Methods and systems for estimating transducer parameters

Abstract
A system for estimating parameters of an electromagnetic load may include an input for receiving an input excitation signal to the electromagnetic load, a broadband content estimator that identifies at least one portion of the input excitation signal having broadband content, and a parameter estimator that uses the at least one portion of the input excitation signal to estimate and output one or more parameters of the electromagnetic load.
Description
FIELD OF DISCLOSURE

The present disclosure relates in general to estimating parameters of an electromagnetic load, for example, a haptic transducer.


BACKGROUND

Vibro-haptic transducers, for example linear resonant actuators (LRAs), are widely used in portable devices such as mobile phones to generate vibrational feedback to a user. Vibro-haptic feedback in various forms creates different feelings of touch to a user's skin, and may play increasing roles in human-machine interactions for modern devices.


An LRA may be modelled as a mass-spring electro-mechanical vibration system. When driven with appropriately designed or controlled driving signals, an LRA may generate certain desired forms of vibrations. For example, a sharp and clear-cut vibration pattern on a user's finger may be used to create a sensation that mimics a mechanical button click. This clear-cut vibration may then be used as a virtual switch to replace mechanical buttons.



FIG. 1 illustrates an example of a vibro-haptic system in a device 100. Device 100 may comprise a controller 101 configured to control a signal applied to an amplifier 102. Amplifier 102 may then drive a haptic transducer 103 based on the signal. Controller 101 may be triggered by a trigger to output the signal. The trigger may for example comprise a pressure or force sensor on a screen or virtual button of device 100.


Among the various forms of vibro-haptic feedback, tonal vibrations of sustained duration may play an important role to notify the user of the device of certain predefined events, such as incoming calls or messages, emergency alerts, and timer warnings, etc. In order to generate tonal vibration notifications efficiently, it may be desirable to operate the haptic actuator at its resonance frequency.


The resonance frequency f0 of a haptic transducer may be approximately estimated as:










f
0

=

1

2

π



C

M








(
1
)








where C is the compliance of the spring system, and M is the equivalent moving mass, which may be determined based on both the actual moving part in the haptic transducer and the mass of the portable device holding the haptic transducer.


Due to sample-to-sample variations in individual haptic transducers, mobile device assembly variations, temporal component changes caused by aging, and use conditions such as various different strengths of a user gripping of the device, the vibration resonance of the haptic transducer may vary from time to time.



FIG. 2 illustrates an example of a linear resonant actuator (LRA) modelled as a linear system. LRAs are non-linear components that may behave differently depending on, for example, the voltage levels applied, the operating temperature, and the frequency of operation. However, these components may be modelled as linear components within certain conditions. In this example, the LRA is modelled as a third order system having electrical and mechanical elements. In particular, Re and Le are the DC resistance and coil inductance of the coil-magnet system, respectively; and Bl is the magnetic force factor of the coil. The driving amplifier outputs the voltage waveform V(t) with the output impedance Ro. The terminal voltage VT(t) may be sensed across the terminals of the haptic transducer. The mass-spring system 201 moves with velocity u(t).


In a system having an electromagnetic load such as an LRA, it may be desirable to determine the parameters that define an impedance of the electromagnetic load. Knowledge of such parameters may allow for optimization of playback of signals (e.g., playback of haptic waveforms) to the electromagnetic load. In addition, determination of electromagnetic load impedance may be valuable as it may allow for adapting of a playback signal to allow the playback signal to track changing parameters of the electromagnetic load.


An electromagnetic load such as an LRA may be characterized by its impedance ZLra as seen as the sum of a coil impedance Zcoil and a mechanical impedance Zmech:

ZLra=Zcoil+Zmech  (2)


Coil impedance Zcoil may in turn comprise a direct current (DC) resistance Re in series with an inductance Le:

Zcoil=Re+s*Le  (3)


Mechanical impedance Zmech may be defined by three parameters including the resistance at resonance RRES representing an electrical resistance representative of mechanical friction of the mass-spring system of the haptic transducer, a capacitance CMES representing an electrical capacitance representative of an equivalent moving mass M of the mass-spring system of the haptic transducer, and inductance LCES representative of a compliance C of the mass-spring system of the haptic transducer. The electrical equivalent of the total mechanical impedance is the parallel connection of RRES, CMES, LCES. The Laplace transform of this parallel connection is described by:











Z
mech

(
s
)

=

1

(


1

R

R

E

S



+

1


L

C

E

S


*
s


+


c

M

E

S


*
s


)






(
4
)







The resonant frequency f0 of the haptic transducer can be represented as:










f
0

=

1

(

2
*
π
*



L

C

E

S


*

C

M

E


S
*






)






(
5
)







The quality factor Q of the LRA can be represented as:









Q
=




R
RES

*
R

e



R
RES

+

R

e



*



c
MES


L
CES








(
6
)







Various physical parameters of an LRA, including resistance at resonance RES, angular resonant frequency ω0 (e.g., ω0=2πf0), and quality factor q, may vary with temperature and process variations. It may be desirable to obtain a real-time estimate or system identification that tracks these changing parameters in order to model behavior of an LRA in order to maximize its performance. It may be particularly useful to obtain parameter estimates quickly, in a normal course of operation, without the need to introduce special calibration tones or procedures. Thus, it may further be useful to estimate transducer parameters (e.g., perform system identification) efficiently and quickly without disrupting normal operation of a transducer.


SUMMARY

In accordance with the teachings of the present disclosure, the disadvantages and problems associated with identifying parameters of an electromagnetic load may be reduced or eliminated.


In accordance with embodiments of the present disclosure, a system for estimating parameters of an electromagnetic load may include an input for receiving an input excitation signal to the electromagnetic load, a broadband content estimator that identifies at least one portion of the input excitation signal having broadband content, and a parameter estimator that uses the at least one portion of the input excitation signal to estimate and output one or more parameters of the electromagnetic load.


In accordance with these and other embodiments of the present disclosure, a system for estimating parameters of an electromagnetic load may include an input for receiving an input excitation signal to the electromagnetic load, a wideband content block that adds wideband spectral content to the input excitation signal to create a modified input excitation signal, and a parameter estimator that uses the modified input excitation signal to estimate and output one or more parameters of the electromagnetic load.


In accordance with these and other embodiments of the present disclosure, a method for estimating parameters of an electromagnetic load may include receiving an input excitation signal to the electromagnetic load, identifying at least one portion of the input excitation signal having broadband content, and using the at least one portion of the input excitation signal to estimate and output one or more parameters of the electromagnetic load.


In accordance with these and other embodiments of the present disclosure, a method for estimating parameters of an electromagnetic load may include receiving an input excitation signal to the electromagnetic load, adding wideband spectral content to the input excitation signal to create a modified input excitation signal, and using the modified input excitation signal to estimate and output one or more parameters of the electromagnetic load.


Technical advantages of the present disclosure may be readily apparent to one having ordinary skill in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims.


It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory and are not restrictive of the claims set forth in this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:



FIG. 1 illustrates an example of a vibro-haptic system in a device, as is known in the art;



FIG. 2 illustrates an example of a Linear Resonant Actuator (LRA) modelled as a linear system, as is known in the art; and



FIGS. 3A-3D each illustrate an example system for identifying mechanical impedance of an electromagnetic load, in accordance with embodiments of the present disclosure.





DETAILED DESCRIPTION

The description below sets forth example embodiments according to this disclosure. Further example embodiments and implementations will be apparent to those having ordinary skill in the art. Further, those having ordinary skill in the art will recognize that various equivalent techniques may be applied in lieu of, or in conjunction with, the embodiment discussed below, and all such equivalents should be deemed as being encompassed by the present disclosure.


Various electronic devices or smart devices may have transducers, speakers, and acoustic output transducers, for example any transducer for converting a suitable electrical driving signal into an acoustic output such as a sonic pressure wave or mechanical vibration. For example, many electronic devices may include one or more speakers or loudspeakers for sound generation, for example, for playback of audio content, voice communications and/or for providing audible notifications.


Such speakers or loudspeakers may comprise an electromagnetic actuator, for example a voice coil motor, which is mechanically coupled to a flexible diaphragm, for example a conventional loudspeaker cone, or which is mechanically coupled to a surface of a device, for example the glass screen of a mobile device. Some electronic devices may also include acoustic output transducers capable of generating ultrasonic waves, for example for use in proximity detection type applications and/or machine-to-machine communication.


