted above the LCD, with the touch screen circuitry mounted between the protective coating or shield and the LCD. In all cased the PCB is located below the LCD, out of view.


Biometric sensors can include, for example, a fingerprint sensor, a velocity sensor, and an integrated circuit which is electrically connected to the fingerprint sensor and the velocity sensor. Conductive traces of an image sensor and velocity sensor can be etched or otherwise formed on an upper side of a substrate. A protective coating can be applied to the upper surface of the substrate, over the image sensor and velocity sensor to provide electrical isolation and mechanical protection of the sensors. Alternatively, conductive traces of an image sensor can be formed on a bottom-side of a substrate, wherein the substrate can act as a protective coating and can be further improved with a hard coating applied to the upper surface. Further details about fingerprint sensor configurations are contained in, for example, U.S. Pat. No. 7,751,601 to Benkley III for “Fingerprint Sensing Assemblies and Methods of Making”; U.S. Pat. No. 7,099,496 to Benkley III for “Swiped Aperture Capacitive Fingerprint Sensing Systems and Methods;” U.S. Pat. No. 7,463,756 to Benkley III for “Finger Position Sensing Methods and Apparatus;” U.S. Pat. No. 7,460,697 to Erhart et al. for “Electronic Fingerprint Sensor with Differential Noise Cancellation;” U.S. Pat. No. 7,146,024 to Benkley III for “Swiped Aperture Capacitive Fingerprint Sensing Systems and Methods;” U.S. Pat. No. 6,400,836 to Senior for “Combined Fingerprint Acquisition and Control Device;” and U.S. Pat. No. 6,941,001 to Bolle for “Combined Fingerprint Acquisition and Control Device.”


In some configurations, the sensing device could, in fact, be large enough to provide a usable fingerprint (e.g. having at least about a 6 mm×6 mm sensing area). In some cases, the image captured might be a small portion of the usable fingerprint. In other cases, a larger image will be captured. The goal of this enrollment procedure is to simply collect an enrollment without the user's knowledge or effort.


In the systems disclosed herein, a fingerprint sensor is integrated with a display and is positioned on or adjacent the uppermost surface such that the fingerprint sensor is within about 250 microns of a finger when the finger comes in contact with the uppermost surface of the system. In at least some configurations, the system can be configured such that the finger sensor is within about 100 microns of a finger, or more preferably within 50 microns of a finger, when the finger comes in contact with the uppermost surface of the system. In some configurations, a single chip can be provided that controls one or more of the display, touch screen and the fingerprint sensing functions. Additionally, the fingerprint sensor can be incorporated in such a way that the surface of the device presented to a user is smooth or substantially smooth. Displays and systems can be configured such that they are integrally formed such that they act in a unified manner or such that the completed display or system is comprised of a single component.


For purposes of illustration, FIG. 1A is provided which is an electronic device 100 from a top or upper surface view. The device is any suitable electronic device, such as a smart phone, having a device or display interface 120 which a user engages with their finger. Depending upon the nature of the device and display used, the interface 120 can further be comprised of a plurality of parts, as discussed in further detail below. As will be appreciated by those skilled in the art, other the methods and systems disclosed can be incorporated in a wide variety of device form factors without departing from the scope of the disclosure.


The device itself has a top surface 102 and a bottom surface 104. Moreover, each component of the device has an upper surface (i.e. a surface that faces the top surface of the device) and a lower surface (i.e. a surface that faces the bottom surface of the device) as will be appreciated from the cross-sectional views. The housing 110 of the electronic device 100 can be configured to form a bezel or rim 112 which secures the interface 120 within the housing 110 of the device 100. A mask 124, such as an ink mask, can be provided which frames at least part of the interface 120. The mask 124 is typically positioned such that it obscures device electronics located within the housing under a portion of the interface 120. For a touch screen enabled interface, a portion of the interface 120 that is not covered by mask 124 has a plurality of touch screen sensors 134. The plurality of touch screen sensors 134 can be any suitable conductor, including a transparent conductor, for example, from a layer of patterned indium tin oxide (ITO), carbon nanotubes, metal nanowires, conductive polymers or fine metal lines (e.g., copper lines). Additionally, a fingerprint sensor 140 adjacent at least one wall of the electronic device 100 and can (as illustrated here), but need not, be positioned in a location where the mask 124 is also present. In another configuration, an aperture can be provided in the mask corresponding to all or part of a location where the fingerprint is sensed. The fingerprint sensor 140 can include a swiping or placement area 146 where, for example, a user would swipe their fingerprint or place their finger which is then read by the fingerprint sensor 140.


As shown in FIG. 1A the fingerprint sensor 140 is positionable such that it overlays a portion of the touch screen sensor 134. In some configurations, the sensors of the fingerprint sensor 140 and the touch screen sensor 134 are integrally formed such that the sensors are formed as one piece or are formed such that the sensors act in a unified manner with portions of the sensor adapted to function as a touch screen sensor and a subset adapted to function as a fingerprint sensor or a fingerprint sensor and a touch screen sensor. In other configurations, the fingerprint sensor 140 is integrated into, for example, an on/off button, or is positioned underneath a commonly used operational icon.



FIG. 1B illustrates an electronic device 100 having a housing 110 and a mask 124. One or more icons 123 are provided which enable a user to activate specific functionality (e.g., make a phone call, take a picture, access the internet, etc.). In one embodiment, the fingerprint sensor 140 is positionable such that it is underneath all or a part of an icon 123. FIG. 1c illustrates a finger 10 engaging the device 100 at an icon 123 and a fingerprint sensor 140 associated with a sensing area 146. FIG. 1D illustrates a finger 10 engaging an on/off button 125 of a device 100 having a fingerprint sensor 140 associated therewith.



FIG. 2 illustrates a diagrammatic view of a sensing device 200 configured for use with a display device. The device 200 includes a linear array 212, and also includes a sensor element 202. The device further includes sensor control logic 252 configured to control the basic operations of the sensor element. The exact operations of the sensor element governed by the sensor logic control depends on a particular sensor configuration employed, which may include power control, reset control of the pixels or data contact points, output signal control, cooling control in the case of some optical sensors, and other basic controls of a sensor element. Sensor controls are well known by those skilled in the art, and, again, depend on the particular operation.


Sensing device 200 further includes a readout circuit 254 for reading analog output signals from sensor element 202 when it is subject to a fingerprint juxtaposed on a sensor surface 207. Readout circuit 254 includes an amplifier 256 configured to amplify the analog signal so that it can more accurately be read in subsequent operations. A low pass filter 258 is configured to filter out any noise from the analog signal so that the analog signal can be more efficiently processed. Readout circuit 254 further includes an analog-to-digital (A/D) converter 260 that is configured to convert the output signal from sensor element 202 to a digital signal that indicates a series of logic 0's and 1's that define the sensing of the fingerprint features by the pixels or data contact points of sensor surface 207. Such signals may be separately received by the motion sensors and the fingerprint sensing surfaces, and may be read out and processed separately.


Readout circuit 254 may store the output signal in a storage 262, where fingerprint data 264 is stored and preserved, either temporarily until a processor 266 can process the signal, or for later use by the processor. Processor 266 includes an arithmetic unit 268 configured to process algorithms used for navigation of a cursor, and for reconstruction of fingerprint images if necessary. Processing logic 270 is configured to process information and includes analog to digital converters, amplifiers, signal filters, logic gates (all not shown) and other logic utilized by a processor. A persistent memory 274 is used to store algorithms 276 and software applications 278 that are used by processor 266 for the various functions described above, and in more detail below. A system bus 280 is a data bus configured to enable communication among the various components contained in sensing device 200. As will be appreciated by those skilled in the art, memory and storage can be any suitable computer readable media.


