Methods and systems for exhalation control and trajectory optimization

Information

  • Patent Grant
  • 10850056
  • Patent Number
    10,850,056
  • Date Filed
    Monday, March 13, 2017
    7 years ago
  • Date Issued
    Tuesday, December 1, 2020
    4 years ago
Abstract
This disclosure describes systems and methods for controlling pressure and/or flow during exhalation. The disclosure describes novel exhalation modes for ventilating a patient.
Description
INTRODUCTION

Medical ventilator systems have long been used to provide supplemental oxygen support to patients. These ventilators typically comprise a source of pressurized air and oxygen, and which is fluidly connected to the patient through a conduit or tubing. The amount of pressure in the gas mixture delivered to the patient may be controlled during ventilation including during inspiration and exhalation.


Patients on a ventilator system are more comfortable when the delivered volume of inspired gas is allowed to be exhaled in the shortest amount of time possible. Current exhalation modes are designed to reduce pressure in the tubing as fast as possible. Other exhalation modes reduce the pressure in the patient tubing to a preset positive end-expiratory pressure (PEEP) level as fast as possible and then maintain this PEEP level through the remainder of the exhalation period. These exhalation modes are based on the assumption that achieving the highest pressure gradient across the flow restriction promotes the greatest lung flow at any point in time, and the fastest rate of lung emptying.


SUMMARY

This disclosure describes systems and methods for controlling pressure and/or flow during exhalation. The disclosure describes novel exhalation modes for ventilating a patient.


In part, this disclosure describes a method for controlling exhalation during ventilation of a patient on a ventilator. The method includes:


a) determining at least one determined pressure profile based on at least one received criterion for an exhalation by a patient being ventilated on a ventilator;


b) selecting a pressure profile for delivery to the patient from the at least one determined pressure profile; and


c) controlling at least one of airway pressure and flow based on the selected pressure profile during the exhalation by the patient.


Yet another aspect of this disclosure describes a method for optimizing a pressure profile delivered to a patient during exhalation on a ventilator including:


a) delivering at least one of airway pressure and flow based on a pressure profile during a current exhalation to a patient during ventilation on a ventilator;


b) monitoring at least one parameter during the current exhalation by the patient;


c) modifying the pressure profile based at least in part on the monitored at least one parameter; and


d) delivering at least one of a modified airway pressure and a modified flow based on the modified pressure profile to the patient during at least one of the current exhalation and the next exhalation.


Further, the modified pressure profile maintains a received PEEP.


The disclosure further describes a computer-readable medium having computer-executable instructions for performing a method controlling exhalation during ventilation of a patient on a ventilator. The method includes:


a) repeatedly determining at least one determined pressure profile based on at least one received criterion for an exhalation by a patient being ventilated on a ventilator;


b) repeatedly selecting a pressure profile for delivery to the patient from the at least one determined pressure profile; and


c) repeatedly controlling at least one of airway pressure and flow based on the selected pressure profile during the exhalation by the patient.


The disclosure also describes a ventilator system including means for determining at least one determined pressure profile based on at least one received criterion for an exhalation by a patient being ventilated on a ventilator; means for selecting a pressure profile for delivery to the patient from the at least one determined pressure profile; and means for controlling at least one of airway pressure and flow based on the selected pressure profile during the exhalation by the patient.


The disclosure further describes a ventilator system including means for delivering at least one of airway pressure and flow based on a pressure profile during a current exhalation to a patient during ventilation on a ventilator; means for monitoring at least one parameter during the current exhalation by the patient; means for modifying the pressure profile based at least in part on the monitored at least one parameter; and means for delivering at least one of a modified airway pressure and a modified flow based on the modified pressure profile to the patient during at least one of the current exhalation and the next exhalation. Further, the modified pressure profile maintains a received PEEP.


These and various other features as well as advantages which characterize the systems and methods described herein will be apparent from a reading of the following detailed description and a review of the associated drawings. Additional features are set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the technology. The benefits and features of the technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.





EXHALATION CONTROL AND TRAJECTORY OPTIMIZATION

The following drawing figures, which form a part of this application, are illustrative of embodiments, systems and methods described below and are not meant to limit the scope of the invention in any manner, which scope shall be based on the claims appended hereto.



FIG. 1 illustrates an embodiment of a ventilator.



FIG. 2 illustrates an embodiment of an exhalation module.



FIG. 3 illustrates an embodiment of a schematic model of a lung demonstrating the pressure and resistance relationship within the two compartments of the lung.



FIG. 4 illustrates an embodiment of a pressure profile.



FIG. 5 illustrates an embodiment of a method for controlling exhalation during ventilation of a patient on a ventilator.



FIG. 6 illustrates an embodiment of a method for optimizing exhalation during ventilation of a patient on a ventilator.



FIG. 7 illustrates an embodiment of a graph of the effect of different patient's tubing exhalation pressure profiles on the time required to passively exhale 50% of a given inspired tidal volume in simulations



FIG. 8 illustrates an embodiment of a graph of the effect of different patient's tubing exhalation pressure profiles on the time required to passively exhale 90% of a given inspired tidal volume in simulations.





DETAILED DESCRIPTION

Although the techniques introduced above and discussed in detail below may be implemented for a variety of medical devices, the present disclosure will discuss the implementation of these techniques in the context of a medical ventilator for use in providing ventilation support to a human patient. The reader will understand that the technology described in the context of a medical ventilator for human patients could be adapted for use with other systems such as ventilators for non-human patients and general gas transport systems.


Medical ventilators are used to provide a breathing gas to a patient who may otherwise be unable to breathe sufficiently. In modern medical facilities, pressurized air and oxygen sources are often available from wall outlets. Accordingly, ventilators may provide pressure regulating valves (or regulators) connected to centralized sources of pressurized air and pressurized oxygen. The regulating valves function to regulate flow so that respiratory gas having a desired concentration of oxygen is supplied to the patient at desired pressures and rates. Ventilators capable of operating independently of external sources of pressurized air are also available.


While operating a ventilator, it is desirable to control the percentage of oxygen in the gas supplied by the ventilator to the patient. Further, it is desirable to control the amount of pressure delivered to the patient during inspiration. In some ventilators, it is desirable to control the amount of pressure delivered to the patient during exhalation.


The pressure control provided during exhalation is based on the assumption that patients find it more comfortable to exhale unimpeded. For example, modes of exhalation have been designed to reduce the pressure in the patient tubing to a preset positive end exhalation pressure (PEEP) level or to atmospheric pressure as fast as possible. If a preset PEEP is utilized, the exhalation mode must also maintain this pressure at the set PEEP level throughout exhalation. This exhalation approach is justified by the belief that achieving the highest pressure gradient across the flow restriction promotes the greatest lung flow at any point in time, and the fastest rate of lung emptying. This approach is correct if the resistance of the airways is independent from the actual pressure in the airways and lungs.


However, the resistance of lung airways may not always be independent from the actual pressure in the airways and lungs. It is suspected that a nonlinear character of resistance of internal lung airways causes the exhalation lung flow to decay more rapidly than normal thereby preventing complete lung emptying, causing patients discomfort, suboptimal ventilation, etc. For example, the physiology of the lung and airways associated with different disease states has been identified as a significant contributor to the impairment of the normal lung emptying process during exhalation. Thus, this nonlinear dependency of the airways resistance to the lung and airway pressure may result in a non-intuitive relationship between the optimum tubing pressure profile and the exhalation lung flow. Accordingly, it is desirable to modify the exhalation mode to obtain a faster rate of lung emptying or to decrease the amount of time it takes the patient to passively expire an inspired volume of gas to provide for faster and/or complete lung emptying.



FIG. 1 is a diagram illustrating an embodiment of an exemplary ventilator 100 connected to a human patient 150. Ventilator 100 includes a pneumatic system 102 (also referred to as a pressure generating system 102) for circulating breathing gases to and from patient 150 via the ventilation tubing system 130, which couples the patient 150 to the pneumatic system 102 via an invasive (e.g., endotracheal tube, as shown) or a non-invasive (e.g., nasal mask) patient interface 180.


Ventilation tubing system 130 (or patient circuit 130) may be a two-limb (shown) or a one-limb circuit for carrying gases to and from the patient 150. In a two-limb embodiment, a fitting, typically referred to as a “wye-fitting” 170, may be provided to couple a patient interface 180 (as shown, an endotracheal tube) to an inspiratory limb 132 and an expiratory limb 134 of the ventilation tubing system 130.


Pneumatic system 102 may be configured in a variety of ways. In the present example, pneumatic system 102 includes an expiratory module 108 coupled with the expiratory limb 134 and an inspiratory module 104 coupled with the inspiratory limb 132. Compressor 106 or other source(s) of pressurized gases (e.g., air, oxygen, and/or helium) is coupled with inspiratory module 104 and the expiratory module 108 to provide a gas source for ventilatory support via inspiratory limb 132.


The inspiratory module 104 determines the pressure profiles delivered during inspiration. The expiratory module 108 determines the pressure profiles delivered during exhalation. In one embodiment, the inspiratory module 104 and the expiratory module 108 determine the pressure profiles during ventilation by controlling valves and gas flow within the ventilator 100. As used herein, the term “pressure profile” refers to how pressure is delivered for the entire period of exhalation, such as the amount of pressure per second or millisecond of the exhalation time period. In an alternative embodiment, the inspiratory module 104 and the expiratory module 108 determine the pressure profiles during ventilation by sending instructions to the controller 110 to control the valves and gas flow within the ventilator 100 during ventilation.


Previously utilized systems provided pressure control during exhalation based on the assumption that patients find it more comfortable to exhale fast and on the belief that achieving the highest pressure gradient across the flow restriction promotes the greatest lung flow at any point in time, and the fastest rate of lung emptying. This previously utilized approach is correct if the resistance of the airways is independent from the actual pressure in the airways and lungs. However, the resistance of lung airways may not always be independent from the actual pressure in the airways and lungs. It is suspected that a nonlinear character of resistance of internal lung airways causes the exhalation lung flow to decay more rapidly than normal thereby preventing complete lung emptying, causing patients discomfort, suboptimal ventilation, etc.


Accordingly, the expiratory module 108 determines the pressure profile delivered during exhalation based on at least one received criterion. The at least one received criterion does not include a received or set PEEP. However, the pressure profile determined by the expiratory module 108 may include a received or a set PEEP in addition to the received at least one criterion.