Many electronic devices may additionally or alternatively include more specialized acoustic output transducers, for example, haptic transducers, tailored for generating vibrations for haptic control feedback or notifications to a user. Additionally or alternatively, an electronic device may have a connector, e.g., a socket, for making a removable mating connection with a corresponding connector of an accessory apparatus, and may be arranged to provide a driving signal to the connector so as to drive a transducer, of one or more of the types mentioned above, of the accessory apparatus when connected. Such an electronic device will thus comprise driving circuitry for driving the transducer of the host device or connected accessory with a suitable driving signal. For acoustic or haptic transducers, the driving signal will generally be an analog time varying voltage signal, for example, a time varying waveform.


As previously mentioned, identifying parameters of an electromagnetic load may be useful for some types of haptic application. In the present disclosure, and as described in greater detail below, the transducer circuit model described in FIG. 2 above may be modelled within a control system for the transducer. The transducer circuit model described above with respect to FIG. 2 may correspond to a third-order rational function that describes the frequency response of the transducer. The coefficients of the rational function may be converted directly to estimates of the physical parameters—Re, Le, RES, CMES, and LCES—or to related parameters RES, ω0, and q. In accordance with embodiments of the present disclosure, the coefficients of the rational function may also be used directly in a discrete-time infinite impulse response (IIR) filter that simulates the behavior of the transducer. This behavioral simulation may be useful, for example, in implementing a negative impedance digital filter that may be used to improve transducer dynamics as described herein and in U.S. Provisional Patent Application Ser. No. 62/826,348, filed Mar. 29, 2019 and in any application claiming priority thereto, all of which are incorporated by reference in their entireties.



FIG. 3A illustrates an example system 300A for identifying parameters of an electromagnetic load, in accordance with embodiments of the present disclosure. In some embodiments, system 300A may be integral to a host device comprising system 300A and haptic transducer 301. Such device may include, without limitation, a mobile device, home application, a vehicle, and/or any other system, device, or apparatus that includes a human-machine interface.


In operation, a signal generator 324 of system 300A may generate a waveform signal x(t). Waveform signal x(t) may in turn be amplified by amplifier 306 to generate the driving signal V(t) for driving haptic transducer 301. Although FIG. 3A depicts haptic transducer 301, in some embodiments, another electromagnetic load (e.g., a loudspeaker, a microspeaker, a piezoelectric transducer) may be present in lieu of haptic transducer 301.


Responsive to driving signal V(t), a sensed terminal voltage VT(t) of haptic transducer 301 may be converted to a digital representation by a first analog-to-digital converter (ADC) 303. Similarly, sensed current I(t) may be converted to a digital representation by a second ADC 304. Current I(t) may be sensed across a shunt resistor 302 having resistance Rs coupled to a terminal of haptic transducer 301. The terminal voltage VT(t) may be sensed by a terminal voltage sensing block 307, for example a voltmeter.


These real-time digital estimates of sensed terminal voltage VT(t) and sensed current I(t) may be made available to system 300A, which may be implemented in whole or in part by a central processing unit, digital signal processor, or other digital circuit. As shown in FIG. 3A and described in greater detail below, system 300A may employ least squares and related system identification techniques (e.g., least means square, recursive least squares, etc.) and use time-varying sensed voltage and current signals to compute an estimate of the rational function coefficients (e.g., transducer parameters) corresponding to a frequency response of haptic transducer 301. In system 300A as shown in FIG. 3A, some processing operations such as decimation, interpolation, and filtering of signals may not be shown in order for ease of exposition.


As shown in FIG. 3A, system 300A may use least squares linear regression to estimate transducer parameters. To perform linear regression, in principle, an accumulate correlation matrix/vector block 310 may form a regression matrix X from observed data, for example:

X=[I(n−1)I(n−2)I(n−3)Vm(n)Vm(n−1)Vm(n−2)Vm(n−3)]

wherein each term of the matrix may comprise an N-length column vector comprising samples having zero, one, two, or three delays. I(i) may represent a digital sample of sensed current I(t) and Vm(i) may represent a digital sample of an estimate of sensed terminal voltage VT(t) that may be determined by combining (e.g., at combiner 320) a delayed (by delay block 317) version of a raw waveform signal x′(t) generated by pulse generator 322 with a product (e.g., calculated by multiplier 318) of a calculated negative resistance Re_neg and sensed current I(t). Delayed values within regression matrix X may be determined by delaying digital samples with appropriate delay blocks 308. Thus, regression matrix X may comprise an N×7 matrix where N is the number of samples (e.g., N=813=17 milliseconds of samples at 48 kHz).


Accumulate correlation matrix/vector block 310 may also form an N×1 vector y from output data of the linear regression, in this case the undelayed digitally-sampled sensed current I(n), for example:

y=[I(n)]


If a parameter vector is defined as:

params=[a1 a2 a3 b0 b1 b2 b3]T

then the third order difference equation above may be rewritten in matrix/vector form as:

y=X*params

which suggests that parameters params may be found by solving:

params=X−1*y

Because X may be an N×7 rectangular matrix and y has dimensions N×1, and because N is likely to be much greater than 7, the relationships described above may correspond to a highly overdetermined system of equations. Thus, such system of equations may be solved in a least-squares sense—that is, for parameters params—that minimizes the sum of (y−X*params_estimate)2. To accomplish this determination, both sides of the original regression equation may be multiplied by XT:

XT*y=XT*X*params


If θ is defined as θ=XT*y and R is defined as R=XT*X, then θ=R*params and params=R−1*y.


R may thus be a square 7*7 matrix whose entries are the sample auto-correlation and cross-correlations of the columns of the regression matrix X, and θ may be a 7×1 vector of sample cross-correlations of the output undelayed I(n) column vector with the 7 columns of X. This set of equations may be “normal equations” often encountered in statistical signal processing. When correlation or cross-correlation matrices is referenced in this disclosure, it is to be understood that covariance or cross-covariation matrices is referring to substantially the same type of matrices.


The normal equations in this case may represent a system of seven equations in seven unknowns and may be solved for parameters params using a variety of linear algebra techniques including, but not limited to, Gaussian Elimination, Gauss-Jordan, Matrix Inversion, Cholesky Decomposition, and others. In the present disclosure, the simplest of these techniques, Gaussian Elimination, may be emphasized.


The form of the normal equations enables a useful structure for the system identification and model estimation: for every sample (e.g., at 48 kHz or even a lower decimated sample rate), accumulate correlation matrix/vector block 310 may update R and θ correlations from I(i) and Vm(i) (e.g., only R and θ may be maintained in memory and are updated in every sample). Such updates may simply be multiply-accumulate operations. The matrix X or vector y may never be stored or computed in memory—just the correlations R and θ.


When parameters params are desired to be updated, solve equations block 312 may solve R−1*y, for example by using Gaussian Elimination. A Gaussian Elimination operation may occur over a typical digital signal processor signal processing frame—(e.g., 48 samples at 48 kHz)—or even be spread over a number of frames.


It may be likely that solve equations block 312 may solve the simultaneous equations once or twice per haptic pulse. For example, for a long haptic pulse generated by a raw waveform signal x′(t) having, for example, ten sinusoidal cycles, digitized samples of the sensed terminal voltage VT(t) and sensed current I(t) of just the first three cycles may be selected, and a least-squares system identification may need to be determined based only on these three cycle regions. Then, in the case where the estimated model parameters are used to control a negative impedance system, such as described in the previously referenced U.S. Provisional Patent Application Ser. No. 62/826,348, the parameters of a negative impedance IIR filter may be updated shortly after the first three cycles, for example by the fourth cycle, so that when raw waveform signal x′(t) ends after ten cycles, the new estimated model parameters may be in place and may be able to ensure good braking of the haptic pulse, and thus prevent the pulse from ringing far beyond the tenth cycle.


Similarly, another three cycle region of digitized samples of the sensed terminal voltage VT(t) and sensed current I(t) after raw waveform signal x′(t) ends may be selected and system 300A may perform an additional least-squares estimate based on these cycles to further update the model parameters to assure good braking of the haptic pulse. Alternatively, for a short haptic pulse (e.g., raw waveform signal x′(t) for just two cycles), a region of three cycles of digitized samples of the sensed terminal voltage VT(t) and sensed current I(t) corresponding to the start of the pulse and including one cycle after the end of the pulse may be selected to perform the system identification.


As just described, raw waveform signal x′(t) often comprises of a small number of cycles of a sinusoid or other narrow-band stimulus. Narrow-band stimuli are often discouraged in system identification applications, because they only excite a limited frequency range of the system. However, by selecting transient regions near the start and stop of a pulse, the wideband transient effects that occur when the sinusoid or narrow band input abruptly turns on or off may be included. Thus, the wideband spectrum associated with the start and/or stop of the selected transient region may provide the necessary wideband stimulus to permit accurate system identification.