The system further includes a controller communicating with the fingerprint sensor lines to capture a fingerprint image when, for example, a user's finger is swiped across the fingerprint sensor lines or when a finger placement is sensed by the sensor. Thus, the system is configurable to detect the presence of a finger or a fingerprint in one dimension (1D) and/or two dimensions (2D). In one system, there may be separate controllers for both the display and the fingerprint sensor, where the system is configured to include a display controller configured to control the visible display separate from the fingerprint sensor operations. Alternatively, a single controller may be used to control, for example, the visible display and the fingerprint sensor operations. The fingerprint sensor could also be patterned onto the top glass of the display itself, and not onto a touch-screen layer.


II. Fingerprint Enrollment Process

The systems and methods provided collect biometric data from a biometric sensor, such as a fingerprint sensor, and facilitates enrollment of a user in a way that that is easier for the end user to engage and provides a more positive user experience. Currently, a user is typically directed to, for example, swipe one or more fingers on the fingerprint sensor several times in order to enroll a baseline print or prints against which other attempts to access the device will be compared. If the user does not present the fingerprint in a manner that allows sufficient information to be extracted to facilitate the matching process, the user will be directed to attempt to enroll using the fingerprint sensor again. This process is repeated until the user successfully provides the fingerprint sensor with information that can be processed to create an enrollment. However, users can and often are frustrated by this process and may abandon the fingerprint enrollment process altogether, thereby losing the benefit of the added security the fingerprint sensor provides. In some cases, the mere need to locate and run an enrollment application may be too cumbersome a hurdle for users to overcome.


The methods and systems described herein do not require an end user to formally go through an enrollment process. Instead, as long as the biometric sensor is touched by a finger during normal operation of the device (e.g. mobile phone, tablet, laptop PC, etc.), the sensed data can be collected, evaluated and analyzed unbeknownst to the user. This collection, evaluation and analysis process is transparent to the user's interface with the device.


Additionally, the collected data, or a subset thereof, can be used to create an enrollment template without the user's knowledge, after which the user will be enrolled without having to go through any additional process or effort. The enrollment process can be automatic or semi-automatic. In one scenario, once the device collects, compiles, and analyzes enough data to identify a fingerprint profile, the next time the device senses that fingerprint on the device a pop-up screen can appear that allows the user to identify his or herself as, for example, a primary or secondary user of the device. The pop-up screen can, for example, appear pre-populated with the user information associated with the device and simply ask the user to confirm that they would like this fingerprint associated with the pre-populated user information. As will be appreciated by those skilled in the art, there is a minimum of features (i.e., minutiae points), that are extracted from the images before the image is processed. This can be dependent on the matcher used. However, less than 5 could be considered an insufficient amount of data upon which to base a match. The amount of an entire fingerprint that is compiled, can be based on a sliding scale. The more the fingerprint image obtained, the smaller the chance of a false reject occurring during authentication. Thus the goal of an enrollment algorithm is to capture as much of the fingerprint as reasonably possible within the time and system constraints. Once an initial enrollment has been completed additional information can be added using other techniques.


In one configuration, as shown in FIGS. 3A-F the sensor captures a biometric data view which can be a portion of the biometric data from the user at different times during one or more user interactions with the device. The portions or views of the biometric data that are captured at one or more user settings, are compiled into a single record containing multiple fingerprint views using all or a subset of the total number of views 12, 13, 14, 15, 16 collected. In one embodiment, these views are maintained separately without any attempt to construct a fuller image. In an alternative embodiment, the views are stitched together into a fuller image. The multiple views are collected into a single record containing multiple views which together comprise a fingerprint 50 from finger 10, or can be stitched together into a fingerprint. In another illustration shown in FIG. 4, the independent pieces or views of biometric data 21, 22, 23, 24, 25, 26, 27, 28, 29 are compiled into a single record. The independent views together comprise a fingerprint 50 from finger 10.


During the authentication process, the multiple views are matched one-by-one with the information derived from the image to be authenticated. A matcher could be configured to use the multiple views to increase or decrease its estimate of the likelihood of a match. In other embodiments the matcher could treat each view as an independent entity and score the likelihood of each view independently. Then the independent scores could be combined into a single match probability.


From a user experience perspective, the systems and methods allow a biometric system, e.g. a system executed on a mobile phone or other computing platform, to perform data collection and enrollment while the user operates the phone or computing device in a normal fashion.


As an example, a fingerprint sensor can be mounted on, incorporated in, and/or integratable with the on/off “button” of a touch screen device (such as an iPad or iPhone, similar to the interface shown and described with FIG. 1D). As will be appreciated by those skilled in the art, devices can have a wide variety of form factors where, for example, an On/Off button is a separate component or is a section of, for example, a touch screen. Thus, description by way of a “button” in no way limits the operation to a physical button, but rather refers to the portion of the form factor that functions as an On/Off button enabling an end user to turn the device on or off. For this scenario, every time the end user interacts with the device to switch the device on or off, the user touches a portion of the device that functions as the on/off button which, in this scenario, results in the end user also engaging the fingerprint sensor. As a result, during those times that the end user turns the device on or off, the system can collect biometric data samples from the user and, after enough samples are collected, complete an enrollment for later use with biometric verification.


In this way, the user will be enrolled during one or more interactions without prompting, or doing any special work. While this process can be implemented with a swipe sensor (especially where such a sensor is also used for navigation), persons of skill in the art will appreciate that the system can also be used a two-dimensional (2D) placement sensor mounted on a button or other part of the device that will be touched during normal use of the phone (e.g. on/off button, home button, touch screen, etc.).


In another configuration, where the fingerprint sensor is incorporated into, for example, at least a portion of a touch screen, as shown in FIG. 1C, or the perimeter of the touch screen (e.g., under the ink mask and an area that does not normally enable a user to control operation of the device) a user's placement of their finger on or movement of their finger across the area, in the process of normal use of the device, such that the user's finger engages the touch screen and the fingerprint sensor below, can also be use sufficient to enable the sensor to collect fingerprint information necessary to begin building a user enrollment profile.


Where more than one person handles the device (e.g., turns the device on and off, holds the device, navigates the operation of the device), the system is configurable to analyze the various inputs to determine whether the fingerprints are the same or different, and the frequency of the appearance of a particular fingerprint. The device and system can then weigh the sensed fingerprint image and assess whether a particular fingerprint belongs to a primary user vs. someone who has just handled the device briefly (e.g., where the owner of the device shows the device to a friend, or the situation where a store employee handles the device during the sales process).


The following is a disclosure by way of example of a computing device which may be used with the presently disclosed subject matter. The description of the various components of a computing device is not intended to represent any particular architecture or manner of interconnecting the components. Other systems that have fewer or more components may also be used with the disclosed subject matter. A communication device may constitute a form of a computing device and may at least emulate a computing device. The computing device may include an inter-connect (e.g., bus and system core logic), which can interconnect such components of a computing device to a data processing device, such as a processor(s) or microprocessor(s), or other form of partly or completely programmable or pre-programmed device, e.g., hard wired and/or application specific integrated circuit (“ASIC”) customized logic circuitry, such as a controller or microcontroller, a digital signal processor, or any other form of device that can fetch instructions, operate on pre-loaded/pre-programmed instructions, and/or follow instructions found in hard-wired or customized circuitry, to carry out logic operations that, together, perform steps of and whole processes and functionalities as described in the present disclosure.


Determining when to begin the enrollment process can vary depending on the configuration. In one configuration, the enrollment process can begin when, for example, a PIN is first created to unlock the device, or when personally identifying information is entered that signals the user has taken ownership of the device. The starting point would be when the owner of the device (not, for example, the sales associate) begins handling the device. In some configurations, the collection can begin after, for example, a welcome app or some time from initial phone activation.


Determining when the enrollment process ends can vary depending on the configuration. In one configuration, for example, ending the enrollment process can be based on identified criteria, such as a weighted combination of one or more of each of (a) a substantial area of the finger collected, (b) more than a threshold number of views collected (whether the number of the threshold is set based on factors such as desired sensitivity levels), (c) passage of a threshold amount of time since the beginning of the process, (d) when the system determines that consistent finger information is no longer being sensed (e.g., another user's finger is present).