For the example, the at least one criterion may include a nonlinear relationship between airway resistance and the lung and airway pressure within a patient. A relationship between the airway resistance to lung and airway pressure exists because the lungs are essentially divided into two compartments: 1) the upper airways; and 2) the lower airways. These two compartments of the lung create a relationship, which is nonlinear, between airway resistance and lung and airway pressure. In one embodiment, this nonlinear relationship is modeled by the following equation:

RL=f(PL1,PL2).


In the above equation RL is the amount of resistance in the lungs, f(⋅) is a nonlinear function of two values, PL1 and PL2, where, PL1 is the amount of pressure in the first compartment of the lungs, and PL2 is the amount of pressure in the second compartment of the lungs. As would be known by a person of skill in the art, the above nonlinear equation may be a function of more than two values. FIG. 3 illustrates this model by showing the pressure and resistance relationships between the upper airways or lung compartment 1 (CL1), the lower airways or lung compartment 2 (CL2), and the trachea. FIG. 3 also illustrates the flow (qL) within the lungs and the external positive pressure (Pp) acting upon the lungs. Further, the physiology of the lung and airways associated with different disease states may be a significant contributor to the impairment of the normal lung emptying process. Accordingly, a pressure profile taking into account a nonlinear relationship, such as the example nonlinear relationship shown above, may provide for more comfortable and faster exhalation for some patients.


The nonlinear relationship of the lung illustrated above is just one example of a non-linear pressure flow relationship that may exist in a patient. Other nonlinear relationships, between airway resistance and lung and airway pressures may exist within a patient and vary between patients based on their measured parameters and diseases. For, example, the resistance can be a nonlinear function of more than two different local pressures measured in different parts of the lung and airways. Further, not all patients exhibit a measurable nonlinear relationship between airway resistance and lung and airway pressure. Accordingly, the expiratory module 108 determines the pressure profile to deliver during exhalation based on at least one received criterion, such as ventilator data, predetermined nonlinear pressure profiles, pressure profile trajectory equations, operator determined pressure profiles, and/or measured, derived, inputted, and/or selected patient parameters to determine how to provide a pressure profile with the fastest rate of lung emptying. As discussed above, the at least one criterion does not include a received/set PEEP. However, the at least one criterion may be any suitable criterion for controlling or effecting the pressure profile to provide for a faster rate of lung emptying, such as a percent of inspired volume/elapsed time, a flow as a function of delta P (estimated lung pressure and circuit pressure), an AutoPEEP, measurements of patient resistance and/or compliance, a diagnosis (e.g., chronic obstructive pulmonary disease), an inner diameter of artificial airway, a type of patient interface (e.g., mask or tube), an ideal body weight, carbon dioxide levels in exhaled gas and/or blood, an end expiratory flow, a patient assessment of comfort/dyspnea, a percentage of volume exhaled within a given period of time after the start of exhalation, a mean expiratory flow, a peak expiratory flow, a time to exhale a predetermined percentage of inspired volume, a time to reach a predetermined level of expiratory flow, a functional residual capacity (FRC), a ratio of functional residual capacity to total lung capacity (FRC/TLC), a breath rate, a ratio of inspiratory to expiratory time, a tidal volume, a forced expiratory volume in 1 second (FEV1), an expiratory lung volume, and/or an instantaneous level of flow.


As used herein, any parameters/criteria that are “received” are input by the clinician, selected by the clinician, or provided by the ventilator. The ventilator may derive the “received” parameter/criteria based on patient parameters, ventilator parameters, and/or input or selected clinician data. In some embodiments, the ventilator contains stored default values that are “received” or utilized by the ventilator when the clinician does not input or select a parameter or a criterion. As used herein, the term “predetermined” designates that a value was set by a clinician and/or determined by the ventilator prior to use of the value.


The pneumatic system 102 may include a variety of other components, including mixing modules, valves, sensors, tubing, accumulators, filters, etc. Controller 110 is operatively coupled with pneumatic system 102, signal measurement and acquisition systems, and an operator interface 120 that may enable an operator to interact with the ventilator 100 (e.g., change ventilator settings, select operational modes, view monitored parameters, etc.). Controller 110 may include memory 112, one or more processors 116, storage 114, and/or other components of the type commonly found in command and control computing devices. In the depicted example, operator interface 120 includes a display 122 that may be touch-sensitive and/or voice-activated, enabling the display 122 to serve both as an input and output device.


The memory 112 includes non-transitory, computer-readable storage media that stores software that is executed by the processor 116 and which controls the operation of the ventilator 100. In an embodiment, the memory 112 includes one or more solid-state storage devices such as flash memory chips. In an alternative embodiment, the memory 112 may be mass storage connected to the processor 116 through a mass storage controller (not shown) and a communications bus (not shown). Although the description of computer-readable media contained herein refers to a solid-state storage, it should be appreciated by those skilled in the art that computer-readable storage media can be any available media that can be accessed by the processor 116. That is, computer-readable storage media includes non-transitory, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. For example, computer-readable storage media includes RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.



FIG. 2 illustrates an exhalation module 200. The exhalation module 200 may include memory, one or more processors, storage, and/or other components of the type commonly found in command and control computing devices as described above. The exhalation module 200 further includes a pressure profile module 202 and a parameters module 204.


The pressure profile module 202 determines the pressure profile delivered during exhalation based on at least one received criterion. This pressure profile affects the amount of time a patient takes to exhale the inspired amount of inspiratory gas and rate of lung emptying.


The pressure profile module 202 utilizes at least one criterion for reducing the amount of time it takes the patient to exhale an inspired volume of gas and/or for increasing the rate of lung emptying as would be known by a person of skill in the art. As discussed above, the at least one criterion does not include a received PEEP. However, the pressure profile module 202 may utilize a received PEEP in addition to the received at least one criterion for determining the pressure profile. The at least one criterion may include ventilator data, predetermined pressure profiles, pressure profile trajectory equations, operator determined pressure profiles, a nonlinear relationship between airway resistance to the lung and airway pressure, and/or measured, derived, inputted, and/or selected patient parameters.


For example, the at least one criterion may include patient parameters, such as height, heart rate, weight, diseases, ideal body weight, etc. The criterion may further include ventilator data, such as flow rate, respiration rate, ventilation modes, expiration time, etc. The pressure profile module 202 may receive the at least one criteria from other ventilator components (e.g., a sensor, user interface, and/or controller) and/or may calculate/derive the desired criteria from received criteria or parameters. The ventilator may determine the desired pressure profile for each breath, over a fixed number of breaths (e.g., take data over a fixed number of breaths), or for a predetermined period of time. Further, the ventilator may repeat this calculation periodically as determined by a ventilator or as selected by the operator.


In some embodiments, the at least one criterion is ventilator data or patient parameters, such as a current ventilation mode and/or a diagnosed patient condition. In other embodiments, the criterion is a group of pressure profiles provided by the ventilator, which the operator may select the pressure profile from. Any suitable pressure profile for shortening the amount of time to exhale the delivered amount of inspiratory gas or for increasing the rate of lung emptying based on the at least one received criterion may be utilized by the exhalation module 200.


In one embodiment, the at least one criterion includes an exhalation pressure fall time parameter (EPFTP). The EPFTP is the amount of time it takes for the pressure to drop from the inspiratory pressure level to the set PEEP level during exhalation. In one embodiment, the actual rate of pressure decay in the ventilator is defined by the EPFTP. In another embodiment, the pressure profile module 202 determines the pressure profile based on the actual rate of pressure decay as defined by the EPFTP.


In a further embodiment, pressure profile module 202 determines the pressure profile based on the at least one criterion of an actual rate of pressure decay in the ventilator 100 as defined by predetermined parameters that are settable and modified by operators or the ventilator automatically. In another embodiment, the at least one criterion is a family of different pressure profiles that is utilized by the pressure profile module 202 to determine the pressure profile. The family of different pressure profiles may be defined by a predetermined set of criteria, such as EPFTP and exhalation time.


In an additional embodiment, the pressure profile module 202 utilizes at least one parameter that is repeatedly monitored during an exhalation to optimize the pressure profile. In this embodiment, the pressure profile is adjusted or modified during the current exhalation and/or before the next exhalation according to the monitored parameter in order to achieve a smaller time required to exhale the delivered amount of inspiratory gas and/or to achieve a faster rate of lung emptying in the next exhalation.


In another embodiment, the pressure profile module 202 utilizes repeated measurements of the time required to exhale the delivered amount of inspiratory gas to optimize the pressure profile. In this embodiment, different parameters of the pressure profile are adjusted after each exhalation according to the measured time required to exhale the delivered amount of inspiratory gas in order to achieve a shorter time required to exhale the delivered amount of inspiratory gas in the next exhalation.


In one embodiment, the at least one criterion is the pressure at the patient wye-fitting or the trajectory of the pressure profile. In some embodiments, the trajectory or the patient wye-fitting is determined based on the following equation:

Py(t)=PEEP+(EIP−PEEP)e−αt.


In this equation, Py is the pressure at the patient wye-fitting, PEEP is the set positive end exhalation pressure, EIP is the measured end inspiratory pressure, α is greater than zero and denotes the EPFTP, and t is the amount of time measured from the onset of an exhalation phase. This equation illustrates an exponential decay from EIP to PEEP, with alpha being varied to create different trajectories. For example, alpha may be varied (e.g., 0.1, 0.2, 0.3, . . . ∞) and then optimized based upon a predetermined parameter, such as the amount of time it takes the patient to exhale 50% of an inspired volume.


In some embodiments, the at least one criterion utilized by the pressure profile module is an operator-determined pressure profile. The operator may select or input a desired pressure profile or input various different parameters for modifying a pressure profile as desired. Allowing the operator to adjust, change, and input a pressure profile provides the operator with several benefits. For instance, the operator may select a pressure profile based on patient comfort. For example, the operator may deliver two different pressure profiles to a patient, ask the patient which profile the patient prefers, and then select a pressure profile based on the patient's answer.


In other embodiments, the at least one criterion utilized by the pressure profile module is a nonlinear relationship between airway resistance to the lung and airway pressure. In another embodiment, the pressure profile module 202 utilizes a predetermined nonlinear pressure profile as the at least one criteria, such as a nonlinear pressure profile with a fast initial decay in pressure followed by an increase of pressure to provide a shorter amount of time required to exhale the delivered amount of inspiratory gas. For example, an embodiment of a predetermined nonlinear pressure profile for the pressure profile module 202 is illustrated in FIG. 4. FIG. 4 illustrates a pressure profile with a fast initial decay of pressure that actually drops below a set PEEP, then increases in pressure to above the set PEEP at time 0.50 seconds followed by a gradual pressure reduction after the increase in pressure at time 0.8 seconds back down to the set PEEP.