System identification of various systems is often performed using least mean squares (LMS), recursive least squares (RLS), or other recursive techniques. These techniques are, in fact, often derived from the description of least-squares and normal equations provided above. However, these techniques often have an explicit or implicit “forgetting factor” that emphasizes the most recent samples of the selected regions at the expense of samples earlier in the region. This emphasizing of most recent samples may be counterproductive in the case where the abrupt start or stop of the input is being relied upon to provide the wideband transient stimulus required for accurate system identification. For this reason, direct computation of the correlation matrix R and cross-correlation matrix θ and corresponding solution of the simultaneous normal equations may be emphasized. The first few samples of a selected transient region may be weighted at least as highly as the last samples of a selected transient region. This approach may enable performance of rapid and accurate least-squares system identification during normal system operation, rather than having to resort to special calibration modes that require broadband noise stimuli or pilot tones.


The sample-by-sample accumulation of matrices R and θ associated with least-squares estimation, previously described above, may enable system 300A to avoid storing sampled segments of sensed terminal voltage VT(t) and sensed current I(t). Only the correlation matrices may be stored and updated every sample. When a new set of model parameters is desired, the normal equations may be solved or may result in simplified subsets to be described below. The solution of these equations may be spread out across a number of samples—for example one or more sample frames (e.g., where each frame is 48 samples)—to provide efficient distribution of real-time computation. As mentioned, it may be desirable for system 300A to solve the equations once or twice per haptic pulse.


Examples herein may use sensed terminal voltage VT(t) and sensed current I(t) corresponding to the first 17 milliseconds (e.g., three input cycles at ˜176 Hz) of a haptic pulse. Of these 17 milliseconds, the first few milliseconds may be very important as they include wideband information associated with the onset transient of the haptic stimulus. As mentioned above, such haptic pulse characteristics are one of the reasons the use of LMS or RLS with a “forgetting factor” is not desired. Such techniques would deemphasize the first few milliseconds of the 17 milliseconds of samples of sensed terminal voltage VT(t) and sensed current I(t) in favor of the last few milliseconds. If anything, such techniques result in the opposite of what is desired.


However, it may also not be desired for the sample-by-sample accumulation of correlations of matrices R and θ to go on uninterrupted forever. Instead, accumulate correlation matrix/vector block 310 may explicitly reset matrices R and θ to zero at appropriate times (e.g., at the beginning of a haptic pulse). Accumulate correlation matrix/vector block 310 may accumulate correlations of R and θ until the simultaneous equations are solved (e.g., after 17 milliseconds). If it is desired to perform a further solution of the simultaneous equations later in the pulse that also includes the start transient data, then accumulate correlation matrix/vector block 310 may continue the accumulation of correlations until the next time the equations are solved. For example, in some embodiments, system 300A may solve the simultaneous equations a second time 1-2 milliseconds after raw waveform signal x′(t) ends. At that point, matrices R and θ may reflect both the wideband transient behavior of the start of raw waveform signal x′(t) and the wideband transient behavior due to an abrupt stop of raw waveform signal x′(t). This combined start and stop wideband transient behavior may provide a particularly rich set of correlations and may lead to a robust estimate of model parameters. System 300A may also save parameter estimates from one haptic pulse to the next pulse so that they may be used, for example as initial negative impedance IIR filter conditions, in future estimates.


The parameters determined by the least-squares system identification are coefficients of a rational function, or equivalently of a difference equation, that describes the electrical equivalent impedance of the physical LRA. For example the expression:

ZLRA=(b0+b1*z−1+b2*z−2+b3*z−3)/(1−a1*z−1−a2*z−2−a3*z−1)

involves the seven parameters b0, b1, b2, b3, a1, a2, a3 which may be seven parameters params determined from least-squares estimation as described above. These seven parameters may also serve as the parameters of a digital IIR filter that provides a digital model of the LRA behavior and may be used to control a negative impedance system, such as described in the previously referenced U.S. Provisional Patent Application Ser. No. 62/826,348.


A parameter calculation block 314 may translate these coefficients to physical parameters—for example, DC resistance Re, angular resonant frequency ω0 (or resonant frequency f0), and quality factor q—using algebraic calculations as described below. For example, parameter calculation block 314 may calculate an estimate Re_est for DC resistance Re as the direct current value (e.g., z=1) of the impedance given in the above expression for ZLRA by sensed terminal voltage VT(t) divided by sensed current I(t). Substituting for z=1 in the above expression for ZLRA provides an expression for the DC resistance:

Re_est=(b0+b1+b2+b3)/(1−a1−a2−a3)


To obtain estimates for quality factor q and resonant frequency f0 of transducer 301, parameter calculation block 314 may convert the complex conjugate discrete time z-domain poles and zeros of the estimated impedance transfer function given above to continuous time s-domain poles and zeros:

pcont=log(p)*fs;
zcont=log(z)*fs

where p and z are the discrete time complex poles and zeros of the impedance transfer function described by the rational function model parameters determined by least-squares system identification, pcont and zcont are s-domain continuous time poles and zeros, and fs is the sampling frequency in the discrete-time domain.


An estimated damping factor ζest and an estimated quality factor qest for entire transducer 301 (both mechanical and electrical components together) may be given by:

ζest=real(zcont); and
qest=1/(2*ζest).


The estimated mechanical damping factor ζmech_est and estimate mechanical quality factor qmech_est may be given by:

ζmech_est=real(pcont) and
qmech_est=1/(2*ζmech_est).


Estimated resonant frequency f0_est of transducer 301 may be given by

f0_est=|pcont/2π|


It may be the case that an explicit expression for estimated coil inductance Le is not of interest, although the information for determining coil inductance Le may be within estimated rational function least-squares parameters params. For example, it may be the case that a negative impedance system uses only estimated DC resistance Re_est in a negative impedance feedback path rather than estimated DC resistance Re_est and estimated coil inductance Le in series, or that a feedback path consists of estimated DC resistance Re_est in series with a fixed, predetermined value coil inductance Le.


Thus, from parameters params, parameter calculation block 314 may calculate physical parameters of transducer 301, including DC resistance Re, angular resonant frequency ω0, and quality factor q. From angular resonant frequency ω0 and quality factor q, pulse generator 322 may generate raw waveform signal x′(t), for example, having a frequency at or near angular resonant frequency ω0 in order to provide the strongest haptic effect at transducer 301. Further, system 300A may apply (e.g., at multiplier 316) a multiplicative factor Re_cancel to an estimated DC resistance Re Re_est to generate a negative resistance Re_neg that may be applied by signal generator 324 to raw waveform signal x′(t) in order to generate waveform signal x(t).


Although system 300A may estimate from a short sinusoidal pulse, improved performance may also be possible with the addition of multiple sinusoids. For example, subharmonic or superharmonic sinusoids may be added at frequencies lower than or higher than the principle sinusoid. The addition of such other sinusoids may increase the bandwidth for the steady-state stimulus.



FIG. 3B illustrates an example system 300B for identifying parameters of an electromagnetic load, in accordance with embodiments of the present disclosure. In some embodiments, system 300B may be integral to a host device comprising system 300B and haptic transducer 301. Such device may include, without limitation, a mobile device, home application, a vehicle, and/or any other system, device, or apparatus that includes a human-machine interface. System 300B may be similar in many respects to system 300A, and thus, only certain differences between system 300B and system 300A may be discussed below.


The solution described above with respect to system 300A may involve inverting, or equivalently finding a more numerically robust “pseudo-inverse” of a 7×7 matrix. This solution may be numerically challenging, especially in fixed-point implementations. The size of the 7×7 matrix may be reduced by observing that there are certain fixed relationships between the numerator and denominator coefficients of the rational function. For example, estimated DC resistance Re_est may be determined separately by averaging:







R
e_est

=



(




V
T_LP

(
t
)

2




I

L

P


(
t
)

2


)

_







wherein the bar under the radical represents an average of the fraction under the radical, VTLP(t) is a low-pass filtered version of VT(t) and ILP(t) is a low-pass filtered version of I(t), wherein the low-pass cutoff frequency of a filter for generating such low-pass filtered versions is lower than resonant frequency f0 of transducer 301.