Where the criteria is a substantial area of the finger collected, the criteria can be based on, for example, area, pixels, or any other input. For example, where area is measured, the threshold can be determined where the area is greater than 50% of an average fingerprint area, greater than 60% of an average fingerprint area; greater than 70% of an average fingerprint area; greater than 80% of an average fingerprint area; and greater than 90% of an average fingerprint area.


Where the criteria is a threshold number of views collected, a number of views can be selected, for example, one view, two views, three views, four views, five views, six views, seven views, eight views, nine views, and ten views.


In some configurations, a threshold amount of time since the beginning of the process can be used to determine when the enrollment process ends. In some configurations, the enrollment can be set to expire, for example, 5 minutes from collecting the first view; 10 minutes from collecting the first view; 20 minutes from collecting the first view; an hour from collecting the first view. Other time frames as possible, from hours to days.


In some configurations, the system can terminate the enrollment process when it determines that consistent finger information is no longer being sensed (e.g., another user's finger is present).


Turning now to FIG. 5, a flow chart illustrates a basic process. During the normal operation of the device and without prompting the user, the sensor captures an initial piece of biometric data from a sensor 510 at a first time. This process can begin automatically (e.g. without the user's instruction to begin the enrollment process), or semi-automatically (e.g., once the device is activated by a clerk at a store, the enrollment process is triggered by the clerk or upon a user's instruction to begin the enrollment process). The initial captured data is stored in memory 512. The initial data can be a complete fingerprint image, or a portion of a fingerprint image. The data capture is secondary to the process of using the device for normal operation (e.g., turning the device on, launching an icon, turning a page, etc.)


At a second or subsequent time, the sensor captures a subsequent portion or views of biometric data 514. The subsequent data is compared to the initial data to identify overlap 516. The subsequent portion of biometric data can completely overlap the initial data, partially overlap the initial data or not overlap the initial data. Where the subsequent data completely overlaps the initial data, or is otherwise deemed to not add additional information to the mix, the subsequent data can be deleted. Where the subsequent data partially overlaps the initial data, the initial data and subsequent data are saved for assembly in a collected view 518. Where the subsequent data does not overlap at all, the subsequent data can be stored for later incorporation into a collected view 519. The data is then analyzed to determine whether sufficient information has been captured and compiled to create a biometric input having a threshold value of completion 520. If yes, then the user is automatically or semi-automatically prompted to complete the enrollment process 530. If no, then the process of collecting subsequent subsets of data is repeated 514. As discussed above, the enrollment process can be completed by ending the enrollment process based on identified criteria, such as a weighted combination of one or more of each of (a) a substantial area of the finger collected, (b) more than a threshold number of views collected (whether the number of the threshold is set based on factors such as desired sensitivity levels), (c) passage of a threshold amount of time since the beginning of the process, (d) when the system determines that consistent finger information is no longer being sensed (e.g., another user's finger is present).


In this description, various functions, functionalities and/or operations may be described as being performed by or caused by software program code to simplify description. However, those skilled in the art will recognize what is meant by such expressions is that the functions resulting from execution of the program code/instructions are performed by a computing device as described above, e.g., including a processor, such as a microprocessor, microcontroller, logic circuit or the like. Alternatively, or in combination, the functions and operations can be implemented using special purpose circuitry, with or without software instructions, such as using Application-Specific Integrated Circuit (ASIC) or Field-Programmable Gate Array (FPGA), which may be programmable, partly programmable or hard wired. The application specific integrated circuit (“ASIC”) logic may be such as gate arrays or standard cells, or the like, implementing customized logic by metalization(s) interconnects of the base gate array ASIC architecture or selecting and providing metalization(s) interconnects between standard cell functional blocks included in a manufacturers library of functional blocks, etc. Embodiments can thus be implemented using hardwired circuitry without program software code/instructions, or in combination with circuitry using programmed software code/instructions.


Thus, the techniques are limited neither to any specific combination of hardware circuitry and software, nor to any particular tangible source for the instructions executed by the data processor(s) within the computing device. While some embodiments can be implemented in fully functioning computers and computer systems, various embodiments are capable of being distributed as a computing device including, e.g., a variety of forms and capable of being applied regardless of the particular type of machine or tangible computer-readable media used to actually effect the performance of the functions and operations and/or the distribution of the performance of the functions, functionalities and/or operations.


The interconnect may connect the data processing device to define logic circuitry including memory. The interconnect may be internal to the data processing device, such as coupling a microprocessor to on-board cache memory, or external (to the microprocessor) memory such as main memory, or a disk drive, or external to the computing device, such as a remote memory, a disc farm or other mass storage device(s), etc. Commercially available microprocessors, one or more of which could be a computing device or part of a computing device, include a PA-RISC series microprocessor from Hewlett-Packard Company, an 80×86 or Pentium series microprocessor from Intel Corporation, a PowerPC microprocessor from IBM, a Sparc microprocessor from Sun Microsystems, Inc, or a 68xxx series microprocessor from Motorola Corporation as examples.


The inter-connect in addition to interconnecting such as microprocessor(s) and memory may also interconnect such elements to a display controller and display device, and/or to other peripheral devices such as input/output (I/O) devices, e.g., through an input/output controller(s). Typical I/O devices can include a mouse, a keyboard(s), a modem(s), a network interface(s), printers, scanners, video cameras and other devices which are well known in the art. The inter-connect may include one or more buses connected to one another through various bridges, controllers and/or adapters. In one embodiment the I/O controller may include a USB (Universal Serial Bus) adapter for controlling USB peripherals, and/or an IEEE-1394 bus adapter for controlling IEEE-1394 peripherals.


The memory may include any tangible computer-readable media, which may include but are not limited to recordable and non-recordable type media such as volatile and non-volatile memory devices, such as volatile RAM (Random Access Memory), typically implemented as dynamic RAM (DRAM) which requires power continually in order to refresh or maintain the data in the memory, and non-volatile ROM (Read Only Memory), and other types of non-volatile memory, such as a hard drive, flash memory, detachable memory stick, etc. Non-volatile memory typically may include a magnetic hard drive, a magnetic optical drive, or an optical drive (e.g., a DVD RAM, a CD ROM, a DVD or a CD), or other type of memory system which maintains data even after power is removed from the system.


A server could be made up of one or more computing devices. Servers can be utilized, e.g., in a network to host a network database, compute necessary variables and information from information in the database(s), store and recover information from the database(s), track information and variables, provide interfaces for uploading and downloading information and variables, and/or sort or otherwise manipulate information and data from the database(s). In one embodiment a server can be used in conjunction with other computing devices positioned locally or remotely to perform certain calculations and other functions as may be mentioned in the present application.


At least some aspects of the disclosed subject matter can be embodied, at least in part, utilizing programmed software code/instructions. That is, the functions, functionalities and/or operations techniques may be carried out in a computing device or other data processing system in response to its processor, such as a microprocessor, executing sequences of instructions contained in a memory, such as ROM, volatile RAM, non-volatile memory, cache or a remote storage device. In general, the routines executed to implement the embodiments of the disclosed subject matter may be implemented as part of an operating system or a specific application, component, program, object, module or sequence of instructions usually referred to as “computer programs,” or “software.” The computer programs typically comprise instructions stored at various times in various tangible memory and storage devices in a computing device, such as in cache memory, main memory, internal or external disk drives, and other remote storage devices, such as a disc farm, and when read and executed by a processor(s) in the computing device, cause the computing device to perform a method(s), e.g., process and operation steps to execute an element(s) as part of some aspect(s) of the method(s) of the disclosed subject matter.


