Methods and systems for filling IV bags with therapeutic fluid

Information

  • Patent Grant
  • 11541171
  • Patent Number
    11,541,171
  • Date Filed
    Wednesday, December 20, 2017
    6 years ago
  • Date Issued
    Tuesday, January 3, 2023
    a year ago
Abstract
A portable electronic fluid dispensing system can provide pre-filled, pre-primed IV bag assemblies comprising therapeutic fluids. The same fluid line and connector in the IV bag assembly can be used to fill the IV bag as is used to withdraw fluid from the IV bag and infuse such fluid into the patient. The connection points along the IV assembly, such as the connection between the IV bag and a drip chamber, or between an IV bag and tubing, or between a drip chamber and tubing, or between tubing and a closeable, resealable connector, can each be resistant to disconnection by a user. The healthcare practitioner at the patient care site is not required to attach any of these components to each other, and the healthcare practitioner at the patient care site is not required to introduce a spike into a spike port on the IV bag.
Description
BACKGROUND
Field

This invention relates generally to medical fluid systems, and specifically to systems for providing IV fluid to patients.


Related Art

In a typical hospital setting, when a patient is in need of intravenous fluid therapy, a healthcare practitioner: (i) obtains a pre-filled IV bag that has a large port with a flexible septum; (ii) wipes an antiseptic pad across the septum; and (iii) pierces the septum of the bag with a large, hollow spike. The septum forms a seal around the spike. The spike is connected to empty medical tubing, which in turn may be connected to a fluid connector.


The medical tubing is configured to convey medical fluid from the IV bag to the patient; however, before the tubing can be connected in fluid communication with the patient, it must be “primed” with liquid to avoid introducing air or vapors from the liquid into the patient's vasculature, which could be very harmful. To prime the tubing, the healthcare practitioner positions the IV bag at a higher location than the tubing, and sometimes squeezes the IV bag, permitting gravity and liquid pressure to drive the liquid in the IV bag downward in a column through the tubing, pushing the air and vapors in the tubing out the bottom end of the tubing. When the column of liquid reaches the bottom end of the tubing, a small amount of liquid is typically permitted to drip out of the end of the tubing, or out of the end of a connector attached to the end of the tubing, into a trashcan or sink, to ensure that no residual air or vapors remain in the fluid line.


The process of spiking the IV bag and priming the fluid line requires significant time and attention from the healthcare practitioner at the patient care site, and also requires that multiple components be inventoried at the patient care site. In addition, there are many inherent disadvantages with the bag-spiking process. The tip of the spike is sharp and can inadvertently puncture the healthcare provider or patient. The spike or the septum of the spike port can carry microbes, if not properly disinfected, that may be introduced into the IV fluid when attached. The connection between the spike and spike port may leak if connected improperly. Also, the priming process can permit a small amount of vapors and liquid to escape, which can be dangerous, especially if the liquid is potential harmful, such as chemotherapy or immunosuppressive drugs.


Moreover, in many healthcare treatment settings, a large number of IV bags need to be filled with customized amounts and types of drugs on a daily basis for many different patients. If performed manually, this repetitive task is susceptible to mistakes by healthcare technicians. It can also continuously expose healthcare technicians to harmful medicinal vapors, and it can be a physically difficult chore for a healthcare technician, especially when using a large-diameter filling syringe in which the syringe plunger is especially wide and hard to push forward and back.


SUMMARY OF SOME EMBODIMENTS OF THE DISCLOSURE

In some embodiments, a portable electronic fluid dispensing system can provide pre-filled, pre-primed IV bag assemblies comprising therapeutic fluids in particular amounts and/or particular concentrations that are custom-made for a particular patient. The IV bag assembly in some embodiments can form a part of a substantially entirely closed fluid system. The same fluid line and connector in the IV bag assembly can be used to fill the IV bag as is used to withdraw fluid from the IV bag and infuse such fluid into the patient. The connection points along the IV assembly, such as the connection between the IV bag and a drip chamber, or between an IV bag and tubing, or between a drip chamber and tubing, or between tubing and a closeable, resealable connector, can each be resistant to disconnection by a user. In some embodiments, the healthcare practitioner at the patient care site is not required to attach any of these components to each other, and/or the healthcare practitioner at the patient care site is not required to introduce a spike into a spike port on the IV bag.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a perspective view of a portable electronic medical fluid dispensing system in fluid communication with an example of an IV assembly comprising an integral liquid delivery path;



FIG. 1B is a perspective view of the electronic medical fluid dispensing system of FIG. 1A in fluid communication with another example of an IV assembly comprising an integral liquid delivery path;



FIG. 2 is a top view of the IV assembly with an integral liquid delivery path as shown in FIG. 1;



FIG. 3 is a cross-sectional view of two examples of male and female connectors among many types that can be used in one or more fluid delivery systems; and



FIG. 4 shows a pre-filled, pre-primed IV assembly with an integral liquid delivery path in liquid communication with a patient.





DETAILED DESCRIPTION OF SOME EMBODIMENTS

The components, systems, assemblies, and methods that are illustrated or described in this specification are examples. Any component, structure, feature, or step illustrated or described in one embodiment can be used in additional to or instead of any component, structure, feature, or step illustrated or described in another embodiment. There is no component, structure, feature, or step in this specification that is essential or indispensable to the invention.


As shown in FIGS. 1A and 1B, an electronic fluid delivery system 100 can comprise an external housing 145 containing or supporting various internal components, such as a power regulator, a microprocessor, a drive motor, a driving mechanism (e.g., gearing), a memory, and communications hardware and software to enable electronic communication with a network or with one or more peripheral devices, such as a printer to produce a label or a report with information about a particular fluid delivery process that has been performed. The electronic fluid delivery system 100 can also comprise an electronic display and/or a user input system 110, one or more replaceable liquid source containers 120 filled with medical liquid (such as liquid medical vials as shown), one or more liquid pumps and/or liquid measurers 140 (such a syringe pump as shown), and/or one or more drive systems 190 functionally coupled to the liquid pumps and/or liquid measurers 140.