If coil inductance Le is known a-priori, within acceptable tolerance (e.g., by laboratory measurements), or is otherwise estimated, then a discrete time model of the coil impedance Zcoil may be given as:







Z
coil

=




(


R

e

+

2

L

e


f
s



)


z

+

R

e

-

2

L

e


f
s




z
+
1






Coil impedance Zcoil may be eliminated from the estimation problem by forming the signal:

Vm(z)=VT(z)−ZcoilI(z)

wherein ZcoilI(z) may simply be sensed current I(z) filtered by a difference equation corresponding to the rational expression for coil impedance Zcoil.


Instead of estimating the full LRA impedance









Z
Lra

(
z
)

=



V
T

(
z
)


I

(
z
)



,





mechanical impedance Zmech may be estimated as:








Z
mech

(
z
)

=



V
m

(
z
)


I

(
z
)






This equation for mechanical impedance Zmech may be rewritten in the form:








Z

m

e

c

h


(
z
)

=




t

b

0


-


t

b

2




z

-
2






t

a

0


+


t

a

1




z

-
1



+


t

a

2




z

-
2





=



t
g

(

1
-

z

-
2



)



t

a

0


+


t

a

1




z

-
1



+


t

a

2




z

-
2











wherein:

tg=tb0=tb2=2LCESRRESfs
ta0=4CMESLCESRRESfs2+2LCESfs+RRES
ta1=−8CMESLCESRRESfs2+2RRES
ta2=4CMESLCESRRESfs2−2LCESfs+RRES


A differentiator 326 may further differentiate sensed current I(t), resulting in:

Idiff(z)=I(z)(1−z−2)

wherein (1−z−2) may correspond to a transfer function of differentiator 326 with impulse response [1 0 −1]. Instead of estimating full LRA impedance ZLra as above, the following expression for a differential mechanical impedance Zmech_diff_est may be estimated as follows:








z


mech_diff

_est



(
z
)

=



V


m
-


m

e

c

h


(
z
)



I
diff

(
z
)







which may be written as:








z


mech_diff

_est



(
z
)

=


t
g



t

a

0


+


t

a

1




z

-
1



+


t

a

2




z

-
2










or equivalently by dividing both the numerator and denominator by tg as:








z


mech_diff

_est



(
z
)

=

1



t

a

0


/

t
g


+


t

a

1





z

-
1


/

t
g



+


t

a

2





z

-
2


/

t
g









Using the following definitions:

pa0=ta0/tg;
pa1=ta1/tg; and
pa2=ta2/tg

then the expression for differential mechanical impedance Zmech_diff_est may be rewritten as follows:








z


mech_diff

_est



(
z
)

=


t
g



p

a

0


+


p

a

1




z

-
1



+


p

a

2




z

-
2










which may correspond to the difference equation:

Idiff(n)=vm(n)+vm(n−1)+vm(n−2)


Accumulate correlation matrix/vector block 310 may estimate (e.g., using least-squares regression) the parameters pa0, pa1, and pa2 with signals Vm and Idiff as input and output data. Such estimation may involve the inversion of a 3×3 matrix, which may be simpler than the 7×7 matrix described above with respect to system 300A.


By dividing the numerator and denominator of the previous expression for differential mechanical impedance Zmech_diff_est by parameter pa0, it may be put into a more standard digital signal processing form of:









z


mech_diff

_est



(
z
)

=

g

1
+


a
1



z

-
1



+


a
2



z

-
2









where
:





g
=

1

p

a

0




;






a
1

=


p

a

1



p

a

0




;
and





a
2

=


p

a

2



p

a

0








System 300B depicts a system for performing the least-squares regression described above, with a somewhat simpler variant, in that sensed voltage signal VT(t) corresponds in FIG. 3B to reconstructed voltage signal Vm_recon and voltage signal Vm=VT(t)−ReI(t) (e.g., rather than Vm=VT(t)−ZcoilI(t)). However, the inclusion of coil inductance Le in coil impedance Zcoil may result in a more accurate estimate of differential mechanical impedance Zmech_diff_est(z) by accumulate correlation matrix/vector block 310.


Based on the estimated differential mechanical impedance Zmech_diff_est(z) and resulting parameters g, a1, and a2, system 300B may compute and estimate full LRA impedance ZLra using a predetermined estimated DC resistance Re and coil inductance Le:

Zlra_est(z)=Zmech_diff_est(z)(1+z−2)+Zcoil


The result may be a three-pole, three-zero rational function with the same form as that obtained by the 7×7 correlation matrix estimation of system 300A.


The inverse of estimated full LRA impedance Zlra_est(z) may be given by:








G
Lra_est

(
z
)

=



I

(
z
)



V
T

(
z
)




inverse



(


Z
lra_est

(
z
)

)








which corresponds to a third-order difference equation. Sensed voltage VT(t) may be filtered by this third-order difference equation to generate a predicted sensed current Ipred:

Ipred(z)=VT(z)GLra_est(z)


Because a direct measure of sensed current I(t) is available in system 300B, a squared error may be computed as:

errorest=(Ipred(t)−I(t))2


Another approach to estimating DC resistance Re may be to begin with a guess, shown in FIG. 3B as Re_guess, and then iterate the estimation full LRA impedance ZLra_est, computing error errorest based on resistance guess Re_guess. After each iteration, system 300B may adjust resistance guess Re_guess following a gradient descent on error errorest as a function of resistance guess Re_guess, until the change in resistance guess Re_guess falls below a pre-defined tolerance.



FIG. 3C illustrates an example system 300C for identifying parameters of an electromagnetic load, in accordance with embodiments of the present disclosure. In some embodiments, system 300C may be integral to a host device comprising system 300C and haptic transducer 301. Such device may include, without limitation, a mobile device, home application, a vehicle, and/or any other system, device, or apparatus that includes a human-machine interface. System 300C may be similar in many respects to system 300B, and thus, only certain differences between system 300C and system 300B may be discussed below.


It may be desirable for regressor signals that are used to form correlation matrices to be uncorrelated between themselves. Such decorrelation may diagonalize much of the correlation matrix, which may lead to numerically superior results. System 300C may include a lattice filter 328 to accomplish such decorrelation of signals, as shown in FIG. 3C. One interesting property of the specific lattice filter coefficients chosen in FIG. 3C is that the second tap output of lattice filter 328 may be a notch filter at the resonant frequency f0 of transducer 301. Such property may mean that a ratio of the smoothed magnitude of the second tap signal of lattice filter 328 may be used to estimate DC resistance Re with less low-pass filtering than that described above in the ratio of low-pass filtered sensed voltage signal VT(t) and sensed current signal I(t) because the large changes in impedance at resonant frequency f0 may be largely eliminated by the notch output of the second tap of lattice filter 328. Accordingly, system 300C may use a simpler low-pass filter (e.g., than that of system 300B) to eliminate effects of coil inductance Le which may be significant at higher frequencies well above resonance.



FIG. 3D illustrates an example system 300D for identifying parameters of an electromagnetic load, in accordance with embodiments of the present disclosure. In some embodiments, system 300D may be integral to a host device comprising system 300D and haptic transducer 301. Such device may include, without limitation, a mobile device, home application, a vehicle, and/or any other system, device, or apparatus that includes a human-machine interface. System 300D may be similar in many respects to system 300D, and thus, only certain differences between system 300D and system 300C may be discussed below.


In some instances, it may be desired to form an explicit estimate of the broadband content of voltage signal Vm. If voltage signal Vm is determined to be sufficiently broadband, then solution of the normal equations may be enabled. Otherwise, the solution to the normal equation may be disabled.


As shown in FIG. 3D, system 300D may include filter bank 330. Filter bank 330 may receive voltage signal Vm as input and pass it through a bank of filter channels of different frequencies. If the output of filter bank 330 shows sufficient energy in a wide range of frequency bands, then voltage signal Vm may be a wideband signal. Filter bank 330 may generate an ENABLE SOLVE signal which may be input to solve equations block 312 to enable solution of the normal equations after voltage signal Vm has been explicitly determined to be sufficiently broadband. It will be recognized by those skilled in the art of spectral estimation, that there are many ways to measure the spectrum and bandwidth of a signal. Any of these methods, including parametric spectral estimation techniques and spectral tilt estimates may be used in place of filter bank 330 to form an estimate of the bandwidth of voltage signal Vm in order to generate the ENABLE SOLVE signal.