A tangible machine readable medium can be used to store software and data that, when executed by a computing device, causes the computing device to perform a method(s) as may be recited in one or more accompanying claims defining the disclosed subject matter. The tangible machine readable medium may include storage of the executable software program code/instructions and data in various tangible locations, including for example ROM, volatile RAM, non-volatile memory and/or cache. Portions of this program software code/instructions and/or data may be stored in any one of these storage devices. Further, the program software code/instructions can be obtained from remote storage, including, e.g., through centralized servers or peer to peer networks and the like. Different portions of the software program code/instructions and data can be obtained at different times and in different communication sessions or in a same communication session.


The software program code/instructions and data can be obtained in their entirety prior to the execution of a respective software application by the computing device. Alternatively, portions of the software program code/instructions and data can be obtained dynamically, e.g., just in time, when needed for execution. Alternatively, some combination of these ways of obtaining the software program code/instructions and data may occur, e.g., for different applications, components, programs, objects, modules, routines or other sequences of instructions or organization of sequences of instructions, by way of example. Thus, it is not required that the data and instructions be on a single machine readable medium in entirety at any particular instant of time.


In general, a tangible machine readable medium includes any tangible mechanism that provides (i.e., stores) information in a form accessible by a machine (i.e., a computing device), which may be included, e.g., in a communication device, a network device, a personal digital assistant, a mobile communication device, whether or not able to download and run applications from the communication network, such as the Internet, e.g., an I-phone, Blackberry, Droid or the like, a manufacturing tool, or any other device including a computing device, comprising one or more data processors, etc.


In one embodiment, a user terminal can be a computing device, such as in the form of or included within a PDA, a cellular phone, a notebook computer, a personal desktop computer, etc. Alternatively, the traditional communication client(s) may be used in some embodiments of the disclosed subject matter.


While some embodiments of the disclosed subject matter have been described in the context of fully functioning computing devices and computing systems, those skilled in the art will appreciate that various embodiments of the disclosed subject matter are capable of being distributed, e.g., as a program product in a variety of forms and are capable of being applied regardless of the particular type of computing device machine or computer-readable media used to actually effect the distribution.


The disclosed subject matter may be described with reference to block diagrams and operational illustrations of methods and devices to provide a system and methods according to the disclosed subject matter. It will be understood that each block of a block diagram or other operational illustration (herein collectively, “block diagram”), and combination of blocks in a block diagram, can be implemented by means of analog or digital hardware and computer program instructions. These computing device software program code/instructions can be provided to the computing device such that the instructions, when executed by the computing device, e.g., on a processor within the computing device or other data processing apparatus, the program software code/instructions cause the computing device to perform functions, functionalities and operations of a method(s) according to the disclosed subject matter, as recited in the accompanying claims, with such functions, functionalities and operations specified in the block diagram.


It will be understood that in some possible alternate implementations, the function, functionalities and operations noted in the blocks of a block diagram may occur out of the order noted in the block diagram. For example, the function noted in two blocks shown in succession can in fact be executed substantially concurrently or the functions noted in blocks can sometimes be executed in the reverse order, depending upon the function, functionalities and operations involved. Therefore, the embodiments of methods presented and described as a flowchart(s) in the form of a block diagram in the present application are provided by way of example in order to provide a more complete understanding of the disclosed subject matter. The disclosed flow and concomitantly the method(s) performed as recited in the accompanying claims are not limited to the functions, functionalities and operations illustrated in the block diagram and/or logical flow presented herein. Alternative embodiments are contemplated in which the order of the various functions, functionalities and operations may be altered and in which sub-operations described as being part of a larger operation may be performed independently or performed differently than illustrated or not performed at all.


Although some of the drawings may illustrate a number of operations in a particular order, functions, functionalities and/or operations which are not now known to be order dependent, or become understood to not be order dependent, may be reordered and other operations may be combined or broken out. While some reordering or other groupings may have been specifically mentioned in the present application, others will be or may become apparent to those of ordinary skill in the art and so the disclosed subject matter does not present an exhaustive list of alternatives. It should also be recognized that the aspects of the disclosed subject matter may be implemented in parallel or seriatim in hardware, firmware, software or any combination(s) thereof co-located or remotely located, at least in part, from each other, e.g., in arrays or networks of computing devices, over interconnected networks, including the Internet, and the like.


III. Methods of Use

An electronic device 100 configurable to position a sensor, such as a 1D sensor, a 2D sensor or a touch sensor, within sensing region is deployed by a user. The user applies and/or swipes his or her finger, or applies the element to be sensed, to a surface of the device in a position in communication with the sensor.


For example, the element to be sensed (such as a finger) can be applied (e.g., by swiping across the surface) in a position that is in communication with the sensing element. Thus, for example, the fingerprint is sensed by the fingerprint sensor and/or biometric input is received. The sensed input (such as a fingerprint) is validated. Once validated, use of the electronic device 100 is permitted or other functionality controlled by the fingerprint authentication is permitted.


As will be appreciated by those skilled in the art, once the enrollment process is completed sensors disclosed can be used in a variety of ways including, for example:

    • User authentication for device (e.g., phone, tablet, or computer) unlocking
    • User authentication for online transactions
    • User authentication for access to device systems and services, including websites and email
    • Replacement of Password and PINs
    • Physical access such as door locks
    • Time and attendance systems (prove you were at a certain place at a certain time)
    • Finger-based input devices/navigation for mobile phones and gaming
    • Finger-based shortcuts (authentication of a given finger results in the corresponding action to which that finger is mapped)
    • Non-repudiation for online transactions


The disclosed subject matter is described in the present application with reference to one or more specific exemplary embodiments thereof. It will be evident that various modifications may be made to the disclosed subject matter without departing from the broader spirit and scope of the disclosed subject matter as set forth in the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative sense for explanation of aspects of the disclosed subject matter rather than a restrictive or limiting sense. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A method of compiling an initial enrollment record, the method comprising: automatically obtaining a plurality of fingerprint views during an initial enrollment process without providing an indication to a user that the plurality of fingerprint views are being obtained either before or during the initial enrollment process;creating a user authentication record containing the plurality of fingerprint views; andconcluding the compiling of the initial enrollment record upon identified criteria.
  • 2. The method of claim 1, wherein the identified criteria includes a target amount of an area of a fingerprint is collected.
  • 3. The method of claim 1, wherein the identified criteria includes a threshold number of views are collected.
  • 4. The method of claim 1, wherein the identified criteria includes a threshold amount of time has passed.
  • 5. The method of claim 1, wherein the identified criteria includes consistent fingerprint information is no longer sensed.
  • 6. The method of claim 1, wherein the user authentication record is created without providing an indication to the user that the user authentication record containing the plurality of fingerprint views is being created.
  • 7. The method of claim 1, wherein the method is associated with a device that is configured to be locked and configured to be unlocked upon receiving a user selected Personal Identification Number (PIN), wherein the compiling of the initial enrollment record is begun without providing an indication to the user that the compiling of the initial enrollment record is being begun, andwherein the compiling of the initial enrollment record is begun when the user selected PIN is created to unlock the device.
  • 8. The method of claim 1, wherein the compiling of the initial enrollment record is begun without providing an indication to the user that the compiling of the initial enrollment record is being begun, wherein the compiling of the initial enrollment record is begun and the plurality of fingerprint views are obtained at a pre-determined time after initial activation of a computing device that performs the method.
  • 9. A non-transitory computer readable medium storing instructions that, when executed by a computing device, cause the computing device to perform a method of compiling an initial enrollment record, the method comprising: automatically obtaining a plurality of fingerprint views during an initial enrollment process without providing an indication to a user that the plurality of fingerprint views are being obtained either before or during the initial enrollment process;creating a user authentication record containing the plurality of fingerprint views; andconcluding the compiling of the initial enrollment record upon identified criteria.
  • 10. The non-transitory computer readable medium of claim 9, wherein the identified criteria includes a target amount of an area of a fingerprint is collected.
  • 11. The non-transitory computer readable medium of claim 9, wherein the identified criteria includes a threshold number of views are collected.
  • 12. The non-transitory computer readable medium of claim 9, wherein the identified criteria includes a threshold amount of time has passed.
  • 13. The non-transitory computer readable medium of claim 9, wherein the identified criteria includes consistent fingerprint information is no longer sensed.
  • 14. The non-transitory computer readable medium of claim 9, wherein the user authentication record is created without providing an indication to the user that the user authentication record containing the plurality of fingerprint views is being created.
  • 15. The non-transitory computer readable medium of claim 9, wherein the computing device is configured to be locked and configured to be unlocked upon receiving a user selected Personal Identification Number (PIN), wherein the compiling of the initial enrollment record is begun without providing an indication to the user that the compiling of the initial enrollment record is being begun, andwherein the compiling of the initial enrollment record is begun when the user selected PIN is created to unlock the computing device.
  • 16. The non-transitory computer readable medium of claim 9, wherein the compiling of the initial enrollment record is begun without providing an indication to the user that the compiling of the initial enrollment record is being begun, wherein the compiling of the initial enrollment record is begun and the plurality of fingerprint views are obtained at a pre-determined time after initial activation of the computing device.
  • 17. A system, comprising: a processor configured to:automatically obtain a plurality of fingerprint views during an initial enrollment process without providing an indication to a user that the plurality of fingerprint views are being obtained either before or during the initial enrollment process;create a user authentication record containing the plurality of fingerprint views; andconclude the initial enrollment process upon identified criteria.
  • 18. The system of claim 17, wherein the user authentication record is created without providing an indication to the user that the user authentication record containing the plurality of fingerprint views is being created.
  • 19. The system of claim 17, wherein the processor is associated with a device that is configured to be locked and configured to be unlocked upon receiving a user selected Personal Identification Number (PIN), wherein the initial enrollment process is begun without providing an indication to the user that the initial enrollment process is being begun, andwherein the initial enrollment process is begun when the user selected PIN is created to unlock the device.
  • 20. The system of claim 17, wherein the initial enrollment process is begun without providing an indication to the user that the initial enrollment process is being begun, wherein the initial enrollment process is begun and the plurality of fingerprint views are obtained at a pre-determined time after initial activation of a device associated with the processor.
CROSS-REFERENCE