The electronic fluid delivery system 100 can be configured to receive one or more commands from a user through the user input system 100, or in some other way. The user command or commands can initiate a delivery of a particular type of one or more medications in a particular volume or concentration. Upon receiving a liquid delivery command, the electronic fluid delivery system 100 can cause the drive system 190 to actuate the liquid pump and/or measurer 140 to withdraw an amount of liquid from a liquid source container 120, move it through a fluid pathway or channel in the electronic fluid delivery system 100, and push it into a fluid destination container, such as an IV assembly 200, as shown. The fluid pathway or channel can comprise a number of different structures of the electronic fluid delivery system 100 through which liquid passes as it progresses from the liquid source container 120 to the fluid destination container 200.


An adapter, such as a vial adapter 165, as shown, can provide an interface between the liquid source container 120 and the fluid channel. The adapter can comprise a hollow spike (not shown) for penetrating a septum on a liquid vial to access the liquid contained in the vial. In some embodiments, a plurality of different liquid source containers 120, fluid channels, pumps, and/or liquid destination containers 130, 210 can be provided. In some embodiments, a plurality of different liquid source containers 120 with different medical fluids, such as different types of drugs, can be available to infuse in a specified combination into the same destination container 130, 210.


In some embodiments, a support 180 can be provided for supporting a liquid destination container. As illustrated, the support 180 can be oriented in a substantially horizontal position, but many other types of supports can be used, including substantially vertical supports such as hangers. The support 180 can provide a platform and/or a location to hold onto or secure an IV assembly 200 comprising an IV bag 210, a drip chamber 230, a tubing 220, and a fluid-line connector, such as a closeable male luer connector 150, as shown.


The IV assembly 200 can be removably attached to and/or in fluid communication with the fluid pathway or channel in the electronic fluid delivery system 100, which can include one or a plurality of an adapter, a pump, a connector (such as a resealable, needleless male or female luer connector 150, 160), tubing, and a removable, disposable fluid transfer cartridge 170. None of the foregoing components is essential or indispensable; rather, various other types of components can be used instead of or in addition to those listed. For example, in some embodiments, an open-ended male or female fluid connector can be used instead of a resealable, needleless connector, especially in embodiments involving benign fluids with clamps or stop-cocks in the fluid line. Various components of the fluid channel in the electronic fluid delivery system 100 can be removed and replaced, such as the liquid source container 120, the IV assembly 200, the syringe pump 140, and the cartridge 170, which can each form a portion of the fluid channel when attached. Each of these components can form a repeatably resealable connection with the fluid channel, and when detached from the fluid channel, each of these components can comprise a sealed end that prevents conveyed or residual fluid from leaking out after disconnection. The resealable connections at each point of removable attachment in the fluid channel can be made using a series of male and female needleless luer connectors 150, 160.


The electronic fluid delivery system 100 can be positioned in a fume hood and the fluid transfer can be performed in the fume hood; however, in some embodiments, as shown, any fumes and fluid are maintained inside of a closed system, so it is not required to use the system 100 in a fume hood. In some embodiments, fluid progresses under the influence of back and forth motion of the fluid pump 140, in a substantially closed system from a liquid source container 120, through the fluid channel of the electronic fluid transfer cartridge 170, and to the fluid destination container 200, which substantially entirely prevents liquids and vapors from escaping during fluid transfer. As used herein, unless otherwise indicated, the terms “substantially entirely prevents,” or “substantially entirely closed” or “substantially entirely closed system” and related or similar terms refer to processes and systems in which vapors and liquids are maintained inside a bounded region during normal usage and operating conditions to the degree that it is needed to avoid clinically significant adverse effects on healthcare practitioners or patients. Also, in some embodiments, each removable component (such as the cartridge 170, or the source container 120 and vial adapter 165, or the IV assembly 200) that temporarily forms part of, or that is temporarily attached to, the fluid channel in the electronic fluid transfer system 100 can separately form a resealable, substantially entirely closed fluid system within itself, which substantially entirely prevents liquids and vapors from escaping during fluid transfer, and which can dramatically lower or eliminate the amount and frequency of exposure of healthcare practitioners to harmful liquids and vapors during preparation and transfer of harmful fluids.


The fluid transfer cartridge 170 can comprise a disposable portion of the fluid channel of the electronic fluid delivery system 100 that selectively directs fluid out of one or more fluid source containers 120 and into one or more fluid destination containers 210. The fluid transfer cartridge 170 may include one or more internal valves (not shown) to permit liquid to move in one direction away from a fluid source container 120 and toward a fluid destination container 210, while resisting unintended flow in an opposing direction. As illustrated, the fluid transfer cartridge 170 can comprise one or more closeable, resealable, needleless connectors, such as closeable male and female connectors 150, 160, that are configured to connect to other portions of the fluid channel within the electronic fluid delivery system, such as an adapter on the fluid source container 120 and a connector on the fluid destination container 210. The fluid transfer cartridge can be supported or held in place by a holder 195. As used in this specification, unless otherwise specified, the terms “connect,” “attach,” “hold,” and related or similar terms are contemplated in a broad sense to refer to structures that are joined together, either directly or indirectly, to each other or to a common structure, and these terms can encompass parts that are either separable or integral with each other.


In some embodiments, as illustrated, the electronic fluid delivery system 100 can comprise multiple fluid pathways or channels for delivering different types of medicinal liquids. For example, a first pathway or channel can be configured to supply a first type of liquid (e.g., an inert or benign liquid such as water, saline solution, electrolyte liquid, or other diluent) from a first liquid source container 120, through a first fluid line 175, through a first pump or measurer 140, to a first fluid destination container 130, and a second pathway or channel can be configured to supply a second type of liquid (e.g., one or more drugs or combinations of drugs, such as a chemotherapy drug, an antibiotic, an immunosuppressive drug, and/or a pain management drug, etc.) from a second liquid source container 120, through a second fluid pathway to a second pump or measurer 140, to a second fluid destination container, such as the IV assembly 200. In some embodiments, both the first and second fluid pathways or channels can be used to fill the same fluid destination container, such as the IV assembly 200, either serially or in parallel, and/or through the same fluid port on the fluid destination container, or through multiple, different fluid ports on the same fluid destination container.