In order to guarantee a broadband Vm signal to facilitate parameter estimation, it may be desired to artificially add broadband content to the output of pulse generator 322. Accordingly, a wideband content block 332 of system 300D may receive a raw waveform signal x″(t) from pulse generator 322 and add wideband content to such signal to generate modified raw waveform signal x′(t) for input to signal generator 324. Wideband content block 332 may use any suitable approach to add wideband content to raw waveform signal x″(t) to generate modified raw waveform signal x′(t). For example, in some embodiments, wideband content block 332 may comprise a wideband noise generator whose output may be added or multiplied with raw waveform signal x″(t) to generate modified raw waveform signal x′(t). In other embodiments, wideband content block may comprise a distortion circuit configured to clip or otherwise distort raw waveform signal x″(t) to increase its wideband content. As a further example, wideband content block 332 may comprise a modulation circuit to modulate raw waveform signal x″(t) to increase its wideband content.


The foregoing discloses example embodiments of systems and methods for least-squares estimation for finding the parameters of a transducer, and several embodiments for constraining and simplifying the least-squares estimation have been illustrated and discussed. This constraining and simplifying may allow for quickly and efficiently estimating the parameters of a transducer in real-time without interfering with the normal operation of the system.


As used herein, when two or more elements are referred to as “coupled” to one another, such term indicates that such two or more elements are in electronic communication or mechanical communication, as applicable, whether connected indirectly or directly, with or without intervening elements.


This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative. Accordingly, modifications, additions, or omissions may be made to the systems, apparatuses, and methods described herein without departing from the scope of the disclosure. For example, the components of the systems and apparatuses may be integrated or separated. Moreover, the operations of the systems and apparatuses disclosed herein may be performed by more, fewer, or other components and the methods described may include more, fewer, or other steps. Additionally, steps may be performed in any suitable order. As used in this document, “each” refers to each member of a set or each member of a subset of a set.


Although exemplary embodiments are illustrated in the figures and described below, the principles of the present disclosure may be implemented using any number of techniques, whether currently known or not. The present disclosure should in no way be limited to the exemplary implementations and techniques illustrated in the drawings and described above.


Unless otherwise specifically noted, articles depicted in the drawings are not necessarily drawn to scale.


All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the disclosure and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present disclosure have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.


Although specific advantages have been enumerated above, various embodiments may include some, none, or all of the enumerated advantages. Additionally, other technical advantages may become readily apparent to one of ordinary skill in the art after review of the foregoing figures and description.


To aid the Patent Office and any readers of any patent issued on this application in interpreting the claims appended hereto, applicants wish to note that they do not intend any of the appended claims or claim elements to invoke 35 U.S.C. § 112(f) unless the words “means for” or “step for” are explicitly used in the particular claim.

Claims
  • 1. A system for estimating parameters of an electromagnetic load comprising: an input for receiving an input excitation signal to the electromagnetic load;a broadband content estimator that identifies at least one portion of the input excitation signal having broadband content; anda parameter estimator that uses the at least one portion of the input excitation signal to estimate and output one or more parameters of the electromagnetic load.
  • 2. The system of claim 1, wherein the at least one portion of the input excitation signal is a beginning of a transient of the input excitation signal.
  • 3. The system of claim 1, wherein the at least one portion of the input excitation signal is an end of a transient of the input excitation signal.
  • 4. The system of claim 1, wherein the broadband content estimator comprises a filter bank to determine spectral broadness of the input excitation signal at any portion of the input excitation signal.
  • 5. The system of claim 1, wherein the electromagnetic load is a haptic transducer and the input excitation signal is a haptic waveform for driving the haptic transducer.
  • 6. The system of claim 1, wherein the at least one portion of the input excitation signal comprises a beginning of the haptic waveform.
  • 7. The system of claim 1, wherein the at least one portion of the input excitation signal comprises an end of the haptic waveform.
  • 8. The system of claim 1, wherein the at least one portion of the input excitation signal comprises a beginning of the haptic waveform and an end of the haptic waveform.
  • 9. A system for estimating parameters of an electromagnetic load comprising: an input for receiving an input excitation signal to the electromagnetic load;a wideband content block that adds wideband spectral content to the input excitation signal to create a modified input excitation signal; anda parameter estimator that uses the modified input excitation signal to estimate and output one or more parameters of the electromagnetic load.
  • 10. The system of claim 9, wherein the electromagnetic load is a haptic transducer and the input excitation signal is a haptic waveform for driving the haptic transducer.
  • 11. A method for estimating parameters of an electromagnetic load comprising: receiving an input excitation signal to the electromagnetic load;identifying at least one portion of the input excitation signal having broadband content; andusing the at least one portion of the input excitation signal to estimate and output one or more parameters of the electromagnetic load.
  • 12. The method of claim 11, wherein the at least one portion of the input excitation signal is a beginning of a transient of the input excitation signal.
  • 13. The method of claim 11, wherein the at least one portion of the input excitation signal is an end of a transient of the input excitation signal.
  • 14. The method of claim 11, wherein identifying at least one portion of the input excitation signal having broadband content comprises using a filter bank to determine spectral broadness of the input excitation signal at any portion of the input excitation signal.
  • 15. The method of claim 11, wherein the electromagnetic load is a haptic transducer and the input excitation signal is a haptic waveform for driving the haptic transducer.
  • 16. The method of claim 11, wherein the at least one portion of the input excitation signal comprises a beginning of the haptic waveform.
  • 17. The method of claim 11, wherein the at least one portion of the input excitation signal comprises an end of the haptic waveform.
  • 18. The method of claim 11, wherein the at least one portion of the input excitation signal comprises a beginning of the haptic waveform and an end of the haptic waveform.
  • 19. A method for estimating parameters of an electromagnetic load comprising: receiving an input excitation signal to the electromagnetic load;adding wideband spectral content to the input excitation signal to create a modified input excitation signal; andusing the modified input excitation signal to estimate and output one or more parameters of the electromagnetic load.
  • 20. The method of claim 19, wherein the electromagnetic load is a haptic transducer and the input excitation signal is a haptic waveform for driving the haptic transducer.
RELATED APPLICATION

The present disclosure claims priority to U.S. Provisional Patent Application Ser. No. 62/826,388, filed Mar. 29, 2019, and U.S. Provisional Patent Application Ser. No. 62/826,348, filed Mar. 29, 2019, each of which is incorporated by reference herein in its entirety.