This application is a continuation of copending U.S. patent application Ser. No. 13/759,852, filed Feb. 5, 2013, entitled METHODS AND SYSTEMS FOR ENROLLING BIOMETRIC DATA which claims the benefit of U.S. Provisional Application No. 61/616,529, filed Mar. 28, 2012, entitled Methods and Systems for Enrolling Biometric Data, by Russo, which applications are incorporated herein by reference.

US Referenced Citations (445)
Number Name Date Kind
4151512 Rigannati et al. Apr 1979 A
4225850 Chang et al. Sep 1980 A
4310827 Asi Jan 1982 A
4353056 Tsikos Oct 1982 A
4405829 Rivest et al. Sep 1983 A
4525859 Bowles et al. Jun 1985 A
4550221 Mabusth Oct 1985 A
4580790 Doose Apr 1986 A
4582985 Loftberg Apr 1986 A
4675544 Schrenk Jun 1987 A
4758622 Gosselin Jul 1988 A
4784484 Jensen Nov 1988 A
4817183 Sparrow Mar 1989 A
5076566 Kriegel Dec 1991 A
5109427 Yang Apr 1992 A
5140642 Hsu et al. Aug 1992 A
5305017 Gerpheide Apr 1994 A
5319323 Fong Jun 1994 A
5325442 Knapp Jun 1994 A
5359243 Norman Oct 1994 A
5420936 Fitzpatrick et al. May 1995 A
5422807 Mitra et al. Jun 1995 A
5429006 Tamori Jul 1995 A
5456256 Schneider et al. Oct 1995 A
5543591 Gillespie et al. Aug 1996 A
5569901 Bridgelall et al. Oct 1996 A
5623552 Lane Apr 1997 A
5627316 De Winter et al. May 1997 A
5650842 Maase et al. Jul 1997 A
5717777 Wong et al. Feb 1998 A
5781651 Hsiao et al. Jul 1998 A
5801681 Sayag Sep 1998 A
5818956 Tuli Oct 1998 A
5838306 O'Connor Nov 1998 A
5848176 Hara et al. Dec 1998 A
5850450 Schweitzer et al. Dec 1998 A
5852670 Setlak et al. Dec 1998 A
5864296 Upton Jan 1999 A
5887343 Salatino et al. Mar 1999 A
5892824 Beatson et al. Apr 1999 A
5903225 Schmitt et al. May 1999 A
5915757 Tsuyama et al. Jun 1999 A
5920384 Borza Jul 1999 A
5920640 Salatino et al. Jul 1999 A
5940526 Setlak et al. Aug 1999 A
5963679 Setlak Oct 1999 A
5995630 Borza Nov 1999 A
5999637 Toyoda et al. Dec 1999 A
6002815 Immega et al. Dec 1999 A
6011859 Kalnitsky et al. Jan 2000 A
6016355 Dickinson et al. Jan 2000 A
6052475 Upton Apr 2000 A
6067368 Setlak et al. May 2000 A
6073343 Petrick et al. Jun 2000 A
6076566 Lowe Jun 2000 A
6088585 Schmitt et al. Jul 2000 A
6098175 Lee Aug 2000 A
6118318 Fifield et al. Sep 2000 A
6134340 Hsu et al. Oct 2000 A
6157722 Lerner et al. Dec 2000 A
6161213 Lofstrom Dec 2000 A
6175407 Santor Jan 2001 B1
6182076 Yu et al. Jan 2001 B1
6182892 Angelo et al. Feb 2001 B1
6185318 Jain et al. Feb 2001 B1
6234031 Suga May 2001 B1
6241288 Bergenek et al. Jun 2001 B1
6259108 Antonelli et al. Jul 2001 B1
6282303 Brownlee Aug 2001 B1
6289114 Mainguet Sep 2001 B1
6292272 Okauchi et al. Sep 2001 B1
6317508 Kramer et al. Nov 2001 B1
6320394 Tartagni Nov 2001 B1
6325285 Baratelli Dec 2001 B1
6327376 Harkin Dec 2001 B1
6332193 Glass et al. Dec 2001 B1
6333989 Borza Dec 2001 B1
6337919 Dunton Jan 2002 B1
6343162 Saito et al. Jan 2002 B1
6346739 Lepert et al. Feb 2002 B1
6347040 Fries et al. Feb 2002 B1
6357663 Takahashi et al. Mar 2002 B1
6360004 Akizuki Mar 2002 B1
6362633 Tartagni Mar 2002 B1
6392636 Ferrari et al. May 2002 B1
6399994 Shobu Jun 2002 B2
6400836 Senior Jun 2002 B2
6408087 Kramer Jun 2002 B1
6459804 Mainguet Oct 2002 B2
6473072 Comiskey et al. Oct 2002 B1
6509501 Eicken et al. Jan 2003 B2
6525547 Hayes Feb 2003 B2
6525932 Ohnishi et al. Feb 2003 B1
6539101 Black Mar 2003 B1
6546122 Russo Apr 2003 B1
6580816 Kramer et al. Jun 2003 B2
6597289 Sabatini Jul 2003 B2
6628812 Setlak et al. Sep 2003 B1
6631201 Dickinson et al. Oct 2003 B1
6643389 Raynal et al. Nov 2003 B1
6672174 Deconde et al. Jan 2004 B2
6710461 Chou et al. Mar 2004 B2
6738050 Comiskey et al. May 2004 B2
6741729 Bjorn et al. May 2004 B2
6757002 Oross et al. Jun 2004 B1
6766040 Catalano et al. Jul 2004 B1
6785407 Tschudi et al. Aug 2004 B1
6799275 Bjorn et al. Sep 2004 B1
6836230 Le Pailleur et al. Dec 2004 B2
6838905 Doyle Jan 2005 B1
6873356 Kanbe et al. Mar 2005 B1
6886104 McClurg et al. Apr 2005 B1
6897002 Teraoka et al. May 2005 B2
6898299 Brooks May 2005 B1
6924496 Manansala Aug 2005 B2
6937748 Schneider et al. Aug 2005 B1
6941001 Bolle et al. Sep 2005 B1
6941810 Okada Sep 2005 B2
6950540 Higuchi Sep 2005 B2
6959874 Bardwell Nov 2005 B2
6963626 Shaeffer et al. Nov 2005 B1
6970584 O'Gorman et al. Nov 2005 B2
6980672 Saito et al. Dec 2005 B2
6983882 Cassone Jan 2006 B2
7013030 Wong et al. Mar 2006 B2
7020591 Wei et al. Mar 2006 B1
7030860 Hsu et al. Apr 2006 B1
7031670 May Apr 2006 B2
7035443 Wong Apr 2006 B2
7042535 Katoh et al. May 2006 B2
7043061 Wong May 2006 B2
7043644 DeBruine May 2006 B2
7046230 Zadesky et al. May 2006 B2
7064743 Nishikawa Jun 2006 B2
7099496 Benkley Aug 2006 B2
7110574 Haruki et al. Sep 2006 B2
7110577 Tschud Sep 2006 B1
7113622 Hamid Sep 2006 B2
7126389 McRae et al. Oct 2006 B1
7129926 Mathiassen et al. Oct 2006 B2
7136514 Wong Nov 2006 B1
7146024 Benkley Dec 2006 B2
7146026 Russon et al. Dec 2006 B2
7146029 Manansala Dec 2006 B2
7184581 Johansen et al. Feb 2007 B2
7190209 Kang et al. Mar 2007 B2
7190816 Mitsuyu et al. Mar 2007 B2
7194392 Tuken et al. Mar 2007 B2
7197168 Russo Mar 2007 B2
7200250 Chou Apr 2007 B2