The at least one criterion may be any suitable criterion for controlling or effecting the pressure profile to provide for a faster rate of lung emptying, such as a percent of inspired volume/elapsed time, a flow as a function of delta P (estimated lung pressure and circuit pressure), an AutoPEEP, measurements of patient resistance and/or compliance, a diagnosis (e.g., chronic obstructive pulmonary disease), an inner diameter of artificial airway, a type of patient interface (e.g., mask or tube), an ideal body weight, carbon dioxide levels in exhaled gas and/or blood, an end expiratory flow, a patient assessment of comfort/dyspnea, a percentage of volume exhaled within a given period of time after the start of exhalation, a mean expiratory flow, a peak expiratory flow, a time to exhale a predetermined percentage of inspired volume, a time to reach a predetermined level of expiratory flow, a functional residual capacity (FRC), a ratio of functional residual capacity to total lung capacity (FRC/TLC), a breath rate, a ratio of inspiratory to expiratory time, a tidal volume, a forced expiratory volume in 1 second (FEV1), an expiratory lung volume, and/or an instantaneous level of flow.


The embodiments for determining the pressure profiles by the pressure profile module 202 as described and discussed above are exemplary only and may be utilized alone or in various combinations. It is understood by a person of skill in the art that any suitable pressure profile based on the received PEEP and the at least one received criterion may be utilized by the pressure profile module 202.


In some embodiments, if more than one pressure profile is determined by the pressure profile module 202, then the pressure profile module 202 selects the pressure profile with the fastest rate lung emptying to be sent to the parameters module 204. Further, the pressure profile module may present some or all of the unselected pressure profiles to the operator for selection depending on how the system is implemented and the degree of operator control desired. In a further embodiment, if more than one pressure profile is determined by the pressure profile module 202, then the pressure profile module 202 presents all of the pressure profiles to the operator for selection and continues to deliver the previously utilized pressure profile during exhalation until a new pressure profile is selected by the operator.


The ventilator may utilize various different methods to determine different pressure profiles. For example, the ventilator may utilize different criteria to determine different pressure profiles. In this embodiment, the ventilator may automatically select the pressure profile calculated with a specific criterion, such as a measurement of patient compliance and/or resistance, and only utilize the other calculated pressure profiles based on other criterion if a predetermined threshold is met by other measured patient or ventilator parameters. If the threshold is met, the ventilator may select a pressure profile calculated based on exhalation time. In some embodiments, the ventilator may have a predetermined nonlinear pressure profile stored, such as the one displayed in FIG. 4, in addition to a calculated pressure profile. In this embodiment, the ventilator may automatically select the calculated pressure profile unless a predetermined threshold is met by patient or ventilator measured parameters. For example, the predetermined threshold may be related to work of breathing or arterial blood gas saturation. The selection parameters listed above are merely exemplary. The ventilator may utilize any suitable means for selecting a pressure profile from a family of pressure profiles as would be known by a person of skill in the art for ventilating a patient.


In some embodiments, the family of pressure profiles is created utilizing the following equation:

Py(t)=PEEP+(EIP−PEEP)e−αt

which is described in detail above. In this embodiment, different values for alpha ranging from 0.1 to 100 and/or to infinity may be applied over a time period to generate several different pressure profiles. The ventilator may select one of these calculated pressure profiles utilizing various different techniques. For example, the ventilator may compare the calculated pressure profiles to previously delivered pressure profiles and choose the calculated pressure profile closest to a previously utilized pressure profile that obtained the fastest rate of lung emptying. In another embodiment, the ventilator delivers a different calculated exhalation profile in each breath for at least two consecutive breaths. The ventilator in this scenario may then select which pressure profile to deliver based on a predetermined parameter, such as the amount of time it takes the patient to exhale 50% of an inspired volume, which was measured during the delivery of the pressure profile.


For example, a pressure profile with an alpha of 1 may be delivered in a first breath and a pressure profile with an alpha of 2 may delivered in a second breath. During the delivery of these pressure profiles the ventilator may measure the amount of time it takes a patient to exhale 90% of the volume of an inspired breath. In this example, the ventilator compares each of these measured times and then delivers in the next exhalation the pressure profile with the shortest measured time.


The parameters module 204 receives the pressure profile for the current or next exhalation from the pressure profile module 202. The parameters module 204 determines the necessary ventilator settings for delivering airway pressure and/or flow based on the received pressure profile. In one embodiment, the parameters module 204 sends the necessary ventilator settings to a controller for implementation. In an alternative embodiment, the parameters module 204 sends the instructions directly to the necessary component or components (e.g., to the exhalation valve) for implementing the desired pressure profile during exhalation.


In some embodiments, the exhalation module 200 is part of the pressure generating system 102, as illustrated in FIG. 1. In alternative embodiments, the exhalation module 200 is part of the controller 110. In some embodiments, the pressure profile module 202 and/or the parameters module 204 are separate from the exhalation module and are contained within the controller 110.



FIG. 5 illustrates an embodiment of a method 500 for controlling exhalation during ventilation of a patient on a ventilator. As illustrated, method 500 includes a determination operation 502. The ventilator in determination operation 502 determines at least one pressure profile by utilizing at least one received criterion for an exhalation by a patient being ventilated on a ventilator.


The at least one received criterion includes ventilation data, a nonlinear relationship between airway resistance and lung and airway pressure, predetermined pressure profiles, operator designed pressure profiles, pressure profile trajectory equations, and/or input, selected, measured, and/or derived patient parameters. As discussed above, the received criterion does not include a received PEEP. However, the determination operation 502 may utilize a received PEEP in addition to the received at least one criterion to determine the pressure profile. In some embodiments, the at least one criterion includes a current ventilation mode and/or a diagnosed patient condition. In some embodiments, the at least one criterion is a monitored parameter, such as a patient or ventilator parameter, from previous delivered exhalations. For example, the measured at least one parameter may be obtained for each breath, over a period of more than one breath (e.g., take data over a fixed number of breaths), or over a period of time. Any suitable pressure profile for shortening the amount of time to exhale the delivered amount of inspiratory gas and/or for increasing the rate of lung emptying may be utilized by the ventilator during method 500.


In one embodiment, the at least one criterion utilized by the ventilator in the determination operation 502 to determine the pressure profile is an EPFTP. In another embodiment, the at least one criterion utilized by the ventilator in the determination operation 502 to determine the pressure profile is the actual rate of pressure decay. The actual rate of pressure decay may be defined by the EPFTP. In a further embodiment, the at least one criterion utilized by the ventilator in the determination operation 502 to determine the pressure profile is the actual rate of pressure decay in the ventilator as defined by predetermined parameters, which are settable and modified by operators or the ventilator automatically. The parameters may be predetermined and may include the set PEEP and a measured end inspiratory pressure. In another embodiment, a family of different pressure profiles is utilized by the ventilator in the determination operation 502 to determine the pressure profile. The family of different pressure profiles is based on a set of received predetermined criteria, such as EPFTP and exhalation time. In an additional embodiment, the at least one received criterion utilized by the ventilator in the determination operation 502 is at least one parameter, such as a ventilation or patient parameter, that is repeatedly measured to optimize the pressure profile. For example, the ventilator in the determination operation 502 may repeatedly measure the time it takes the patient to exhale the delivered amount of inspiratory gas to optimize the pressure profile. The ventilator in the determination operation 502 may utilize any suitable means for determining the shortest time to expire the delivered amount of inspiratory gas and/or for determining the faster rate of lung emptying based on a received at least one criterion.


In some embodiments, the received at least one criterion is the pressure at the patient wye-fitting or the trajectory of the pressure profile. In one embodiment, the pressure at the patient wye-fitting or the trajectory of the pressure profile is determined by the ventilator in the determination operation 502 by utilizing the following equation:

Py(t)=PEEP+(EIP−PEEP)e−αt.


In this equation, Py is the pressure at the patient wye-fitting, PEEP is the set positive end exhalation pressure, EIP is the measured end inspiratory pressure, α is greater than zero and denotes the EPFTP, and t is the amount of time measured from the onset of exhalation phase. This equation illustrates an exponential decay from EIP to PEEP, with alpha being varied to create different trajectories. For example, alpha may be varied (e.g., 0.1, 0.2, 0.3, . . . ∞) and then optimized based upon a predetermined parameter, such as the amount of time it takes the patient to exhale 50% of an inspired volume.


In another embodiment, the at least one criterion utilized by the ventilator in the determination operation 502 to determine the pressure profile is a predetermined pressure profile. For example, the predetermined pressure profile may have a fast initial decay in pressure followed by an increase in pressure to provide a shorter amount of time required to exhale the delivered amount of inspiratory gas as illustrated in FIG. 4. In some embodiments, the determination operation 502 is performed by an exhalation module, a pressure profile module, pneumatic system, and/or a ventilator controller.


The at least one criterion may be any suitable criterion for controlling or effecting the pressure profile to provide for a faster rate of lung emptying, such as a percent of inspired volume/elapsed time, a flow as a function of delta P (estimated lung pressure and circuit pressure), an AutoPEEP, measurements of patient resistance and/or compliance, a diagnosis (e.g., chronic obstructive pulmonary disease), an inner diameter of artificial airway, a type of patient interface (e.g., mask or tube), an ideal body weight, carbon dioxide levels in exhaled gas and/or blood, an end expiratory flow, a patient assessment of comfort/dyspnea, a percentage of volume exhaled within a given period of time after the start of exhalation, a mean expiratory flow, a peak expiratory flow, a time to exhale a predetermined percentage of inspired volume, a time to reach a predetermined level of expiratory flow, a functional residual capacity (FRC), a ratio of functional residual capacity to total lung capacity (FRC/TLC), a breath rate, a ratio of inspiratory to expiratory time, a tidal volume, a forced expiratory volume in 1 second (FEV1), an expiratory lung volume, and/or an instantaneous level of flow.


The embodiments as discussed above for determining the pressure profile in the determination operation 502 by the ventilator may be utilized alone or in various combinations.


Next, method 500 includes a selection operation 504. The ventilator in selection operation 504 selects a pressure profile from the at least one determined pressure profile. In one embodiment, the ventilator of method 500 selects the pressure profile predicted to provide the shortest amount of time to expire the delivered amount of inspiratory gas and/or to provide the fastest rate of lung emptying based the received at least one criterion. In an alternative embodiment, the operator selects a pressure profile from the at least one determined pressure profile.