US Referenced Citations (370)
Number Name Date Kind
3686927 Scharton Aug 1972 A
4902136 Mueller et al. Feb 1990 A
5374896 Sato et al. Dec 1994 A
5684722 Thorner et al. Nov 1997 A
5748578 Schell May 1998 A
5857986 Moriyasu Jan 1999 A
6050393 Murai et al. Apr 2000 A
6278790 Davis et al. Aug 2001 B1
6294891 McConnell et al. Sep 2001 B1
6332029 Azima et al. Dec 2001 B1
6388520 Wada et al. May 2002 B2
6567478 Oishi et al. May 2003 B2
6580796 Kuroki Jun 2003 B1
6683437 Tierling Jan 2004 B2
6703550 Chu Mar 2004 B2
6762745 Braun et al. Jul 2004 B1
6768779 Nielsen Jul 2004 B1
6784740 Tabatabaei Aug 2004 B1
6816833 Iwamoto Nov 2004 B1
6906697 Rosenberg Jun 2005 B2
6995747 Casebolt et al. Feb 2006 B2
7042286 Meade et al. May 2006 B2
7154470 Tierling Dec 2006 B2
7277678 Rozenblit et al. Oct 2007 B2
7301094 Noro Nov 2007 B1
7333604 Zernovizky et al. Feb 2008 B2
7392066 Hapamas Jun 2008 B2
7456688 Okazaki et al. Nov 2008 B2
7623114 Rank Nov 2009 B2
7639232 Grant et al. Dec 2009 B2
7777566 Drogi et al. Aug 2010 B1
7791588 Tierling et al. Sep 2010 B2
7825838 Srinivas et al. Nov 2010 B1
7979146 Ullrich et al. Jul 2011 B2
8068025 Devenyi et al. Nov 2011 B2
8098234 Lacroix et al. Jan 2012 B2
8102364 Tierling Jan 2012 B2
8325144 Tierling et al. Dec 2012 B1
8427286 Grant et al. Apr 2013 B2
8441444 Moore et al. May 2013 B2
8466778 Wang et al. Jun 2013 B2
8480240 Kashiyama Jul 2013 B2
8572293 Cruz-Hernandez et al. Oct 2013 B2
8572296 Shasha et al. Oct 2013 B2
8593269 Grant et al. Nov 2013 B2
8648659 Oh et al. Feb 2014 B2
8648829 Shahoian et al. Feb 2014 B2
8659208 Rose et al. Feb 2014 B1
8754757 Ullrich et al. Jun 2014 B1
8754758 Ullrich et al. Jun 2014 B1
8947216 Da Costa et al. Feb 2015 B2
8981915 Birnbaum et al. Mar 2015 B2
8994518 Gregorio et al. Mar 2015 B2
9019087 Bakircioglu et al. Apr 2015 B2
9030428 Fleming May 2015 B2
9063570 Weddle et al. Jun 2015 B2
9070856 Rose et al. Jun 2015 B1
9083821 Hughes Jul 2015 B2
9092059 Bhatia Jul 2015 B2
9117347 Matthews Aug 2015 B2
9128523 Buuck et al. Sep 2015 B2
9164587 Da Costa et al. Oct 2015 B2
9196135 Shah et al. Nov 2015 B2
9248840 Truong Feb 2016 B2
9326066 Klippel Apr 2016 B2
9329721 Buuck May 2016 B1
9354704 Lacroix et al. May 2016 B2
9368005 Cruz-Hernandez et al. Jun 2016 B2
9489047 Jiang et al. Nov 2016 B2
9495013 Underkoffler et al. Nov 2016 B2
9507423 Gandhi et al. Nov 2016 B2
9513709 Gregorio et al. Dec 2016 B2
9520036 Buuck Dec 2016 B1
9588586 Rihn Mar 2017 B2
9640047 Choi et al. May 2017 B2
9652041 Jiang et al. May 2017 B2
9696859 Heller et al. Jul 2017 B1
9697450 Lee Jul 2017 B1
9715300 Sinclair et al. Jul 2017 B2
9740381 Chaudhri et al. Aug 2017 B1
9842476 Rihn et al. Dec 2017 B2
9864567 Seo Jan 2018 B2
9881467 Levesque Jan 2018 B2
9886829 Levesque Feb 2018 B2
9946348 Ullrich et al. Apr 2018 B2
9947186 Macours Apr 2018 B2
9959744 Koskan et al. May 2018 B2
9965092 Smith May 2018 B2
9990089 Dickinson et al. Jun 2018 B2
10032550 Zhang et al. Jul 2018 B1
10039080 Miller et al. Jul 2018 B2
10055950 Saboune et al. Aug 2018 B2
10074246 Da Costa et al. Sep 2018 B2
10082873 Zhang Sep 2018 B2
10102722 Levesque et al. Oct 2018 B2
10110152 Hajati Oct 2018 B1
10165358 Koudar et al. Dec 2018 B2
10171008 Nishitani et al. Jan 2019 B2
10175763 Shah Jan 2019 B2
10191579 Forlines Jan 2019 B2
10264348 Harris et al. Apr 2019 B1
10402031 Vandermeijden et al. Sep 2019 B2
10447217 Zhao et al. Oct 2019 B2
10452144 Aimone et al. Oct 2019 B2
10564727 Billington et al. Feb 2020 B2
10620704 Rand et al. Apr 2020 B2
10667051 Stahl May 2020 B2
10726638 Mondello et al. Jul 2020 B2
10732714 Rao et al. Aug 2020 B2
10735956 Bae et al. Aug 2020 B2
10782785 Hu et al. Sep 2020 B2
10795443 Hu et al. Oct 2020 B2
10820100 Stahl et al. Oct 2020 B2
10828672 Stahl et al. Nov 2020 B2
10832537 Doy et al. Nov 2020 B2
10841696 Mamou-Mani Nov 2020 B2
10848886 Rand Nov 2020 B2
10860202 Sepehr et al. Dec 2020 B2
10969871 Rand et al. Apr 2021 B2
10976825 Das et al. Apr 2021 B2
11069206 Rao et al. Jul 2021 B2
11079874 Lapointe et al. Aug 2021 B2
11139767 Janko et al. Oct 2021 B2
11150733 Das et al. Oct 2021 B2
11259121 Lindemann et al. Feb 2022 B2
11460526 Foo et al. Oct 2022 B1
11500469 Rao et al. Nov 2022 B2
20010043714 Asada et al. Nov 2001 A1
20020018578 Burton Feb 2002 A1
20020044046 Takahashi Apr 2002 A1
20020085647 Oishi et al. Jul 2002 A1
20030068053 Chu Apr 2003 A1
20030214485 Roberts Nov 2003 A1
20040120540 Mullenborn et al. Jun 2004 A1
20050031140 Browning Feb 2005 A1
20050134562 Grant et al. Jun 2005 A1
20050195919 Cova Sep 2005 A1
20060028095 Maruyama et al. Feb 2006 A1
20060197753 Hotelling Sep 2006 A1
20060284856 Soss Dec 2006 A1
20070013337 Liu et al. Jan 2007 A1
20070024254 Radecker et al. Feb 2007 A1
20070241816 Okazaki et al. Oct 2007 A1
20080077367 Odajima Mar 2008 A1
20080226109 Yamakata et al. Sep 2008 A1
20080240458 Goldstein et al. Oct 2008 A1
20080293453 Atlas et al. Nov 2008 A1
20080316181 Nurmi Dec 2008 A1
20090020343 Rothkopf et al. Jan 2009 A1
20090079690 Watson et al. Mar 2009 A1
20090088220 Persson Apr 2009 A1
20090096632 Ullrich et al. Apr 2009 A1
20090102805 Meijer et al. Apr 2009 A1
20090128306 Luden et al. May 2009 A1
20090153499 Kim et al. Jun 2009 A1
20090189867 Krah Jul 2009 A1
20090278819 Goldenberg et al. Nov 2009 A1
20090279719 Lesso Nov 2009 A1
20090313542 Cruz-Hernandez et al. Dec 2009 A1
20100013761 Birnbaum et al. Jan 2010 A1
20100080331 Garudadri et al. Apr 2010 A1
20100085317 Park et al. Apr 2010 A1
20100141408 Doy et al. Jun 2010 A1
20100260371 Afshar Oct 2010 A1
20100261526 Anderson et al. Oct 2010 A1
20100331685 Stein et al. Dec 2010 A1
20110056763 Tanase et al. Mar 2011 A1
20110075835 Hill Mar 2011 A1
20110077055 Pakula et al. Mar 2011 A1
20110141052 Bernstein et al. Jun 2011 A1
20110161537 Chang Jun 2011 A1
20110163985 Bae et al. Jul 2011 A1
20110167391 Momeyer et al. Jul 2011 A1
20120011436 Jinkinson et al. Jan 2012 A1
20120105358 Momeyer et al. May 2012 A1
20120105367 Son et al. May 2012 A1
20120112894 Yang et al. May 2012 A1
20120206246 Cruz-Hernandez et al. Aug 2012 A1
20120206247 Bhatia et al. Aug 2012 A1
20120229264 Company Bosch et al. Sep 2012 A1
20120249462 Flanagan et al. Oct 2012 A1
20120253698 Cokonaj Oct 2012 A1
20120306631 Hughes Dec 2012 A1
20130016855 Lee et al. Jan 2013 A1
20130027359 Schevin et al. Jan 2013 A1
20130038792 Quigley et al. Feb 2013 A1
20130096849 Campbell et al. Apr 2013 A1
20130141382 Simmons et al. Jun 2013 A1
20130208923 Suvanto Aug 2013 A1
20130275058 Awad Oct 2013 A1
20130289994 Newman et al. Oct 2013 A1
20130307786 Heubel Nov 2013 A1
20140035736 Weddle et al. Feb 2014 A1
20140056461 Afshar Feb 2014 A1
20140064516 Cruz-Hernandez et al. Mar 2014 A1
20140079248 Short et al. Mar 2014 A1
20140118125 Bhatia May 2014 A1
20140118126 Garg et al. May 2014 A1
20140119244 Steer et al. May 2014 A1
20140125467 Da Costa et al. May 2014 A1
20140139327 Bau et al. May 2014 A1
20140176415 Buuck et al. Jun 2014 A1
20140205260 Lacroix et al. Jul 2014 A1
20140222377 Bitan et al. Aug 2014 A1
20140226068 Lacroix et al. Aug 2014 A1
20140253303 Levesque Sep 2014 A1
20140292501 Lim et al. Oct 2014 A1
20140300454 Lacroix et al. Oct 2014 A1
20140340209 Lacroix et al. Nov 2014 A1
20140347176 Modarres et al. Nov 2014 A1