7251351 Mathiassen et al. Jul 2007 B2
7258279 Schneider et al. Aug 2007 B2
7260246 Fujii Aug 2007 B2
7263212 Kawabe Aug 2007 B2
7263213 Rowe Aug 2007 B2
7289649 Walley et al. Oct 2007 B1
7290323 Deconde et al. Nov 2007 B2
7308121 Mathiassen et al. Dec 2007 B2
7308122 McClurg et al. Dec 2007 B2
7321672 Sasaki et al. Jan 2008 B2
7356169 Hamid Apr 2008 B2
7360688 Harris Apr 2008 B1
7369685 DeLeon May 2008 B2
7379569 Chikazawa et al. May 2008 B2
7408135 Fujeda Aug 2008 B2
7409876 Ganapathi et al. Aug 2008 B2
7412083 Takahashi Aug 2008 B2
7424618 Roy et al. Sep 2008 B2
7447339 Mimura et al. Nov 2008 B2
7447911 Chou et al. Nov 2008 B2
7460697 Erhart et al. Dec 2008 B2
7463756 Benkley Dec 2008 B2
7474772 Russo et al. Jan 2009 B2
7505611 Fyke Mar 2009 B2
7505613 Russo Mar 2009 B2
7565548 Fiske et al. Jul 2009 B2
7574022 Russo Aug 2009 B2
7596832 Hsieh et al. Oct 2009 B2
7599530 Boshra Oct 2009 B2
7616787 Boshra Nov 2009 B2
7643950 Getzin et al. Jan 2010 B1
7646897 Fyke Jan 2010 B2
7681232 Nordentoft et al. Mar 2010 B2
7689013 Shinzaki Mar 2010 B2
7706581 Drews et al. Apr 2010 B2
7733697 Picca et al. Jun 2010 B2
7751601 Benkley Jul 2010 B2
7826645 Cayen Nov 2010 B1
7843438 Onoda Nov 2010 B2
7848798 Martinsen et al. Dec 2010 B2
7899216 Watanabe et al. Mar 2011 B2
7953258 Dean et al. May 2011 B2
8005276 Dean et al. Aug 2011 B2
8031916 Abiko et al. Oct 2011 B2
8063734 Conforti Nov 2011 B2
8077935 Geoffroy et al. Dec 2011 B2
8107212 Nelson et al. Jan 2012 B2
8116540 Dean et al. Feb 2012 B2
8131026 Benkley et al. Mar 2012 B2
8165355 Benkley et al. Apr 2012 B2
8175345 Gardner May 2012 B2
8204281 Satyan et al. Jun 2012 B2
8224044 Benkley Jul 2012 B2
8229184 Benkley Jul 2012 B2
8276816 Gardner Oct 2012 B2
8278946 Thompson Oct 2012 B2
8290150 Erhart et al. Oct 2012 B2
8315444 Gardner Nov 2012 B2
8331096 Garcia Dec 2012 B2
8358097 Cartwright Jan 2013 B2
8358815 Benkley et al. Jan 2013 B2
8374407 Benkley et al. Feb 2013 B2
8391568 Satyan Mar 2013 B2
8594393 Russo Nov 2013 B2
8600122 Dean et al. Dec 2013 B2
20010026636 Mainget Oct 2001 A1
20010030644 Allport Oct 2001 A1
20010036299 Senior Nov 2001 A1
20010043728 Kramer et al. Nov 2001 A1
20020025062 Black Feb 2002 A1
20020061125 Fujii May 2002 A1
20020064892 Lepert et al. May 2002 A1
20020067845 Griffis Jun 2002 A1
20020073046 David Jun 2002 A1
20020089044 Simmons et al. Jul 2002 A1
20020089410 Janiak et al. Jul 2002 A1
20020096731 Wu et al. Jul 2002 A1
20020122026 Bergstrom Sep 2002 A1
20020126516 Jeon Sep 2002 A1
20020133725 Roy et al. Sep 2002 A1
20020152048 Hayes Oct 2002 A1
20020181749 Matsumoto et al. Dec 2002 A1
20030002717 Hamid Jan 2003 A1
20030002719 Hamid et al. Jan 2003 A1
20030021495 Cheng Jan 2003 A1
20030035570 Benkley Feb 2003 A1
20030063782 Acharya et al. Apr 2003 A1
20030068072 Hamid Apr 2003 A1
20030076301 Tsuk et al. Apr 2003 A1
20030076303 Huppi Apr 2003 A1
20030095096 Robbin et al. May 2003 A1
20030095690 Su et al. May 2003 A1
20030102874 Lane et al. Jun 2003 A1
20030123714 O'Gorman et al. Jul 2003 A1
20030123715 Uchida Jul 2003 A1
20030141959 Keogh et al. Jul 2003 A1
20030147015 Katoh et al. Aug 2003 A1
20030161510 Fuji Aug 2003 A1
20030161512 Mathiassen Aug 2003 A1
20030169228 Mathiassen et al. Sep 2003 A1
20030174871 Yoshioka et al. Sep 2003 A1
20030186157 Teraoka et al. Oct 2003 A1
20030209293 Sako et al. Nov 2003 A1
20030224553 Manansala Dec 2003 A1
20040012773 Puttkammer Jan 2004 A1
20040017934 Kocher et al. Jan 2004 A1
20040022001 Chu et al. Feb 2004 A1
20040042642 Bolle et al. Mar 2004 A1
20040050930 Rowe Mar 2004 A1
20040066613 Leitao Apr 2004 A1
20040076313 Bronstein et al. Apr 2004 A1
20040081339 Benkley Apr 2004 A1
20040096086 Miyasaka May 2004 A1
20040113956 Bellwood et al. Jun 2004 A1
20040120400 Linzer Jun 2004 A1
20040125993 Zhao et al. Jul 2004 A1
20040129787 Saito Jul 2004 A1
20040136612 Meister et al. Jul 2004 A1
20040155752 Radke Aug 2004 A1
20040172339 Snelgrove et al. Sep 2004 A1
20040179718 Chou Sep 2004 A1
20040184641 Nagasaka et al. Sep 2004 A1
20040188838 Okada et al. Sep 2004 A1
20040190761 Lee Sep 2004 A1
20040208346 Baharav et al. Oct 2004 A1
20040208347 Baharav et al. Oct 2004 A1
20040208348 Baharav et al. Oct 2004 A1
20040213441 Tschudi Oct 2004 A1
20040215689 Dooley et al. Oct 2004 A1
20040228505 Sugimoto Nov 2004 A1
20040228508 Shigeta Nov 2004 A1
20040240712 Rowe et al. Dec 2004 A1
20040252867 Lan et al. Dec 2004 A1
20050031174 Ryhanen et al. Feb 2005 A1
20050036665 Higuchi Feb 2005 A1
20050047485 Khayrallah et al. Mar 2005 A1
20050109835 Jacoby et al. Mar 2005 A1
20050100196 Scott et al. May 2005 A1
20050100938 Hoffmann et al. May 2005 A1
20050110103 Setlak May 2005 A1
20050111708 Chou May 2005 A1
20050123176 Ishil et al. Jun 2005 A1
20050129291 Boshra Jun 2005 A1
20050136200 Durell et al. Jun 2005 A1
20050139656 Arnouse Jun 2005 A1
20050139685 Kozlay Jun 2005 A1
20050162402 Watanachote Jul 2005 A1
20050169503 Howell et al. Aug 2005 A1
20050174015 Scott et al. Aug 2005 A1
20050210271 Chou et al. Sep 2005 A1
20050219200 Weng Oct 2005 A1
20050220329 Payne et al. Oct 2005 A1