As discussed above, the ventilator may utilize various different methods to determine different pressure profiles. For example, the ventilator may utilize different criteria to determine different pressure profiles for faster lung emptying. In this embodiment, the ventilator may automatically select the pressure profile calculated based on a specific predetermined criteria, such as such as a measurement of patient compliance and/or resistance, and only utilize the other calculated pressure profiles if a predetermined threshold is met by other measured patient or ventilator parameters. If the threshold is met in this embodiment, the ventilator may automatically select a pressure profile determined based on exhalation time. In some embodiments, the ventilator may have a stored predetermined nonlinear pressure profile, such as the one displayed in FIG. 4, in addition to a calculated pressure profile. In this embodiment, the ventilator may automatically select the calculated pressure profile unless a predetermined threshold is met by patient or ventilator measured parameters. For example, the predetermined threshold may be related to work of breathing or arterial blood gas saturation. The selection parameters listed above are merely exemplary. The ventilator may utilize any suitable means for selecting a pressure profile from a family of pressure profiles as would be known by a person of skill in the art for ventilating a patient.


In some embodiments, the family of pressure profiles is created utilizing the following equation:

Py(t)=PEEP+(EIP−PEEP)e−αt

which is described in detail above. In this embodiment, different values for alpha ranging from 0.1 to 100 and/or to infinity may be applied over a time period to generate several different pressure profiles. The ventilator may select one of these calculated pressure profiles utilizing various different techniques. For example, the ventilator may compare the calculated pressure profiles to previously delivered pressure profiles and choose the calculated pressure profile closest to a previously utilized pressure profile that obtained the fastest rate of lung emptying. In another embodiment, the ventilator delivers a different calculated exhalation profile in each breath for at least two consecutive breaths. The ventilator in this scenario may then select which pressure profile to deliver based on a predetermined parameter, such as the amount of time it takes the patient to exhale 50% of an inspired volume, which was measured during the delivery of the pressure profile.


For example, a pressure profile with an alpha of 1 may be delivered in a first breath and a pressure profile with an alpha of 2 may be delivered in a second breath. During the delivery of these pressure profiles the ventilator may measure the amount of time it takes a patient to exhale 90% of the volume of an inspired breath. In this example, the ventilator compares each of these measured times and then delivers in the next exhalation the pressure profile that results in the shortest measured time.


Next, method 500 includes a control operation 506. The ventilator in control operation 506 controls airway pressure and/or flow based on the selected pressure profile during the exhalation by the patient. The ventilator in control operation 506 delivers the airway pressure and/or flow based on the selected pressure profile by modifying valve settings and/or flow rates during exhalation. In some embodiments, the control operation 506 is performed by an exhalation module, a parameters module, pneumatic system, and/or a ventilator controller.


Method 500 may also include an inspiration operation. In the inspiration operation, the ventilator delivers a volume of gas to the patient for inspiration during ventilation on the ventilator. The exhalation by the patient includes exhaling the volume of gas inhaled by the patient from the volume of delivered gas.


In one embodiment, method 500 is performed by the systems illustrated in FIGS. 1 and 2, which are described above.


In some embodiments, a microprocessor-based ventilator that accesses a computer-readable medium having computer-executable instructions for performing the method of controlling exhalation during ventilation of a patient is disclosed. This method includes repeatedly performing the steps disclosed in method 500 and as illustrated in FIG. 5.


In some embodiments, a ventilator system that includes: means for determining at least one determined pressure profile based on at least one received criterion for an exhalation by a patient being ventilated on a ventilator; means for selecting a pressure profile for delivery to the patient from the at least one determined pressure profile; and means for controlling airway pressure and/or flow based on the selected pressure profile during the exhalation by the patient.



FIG. 6 illustrates an embodiment of a method 600 for optimizing exhalation during ventilation of a patient on a ventilator. As illustrated, method 600 includes a delivery operation 602. The ventilator in delivery operation 602 delivers airway pressure and/or flow based on a pressure profile during an exhalation to a patient during ventilation on a ventilator. The pressure profile delivered during exhalation may be any suitable exhalation pressure profile. The ventilator either delivers pressure in accordance with a user-determined pressure profile or a ventilator-determined pressure profile. In some embodiments, the ventilator utilizes a nonlinear relationship between airway resistance to the lung and airway pressure to determine the pressure profile. In some embodiments, the ventilator utilizes a received at least one criterion to determine the pressure profile.


Next, method 600 includes a monitor operation 604. In the monitor operation 604, the ventilator monitors at least one parameter during the exhalation by the patient. The at least one parameter may be any suitable ventilator or patient parameter for determining a pressure profile for providing faster lung emptying. For example, the monitors at least one parameter may include ventilation data, data relating to a nonlinear relationship between airway resistance and lung and airway pressure, data relating to pressure profile trajectory equations, and/or measured/derived patient parameters. For example, the ventilator in the monitor operation 604 may monitor an exhalation time based on the amount of time it takes the patient to exhale at least a portion of gas inspired by the patient.


The monitor operation 604 may also include storing or calculating a pressure, flow and/or volume profile that describes the exhalation of the patient. Such a profile may be stored as a series of measured patient parameters taken during the exhalation phase. The ventilator may also or instead perform one or more mathematical analyses on the measured data in order to create a mathematical or model description of one or more parameter profiles during the exhalation phase.


Further, method 600 includes a modify operation 606. The ventilator in the modify operation 606 modifies the pressure profile based at least in part on the at least one monitored parameter in order to increase the rate of lung emptying and/or decrease the amount of time it takes the patient to exhale an inspired volume. Additionally, in order to increase the rate of lung emptying and/or to decrease exhalation time, the ventilator in the modify operation 606 may further adjust a number of other criteria, such as gas flow, ventilation modes, exhalation time, etc. However, the ventilator during the modify operation 606 does not adjust a received PEEP in the modified pressure profile. If a PEEP was received by the ventilator, the ventilator in the modify operation 606 maintains the received PEEP. For example, if the ventilator does not receive a PEEP, the ventilator during the modify operation 606 provides/determines a modified pressure profile with no PEEP. In some embodiments, the pressure profile is determined based on monitored parameters from a group of previously delivered exhalations. Any suitable pressure profile for shortening the amount of time to exhale the delivered amount of inspiratory gas or that increases the rate of lung emptying during exhalation may be utilized by the ventilator during method 600. For example, any suitable method for determining the pressure profile for method 600 as would be known by a person of skill in the art as described above in method 500 may be utilized by method 600.


Next, the ventilator during method 600 either continues with or repeats delivery operation 602. Again, the ventilator during delivery operation 602 delivers airway pressure and/or flow based on a pressure profile during an exhalation to a patient during ventilation on a ventilator. However, during this delivery operation 602, the ventilator delivers a modified airway pressure and/or a modified flow based on the modified pressure profile to the patient during the current and/or next exhalation. The current exhalation is the exhalation during which the received at least one parameter was monitored and utilized to calculate the modified pressure profile. The next exhalation is the exhalation subsequent to an exhalation where the received at least one parameter was monitored and utilized to calculate the modified pressure profile. The next exhalation may further include every exhalation, a predetermined number of exhalations, or the number of exhalations performed in a predetermined amount of time subsequent to the exhalation where the at least one criterion was monitored or subsequent to the current exhalation. Accordingly, the delivery of airway pressure and/or flow based on this modified pressure profile should reduce the amount of time required by the patient to exhale the delivered volume of gas inspired by the patient and/or should increase the rate of lung emptying during the current and/or next exhalation.


In some embodiments, the ventilator may repeat method 600 for every breath, after a predetermined number of breaths, or after a predetermined amount of time expires. In other embodiments, method 600 is performed by the systems illustrated in FIGS. 1 and 2, which are described above.


In some embodiments, a microprocessor-based ventilator that accesses a computer-readable medium having computer-executable instructions for performing the method of controlling exhalation during ventilation of a patient is disclosed. This method includes repeatedly performing the steps disclosed in method 600 and as illustrated in FIG. 6.


In other embodiments, a ventilator system that includes: means for delivering at least one of airway pressure and flow based on a pressure profile during a current exhalation to a patient during ventilation on a ventilator; means for monitoring at least one parameter during the current exhalation by the patient; means for modifying the pressure profile based at least in part on the monitored at least one parameter; and means for delivering at least one of a modified airway pressure and a modified flow based on the modified pressure profile to the patient during at least one of the current exhalation and the next exhalation. Further, the modified pressure profile maintains a received PEEP.


Example 1

During testing with various simulation tools, it was discovered that this nonlinear relationship between airway resistance of the internal lung with lung and airway pressure causes the exhalation lung flow to decay more rapidly than normal, thereby, preventing complete lung emptying when utilizing a pressure profile based on the assumption that achieving the highest pressure gradient across the flow restriction promotes the greatest lung flow at any point in time, and the fastest rate of lung emptying.


For example, during simulation, the time it takes for 50% of the inspired tidal volume to be exhaled by the patient increases as the exhalation pressure decay is reduced (or as the EPFTP increases) and target PEEP is increased, as illustrated by FIG. 7. FIG. 7 illustrates a graph of the effect of different patient's tubing exhalation pressure profiles on the time required to passively exhale 50% of a given inspired tidal volume in simulations.


For example, during simulation, the time it takes for 90% of the inspired tidal volume to be exhaled by the patient is reduced by reducing the rate of exhalation pressure decay (or increasing the EPFTP) and reducing the PEEP level, as illustrated in FIG. 8. FIG. 8 illustrates a graph of the effect of different patient's tubing exhalation pressure profiles on the time required to passively exhale 90% of a given inspired tidal volume in simulations. Further, FIG. 8 also illustrates that these changes affect the pressure profile performance non-monotonically.


Accordingly, these results show that decreasing pressure as fast as possible to the set PEEP rate does not always provide for the fastest exhalation. Further, these results show that a nonlinear relationship between airway resistance and lung and airway pressure exists within the lungs.


Those skilled in the art will recognize that the methods and systems of the present disclosure may be implemented in many manners and as such are not to be limited by the foregoing exemplary embodiments and examples. In other words, functional elements being performed by a single or multiple components, in various combinations of hardware and software or firmware, and individual functions, can be distributed among software applications at either the client or server level or both. In this regard, any number of the features of the different embodiments described herein may be combined into single or multiple embodiments, and alternate embodiments having fewer than or more than all of the features herein described are possible. Functionality may also be, in whole or in part, distributed among multiple components, in manners now known or to become known. Thus, myriad software/hardware/firmware combinations are possible in achieving the functions, features, interfaces and preferences described herein. Moreover, the scope of the present disclosure covers conventionally known manners for carrying out the described features and functions and interfaces, and those variations and modifications that may be made to the hardware or software or firmware components described herein as would be understood by those skilled in the art now and hereafter.


Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the disclosure and as defined in the appended claims. While various embodiments have been described for purposes of this disclosure, various changes and modifications may be made which are well within the scope of the present invention. Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the disclosure and as defined in the appended claims.

Claims
  • 1. A method for controlling an exhalation phase during ventilation of a patient on a ventilator, the method comprising: determining with the ventilator a plurality of potential pressure profiles for an exhalation that will provide a decrease in an amount of time the patient takes to passively expire an inspired volume of gas for the exhalation than a previous amount of time required by the patient to passively expire the inspired volume of gas based on at least one criterion for the patient being ventilated on the ventilator;selecting a pressure profile for delivery to the patient from the plurality of potential pressure profiles; andcontrolling at least one of airway pressure and flow with the ventilator based on the selected pressure profile during the exhalation by the patient.
  • 2. The method of claim 1, wherein the at least one criterion is a nonlinear relationship between airway resistance and lung pressure and the airway pressure.
  • 3. The method of claim 1, wherein the at least one criterion is an exhalation pressure fall time parameter.
  • 4. The method of claim 1, wherein the at least one criterion is an actual rate of pressure decay.
  • 5. The method of claim 4, wherein the actual rate of pressure decay is defined by an exhalation pressure fall time parameter.
  • 6. The method of claim 1, wherein the at least one criterion is an amount of time that the patient takes to exhale a delivered volume of gas inspired by the patient.
  • 7. The method of claim 1, wherein the at least one criterion is a measured end inspiratory pressure.
  • 8. The method of claim 1, wherein the at least one criterion is a trajectory for the plurality of potential pressure profiles calculated with an equation of py=PEEP+(EIP−PEEP)e−αt, wherein the α is greater than zero and denotes an exhalation fall time parameter,wherein the PEEP is a set PEEP,wherein the EIP is a measured end expiratory pressure,wherein the t is an exhalation time, andwherein the Py is a pressure at a wye-fitting.
  • 9. The method of claim 1, wherein the at least one criterion is a predetermined pressure profile that comprises: allowing pressure to fall below a set PEEP by a predetermined amount;increasing the pressure after the pressure falls below the set PEEP to another pressure above the set PEEP by a set amount; andsubsequently allowing the another pressure above the set PEEP to fall to the set PEEP at a predetermined rate.
  • 10. The method of claim 1, wherein the plurality of potential pressure profiles for the exhalation also provide for complete lung emptying.
  • 11. The method of claim 10, wherein determining the plurality of potential pressure profiles is further based on a received PEEP.
  • 12. The method of claim 11, further comprising: delivering a volume of gas to the patient for inspiration during ventilation on the ventilator,wherein the exhalation by the patient includes exhaling at least 90% of the volume of gas delivered to the patient that was inspired by the patient.
  • 13. A method for optimizing a pressure profile delivered to a patient during an exhalation phase on a ventilator, the method comprising: delivering at least one of airway pressure and flow based on the pressure profile during a current exhalation to the patient during ventilation on the ventilator;monitoring at least one parameter during the current exhalation by the patient, wherein the at least one parameter is at least one of a time to exhale a predetermined percentage of inspired volume, a percent of inspired volume/elapsed time, or a force expiratory volume in 1 second (FEV1);modifying the pressure profile for an exhalation based on the at least one parameter and a non-linear relationship between airway resistance and, lung pressure and the airway pressure to form a modified pressure profile;delivering at least one of a modified airway pressure and a modified flow based on the modified pressure profile to the patient during at least one of the current exhalation and a next exhalation,wherein the modified pressure profile maintains a received PEEP.
  • 14. The method of claim 13, wherein delivering at least one of the modified airway pressure and the modified flow based on the modified pressure profile to the patient is during the next exhalation.
  • 15. The method of claim 13, wherein the non-linear relationship is modeled by a lung resistance equaling a nonlinear function between of an amount of a first pressure in an upper airways compartment of a lung and an amount of a second pressure in a lower airways compartment of the lung.
  • 16. The method of claim 13, wherein the modified pressure profile provides a faster rate of lung emptying.
  • 17. The method of claim 13, wherein the at least on criterion is utilized to optimize a trajectory of the modified pressure profile, wherein the trajectory is an exponential decay from EIP to PEEP.
  • 18. The method of claim 13, wherein the modified pressure profile provides a decrease in an amount of time the patient takes to passively expire 90% of an inspired volume of gas than a previous amount of time required by the patient to passively expire 90% of the inspired volume of gas.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 13/098,130, now U.S. Pat. No. 9,629,971, entitled “METHODS AND SYSTEMS FOR EXHALATION CONTROL AND TRAJECTORY OPTIMIZATION,” filed Apr. 29, 2011, which is hereby incorporated herein by reference.