20150010176 Schevciw Jan 2015 A1
20150201294 Risberg et al. Jan 2015 A1
20150049882 Chiu et al. Feb 2015 A1
20150061846 Yliaho Mar 2015 A1
20150070149 Cruz-Hernandez et al. Mar 2015 A1
20150070151 Cruz-Hernandez et al. Mar 2015 A1
20150070154 Levesque et al. Mar 2015 A1
20150070260 Saboune et al. Mar 2015 A1
20150077324 Birnbaum et al. Mar 2015 A1
20150084752 Heubel et al. Mar 2015 A1
20150116205 Westerman et al. Apr 2015 A1
20150130767 Myers et al. May 2015 A1
20150154966 Bharitkar Jun 2015 A1
20150204925 Hernandez et al. Jul 2015 A1
20150208189 Tsai Jul 2015 A1
20150216762 Oohashi et al. Aug 2015 A1
20150234464 Yliaho Aug 2015 A1
20150249888 Bogdanov Sep 2015 A1
20150264455 Granato Sep 2015 A1
20150268768 Woodhull et al. Sep 2015 A1
20150324116 Marsden et al. Nov 2015 A1
20150325116 Umminger, III Nov 2015 A1
20150339898 Saboune et al. Nov 2015 A1
20150341714 Ahn et al. Nov 2015 A1
20150355259 Sartler Dec 2015 A1
20150356981 Johnson et al. Dec 2015 A1
20150359452 Giovangrandi et al. Dec 2015 A1
20160004311 Yliaho Jan 2016 A1
20160007095 Lacrois Jan 2016 A1
20160063826 Morrell et al. Mar 2016 A1
20160070353 Lacroix et al. Mar 2016 A1
20160070392 Wang et al. Mar 2016 A1
20160074278 Muench et al. Mar 2016 A1
20160097662 Chang et al. Apr 2016 A1
20160103489 Cruz-Hernandez et al. Apr 2016 A1
20160132118 Park et al. May 2016 A1
20160141606 Ahn et al. May 2016 A1
20160155305 Barsilai et al. Jun 2016 A1
20160162031 Westerman et al. Jun 2016 A1
20160179203 Modarres et al. Jun 2016 A1
20160187987 Ulrich et al. Jun 2016 A1
20160195930 Venkatesan et al. Jul 2016 A1
20160227614 Lissoni et al. Aug 2016 A1
20160239089 Taninaka et al. Aug 2016 A1
20160246378 Sampanes et al. Aug 2016 A1
20160277821 Kunimoto Sep 2016 A1
20160291731 Liu et al. Oct 2016 A1
20160305996 Martens et al. Oct 2016 A1
20160328065 Johnson et al. Nov 2016 A1
20160358605 Ganong, III et al. Dec 2016 A1
20170052593 Jiang et al. Feb 2017 A1
20170078804 Guo et al. Mar 2017 A1
20170083096 Rihn et al. Mar 2017 A1
20170090572 Holenarsipur et al. Mar 2017 A1
20170090573 Hajati et al. Mar 2017 A1
20170097381 Stephens et al. Apr 2017 A1
20170131131 Keech May 2017 A1
20170153760 Chawda et al. Jun 2017 A1
20170168574 Zhang Jun 2017 A1
20170168773 Keller et al. Jun 2017 A1
20170169674 Macours Jun 2017 A1
20170180863 Biggs et al. Jun 2017 A1
20170220197 Matsumoto et al. Aug 2017 A1
20170277350 Wang et al. Sep 2017 A1
20170277360 Breedvelt-Schouten et al. Sep 2017 A1
20170031495 Tse Dec 2017 A1
20170357440 Tse Dec 2017 A1
20180021811 Kutej et al. Jan 2018 A1
20180033946 Kemppinen et al. Feb 2018 A1
20180059733 Gault et al. Mar 2018 A1
20180059793 Hajati Mar 2018 A1
20180067557 Robert et al. Mar 2018 A1
20180074637 Rosenberg et al. Mar 2018 A1
20180082673 Tzanetos Mar 2018 A1
20180084362 Zhang et al. Mar 2018 A1
20180095596 Turgeman Apr 2018 A1
20180139538 Macours May 2018 A1
20180151036 Cha et al. May 2018 A1
20180158289 Vasilev et al. Jun 2018 A1
20180159452 Eke et al. Jun 2018 A1
20180159457 Eke Jun 2018 A1
20180159545 Eke et al. Jun 2018 A1
20180160227 Lawrence et al. Jun 2018 A1
20180165925 Israr et al. Jun 2018 A1
20180178114 Mizuta et al. Jun 2018 A1
20180182212 Li et al. Jun 2018 A1
20180183372 Li et al. Jun 2018 A1
20180194369 Lisseman et al. Jul 2018 A1
20180196567 Klein et al. Jul 2018 A1
20180224963 Lee et al. Aug 2018 A1
20180227063 Heubel et al. Aug 2018 A1
20180237033 Hakeem et al. Aug 2018 A1
20180206282 Singh Sep 2018 A1
20180253123 Levesque et al. Sep 2018 A1
20180255411 Lin et al. Sep 2018 A1
20180267897 Jeong Sep 2018 A1
20180304310 Long et al. Oct 2018 A1
20180321056 Yoo et al. Nov 2018 A1
20180321748 Rao et al. Nov 2018 A1
20180323725 Cox et al. Nov 2018 A1
20180329172 Tabuchi Nov 2018 A1
20180335848 Moussette et al. Nov 2018 A1
20180367897 Bjork et al. Dec 2018 A1
20190020760 DeBates et al. Jan 2019 A1
20190033348 Zeleznik Jan 2019 A1
20190035235 Da Costa et al. Jan 2019 A1
20190227628 Rand et al. Jan 2019 A1
20190044651 Nakada Feb 2019 A1
20190049499 Eissner Feb 2019 A1
20190051229 Ozguner et al. Feb 2019 A1
20190064925 Kim et al. Feb 2019 A1
20190069088 Seiler Feb 2019 A1
20190073078 Sheng et al. Mar 2019 A1
20190102031 Shutzberg et al. Apr 2019 A1
20190103829 Vasudevan et al. Apr 2019 A1
20190138098 Shah May 2019 A1
20190163234 Kim et al. May 2019 A1
20190196596 Yokoyama et al. Jun 2019 A1
20190206396 Chen Jul 2019 A1
20190215349 Adams et al. Jul 2019 A1
20190220095 Ogita et al. Jul 2019 A1
20190228619 Yokoyama et al. Jul 2019 A1
20190114496 Lesso Aug 2019 A1
20190235629 Hu et al. Aug 2019 A1
20190294247 Hu et al. Sep 2019 A1
20190296674 Janko et al. Sep 2019 A1
20190297418 Stahl Sep 2019 A1
20190305851 Vegas-Olmos et al. Oct 2019 A1
20190311590 Doy et al. Oct 2019 A1
20190341903 Kim Nov 2019 A1
20190384393 Cruz-Hernandez et al. Dec 2019 A1
20190384898 Chen et al. Dec 2019 A1
20200117506 Chan Apr 2020 A1
20200139403 Palit May 2020 A1
20200150767 Karimi Eskandary et al. May 2020 A1
20200218352 Macours et al. Jul 2020 A1
20200231085 Kunii et al. Jul 2020 A1
20200300920 Christophersen et al. Sep 2020 A1
20200313529 Lindemann et al. Oct 2020 A1
20200313654 Marchais et al. Oct 2020 A1
20200314969 Marchais et al. Oct 2020 A1
20200342724 Marchais et al. Oct 2020 A1
20200395908 Schindler Dec 2020 A1
20200401292 Lorenz et al. Dec 2020 A1
20200403546 Janko et al. Dec 2020 A1
20210108975 Peso Parada et al. Apr 2021 A1
20210125469 Alderson et al. Apr 2021 A1
20210153562 Fishwick et al. May 2021 A1
20210157436 Peso Parada et al. May 2021 A1
20210174777 Marchais et al. Jun 2021 A1
20210175869 Taipale Jun 2021 A1
20210200316 Das Jul 2021 A1
20210325967 Khenkin et al. Oct 2021 A1
20210328535 Khenkin et al. Oct 2021 A1
20210360347 Aschieri Nov 2021 A1
20210365118 Rajapurkar et al. Nov 2021 A1
20220026989 Rao et al. Jan 2022 A1
20220328752 Lesso et al. Oct 2022 A1
20220404398 Reynaga et al. Dec 2022 A1
20220408181 Hendrix et al. Dec 2022 A1
Foreign Referenced Citations (50)
Number Date Country
2002347829 Apr 2003 AU
103165328 Jun 2013 CN
103403796 Nov 2013 CN
104811838 Jul 2015 CN
204903757 Dec 2015 CN
105264551 Jan 2016 CN
106438890 Feb 2017 CN
106950832 Jul 2017 CN
107665051 Feb 2018 CN
107835968 Mar 2018 CN
210628147 May 2020 CN
113268138 Aug 2021 CN
114237414 Mar 2022 CN
0784844 Jun 2005 EP
2306269 Apr 2011 EP
2363785 Sep 2011 EP
2487780 Aug 2012 EP
2600225 Jun 2013 EP
2846218 Mar 2015 EP
2846229 Mar 2015 EP
2846329 Mar 2015 EP
2988528 Feb 2016 EP
3125508 Feb 2017 EP
3379382 Sep 2018 EP
3546035 Oct 2019 EP
3937379 Jan 2022 EP
201620746 Jan 2017 GB
2526881 Oct 2017 GB
201747044027 Aug 2018 IN
102130433 May 1990 JP
08149006 Jun 1996 JP
H10184782 Jul 1998 JP
6026751 Nov 2016 JP
6250985 Dec 2017 JP
6321351 May 2018 JP
20120126446 Nov 2012 KR
2013104919 Jul 2013 WO
2013186845 Dec 2013 WO
2014018086 Jan 2014 WO
2014094283 Jun 2014 WO
2016105496 Jun 2016 WO
2016164193 Oct 2016 WO
2017034973 Mar 2017 WO
2017113651 Jul 2017 WO
2017113652 Jul 2017 WO
2018053159 Mar 2018 WO
2018067613 Apr 2018 WO
2018125347 Jul 2018 WO
2020004840 Jan 2020 WO
2020055405 Mar 2020 WO
Non-Patent Literature Citations (58)
Entry