20050231213 Chou et al. Oct 2005 A1
20050238212 Du et al. Oct 2005 A1
20050244038 Benkley Nov 2005 A1
20050244039 Geoffroy et al. Nov 2005 A1
20050247559 Frey et al. Nov 2005 A1
20050249386 Juh Nov 2005 A1
20050258952 Utter et al. Nov 2005 A1
20050269402 Spitzer et al. Dec 2005 A1
20060006224 Modi Jan 2006 A1
20060055500 Burke et al. Mar 2006 A1
20060066572 Yumoto et al. Mar 2006 A1
20060078176 Abiko et al. Apr 2006 A1
20060083411 Benkley Apr 2006 A1
20060110537 Huang et al. May 2006 A1
20060140461 Kim et al. Jun 2006 A1
20060144953 Takao Jul 2006 A1
20060170528 Funushige et al. Aug 2006 A1
20060181521 Perrault et al. Aug 2006 A1
20060182319 Setlank et al. Aug 2006 A1
20060187200 Martin Aug 2006 A1
20060202797 Theis et al. Sep 2006 A1
20060210082 Devadas et al. Sep 2006 A1
20060214512 Iwata Sep 2006 A1
20060214767 Carrieri Sep 2006 A1
20060222210 Sundaram Oct 2006 A1
20060239514 Watanabe et al. Oct 2006 A1
20060249008 Luther Nov 2006 A1
20060259873 Mister Nov 2006 A1
20060261174 Zellner et al. Nov 2006 A1
20060267125 Huang et al. Nov 2006 A1
20060267385 Steenwyk et al. Nov 2006 A1
20060271793 Devadas et al. Nov 2006 A1
20060285728 Leung et al. Dec 2006 A1
20060287963 Steeves et al. Dec 2006 A1
20070031011 Erhart et al. Feb 2007 A1
20070036400 Watanabe et al. Feb 2007 A1
20070057763 Blattner et al. Mar 2007 A1
20070058843 Theis et al. Mar 2007 A1
20070067828 Bychkov Mar 2007 A1
20070076926 Schneider et al. Apr 2007 A1
20070076951 Tanaka et al. Apr 2007 A1
20070086634 Setlak et al. Apr 2007 A1
20070090312 Stallinga et al. Apr 2007 A1
20070138299 Mitra Jun 2007 A1
20070154072 Taraba et al. Jul 2007 A1
20070160269 Kuo Jul 2007 A1
20070177773 Hu et al. Aug 2007 A1
20070180261 Akkermans et al. Aug 2007 A1
20070196002 Choi et al. Aug 2007 A1
20070198141 Moore Aug 2007 A1
20070198435 Siegal et al. Aug 2007 A1
20070228154 Tran Oct 2007 A1
20070237366 Maletsky Oct 2007 A1
20070237368 Bjorn et al. Oct 2007 A1
20070248249 Stoianov Oct 2007 A1
20070290124 Neil et al. Dec 2007 A1
20080013805 Sengupta et al. Jan 2008 A1
20080019578 Saito et al. Jan 2008 A1
20080049987 Champagne et al. Feb 2008 A1
20080049989 Iseri et al. Feb 2008 A1
20080063245 Benkley et al. Mar 2008 A1
20080089563 Yumoto et al. Apr 2008 A1
20080069412 Champagne et al. May 2008 A1
20080126260 Cox et al. May 2008 A1
20080169345 Keane et al. Jul 2008 A1
20080170695 Adler et al. Jul 2008 A1
20080175445 Hu et al. Jul 2008 A1
20080175450 Scott et al. Jul 2008 A1
20080178008 Takahashi et al. Jul 2008 A1
20080179112 Qin et al. Jul 2008 A1
20080185429 Saville Aug 2008 A1
20080201265 Hewton Aug 2008 A1
20080205714 Benkley et al. Aug 2008 A1
20080219521 Benkley et al. Sep 2008 A1
20080222049 Loomis et al. Sep 2008 A1
20080223925 Saito et al. Sep 2008 A1
20080226132 Gardner Sep 2008 A1
20080002867 Mathiassen et al. Oct 2008 A1
20080240523 Benkley et al. Oct 2008 A1
20080240537 Yang et al. Oct 2008 A1
20080244277 Orsini et al. Oct 2008 A1
20080267462 Nelson et al. Oct 2008 A1
20080279373 Erhart et al. Nov 2008 A1
20080317290 Tazoe Dec 2008 A1
20090001999 Douglas Jan 2009 A1
20090130369 Huang et al. May 2009 A1
20090153297 Gardner Jun 2009 A1
20090154779 Satyan et al. Jun 2009 A1
20090155456 Benkley et al. Jun 2009 A1
20090169071 Bond et al. Jul 2009 A1
20090174974 Huang et al. Jul 2009 A1
20090212902 Haddock Aug 2009 A1
20090218698 Lam Sep 2009 A1
20090237135 Ramaraju et al. Sep 2009 A1
20090252384 Dean et al. Oct 2009 A1
20090252385 Dean et al. Oct 2009 A1
20090252386 Dean et al. Oct 2009 A1
20090279742 Abiko Nov 2009 A1
20090319435 Little et al. Dec 2009 A1
20090324028 Russo Dec 2009 A1
20100026451 Erhart et al. Feb 2010 A1
20100045705 Vertegaal et al. Feb 2010 A1
20100046812 Maurer et al. Feb 2010 A1
20100083000 Kesanupalli et al. Apr 2010 A1
20100117794 Adams et al. May 2010 A1
20100119124 Satyan May 2010 A1
20100123675 Ippel May 2010 A1
20100127366 Bond et al. May 2010 A1
20100135542 Keeper, Jr. et al. Jun 2010 A1
20100176823 Thompson et al. Jul 2010 A1
20100176892 Thompson et al. Jul 2010 A1
20100177940 Thompson et al. Jul 2010 A1
20100180136 Thompson et al. Jul 2010 A1
20100189314 Benkley et al. Jul 2010 A1
20100208953 Gardner et al. Aug 2010 A1
20100244166 Shibuta et al. Sep 2010 A1
20100272329 Benkley Oct 2010 A1
20100284565 Benkley et al. Nov 2010 A1
20110002461 Erhart et al. Jan 2011 A1
20110018556 Le et al. Jan 2011 A1
20110083018 Kasanupalli et al. Apr 2011 A1
20110083170 Kasanupalli et al. Apr 2011 A1
20110090047 Patel Apr 2011 A1
20110102567 Erhart May 2011 A1
20110102569 Erhart May 2011 A1
20110148576 Gupta Jun 2011 A1
20110157347 Kalocsai Jun 2011 A1
20110175703 Benkley Jul 2011 A1
20110176037 Benkley Jul 2011 A1
20110182486 Valfridsson et al. Jul 2011 A1
20110214924 Perezselsky et al. Sep 2011 A1
20110267298 Erhart et al. Nov 2011 A1
20110298711 Dean et al. Dec 2011 A1
20110304001 Erhart et al. Dec 2011 A1
20120016798 Carper Jan 2012 A1
20120044639 Garcia Feb 2012 A1
20120189166 Russo Jul 2012 A1
20120189172 Russo Jul 2012 A1
20120206586 Gardner Aug 2012 A1
20120256280 Ehart Oct 2012 A1