US Referenced Citations (694)
Number Name Date Kind
3444857 Godel May 1969 A
3481333 Garrison Dec 1969 A
3485243 Bird Dec 1969 A
3688794 Bird et al. Sep 1972 A
4241756 Bennett et al. Dec 1980 A
4406291 Schwesinger Sep 1983 A
4527557 DeVries et al. Jul 1985 A
4608976 Suchy Sep 1986 A
4699137 Schroeder Oct 1987 A
RE32553 Bennett et al. Dec 1987 E
4712580 Gilman et al. Dec 1987 A
4727871 Smargiassi et al. Mar 1988 A
4747403 Gluck et al. May 1988 A
4752089 Carter Jun 1988 A
4921642 LaTorraca May 1990 A
4954799 Kumar Sep 1990 A
4957107 Sipin Sep 1990 A
4991576 Henkin et al. Feb 1991 A
4993269 Guillaume et al. Feb 1991 A
5000173 Zalkin et al. Mar 1991 A
5020532 Mahoney et al. Jun 1991 A
5038621 Stupecky Aug 1991 A
5057822 Hoffman Oct 1991 A
5072729 DeVries Dec 1991 A
5072737 Goulding Dec 1991 A
5109838 Elam May 1992 A
5127400 DeVries et al. Jul 1992 A
5134995 Gruenke et al. Aug 1992 A
5146092 Apperson et al. Sep 1992 A
5150291 Cummings et al. Sep 1992 A
5153436 Apperson et al. Oct 1992 A
5161525 Kimm et al. Nov 1992 A
5168868 Hicks Dec 1992 A
5178155 Mault Jan 1993 A
5237987 Anderson et al. Aug 1993 A
5255675 Kolobow Oct 1993 A
5259373 Gruenke et al. Nov 1993 A
5269293 Löser et al. Dec 1993 A
5271389 Isaza et al. Dec 1993 A
5277175 Riggs et al. Jan 1994 A
5279549 Ranford Jan 1994 A
5299568 Forare et al. Apr 1994 A
5301667 McGrail et al. Apr 1994 A
5301921 Kumar Apr 1994 A
5303698 Tobia et al. Apr 1994 A
5303699 Bonassa et al. Apr 1994 A
5309901 Beaussant May 1994 A
5316009 Yamada et al. May 1994 A
5319540 Isaza et al. Jun 1994 A
5325861 Goulding Jul 1994 A
5331995 Westfall et al. Jul 1994 A
5333606 Schneider et al. Aug 1994 A
5335656 Bowe et al. Aug 1994 A
5339807 Carter Aug 1994 A
5343857 Schneider et al. Sep 1994 A
5343858 Winefordner et al. Sep 1994 A
5351522 Lura Oct 1994 A
5355893 Mick et al. Oct 1994 A
5357946 Kee et al. Oct 1994 A
5360000 Carter Nov 1994 A
5368019 LaTorraca Nov 1994 A
5368021 Beard et al. Nov 1994 A
5369277 Knodle et al. Nov 1994 A
5383449 Forare et al. Jan 1995 A
5385142 Brady et al. Jan 1995 A
5390666 Kimm et al. Feb 1995 A
5398677 Smith Mar 1995 A
5401135 Stoen et al. Mar 1995 A
5402796 Packer et al. Apr 1995 A
5407174 Kumar Apr 1995 A
5413110 Cummings et al. May 1995 A
5438980 Phillips Aug 1995 A
5443075 Holscher Aug 1995 A
5452714 Anderson et al. Sep 1995 A
5467766 Ansite et al. Nov 1995 A
5484270 Adahan Jan 1996 A
5494028 DeVries et al. Feb 1996 A
5497767 Olsson et al. Mar 1996 A
5503140 Winefordner et al. Apr 1996 A
5513631 McWilliams May 1996 A
5517983 Deighan et al. May 1996 A
5520071 Jones May 1996 A
5524615 Power Jun 1996 A
5531221 Power Jul 1996 A
5540220 Gropper et al. Jul 1996 A
5542415 Brady Aug 1996 A
5542416 Chalvignac Aug 1996 A
5544674 Kelly Aug 1996 A
5546935 Champeau Aug 1996 A
5549106 Gruenke et al. Aug 1996 A
5568910 Koehler et al. Oct 1996 A
5575283 Sjoestrand Nov 1996 A
5596984 O'Mahony et al. Jan 1997 A
5598838 Servidio et al. Feb 1997 A
5606968 Mang Mar 1997 A
5616923 Rich et al. Apr 1997 A
5617847 Howe Apr 1997 A
5630411 Holscher May 1997 A
5632270 O'Mahony et al. May 1997 A
5645048 Brodsky et al. Jul 1997 A
5657750 Colman et al. Aug 1997 A
5660171 Kimm et al. Aug 1997 A
5662099 Tobia et al. Sep 1997 A
5664560 Merrick et al. Sep 1997 A
5664562 Bourdon Sep 1997 A
5671767 Kelly Sep 1997 A
5672041 Ringdahl et al. Sep 1997 A
5673689 Power Oct 1997 A
5678537 Bathe et al. Oct 1997 A
5683232 Adhan Nov 1997 A
5692497 Schnitzer et al. Dec 1997 A
5693944 Rich Dec 1997 A
5694926 DeVries et al. Dec 1997 A
5697363 Hart Dec 1997 A
5701883 Hete et al. Dec 1997 A
5701889 Danon Dec 1997 A
5715812 Deighan et al. Feb 1998 A
5762480 Adahan Jun 1998 A
5771884 Yarnall et al. Jun 1998 A
5789660 Kofoed et al. Aug 1998 A
5791339 Winter Aug 1998 A
5794614 Gruenke et al. Aug 1998 A
5794986 Gansel et al. Aug 1998 A
5797393 Kohl Aug 1998 A
5803064 Phelps et al. Sep 1998 A
5813399 Isaza et al. Sep 1998 A
5823179 Grychowski et al. Oct 1998 A
5826575 Lall Oct 1998 A
5829441 Kidd et al. Nov 1998 A
5845636 Gruenke et al. Dec 1998 A
5857458 Tham et al. Jan 1999 A
5864938 Gansel et al. Feb 1999 A
5865168 Isaza Feb 1999 A
5868133 DeVries et al. Feb 1999 A
5875783 Kullik Mar 1999 A
5876352 Weismann Mar 1999 A
5881717 Isaza Mar 1999 A
5881722 DeVries et al. Mar 1999 A
5881723 Wallace et al. Mar 1999 A
5884623 Winter Mar 1999 A
5906204 Beran et al. May 1999 A
5909731 O'Mahony et al. Jun 1999 A
5915379 Wallace et al. Jun 1999 A
5915380 Wallace et al. Jun 1999 A
5915382 Power Jun 1999 A
5918597 Jones et al. Jul 1999 A
5921238 Bourdon Jul 1999 A
5927274 Servidio et al. Jul 1999 A
5931160 Gilmore et al. Aug 1999 A
5934274 Merrick et al. Aug 1999 A
5937854 Stenzier Aug 1999 A
5937856 Jonasson et al. Aug 1999 A
5941846 Duffy et al. Aug 1999 A
5957130 Krahbichler et al. Sep 1999 A
6024089 Wallace et al. Feb 2000 A
6041777 Faithfull et al. Mar 2000 A
6041780 Richard et al. Mar 2000 A
6047860 Sanders Apr 2000 A
6073630 Adahan Jun 2000 A
6076523 Jones et al. Jun 2000 A
6095139 Psaros Aug 2000 A
6095140 Poon et al. Aug 2000 A
6099481 Daniels et al. Aug 2000 A
6102038 DeVries Aug 2000 A
6106480 Gama De Abreu et al. Aug 2000 A
6116240 Merrick et al. Sep 2000 A
6116242 Frye et al. Sep 2000 A
6116464 Sanders Sep 2000 A
6119686 Somerson et al. Sep 2000 A
6123073 Schlawin et al. Sep 2000 A
6123074 Hete et al. Sep 2000 A
6131571 Lampotang et al. Oct 2000 A
6135106 Dirks et al. Oct 2000 A
6135967 Fiorenza et al. Oct 2000 A
6142150 O'Mahoney et al. Nov 2000 A
6148814 Clemmer et al. Nov 2000 A
6152132 Psaros Nov 2000 A
6152135 DeVries et al. Nov 2000 A
6155986 Brydon et al. Dec 2000 A
6158432 Biondi et al. Dec 2000 A
6161539 Winter Dec 2000 A
6176234 Salter et al. Jan 2001 B1
6179784 Daniels et al. Jan 2001 B1
6192885 Jalde Feb 2001 B1
6196222 Heinonen et al. Mar 2001 B1
6203502 Hilgendorf et al. Mar 2001 B1
6217524 Orr et al. Apr 2001 B1
6220245 Takabayashi et al. Apr 2001 B1
6227196 Jaffe et al. May 2001 B1
6269812 Wallace et al. Aug 2001 B1
6273444 Power Aug 2001 B1
6283119 Bourdon Sep 2001 B1
6287264 Hoffman Sep 2001 B1
6295330 Skog et al. Sep 2001 B1
6295985 Kock et al. Oct 2001 B1
6305372 Servidio Oct 2001 B1
6305373 Wallace et al. Oct 2001 B1
6306098 Orr et al. Oct 2001 B1
6308706 Lammers et al. Oct 2001 B1
6309360 Mault Oct 2001 B1
6312389 Kofoed et al. Nov 2001 B1
6321748 O'Mahoney Nov 2001 B1
6325785 Babkes et al. Dec 2001 B1
6325978 Labuda et al. Dec 2001 B1
6349922 Rydin Feb 2002 B1
6357438 Hansen Mar 2002 B1
6358215 Ricciardelli Mar 2002 B1
6360745 Wallace et al. Mar 2002 B1
6369838 Wallace et al. Apr 2002 B1
6371113 Tobia et al. Apr 2002 B1
6390091 Banner et al. May 2002 B1
6394962 Gama De Abreu et al. May 2002 B1
6402697 Calkins et al. Jun 2002 B1
6408848 Feldman et al. Jun 2002 B1
6412483 Jones et al. Jul 2002 B1
6415788 Clawson et al. Jul 2002 B1
6419634 Gaston, IV et al. Jul 2002 B1
6439229 Du et al. Aug 2002 B1
6457472 Schwartz et al. Oct 2002 B1
6463930 Biondi et al. Oct 2002 B2
6467478 Merrick et al. Oct 2002 B1
6471658 Daniels et al. Oct 2002 B1
6484719 Berthon-Jones Nov 2002 B1
6523537 Mas Marfany Feb 2003 B1
6523538 Wikefeldt Feb 2003 B1
6526970 DeVries et al. Mar 2003 B2
6532957 Berthon-Jones Mar 2003 B2
6532960 Yurko Mar 2003 B1
6540689 Orr et al. Apr 2003 B1
6543449 Woodring et al. Apr 2003 B1
6546930 Emerson et al. Apr 2003 B1
6550479 Duxbury Apr 2003 B1
6553991 Isaza Apr 2003 B1
6553992 Berthon-Jones et al. Apr 2003 B1
6557553 Borrello May 2003 B1
6557554 Sugiura May 2003 B1
6564798 Jalde May 2003 B1
6571795 Bourdon Jun 2003 B2
6572561 Mault Jun 2003 B2
6575163 Berthon-Jones Jun 2003 B1
6575164 Jaffe et al. Jun 2003 B1
6575165 Cook et al. Jun 2003 B1
6575918 Kline Jun 2003 B2
6584973 Biondi et al. Jul 2003 B1
6606994 Clark Aug 2003 B1
6616615 Mault Sep 2003 B2
6616896 Labuda et al. Sep 2003 B2
6619289 Mashak Sep 2003 B1
6622725 Fisher et al. Sep 2003 B1
6622726 Du Sep 2003 B1
6629934 Mault et al. Oct 2003 B2
6631716 Robinson et al. Oct 2003 B1
6640806 Yurko Nov 2003 B2
6644310 Delache et al. Nov 2003 B1
6648831 Orr et al. Nov 2003 B2
6648832 Orr et al. Nov 2003 B2
6659962 Ricciardelli Dec 2003 B2
6668824 Isaza et al. Dec 2003 B1
6668828 Figley et al. Dec 2003 B1
6668829 Biondi et al. Dec 2003 B2
6675801 Wallace et al. Jan 2004 B2
6688307 Berthon-Jones Feb 2004 B2
6718974 Moberg Apr 2004 B1
6725447 Gilman et al. Apr 2004 B1
6729331 Kay May 2004 B2
6739334 Valeij May 2004 B2