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2020/024864, mailed Jul. 6, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/050822, mailed Aug. 31, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/051438, mailed Sep. 28, 2020.
Invitation to Pay Additional Fees, Partial International Search Report and Provisional Opinion of the International Searching Authority, International Application No. PCT/US2020/052537, mailed Jan. 14, 2021.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2020/056610, mailed Jan. 21, 2021.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/052537, mailed Mar. 9, 2021.
Examination Report under Section 18(3), United Kingdom Intellectual Property Office, Application No. GB2018050.1, mailed Dec. 22, 2021.
Second Office Action, National Intellectual Property Administration, PRC, Application No. 2019800208570, issued Jan. 19, 2022.
Steinbach et al., Haptic Data Compression and Communication, IEEE Signal Processing Magazine, Jan. 2011.
Pezent et al., Syntacts Open-Source Software and Hardware for Audio-Controlled Haptics, IEEE Transactions on Haptics, vol. 14, No. 1, Jan.-Mar. 2021.
Danieau et al., Enhancing Audiovisual Experience with Haptic Feedback: A Survey on HAV, IEEE Transactions on Haptics, vol. 6, No. 2, Apr.-Jun. 2013.
Danieau et al., Toward Haptic Cinematography: Enhancing Movie Experiences with Camera-Based Haptic Effects, IEEE Computer Society, IEEE MultiMedia, Apr.-Jun. 2014.
Jaijongrak et al., A Haptic and Auditory Assistive User Interface: Helping the Blinds on their Computer Operations, 2011 IEEE International Conference on Rehabilitation Robotics, Rehab Week Zurich, ETH Zurich Science City, Switzerland, Jun. 29-Jul. 1, 2011.
Lim et al., An Audio-Haptic Feedbacks for Enhancing User Experience in Mobile Devices, 2013 IEEE International Conference on Consumer Electronics (ICCE).
Weddle et al., How Does Audio-Haptic Enhancement Influence Emotional Response to Mobile Media, 2013 Fifth International Workshop on Quality of Multimedia Experience (QoMEX), QMEX 2013.
First Office Action, China National Intellectual Property Administration, Patent Application No. 2019800211287, Issued Jul. 5, 2021.
Examination Report under Section 18(3), United Kingdom Intellectual Property Office, Application No. GB2018051.9, mailed Nov. 5, 2021.
Final Notice of Preliminary Rejection, Korean Patent Office, Application No. 10-2019-7036236, mailed Nov. 29, 2021.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2019/052991, mailed Mar. 17, 2020, received by Applicant Mar. 19, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2020/023342, mailed Jun. 9, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/050823, mailed Jun. 30, 2020.
Communication Relating to the Results of the Partial International Search, and Provisional Opinion Accompanying the Partial Search Result, of the International Searching Authority, International Application No. PCT/GB2020/050822, mailed Jul. 9, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/051037, mailed Jul. 9, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2020/051035, mailed Jul. 10, 2020.
Office Action of the Intellectual Property Office, ROC (Taiwan) Patent Application No. 107115475, issued Apr. 30, 2021.
First Office Action, China National Intellectual Property Administration, Patent Application No. 2019800208570, issued Jun. 3, 2021.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2021/021908, mailed Jun. 9, 2021.
Notice of Preliminary Rejection, Korean Intellectual Property Office, Application No. 10-2019-7036236, mailed Jun. 29, 2021.
Combined Search and Examination Report, United Kingdom Intellectual Property Office, Application No. GB2018051.9, mailed Jun. 30, 2021.
Communication pursuant to Rule 164(2)(b) and Article 94(3) EPC, European Patent Office, Application No. 18727512.8, mailed Jul. 8, 2021.
Gottfried Behler: “Measuring the Loudspeaker's Impedance during Operation for the Derivation of the Voice Coil Temperature”, AES Convention Preprint, Feb. 25, 1995 (Feb. 25, 1995), Paris.
First Examination Opinion Notice, State Intellectual Property Office of the People's Republic of China, Application No. 201880037435.X, issued Dec. 31, 2020.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2019/050964, mailed Sep. 3, 2019.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/GB2019/050770, mailed Jul. 5, 2019.
Communication Relating to the Results of the Partial International Search, and Provisional Opinion Accompanying the Partial Search Result, of the International Searching Authority, International Application No. PCT/US2018/031329, mailed Jul. 20, 2018.
Combined Search and Examination Report, UKIPO, Application No. GB1720424.9, mailed Jun. 5, 2018.
Examination Report under Section 18(3), United Kingdom Intellectual Property Office, Application No. GB2106247.6, mailed Mar. 31, 2022.
Combined Search and Examination Report under Sections 17 and 18(3), UKIPO, Application No. GB2210174.5, mailed Aug. 1, 2022.
Examination Report under Sections 17 and 18(3), UKIPO, Application No. GB2112207.2, mailed Aug. 18, 2022.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2022/030541, mailed Sep. 1, 2022.
Vanderborght, B. et al., Variable impedance actuators: A review; Robotics and Autonomous Systems 61, Aug. 6, 2013, pp. 1601-1614.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2022/033190, mailed Sep. 8, 2022.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2022/033230, mailed Sep. 15, 2022.
Examination Report under sections 17 and 18(3), UKIPO, Application No. GB2115048.7, mailed Aug. 24, 2022.
Communication pursuant to Article 94(3) EPC, European Patent Application No. 18727512.8, mailed Sep. 26, 2022.
Examination Report under Section 18(3), UKIPO, Application No. GB2112207.2, mailed Nov. 7, 2022.
Examination Report, Intellectual Property India, Application No. 202117019138, mailed Jan. 4, 2023.
Second Office Action, National Intellectual Property Administration, PRC, Application No. 2019107179621, issued May 24, 2023.
Examination Report under Section 18(3), UKIPO, Application No. GB2113228.7, mailed Jun. 28, 2023.
Combined Search and Examination Report under Sections 17 and 18(3), UKIPO, Application No. GB2204956.3, mailed Jul. 24, 2023.
Examination Report under Section 18(3), UKIPO, Application No. GB2113228.7, mailed Feb. 10, 2023.
Examination Report under Section 18(3), UKIPO, Application No. GB2113154.5, mailed Feb. 17, 2023.
First Office Action, China National Intellectual Property Administration, Application No. 2019107179621, mailed Jan. 19, 2023.
Examination Report under Section 18(3), UKIPO, Application No. GB2117488.3, mailed Apr. 27, 2023.
Notice of Preliminary Rejection, Korean Intellectual Property Office, Application No. 10-2023-7029306, mailed Sep. 19, 2023.
Examination Report under Section 17, UKIPO, Application No. GB2311104.0 mailed Sep. 4, 2023.
Examination Report under Section 17, UKIPO, Application No. GB2311103.2 mailed Sep. 11, 2023.
First Office Action, China National Intellectual Property Administration, Application No. 2020800313809, issued Jun. 21, 2024.
Related Publications (1)
Number Date Country
20200313529 A1 Oct 2020 US
Provisional Applications (2)
Number Date Country
62826348 Mar 2019 US
62826388 Mar 2019 US