Referring to FIG. 2, an example of a fluid destination container in the form of an IV assembly 200 is illustrated. Many other types or configurations of IV assemblies, and many other types or configurations of fluid destination containers, can be used in addition to or instead of the illustrated embodiment. Any reference in this specification to an IV bag or an IV assembly should be understood to also refer to and be applicable to any other type of fluid destination container, including but not limited to any bottle, vial, cartridge, syringe, chamber, bag, tank, or other enclosure. In its initial state, the IV assembly 200 comprises an empty, substantially flat IV bag 210 that can be formed in some embodiments by two layers of flexible plastic joined along substantially their entire peripheries, a long tubing 300, and a closeable needleless connector (if used), such as a closeable male luer connector 150, as illustrated. In some embodiments, as shown, the IV assembly 200 can comprise one or more additional fluid-line ports (if used), including one or more input or output ports, such as a needleless closeable female luer connector 160 and/or a pierceable septum connector 250, either or both of which can be configured to permit fluid to be added to or removed from the IV bag 210 by attaching another medical implement, such as a syringe or connector, to either or both of the input or output ports. The one or more additional fluid ports can be configured to permit filling of the IV assembly 200 with different types of liquids through different ports of the IV assembly 200. For example, a first type of fluid, such as one or more active or potentially harmful therapeutic fluids (e.g., chemotherapy drugs or immunosuppressive drugs), can be infused through a first port 160, and a second type of fluid, such as one or more inert or benign liquids (e.g., water, saline, or other diluent), can be infused through a second fluid pathway, such as the connector 150 and tubing 220. However, in some embodiments, all liquids can be passed into and out of the IV assembly 200 through a single fluid line and connector.


In some cases, if the fluids are passed through a single fluid line and connector, different types of fluids can be used to fill the IV assembly 200 in series (e.g., first the active drugs and/or potentially harmful drugs, and second the benign liquids such as water, saline, or other diluent). In some cases, if the fluids are passed through different fluid lines and connectors, different types of fluids can be used to fill the IV assembly 200 in parallel or generally simultaneously, and such an arrangement can in some embodiments accomplish the filling in a shorter amount of time. Further, in some cases, filling different drugs through different ports in the same IV assembly 200 can help to achieve a more thorough mixing and generally uniform dilution and concentration of the liquids in the IV bag. Also, when the active or potentially harmful drugs are passed through the alternative or non-patient infusion line 160, 250, parallel infusion can help to avoid positioning harmful drugs in the leading fluid connector 150 or infusion fluid tubing 220 during transportation and initial opening of the fluid line in the IV assembly at the patient care site. In some embodiments, as shown, the IV assembly 200 can comprise a drip chamber 230 in the patient infusion fluid line.


In the illustrated embodiment, the drip chamber 230 is connected, or bonded directly, permanently, and irreversibly, to a bottom opening in the IV bag 210 at the IV bag-drip chamber bond 260, the long tubing 300 is connected, or bonded directly, permanently, and irreversibly, to a bottom opening in the drip chamber 230 at the drip chamber-tubing bond 290, and a needleless closeable connector, such as a closeable male luer connector 150 or a closeable female luer connector (not shown in FIG. 2), is connected, or bonded directly, permanently, and irreversible to a bottom end of the long tubing 220 at the tubing-connector bond 300. In some embodiments, the long tubing 300 is connected, or bonded directly, permanently, and irreversibly, to a bottom opening in the IV bag 210, without a drip chamber 230. Either or both of the additional fluid-line ports can be bonded directly, permanently, and irreversibly to bottom openings in the IV bag 210 at the IV bag-pierceable septum connector bond 270 and/or at the IV bag-connector bond 280. The bonding at any of the bonding regions 260, 270, 280, 290, 300 can be accomplished in any suitable manner, such as using adhesive, solvent, ultrasonic welding, thermoforming, heat staking, one-way screwing attachment, snap-fit, interference fit, etc. In some embodiments, the permanence of these bonds helps to achieve a closed system and to diminish the risk of entry of microbes into the IV line and to diminish the risk of exposure of dangerous fluids or vapors to healthcare practitioners and patients. The permanence of these bonds can help to avoid inadvertent removal or pulling out of a fluid line (such as by tugging on a bag spike that has been inserted through a bag port). In some embodiments, one or more of the connection points between any of these components 210, 230, 220, 150 can comprise a rotating or swiveling connection to help avoid tangling or kinking of the tubing 220.


In some embodiments, the tubing 220 can be sufficiently long so as to extend comfortably, without creating a disruptive degree of fluid-line tension and without unduly constraining the patient's movement, from a typical position on or near the IV bag 210 in a hanging position on an IV pole (see FIG. 4) or other holder to a region near a fluid pump or near a patient in a lying position on a standard hospital bed, such as at an attachment point with another fluid connector (e.g., a needleless closeable female luer connector 160), that is attached to a fluid line that extends into the patient. In some embodiments, the tubing is at least about 2½ feet (30 inches) long, or least about 3 feet (36 inches) long, or between about 2½ feet long and about 3½ feet long, or between about 30 inches long and about 100 inches long. In some embodiments, the tubing can be formed from an extruded, continuous, homogeneous material, with substantially the same thickness, durometer, flexibility, diameter, and/or tension strength from one end of the tubing to the other end of the tubing or from the connection point at the IV bag 210 or drip chamber 230 to the resealable connector 150.


As illustrated, in some embodiments, the fluid pathway within the IV assembly 200 is configured to be open and in continuous fluid communication from a location within the IV bag 210, through the drip chamber 230 and/or tubing 220, to the closeable connector 150, without any blockage, valve, obstruction and/or resistance to fluid flow. In some embodiments, the fluid pathway in the IV assembly 200 is integral: the connections between the components forming the fluid pathway within the IV assembly 200, from a location within the IV bag 210, through the drip chamber 230 and/or tubing 220, to the closeable connector 150, are configured to be permanent and/or to resist disconnection by a user at any point within the fluid delivery pathway within the IV assembly 200 from the IV bag 210 to the patient.