6739337 Isaza May 2004 B2
6755193 Berthon-Jones et al. Jun 2004 B2
6761167 Nadjafizadeh et al. Jul 2004 B1
6761168 Nadjafizadeh et al. Jul 2004 B1
6763829 Jaffe et al. Jul 2004 B2
6722359 Chalvignac Aug 2004 B2
6723055 Hoffman Aug 2004 B2
6772762 Piesinger Aug 2004 B2
6805121 Flood et al. Oct 2004 B1
6810876 Berthon-Jones Nov 2004 B2
6814074 Nadjafizadeh et al. Nov 2004 B1
6815211 Blazewicz et al. Nov 2004 B1
6840906 Gama De Abreu et al. Jan 2005 B2
6866040 Bourdon Mar 2005 B1
6877511 DeVries et al. Apr 2005 B2
6886558 Tanaka et al. May 2005 B2
6896713 Eckerbom et al. May 2005 B1
6908438 Orr et al. Jun 2005 B2
6938619 Hickle Sep 2005 B1
6954702 Pierry et al. Oct 2005 B2
6955651 Kück et al. Oct 2005 B2
6960854 Nadjafizadeh et al. Nov 2005 B2
6968840 Smith et al. Nov 2005 B2
6986351 Figley et al. Jan 2006 B2
6990980 Richey et al. Jan 2006 B2
7004168 Mace et al. Feb 2006 B2
7017574 Biondi et al. Mar 2006 B2
7018340 Jaffe et al. Mar 2006 B2
7032589 Kerchanin, II et al. Apr 2006 B2
7036504 Wallace et al. May 2006 B2
7040315 Stromberg May 2006 B1
7040316 Connelly et al. May 2006 B2
7040321 Göbel May 2006 B2
7043979 Smith et al. May 2006 B2
7066175 Hamilton et al. Jun 2006 B2
7066177 Pittaway et al. Jun 2006 B2
7074196 Kück et al. Jul 2006 B2
7077131 Hansen Jul 2006 B2
RE39225 Isaza et al. Aug 2006 E
7117438 Wallace et al. Oct 2006 B2
7118537 Baddour Oct 2006 B2
7121277 Ström Oct 2006 B2
7128069 Farrugia et al. Oct 2006 B2
7135001 Orr et al. Nov 2006 B2
7137389 Berthon-Jones Nov 2006 B2
7152604 Hickle et al. Dec 2006 B2
7168597 Jones et al. Jan 2007 B1
7183552 Russell Feb 2007 B2
7195013 Lurie Mar 2007 B2
7210478 Banner et al. May 2007 B2
7222623 DeVries et al. May 2007 B2
7241269 McCawley et al. Jul 2007 B2
7270126 Wallace et al. Sep 2007 B2
7275540 Bolam Oct 2007 B2
7291115 Cardona Burrul Nov 2007 B2
7291851 DelFavero et al. Nov 2007 B2
7302949 Pelerossi et al. Dec 2007 B2
7320321 Pranger et al. Jan 2008 B2
7334578 Biondi et al. Feb 2008 B2
7335164 Mace et al. Feb 2008 B2
7341563 Rich et al. Mar 2008 B2
7347205 Levi Mar 2008 B2
7347825 Vaughan et al. Mar 2008 B2
7363085 Benser et al. Apr 2008 B1
7367337 Berton-Jones et al. May 2008 B2
7369757 Farbarik May 2008 B2
7370650 Nadjafizadeh et al. May 2008 B2
7392806 Yuen et al. Jul 2008 B2
7421296 Benser et al. Sep 2008 B1
7427269 George et al. Sep 2008 B2
7428902 Du et al. Sep 2008 B2
7432508 Daniels et al. Oct 2008 B2
7460959 Jafari Dec 2008 B2
7475685 Dietz et al. Jan 2009 B2
7484508 Younes Feb 2009 B2
7487773 Li Feb 2009 B2
7487778 Freitag Feb 2009 B2
7500483 Colman et al. Mar 2009 B2
7509957 Duquette et al. Mar 2009 B2
7519425 Benser et al. Apr 2009 B2
7525663 Kwok et al. Apr 2009 B2
7533670 Freitag et al. May 2009 B1
7547285 Kline Jun 2009 B2
7556038 Kirby et al. Jul 2009 B2
7556042 West et al. Jul 2009 B2
7562657 Blanch et al. Jul 2009 B2
7588033 Wondka Sep 2009 B2
7610914 Bolam et al. Nov 2009 B2
7617824 Doyle Nov 2009 B2
7621271 Brugnoli Nov 2009 B2
7634998 Fenley Dec 2009 B1
7644713 Berthon-Jones Jan 2010 B2
7654802 Crawford, Jr. et al. Feb 2010 B2
7668579 Lynn Feb 2010 B2
7686019 Weiss et al. Mar 2010 B2
7694677 Tang Apr 2010 B2
7699788 Kuck et al. Apr 2010 B2
7717113 Andrieux May 2010 B2
7721735 Hamilton et al. May 2010 B2
7721736 Urias et al. May 2010 B2
D618356 Ross Jun 2010 S
7740591 Starr et al. Jun 2010 B1
7753052 Tanaka Jul 2010 B2
7779840 Acker et al. Aug 2010 B2
7784461 Figueiredo et al. Aug 2010 B2
7810497 Pittman et al. Oct 2010 B2
7814908 Psaros Oct 2010 B2
7819815 Younes Oct 2010 B2
7823588 Hansen Nov 2010 B2
7828741 Kline et al. Nov 2010 B2
7846739 von Bahr et al. Dec 2010 B2
7849854 DeVries et al. Dec 2010 B2
7855716 McCreary et al. Dec 2010 B2
7861716 Borrello Jan 2011 B2
7870857 Dhuper et al. Jan 2011 B2
D632796 Ross et al. Feb 2011 S
D632797 Ross et al. Feb 2011 S
7883471 Aljuri et al. Feb 2011 B2
7885771 Roecker et al. Feb 2011 B2
7891354 Farbarik Feb 2011 B2
7893560 Carter Feb 2011 B2
7900626 Daly Mar 2011 B2
7913690 Fisher et al. Mar 2011 B2
D638852 Skidmore et al. May 2011 S
7984714 Hausmann et al. Jul 2011 B2
D643535 Ross et al. Aug 2011 S
7992557 Nadjafizadeh et al. Aug 2011 B2
8001967 Wallace et al. Aug 2011 B2
D645158 Sanchez et al. Sep 2011 S
8021310 Sanborn et al. Sep 2011 B2
D649157 Skidmore et al. Nov 2011 S
D652521 Ross et al. Jan 2012 S
D652936 Ross et al. Jan 2012 S
D653749 Winter et al. Feb 2012 S
8113062 Graboi et al. Feb 2012 B2
D655405 Winter et al. Mar 2012 S
D655809 Winter et al. Mar 2012 S
8181648 Perine et al. May 2012 B2
8210173 Vandine Jul 2012 B2
8210174 Farbarik Jul 2012 B2
8240684 Ross et al. Aug 2012 B2
8267085 Jafari et al. Sep 2012 B2
8272379 Jafari et al. Sep 2012 B2
8272380 Jafari et al. Sep 2012 B2
8302600 Andrieux et al. Nov 2012 B2
8302602 Andrieux et al. Nov 2012 B2
9629971 Masic Apr 2017 B2
20010029339 Orr et al. Oct 2001 A1
20010031928 Orr et al. Oct 2001 A1
20020026941 Bondi et al. Mar 2002 A1
20020082512 Strom Jun 2002 A1
20020128566 Gama De Abreu et al. Sep 2002 A1
20020138213 Mault Sep 2002 A1
20020148468 Valeij Oct 2002 A1
20030047188 Mace et al. Mar 2003 A1
20030062045 Woodring et al. Apr 2003 A1
20030111078 Habashi et al. Jun 2003 A1
20030140921 Smith et al. Jul 2003 A1
20030191405 Rich et al. Oct 2003 A1
20040003814 Banner et al. Jan 2004 A1
20040050387 Younes Mar 2004 A1
20040087867 Gama De Abreu et al. May 2004 A1
20040138577 Kline Jul 2004 A1
20040186391 Pierry et al. Sep 2004 A1
20040256560 Russell Dec 2004 A1
20040261793 Stromberg et al. Dec 2004 A1
20050005936 Wondka Jan 2005 A1
20050034726 Pittaway et al. Feb 2005 A1
20050039748 Andrieux Feb 2005 A1
20050098177 Haj-Yahya et al. May 2005 A1
20050112325 Hickle May 2005 A1
20050124907 Kuck et al. Jun 2005 A1
20050139211 Alston et al. Jun 2005 A1
20050139212 Bourdon Jun 2005 A1
20050150494 DeVries et al. Jul 2005 A1
20050217671 Fisher et al. Oct 2005 A1
20050279358 Richey et al. Dec 2005 A1
20050284476 Blache et al. Dec 2005 A1
20050285055 DelFavero et al. Dec 2005 A1
20060009707 Daniels et al. Jan 2006 A1
20060032499 Halsnes Feb 2006 A1
20060052950 Pierry et al. Mar 2006 A1
20060086357 Soliman et al. Apr 2006 A1
20060129054 Orr et al. Jun 2006 A1
20060130839 Bassovich Jun 2006 A1
20060145078 Russell Jul 2006 A1
20060201507 Breen Sep 2006 A1
20060241508 Jaffe et al. Oct 2006 A1
20060243278 Hamilton et al. Nov 2006 A1
20060249148 Younes Nov 2006 A1
20060249153 DeVries et al. Nov 2006 A1
20060253038 Kuck et al. Nov 2006 A1
20060278223 Younes Dec 2006 A1
20070000494 Banner et al. Jan 2007 A1
20070017515 Wallace et al. Jan 2007 A1
20070028921 Banner et al. Feb 2007 A1
20070062531 Fisher et al. Feb 2007 A1
20070044798 Levi Mar 2007 A1
20070068518 Urias et al. Mar 2007 A1
20070068530 Pacey Mar 2007 A1
20070073183 Kline Mar 2007 A1
20070077200 Baker Apr 2007 A1
20070095347 Lampotang et al. May 2007 A1
20070107728 Ricciardelli et al. May 2007 A1
20070113854 Mcauliffe May 2007 A1
20070125377 Heinonen et al. Jun 2007 A1
20070142716 Biondi Jun 2007 A1
20070144521 DeVries et al. Jun 2007 A1
20070144523 Bolam et al. Jun 2007 A1
20070149891 George et al. Jun 2007 A1
20070157930 Soliman et al. Jul 2007 A1
20070157931 Parker et al. Jul 2007 A1
20070163579 Li et al. Jul 2007 A1
20070193579 Duquette et al. Aug 2007 A1
20070199566 Be'eri Aug 2007 A1
20070215154 Borrello Sep 2007 A1
20070221221 Cooke et al. Sep 2007 A1
20070225612 Mace Sep 2007 A1
20070227537 Bemister et al. Oct 2007 A1
20070232952 Baddour Oct 2007 A1
20070240718 Daly Oct 2007 A1
20070255160 Daly Nov 2007 A1
20070272241 Sanborn et al. Nov 2007 A1
20070272242 Sanborn et al. Nov 2007 A1
20070273887 Russell Nov 2007 A1
20070282214 George et al. Dec 2007 A1
20070284361 Nadjafizadeh et al. Dec 2007 A1
20080000471 Bolam et al. Jan 2008 A1
20080009761 Acker et al. Jan 2008 A1
20080011300 Andreiux Jan 2008 A1
20080021339 Gabriel et al. Jan 2008 A1
20080045825 Melker et al. Feb 2008 A1
20080053438 DeVries et al. Mar 2008 A1
20080053441 Gottlib et al. Mar 2008 A1
20080058667 Pierry et al. Mar 2008 A1
20080060646 Isaza Mar 2008 A1
20080060656 Isaza Mar 2008 A1
20080072896 Setzer et al. Mar 2008 A1
20080072902 Setzer et al. Mar 2008 A1
20080078390 Milne et al. Apr 2008 A1
20080083644 Janbakhsh et al. Apr 2008 A1
20080091117 Choncholas et al. Apr 2008 A1
20080092894 Nicolazzi et al. Apr 2008 A1
20080097234 Nicolazzi et al. Apr 2008 A1
20080119753 Ricciardelli et al. May 2008 A1