20120257032 Benkley Oct 2012 A1
20120308092 Benkley et al. Dec 2012 A1
20130021044 Thompson et al. Jan 2013 A1
Foreign Referenced Citations (74)
Number Date Country
2213813 Oct 1973 DE
0929028 Jan 1998 EP
0905646 Mar 1999 EP
0973123 Jan 2000 EP
1018697 Jul 2000 EP
1139301 Oct 2001 EP
1531419 May 2005 EP
1533759 May 2005 EP
1538548 Jun 2005 EP
1624399 Feb 2006 EP
1775674 Apr 2007 EP
1939788 Jul 2008 EP
2331613 May 1999 GB
2480919 Dec 2011 GB
2487661 Aug 2012 GB
2489100 Sep 2012 GB
2490192 Oct 2012 GB
2474999 Feb 2013 GB
2502418 Nov 2013 GB
01094418 Apr 1989 JP
04158434 Jun 1992 JP
08263658 Oct 1996 JP
20000165378 Jun 2000 JP
2001167270 Jun 2001 JP
2005011002 Jan 2005 JP
2005242856 Sep 2005 JP
2007305097 Nov 2007 JP
2010009473 Jan 2010 JP
200606745 Feb 2006 TW
200606746 Feb 2006 TW
200614092 May 2006 TW
200617798 Jun 2006 TW
200620140 Jun 2006 TW
200629167 Aug 2006 TW
WO 199003620 Apr 1990 WO
WO 199858342 Dec 1998 WO
WO 1999028701 Jun 1999 WO
WO 1999043258 Sep 1999 WO
WO 2001022349 Mar 2001 WO
WO 2001094902 Dec 2001 WO
WO 2001094902 Dec 2001 WO
WO 2001095304 Dec 2001 WO
WO 2002011066 Feb 2002 WO
WO 2002047018 Jun 2002 WO
WO 2002047018 Jun 2002 WO
WO 200261668 Aug 2002 WO
WO 2002077907 Oct 2002 WO
WO 2003063054 Jul 2003 WO
WO 2003075210 Sep 2003 WO
WO 2004066194 Aug 2004 WO
WO 2004066693 Aug 2004 WO
WO 20050104012 Nov 2005 WO
WO 2005106774 Nov 2005 WO
WO 2005106774 Nov 2005 WO
WO 2006040724 Apr 2006 WO
WO 2006041780 Apr 2006 WO
WO 2007011607 Jan 2007 WO
WO 2008033264 Mar 2008 WO
WO 2008033264 Mar 2008 WO
WO 2008033265 Jun 2008 WO
WO 2008033265 Jun 2008 WO
WO 2008137287 Nov 2008 WO
WO 2009002599 Dec 2008 WO
WO 2009002599 Dec 2008 WO
WO 2009029257 Jun 2009 WO
WO 2009079219 Jun 2009 WO
WO 2009079221 Jun 2009 WO
WO 2009079262 Jun 2009 WO
WO 2010034036 Mar 2010 WO
WO 2010036445 Apr 2010 WO
WO 2010143597 Dec 2010 WO
WO 2011088248 Jan 2011 WO
WO2011088252 Jan 2011 WO
WO 2011053797 May 2011 WO
Non-Patent Literature Citations (19)
Entry
Matsumoto et al., Impact of Artificial “Gummy” Fingers on Fingerprint Systems, SPIE 4677 (2002), reprinted from cryptome.org.
Maltoni, “Handbook of Fingerprint Recognition”, XP002355942 Springer, New York, USA, Jun. 2003 (Jun. 2003) pp. 65-69.
Vermasan, et al., “A500 dpi AC Capacitive Hybrid Flip-Chip CMOS ASIC/Sensor Module for Fingerprint, Navigation, and Pointer Detection With On-Chip Data Processing”, IEEE Journal of Solid State Circuits, vol. 38, No. 12, Dec. 2003, pp. 2288-2294.
Ratha, et al. “Adaptive Flow Orientation Based Feature Extraction in Fingerprint Images,” Pattern Recognition, vol. 28 No. 11, 1657-1672, Nov. 1995.
Ratha, et al., “A Real Time Matching System for Large Fingerprint Databases,” IEEE, Aug. 1996.
Suh, et al., “Design and Implementation of the AEGIS Single-Chip Secure Processor Using Physical Random Functions”, Computer Architecture, 2005, ISCA '05, Proceedings, 32nd International Symposium, Jun. 2005 (MIT Technical Report CSAIL CSG-TR-843, 2004.
Rivest, et al., “A Method for Obtaining Digital Signatures and Public-Key Cryptosystems”, Communication of the ACM, vol. 21 (2), pp. 120-126. (1978).
Hiltgen, et al., “Secure Internet Banking Authentication”, IEEE Security and Privacy, IEEE Computer Society, New York, NY, US, Mar. 1, 2006 (Mar. 1, 2006), pp. 24-31, XP007908655, ISSN: 1540-7993.
Hegt, “Analysis of Current and Future Phishing Attacks on Internet Banking Services”, Mater Thesis. Techische Universiteit Eindhoven—Department of Mathematics and Computer Science May 31, 2008 (May 31, 2008), pp. 1-149, XP002630374, Retrieved from the Internet: URL:http://alexandria.tue.nl/extral/afstversl/wsk-i/hgt2008.pdf [retrieved on Mar. 29, 2011] *pp. 127-134, paragraph 6.2*.
Gassend, et al., “Controlled Physical Random Functions”, In Proceedings of the 18th Annual Computer Security Conference, Las Vegas, Nevada, Dec. 12, 2002.
Wikipedia (Mar. 2003). “Integrated Circuit,” http://en.wikipedia.org/wiki/integrated_circuit. Revision as of Mar. 23, 2003.
Wikipedia (Dec. 2006). “Integrated circuit” Revision as of Dec. 10, 2006. http://en.widipedia.org/wiki/Integrated_circuit.
bellagiodesigns.com (Internet Archive Wayback Machine, www.bellagiodesigns.com date: Oct. 29, 2005).
Closed Loop Systems, The Free Dictionary, http://www.thefreedictionary.com/closed-loop+system (downloaded Dec. 1, 2011).
Feedback: Electronic Engineering, Wikipedia, p. 5 http://en.wikipedia.org/wiki/Feedback#Electronic_engineering (downloaded Dec. 1, 2011).
Galy et al. (Jul. 2007) “A full fingerprint verification system for a single-line sweep sensor.” IEEE Sensors J., vol. 7 No. 7, pp. 1054-1065.
German Patent Office, Office Action for German Patent Application No. 10 2013 004 842.7 (dated Nov. 24, 2014).
http://en.wikipedia.org/wiki/IEEE_1394 downloaded from the web before Sep. 18, 2014.
U.S. Appl. No. 13/759,852, filed Feb. 5, 2013.
Related Publications (1)
Number Date Country
20170220882 A1 Aug 2017 US
Provisional Applications (1)
Number Date Country
61616529 Mar 2012 US
Continuations (1)
Number Date Country
Parent 13759852 Feb 2013 US
Child 15436450 US