FIG. 3 illustrates some examples of closeable or resealable needleless male and female luer connectors 150, 160 that can be used with the inventions disclosed in this specification. Many other types of connectors can be used, including open-ended connectors and/or non-standard connectors, in appropriate circumstances. In some embodiments, as illustrated, the connectors are standard IV medical luer connectors, e.g., compliant with the ISO 594 standard. Any reference in this specification to a male connector should be understood to be interchangeable with a female connector, and any reference in this specification to a female connector should be understood to be interchangeable with a male connector, with appropriate adjustments. In some embodiments, fluid connector adaptors can be used to make appropriate connections between fluid lines. For example, in a situation where two male fluid connectors must be joined to complete a fluid pathway, an adaptor comprising a pair of female fluid connectors positioned in opposite directions on the fluid pathway and joined together with a fluid conduit or tubing can be attached to the male fluid connectors. In some embodiments, such an adaptor can be used, for example, to connect a cartridge 170 and an IV assembly 200 in which a male luer connector is positioned at the exit port of the cartridge 170 and a male luer connector is positioned on the end of the tubing 220 of the IV assembly 200.


A first connector 150 can be a closeable male luer connector that is configured to prevent fluid from escaping from or entering into the connector when it is not engaged with a corresponding female connector 160, but that allows fluid to flow when it is engaged with a corresponding female connector 160. In the embodiments shown, the first connector 150 is a version of the Spiros® closeable male connector manufactured by ICU Medical, Inc., of San Clemente, Calif. The first connector 150 can be configured to be attachable to a second connector 160, which is illustrated as a version of the Clave® closeable female connector, also manufactured by ICU Medical, Inc.


The first connector 150 can include a housing 398, a valve member 400, a resilient member 402, a sealing ring 404, an end cap 406, and an O-ring 407. The housing 398 can be generally tubular in shape, and can include a passageway 408 that extends axially through the housing. The housing 398 can include a male luer tip 410 that connects to the rest of the housing 398 at a base 412. The luer tip 410 can be generally tubular in shape, and the luer tip 410 can include a hole 414 at its end, providing access to the passageway 408. As illustrated, in some embodiments, connectors can be used to substantially entirely prevent fluid therein to leak, vaporize, or otherwise escape through apertures in the fluid pathway when the connectors are closed.


The luer tip 410 can be generally surrounded by a shroud 418 as illustrated. In some embodiments, the luer tip 410 extends a distance beyond the edge 420 of the shroud. The shroud 418 can include inner threads 422 on its interior surface. The inner threads 422 can be used for securing a female connector 160. The shroud can include an indented portion 424 that has a smaller outer diameter than the other portions of the housing. The indented portion 424 can be configured to engage a portion of the resilient member 402.


The housing 398 can be constructed from a variety of materials. The housing 398 can be constructed from a rigid material such as polycarbonate or other polymeric materials. In some embodiments, the housing 398 can be constructed from a hydrophobic material such as Bayer Makrolon, or any other suitable material. In some embodiments, the housing 398 can be formed from a substantially transparent material.


The connector 150 can include a fluid passageway 440 extending axially from an opening formed in a base portion 444 and into a tube 446. In some embodiments, the passageway 440 can be wider in the base portion 444 than in the tube 446. In some embodiments, the tube 446 includes a narrowed tip 448. In some embodiments, the tip 448 can have a tapered outer surface. In some embodiments, the tip 448 can be made from a flexible or compressible material, such as silicone rubber, to facilitate formation of the fluid seal between the tip 448 and the shelf 416. In some embodiments, the tube can include one or more holes 450 for providing access to the fluid passageway 440. The holes 450 can be formed, for example, in the tip 448 of the tube 446.


In some embodiments, the valve member 400 can include two struts 452a, 452b extending out from the base 444 and positioned on either side of tube 446, so that an open space is defined on either side of the tube. In some embodiments, the tube 446 can extend axially past the ends of the struts 452a, 452b. The valve member 400 can be constructed from a variety of materials, such as polycarbonate or other polymeric materials. In some embodiments, the valve member 400 can be constructed from the same material as the housing 398. In some embodiments, the valve member 400 and housing 398 can be constructed from different materials. In some embodiments, the valve member 400 can be constructed from multiple materials or from multiple pieces. For example, the tip 448 can be constructed from a material that is more flexible than the remainder of the valve member 400. In some embodiments, the valve member 400 can be formed from a substantially opaque material.


The resilient member 402 can include a first ring and a second ring connected to each other by longitudinally extending elastic members (not shown). The elastic members can be made from an elastic material that exerts a restoring force when stretched, such as silicone. Thus, if the rings are pulled apart, the elastic members function to restore the rings to their relaxed configuration. In some embodiments, the rings are also constructed from an elastic material, such as the same material used to form the elastic members. In some embodiments, the second ring can have a greater diameter than the first ring. In some embodiments, the second ring can have a tapered outer surface so that the end of the second ring that is closest to the first ring is wider than the end of the second ring that is furthest from the first ring.


The sealing ring 404 can be generally cylindrical in shape, and can have a bore extending axially therethrough. The sealing ring 404 can have a cylindrical body section and an O-ring located at one end of the body section 468. The sealing ring 404 can be constructed from a variety of materials. In some embodiments, the sealing ring 404 can be constructed from a deformable or elastic material such as a silicone rubber.


The end cap 406 can include a first end cap member 405 and a second end cap member 409. The second end cap member 409 can include an attachment portion, a plunger, and a disk portion located between the attachment portion and the plunger. The second end cap member 409 can have a fluid passageway axially positioned therein. In some embodiments, the plunger can be generally tubular in shape. In some embodiments, the outer surface of the plunger includes an indented region, which can be configured to receive the O-ring 407 therein.


The O-ring 407 can be constructed from an elastic material such as silicone rubber so that it can be stretched over the edge of the plunger and be seated in the indented region. In some embodiments, the O-ring can be constructed from the same material as the resilient member 402 and/or the sealing ring. In some embodiments, the O-ring can be sized so that when seated in the indented region, the thickest portion of the O-ring 407 extends radially outwardly a distance past the outer surface of the plunger.