20080119754 Hietala May 2008 A1
20080135044 Freitag et al. Jun 2008 A1
20080168990 Cooke et al. Jul 2008 A1
20080183094 Schonfuss et al. Jul 2008 A1
20080196720 Kollmeyer et al. Aug 2008 A1
20080202517 Mitton et al. Aug 2008 A1
20080202518 Mitton et al. Aug 2008 A1
20080202525 Mitton Aug 2008 A1
20080214947 Hunt et al. Sep 2008 A1
20080230062 Tham Sep 2008 A1
20080257349 Hedner et al. Oct 2008 A1
20080276939 Tiedje Nov 2008 A1
20090000621 Haggblom et al. Jan 2009 A1
20090007914 Bateman Jan 2009 A1
20090050153 Brunner Feb 2009 A1
20090056708 Stenzler et al. Mar 2009 A1
20090056719 Newman Mar 2009 A1
20090071478 Kalfon Mar 2009 A1
20090078251 Zucchi et al. Mar 2009 A1
20090084381 DeVries et al. Apr 2009 A1
20090090359 Daviet et al. Apr 2009 A1
20090114223 Bonassa May 2009 A1
20090133695 Rao et al. May 2009 A1
20090137919 Bar-Lavie et al. May 2009 A1
20090165795 Nadjafizadeh et al. Jul 2009 A1
20090171176 Andersohn Jul 2009 A1
20090188502 Tiedje Jul 2009 A1
20090205661 Stephenson et al. Aug 2009 A1
20090205663 Vandine et al. Aug 2009 A1
20090217923 Boehm et al. Sep 2009 A1
20090221926 Younes Sep 2009 A1
20090229612 Levi et al. Sep 2009 A1
20090235935 Pacey Sep 2009 A1
20090241948 Clancy et al. Oct 2009 A1
20090241951 Jafari et al. Oct 2009 A1
20090241952 Nicolazzi et al. Oct 2009 A1
20090241953 Vandine et al. Oct 2009 A1
20090241955 Jafari et al. Oct 2009 A1
20090241956 Baker, Jr. et al. Oct 2009 A1
20090241957 Baker, Jr. Oct 2009 A1
20090241958 Baker, Jr. Oct 2009 A1
20090241962 Jafari et al. Oct 2009 A1
20090241964 Aljuri et al. Oct 2009 A1
20090247891 Wood Oct 2009 A1
20090250054 Loncar et al. Oct 2009 A1
20090250059 Allum et al. Oct 2009 A1
20090255533 Freitag et al. Oct 2009 A1
20090260625 Wondka Oct 2009 A1
20090263279 Kline et al. Oct 2009 A1
20090270752 Coifman Oct 2009 A1
20090277448 Ahlemn et al. Nov 2009 A1
20090293877 Blanch et al. Dec 2009 A1
20090299430 Daviet et al. Dec 2009 A1
20090301486 Masic Dec 2009 A1
20090301487 Masic Dec 2009 A1
20090301490 Masic Dec 2009 A1
20090301491 Masic et al. Dec 2009 A1
20100011307 Desfossez et al. Jan 2010 A1
20100012126 Gandini Jan 2010 A1
20100024820 Bourdon Feb 2010 A1
20100031961 Schmidt Feb 2010 A1
20100051026 Graboi Mar 2010 A1
20100051029 Jafari et al. Mar 2010 A1
20100059058 Kuo Mar 2010 A1
20100069761 Karst et al. Mar 2010 A1
20100071689 Thiessen Mar 2010 A1
20100071692 Porges Mar 2010 A1
20100071695 Thiessen Mar 2010 A1
20100071696 Jafari Mar 2010 A1
20100071697 Jafari et al. Mar 2010 A1
20100078017 Andrieux et al. Apr 2010 A1
20100078026 Andrieux et al. Apr 2010 A1
20100081119 Jafari et al. Apr 2010 A1
20100081955 Wood, Jr. et al. Apr 2010 A1
20100099999 Hemnes et al. Apr 2010 A1
20100101577 Kaestle et al. Apr 2010 A1
20100106037 Kacmarek et al. Apr 2010 A1
20100125227 Bird May 2010 A1
20100137733 Wang et al. Jun 2010 A1
20100139660 Adahan Jun 2010 A1
20100147302 Selvarajan et al. Jun 2010 A1
20100147303 Jafari et al. Jun 2010 A1
20100170512 Kuypers et al. Jul 2010 A1
20100175695 Jamison Jul 2010 A1
20100179392 Chang et al. Jul 2010 A1
20100180897 Malgouyres Jul 2010 A1
20100185112 Van Kesteren et al. Jul 2010 A1
20100186744 Andrieux Jul 2010 A1
20100198095 Isler Aug 2010 A1
20100218765 Jafari et al. Sep 2010 A1
20100218766 Milne Sep 2010 A1
20100218767 Jafari et al. Sep 2010 A1
20100222692 McCawley et al. Sep 2010 A1
20100236553 Jafari et al. Sep 2010 A1
20100236555 Jafari et al. Sep 2010 A1
20100241019 Varga et al. Sep 2010 A1
20100242961 Mougel et al. Sep 2010 A1
20100249584 Albertelli Sep 2010 A1
20100252042 Kapust et al. Oct 2010 A1
20100268106 Johnson et al. Oct 2010 A1
20100268131 Efthimion Oct 2010 A1
20100269834 Freitag et al. Oct 2010 A1
20100282258 Tailor et al. Nov 2010 A1
20100282259 Figueiredo et al. Nov 2010 A1
20100286544 Tanaka et al. Nov 2010 A1
20100288283 Campbell et al. Nov 2010 A1
20100292601 Dompeling et al. Nov 2010 A1
20100300446 Nicolazzi et al. Dec 2010 A1
20100324437 Freeman et al. Dec 2010 A1
20100324439 Davenport Dec 2010 A1
20110004108 Peyton Jan 2011 A1
20110009762 Eichler et al. Jan 2011 A1
20110011400 Gentner et al. Jan 2011 A1
20110023878 Thiessen Feb 2011 A1
20110023879 Vandine et al. Feb 2011 A1
20110023880 Thiessen Feb 2011 A1
20110023881 Thiessen Feb 2011 A1
20110029910 Thiessen Feb 2011 A1
20110041849 Chen et al. Feb 2011 A1
20110041850 Vandie et al. Feb 2011 A1
20110066060 von Bahr et al. Mar 2011 A1
20110126829 Carter et al. Jun 2011 A1
20110126832 Winter et al. Jun 2011 A1
20110126834 Winter et al. Jun 2011 A1
20110126835 Winter et al. Jun 2011 A1
20110126836 Winter et al. Jun 2011 A1
20110126837 Winter et al. Jun 2011 A1
20110128008 Carter Jun 2011 A1
20110132361 Sanchez Jun 2011 A1
20110132362 Sanchez Jun 2011 A1
20110132364 Ogilvie et al. Jun 2011 A1
20110132365 Patel et al. Jun 2011 A1
20110132366 Ogilvie et al. Jun 2011 A1
20110132367 Patel Jun 2011 A1
20110132368 Sanchez et al. Jun 2011 A1
20110132369 Sanchez Jun 2011 A1
20110132371 Sanchez et al. Jun 2011 A1
20110133936 Sanchez et al. Jun 2011 A1
20110138308 Palmer et al. Jun 2011 A1
20110138309 Skidmore et al. Jun 2011 A1
20110138311 Palmer Jun 2011 A1
20110138315 Vandine et al. Jun 2011 A1
20110138323 Skidmore et al. Jun 2011 A1
20110146681 Jafari et al. Jun 2011 A1
20110146683 Jafari et al. Jun 2011 A1
20110154241 Skidmore et al. Jun 2011 A1
20110175728 Baker, Jr. Jul 2011 A1
20110196251 Jourdain et al. Aug 2011 A1
20110209702 Vuong et al. Sep 2011 A1
20110209704 Jafari et al. Sep 2011 A1
20110209707 Terhark Sep 2011 A1
20110213215 Doyle et al. Sep 2011 A1
20110259330 Jafari et al. Oct 2011 A1
20110259332 Sanchez et al. Oct 2011 A1
20110259333 Sanchez et al. Oct 2011 A1
20110265024 Leone et al. Oct 2011 A1
20110271960 Milne et al. Nov 2011 A1
20110273299 Milne et al. Nov 2011 A1
20120000467 Milne et al. Jan 2012 A1
20120000468 Milne et al. Jan 2012 A1
20120000469 Milne et al. Jan 2012 A1
20120000470 Milne et al. Jan 2012 A1
20120029317 Doyle et al. Feb 2012 A1
20120030611 Skidmore Feb 2012 A1
20120060841 Crawford, Jr. et al. Mar 2012 A1
20120071729 Doyle et al. Mar 2012 A1
20120090611 Graboi et al. Apr 2012 A1
20120096381 Milne et al. Apr 2012 A1
20120133519 Milne et al. May 2012 A1
20120136222 Doyle et al. May 2012 A1
20120137249 Milne et al. May 2012 A1
20120137250 Milne et al. May 2012 A1
20120167885 Masic et al. Jul 2012 A1
20120185792 Kimm et al. Jul 2012 A1
20120197578 Vig et al. Aug 2012 A1
20120197580 Vij et al. Aug 2012 A1
20120216809 Milne et al. Aug 2012 A1
20120216810 Jafari et al. Aug 2012 A1
20120216811 Kimm et al. Aug 2012 A1
20120226444 Milne et al. Sep 2012 A1
20120247471 Masic et al. Oct 2012 A1
20120272960 Milne Nov 2012 A1
20120272962 Doyle et al. Nov 2012 A1
Foreign Referenced Citations (12)
Number Date Country
0459647 Dec 1991 EP
0850652 Jul 1998 EP
1205203 Sep 2004 EP
1189649 Jun 2005 EP
0965357 Mar 2007 EP
2695320 Mar 1994 FR
2002136595 May 2002 JP
WO 199611717 Apr 1996 WO
WO 9641571 Dec 1996 WO
WO 9744636 Nov 1997 WO
WO 2007102866 Sep 2007 WO
WO 2007109177 Sep 2007 WO
Non-Patent Literature Citations (10)
Entry
Chellaboina, et al. (2010) “Limit cycle stability analysis and adaptive control of a multi-compartment model for a pressure-limited respirator and lung mechanics system”, International Journal of Control, 83:5, 940-955 (Year: 2010).
7200 Series Ventilator, Options, and Accessories: Operator's Manual. Nellcor Puritan Bennett, Part No. 22300 A, Sep. 1990.
7200 Ventilatory System: Addendum/Errata. Nellcor Puritan Bennett, Part No. 4-023576-00, Rev. A, Apr. 1998.
800 Operator's and Technical Reference Manual. Series Ventilator System, Nellcor Puritan Bennett, Part No. 4-070088-00, Rev. L, Aug. 2010.
840 Operator's and Technical Reference Manual. Ventilator System, Nellcor Puritan Bennett, Part No. 4-075609-00, Rev. G, Oct. 2006.
Cairo et al., “Mosby's Respiratory Care Equipment, Seventh Edition”, Mosby, US, XP002524651, 2004, pp. 360-361 and 775-778.
International Search Report, PCT/US2009/034363, dated Aug. 5, 2009.
International Search Report, PCT/US2009/055889, dated Nov. 26, 2009.
International Search Report, PCT/US2009/059102, dated Nov. 30, 2009.
Jaffe, Ph.D., Michael B., “Proximal Flow Measurement with the Series 3 Flow Sensors”, Respironics, Inc., 2002, pp. 1-4.
Related Publications (1)
Number Date Country
20170182269 A1 Jun 2017 US
Continuations (1)
Number Date Country
Parent 13098130 Apr 2011 US
Child 15456892 US