The valve member 400 can be slidably inserted into the housing 398 so that the tube 446 enters the passageway 408. The narrowed tip 448 of the tube 446 can pass through the bore of the sealing ring 404 and into the male luer tip 410 until it abuts against the shelf 416. The tube 446 can have a width that substantially fills the bore 446 and presses against the O-ring 470 portion of the sealing ring 404 to form a fluid seal therebetween. The struts 452a, 452b can pass through holes in the housing 398, so that the struts 452a, 452b are positioned between the male luer tip 410 and the shroud 418.


The resilient member 402 can function to bias the valve member 400 against the housing 398. The first ring 460 can fit onto the lower portion 458 of the base 444 of the valve member 400, so that a surface of the ring 460 abuts against the protrusions 454. The second ring 462 can fit into the indented portion 424 of the housing. The elastic members can be positioned in channels.


The first connector 150 can be configured to engage a second connector 160. In some embodiments, the second connector 160 can be a closeable, resealable, needleless female connector, as illustrated. A variety of types of female connectors 332 can be used. The female connector 160 shown includes a housing 490, a spike 492, a base 494, and a resilient seal element 496. A fluid passageway 498 can pass through the base 494 and through the spike 492. The spike 492 can include one or more holes 500 providing fluid communication between the passageway 498 and the area outside the spike 492. The seal element 496 can be shaped and positioned to substantially surround the spike 492. The seal element 496 can include a closable aperture 502 or slit that can open to allow the tip of the spike 492 to pass through then end of the seal element 496 when the seal element 496 is compressed. The housing can include external threads 504 configured to engage the inner threads 422 on the housing 398 of the male connector 150. An end of the tubing 334 can be connected to the end of the female connector 160 by an adhesive, clamp, friction or pressure fitting, or other suitable manner to form a fluid tight connection.


In some embodiments, the housing 398, sealing ring 404, resilient member 402, valve member 400, and first end cap member 405 can rotate about the longitudinal axis with respect to the second end cap member 409. Thus, as the female connector 160 of the IV bag assembly is attached to the male connector 150, the female connector 160 can be held still while the housing 398 of the male connector 150 can rotate causing the threads 504, 422 to engage. Since the female connector 322 is not required to rotate during engagement and disengagement with the male connector 150, the tubing 334 can avoid being twisted or kinked and the user is not required to twist the IV bag to accommodate rotation of the female connector 322.


When not engaged with the female connector 160, the male connector 150 can be sealed. In some embodiments, fluid can enter the male connector 150 at the male connector 352 and pass through the passageway 478 of the end cap 406, through the passageway 440 of the valve member 400, through the holes 450, and into the portion of the passageway 408 of the male luer tip 410.


When the male connector 150 is engaged with the female connector 160, the external threads 504 of the female luer connector 332 can engage the inner threads 422 on the shroud 418, securing the female connector 160 to the male connector 150. The edge of the male luer tip 410 can press against and compress the resilient seal element 496 so that the spike 492 passes through the aperture 502 until the holes 500 are exposed. The end of the housing 490 of the female luer connector 332 can enter the space between the male luer tip 410 and the shroud 418 until it contacts the struts 452a, 452b. As the female luer connector 332 further engages the male connector 150, it can push on the struts 452a, 452b causing the entire valve member 400 to retract. As the valve member 400 retracts, the elastic members 464a, 464b of the resilient member 402 stretch. When the valve member 400 retracts, the tip 448 disengages from the shelf 416, breaking the fluid seal and allowing fluid pass from the passageway 408 in the housing 398 of the male connector 150 to the passageway 498 in the female connector 160 via the holes 500. When engaged, the resilient seal element 496 exerts a restoring force toward the male connector 150 that presses the end of the seal element 496 against the end of the male luer tip 410, forming a fluid seal therebetween. Thus, the fluid can be kept isolated from the external environment while it is transferred from the male connector 150 to the female connector 160.


The female connector 160 can be disengaged from the male connector 150. The restoring force exerted by the resilient seal element 496 of the female connector 160 can cause it to return to its closed position, sealing off its passageway 498. The elastic members of the resilient member 402 can exert a restoring force on the valve member 400, causing the valve member 400 to return to its closed position with its tip 448 abutted against the shelf 416 as the female connector 160 is disengaged. Any suitable connection can be provided at the fluid line connection points illustrated and/or described in this specification, including but not limited to those illustrated and/or described in connection with FIG. 3. Other connectors and/or other features of connectors can be used in addition to or instead of those illustrated and/or described in connection with FIG. 3.


Returning to FIGS. 1A and 1B, some methods of filling a custom IV assembly 200 with a particular amount or concentration of a therapeutic fluid or fluids for the needs of a particular patient or patients can comprise one or more or any combination of the following steps:


(i) obtaining, or instructing a user to obtain, a request from a healthcare practitioner or from a computer system for a custom-filled IV bag or a plurality of IV bags, each with a particular drug or drugs, and/or a particular dose or concentration of a drug or drugs, for a particular patient or patients;


(ii) obtaining, or instructing a user to obtain, an integral IV assembly 200 with one or more permanent, pre-attached bonds along an internal fluid path from an IV bag 210 through a resealable needleless connector 150, the IV assembly initially being empty of liquid or not completely filled with liquid;


(iii) attaching, or instructing a user to attach, one or more fluid inlets in the IV assembly 200 to one or more fluid dispensing outlets in the electronic fluid dispensing system 100, such as attaching a connector (e.g., a resealable, needleless male connector 150) of the IV assembly 200 to at least a first fluid channel of an electronic fluid dispensing system 100, such as by way of a complimentary connector 160 (e.g., a resealable, needleless female connector 160) in a disposable fluid cartridge 170 of the electronic fluid dispensing system 100, or by way of a suitable fluid connection adaptor, in the event that the connectors are not capable of forming a fluid connection (such as when a male-to-male connection or a female-to-female connection needs to be made);


(iv) providing, or instructing a user to provide, one or more user commands to the electronic fluid dispensing system to enable the transfer of a specific amount and/or concentration of a liquid or liquids from one or more fluid source containers 120 to the IV bag 210, such as by first passing fluid from at least one fluid source container 120 through a combination of one or more of an adaptor 165, one or more connectors 150, 160, a fluid cartridge 170, a liquid pump and/or measurer 140, and/or one or more connectors 150, 160, to the IV assembly 200, then permitting the fluid to continue progressing into the connector 150 of the IV assembly 200, into the long tubing 220 of the IV assembly 200, through the drip chamber 230 (if included) of the IV assembly 200, and into the IV bag 210, until the desired amount and/or concentration of the drug or drugs is received in the IV bag 210 (as illustrated, for example, in FIG. 1A), and/or providing one or more additional fluid filling lines in series or in parallel from the electronic fluid dispensing system 100 to the IV bag 210 (as illustrated, for example, in FIG. 1B), in either manner in some embodiments filling the IV bag 210 and pre-priming the drip chamber 230, long tubing 220, and fluid connector 150, as part of the same step and/or at generally the same time as filling the IV bag 210;


(v) detaching, or instructing a user to detach, the IV assembly 200 from the electronic fluid dispensing system 100, such as by detaching the connector 150 of the IV assembly 200 from the corresponding portion of the fluid channel of the electronic fluid dispensing system, and detaching any other fluid connections from any other fluid channels;


(vi) transporting, or instructing a user to transport, the custom-filled IV assembly 200 to a patient care site;


(vii) hanging or otherwise positioning, or instructing a user to hang or otherwise position, the IV bag 220 on an IV pole near a patient, such as by using a hanger 240 on the IV bag 220, or positioning the IV bag 220 on or in another type of holder; and/or


(iix) extending, or instructing a user to extend, the pre-primed long tubing 220 from the hanging IV bag to an infusion pump (not shown), which is in turn configured to pump fluid to a patient, or extending, or instructing a user to extend, the pre-primed long tubing 220 from the IV bag directly to an infusion site near a patient, and attaching the pre-primed, connector 150 of the IV assembly 200 to a complimentary connector 160 on a fluid line that leads into the fluid pump or directly into the patient's vasculature.


As illustrated in FIG. 1B, in some embodiments in which the IV assembly includes multiple ports (also as shown in the example of FIG. 2), the step of filling the IV assembly 200 can include multiple fluid connections between the electronic fluid dispensing system 100 and the IV bag 210. Different types of fluids can be infused through different ports. In some embodiments, to save time, different types of fluids can be infused in parallel, as illustrated in FIG. 1B, generally simultaneously from the electronic fluid dispensing system 100 into the IV bag 210; however, in some embodiments, different fluids can be infused through different ports at different times.


All of the foregoing steps, or any combination of these steps, can be performed in some embodiments without requiring a healthcare practitioner to penetrate a spike-port on an IV bag with a hollow spike leading to a patient infusion line, and/or without requiring a healthcare practitioner to prime the fluid tubing, drip chamber (if used), and/or fluid connector (if used), of an IV assembly at or near the patient administration site and outside of a hazardous fume hood. As illustrated, in some embodiments, an IV bag can be provided without any spike-port at all or without any spike-port that has a septum configured to be pierced by a sharp spike. Rather, in some embodiments, the same fluid line in the IV assembly 200 can be used to fill the IV bag 210 with liquid in an upstream direction from the connector 150, through the long tubing 220 and drip chamber 230 (if used), to the IV bag 210, and then later to infuse the liquid from the IV bag 210 in a downstream direction through the same drip chamber 230 (if used), long tubing 220, and connector 150, to the patient injection site. The movement of liquid within the electronic fluid dispensing system 100 and/or the filling of the IV assembly 200 can be accomplished with any pump, such as a syringe pump or a peristaltic pump. In some embodiments, a syringe pump or a peristaltic pump is not used.


In some embodiments, during the IV assembly filling stage, after a desired quantity of therapeutic agent is delivered to the IV assembly 200, an additional volume of liquid, such as an inert or benign liquid, can be pushed through or made to “chase” the drug through the lower fluid pathway of the IV assembly 200, such as through the bottom connector 150, the tubing 520, the drip chamber 530 (if used), and/or into the IV bag 210, so as to flush or move any potentially harmful liquid or vapors an effective distance into the IV assembly 200 and away from persons who are transporting, storing, and/or administering the therapeutic liquid to a patient.



FIG. 4 illustrates an example of a pre-primed IV assembly 500 at a patient care site that has been filled using some type of an electronic fluid dispensing system, such as the electronic fluid dispensing system of FIGS. 1A and 1B. The IV bag 510 of the IV assembly 500 is hung with a hanger 540 on an IV pole 550. The liquid 505 containing one or more therapeutic agents, such as antibiotics, pain management medication, chemotherapy, and/or immunosuppressive drugs, in the IV bag 510 moves under the influence of gravity from an exit location at the bottom of the IV bag 510, into the drip chamber 530 (if used), into the long tube 520, through the connectors 150, 160, through the patient catheter 560, and into the patient 570. In some embodiments, the one or more therapeutic agents in the IV bag 510 move from the IV bag 510, into the drip chamber (530) if used, into the long tube 520, through the end connector on the IV assembly 500 if used, and into an input connector 160 (not shown) on an IV pump assembly (not shown). In the illustrated embodiment, the distance or length of the pre-primed fluid path of the IV assembly 500, from the exit location on the IV bag 510 to the resealable connector 160 on the patient catheter 560, is at least about 2½ feet and/or less than or equal to about 3½ feet, which is sufficiently long to provide a comfortable attachment distance between the IV bag 510 and the patient when the patient is in a generally flat position on a hospital bed or when the patient is sitting in a chair with a generally horizontally extended arm. Many other types, configurations, and lengths of tubing can be used.

Claims
  • 1. A method of priming an IV assembly with therapeutic medical fluid for a patient while introducing therapeutic medical fluid to the IV assembly, the method comprising: obtaining an IV assembly, the IV assembly comprising: an empty IV bag with an outlet,a patient-administration tubing being permanently attached in fluid communication with the IV bag, the patient-administration tubing being at least about 2½ feet long such that the patient-administration tubing is sufficiently long to be configured to permit the IV assembly to extend from the IV bag in a hanging position on a pole stand to an access point in an IV tube attached to a patient, anda closeable connector being selectively openable and closeable, the closeable connector comprising a first end and a second end, the first end of the closeable connector being attached in fluid communication with the patient-administration tubing, the closeable connector comprising an open position and a closed position for sealing fluid within the IV assembly; attaching the closeable connector to a fluid source;priming the IV assembly by pushing fluid through the closeable connector, through the patient-administration tubing, and into the IV bag; andclosing the closeable connector to provide a closed, primed IV assembly that is configured to connect to the access point in the IV tube attached to the patient such that the primed IV assembly is configured to allow the fluid in the primed IV assembly to be conveyed through the patient-administration tubing of the primed IV assembly to the access point without requiring additional priming of the patient-administration tubing.
  • 2. The method of claim 1, in which the IV bag further comprises at least one access port for permitting additional fluid to be introduced into the IV bag or for permitting at least a portion of fluid that is introduced into the IV bag to be removed.
  • 3. The method of claim 2, in which the IV bag comprises at least two access ports.
  • 4. The method of claim 3, in which one of the access ports is a second closeable connector and one of the access ports comprises a pierceable septum.
  • 5. The method of claim 1, in which the patient-administration tubing neither comprises nor is attached to a bag spike for piercing a septum on the IV bag to access an interior of the IV bag.
  • 6. The method of claim 1, in which the closeable connector comprises a male end that includes an interior closure element that is flush with the male end in the closed position.
  • 7. The method of claim 1, wherein the IV assembly has no spike-port.
  • 8. The method of claim 1, wherein the IV assembly forms a closed system.
  • 9. The method of claim 1, wherein the IV assembly is configured so that all liquid can be passed into and out of the IV assembly through a single fluid line and connector.
  • 10. The method of claim 1, wherein one or more connection points between the patient-administration tubing and at least one of the IV bag and the closeable connector comprises a rotating or swiveling connection to help avoid tangling or kinking of the patient-administration tubing.
  • 11. The method of claim 1, wherein the patient-administration tubing is sufficiently long to be capable of extending from the outlet of the IV bag to the access point in the IV tube attached to the patient when the patient is in a lying position and the IV assembly is attached to a pole stand.
  • 12. The method of claim 1, wherein the patient-administration tubing further comprises a drip chamber.
  • 13. The method of claim 12, wherein the drip chamber is permanently attached in fluid communication with the patient-administration tubing.
  • 14. The method of claim 13, wherein the step of obtaining the IV assembly does not require attaching the drip chamber to the patient-administration tubing.
  • 15. The method of claim 1, wherein the closeable connector is removably attached in fluid communication with the patient-administration tubing.
  • 16. The method of claim 1, wherein the closeable connector is permanently attached in fluid communication with the patient-administration tubing.
  • 17. The method of claim 16, wherein the patient-administration tubing and the closeable connector are permanently attached by way of solvent or ultrasonic welding.
  • 18. The method of claim 16, wherein the step of closing the closeable connector comprises detaching the closeable connector from the fluid source.
  • 19. The method of claim 1, wherein the fluid source comprises an electronic system configured to prime the IV assembly.
  • 20. The method of claim 19, wherein the step of attaching the closeable connector comprises attaching the closeable connector to the electronic system.
  • 21. The method of claim 19, wherein the IV assembly is configured so that all liquid can be passed into and out of the IV assembly through the patient-administration tubing.
  • 22. The method of claim 19, wherein the patient-administration tubing is sufficiently long to be capable of extending from the outlet of the IV bag to the access point in the IV tube attached to the patient when the patient is in a lying position and the IV assembly is attached to a pole stand.
  • 23. The method of claim 19, wherein the IV assembly forms a closed system.
RELATED APPLICATIONS

This application is a continuation application of U.S. patent application Ser. No. 14/746,048, filed Jun. 22, 2015, pending, which claims the benefit under 35 U.S.C. § 120 and 35 U.S.C. § 365(c) as a continuation of International Application No. PCT/US2014/065972, designating the United States, with an international filing date of Nov. 17, 2014, entitled “Methods and Systems for Filling IV Bags with Therapeutic Fluid,” which claims the benefit of U.S. Provisional Patent Application No. 61/908,674, filed on Nov. 25, 2013, and entitled “Method and Systems for Filling IV Bags with Therapeutic Fluid.” The entirety of each of the above-mentioned applications is hereby incorporated by reference herein and made a part of this disclosure.

US Referenced Citations (612)
Number Name Date Kind
1923501 Perry Aug 1933 A
3157201 Littmann Nov 1964 A
3344785 Hamilton Oct 1967 A
D222956 Sato Feb 1972 S
D222957 Sato Feb 1972 S
D236163 Manno Jul 1975 S
4005710 Zeddies et al. Feb 1977 A
4084606 Mittleman Apr 1978 A
4187890 Stach et al. Feb 1980 A
4190048 Sampson Feb 1980 A
4262671 Kersten Apr 1981 A
4306705 Svensson Dec 1981 A
4336802 Stone et al. Jun 1982 A
4367736 Gupton Jan 1983 A
D268206 Kosako Mar 1983 S
D268284 Manno et al. Mar 1983 S
4397335 Doblar et al. Aug 1983 A
4410321 Pearson et al. Oct 1983 A
4423741 Levy Jan 1984 A
4519792 Dawe May 1985 A
4534758 Akers et al. Aug 1985 A
4559043 Whitehouse et al. Dec 1985 A
4561856 Cochran Dec 1985 A
4666429 Stone May 1987 A
4670007 Wheeldon et al. Jun 1987 A
4683916 Raines Aug 1987 A
4755172 Baldwin Jul 1988 A
4759756 Forman et al. Jul 1988 A
4768568 Fournier et al. Sep 1988 A
4778450 Kamen Oct 1988 A
4819684 Zaugg et al. Apr 1989 A
4863429 Baldwin Sep 1989 A
D305165 Rudolph et al. Dec 1989 S
4922975 Polaschegg May 1990 A
4936841 Aoki et al. Jun 1990 A
4969874 Michel et al. Nov 1990 A
4972876 Kabata et al. Nov 1990 A
4976590 Baldwin Dec 1990 A
4995268 Ash et al. Feb 1991 A
5024347 Baldwin Jun 1991 A
5037390 Raines et al. Aug 1991 A
5114580 Ahmad et al. May 1992 A
D328952 Arioka Aug 1992 S
5176658 Ranford Jan 1993 A
5224937 van der Heiden et al. Jul 1993 A
5254096 Rondelet et al. Oct 1993 A
5256155 Yerlikaya et al. Oct 1993 A
5288290 Brody Feb 1994 A
5300044 Classey et al. Apr 1994 A
D348101 Poli et al. Jun 1994 S
5334211 Shiber Aug 1994 A
5336201 von der Decken Aug 1994 A
D352778 Irvin Nov 1994 S
5378231 Johnson et al. Jan 1995 A
5405333 Richmond Apr 1995 A
5423791 Bartlett Jun 1995 A
5431201 Torchia et al. Jun 1995 A
5439451 Collinson et al. Aug 1995 A
5466220 Brenneman Nov 1995 A
5609572 Lang Mar 1997 A
5645538 Richmond Jul 1997 A
5647845 Haber et al. Jul 1997 A
5676346 Leinsing Oct 1997 A
5685866 Lopez Nov 1997 A
5776345 Truitt et al. Jul 1998 A
5782816 Werschmidt et al. Jul 1998 A
5807312 Dzwonkiewicz Sep 1998 A
5810792 Fangrow, Jr. et al. Sep 1998 A
5830185 Block, Jr. Nov 1998 A
5871110 Grimard et al. Feb 1999 A
5871500 Jepson et al. Feb 1999 A
5885270 Ortiz et al. Mar 1999 A
D408079 Ellis Apr 1999 S
5897526 Vaillancourt Apr 1999 A
5904666 DeDecker et al. May 1999 A
5910252 Truitt et al. Jun 1999 A
5935106 Olsen Aug 1999 A
5947951 Ortiz et al. Sep 1999 A
5968014 Neftel et al. Oct 1999 A
5989237 Fowles et al. Nov 1999 A
6059747 Bruggeman et al. May 2000 A
6110153 Davis et al. Aug 2000 A
RE36871 Epstein et al. Sep 2000 E
6123685 Reynolds Sep 2000 A
6132404 Lopez Oct 2000 A
6152900 Mayer Nov 2000 A
6171484 Schnell et al. Jan 2001 B1
6179823 Niedospial, Jr. Jan 2001 B1
6193675 Kraus et al. Feb 2001 B1
6193689 Woodard Feb 2001 B1
6202708 Bynum Mar 2001 B1
6221041 Russo Apr 2001 B1
6245048 Fangrow, Jr. et al. Jun 2001 B1
6287289 Niedospial, Jr. Sep 2001 B1
6302864 Nowosielski Oct 2001 B1
6425497 Chu et al. Jul 2002 B1
6474375 Spero et al. Nov 2002 B2
6485472 Richmond Nov 2002 B1
6551299 Miyoshi et al. Apr 2003 B2
6558365 Zinger et al. May 2003 B2
6572256 Seaton et al. Jun 2003 B2
6585229 Cote, Sr. et al. Jul 2003 B2
6590167 Clare Jul 2003 B2
6599273 Lopez Jul 2003 B1
6623455 Small et al. Sep 2003 B2
6629956 Polidoro et al. Oct 2003 B1
6651956 Miller Nov 2003 B2
6663586 Verkaart et al. Dec 2003 B2
6689108 Lavi et al. Feb 2004 B2
6699230 Jaafar et al. Mar 2004 B2
6711460 Reese Mar 2004 B1
6726672 Hanly et al. Apr 2004 B1
6793651 Bennett et al. Sep 2004 B1
6813868 Baldwin et al. Nov 2004 B2
6854620 Ramet Feb 2005 B2
6877530 Osborne et al. Apr 2005 B2
6908459 Harding et al. Jun 2005 B2
6915823 Osborne et al. Jul 2005 B2
6948522 Newbrough et al. Sep 2005 B2
6953450 Baldwin et al. Oct 2005 B2
6985870 Martucci et al. Jan 2006 B2
6991002 Osborne et al. Jan 2006 B2
6994315 Ryan et al. Feb 2006 B2
6997917 Niedospial, Jr. et al. Feb 2006 B2
7006894 De La Huerga Feb 2006 B2
7017623 Tribble et al. Mar 2006 B2
7086431 D'Antonio et al. Aug 2006 B2
7108024 Navarro Sep 2006 B2
7117901 Martinell Gisper-Sauch et al. Oct 2006 B2
7117902 Osborne Oct 2006 B2
7128105 Tribble et al. Oct 2006 B2
7163031 Graves et al. Jan 2007 B2
7163035 Khan et al. Jan 2007 B2
7175615 Hanly et al. Feb 2007 B2
7194336 DiGianfilippo et al. Mar 2007 B2
7260447 Osborne Aug 2007 B2
7317967 DiGianfilippo et al. Jan 2008 B2
7343224 DiGianfilippo et al. Mar 2008 B2
7343943 Khan et al. Mar 2008 B2
7351226 Herskowitz Apr 2008 B1
7354426 Young Apr 2008 B2
7392638 Baldwin et al. Jul 2008 B2
7396051 Baldwin et al. Jul 2008 B2
7398802 Baker Jul 2008 B2
7418981 Baker et al. Sep 2008 B2
7442186 Blomquist Oct 2008 B2
7488311 Domkowski et al. Feb 2009 B2
7499581 Tribble et al. Mar 2009 B2
7527619 Domkowski et al. May 2009 B2
7530211 McErlean et al. May 2009 B2
7530974 Domkowski et al. May 2009 B2
7538858 Mackey May 2009 B2
D594120 Berberich et al. Jun 2009 S
D596291 Berberich et al. Jul 2009 S
7566326 Duchon et al. Jul 2009 B2
7610115 Rob et al. Oct 2009 B2
7630788 Reese Dec 2009 B1
7630789 Broadfield et al. Dec 2009 B2
7632261 Zinger et al. Dec 2009 B2
7654976 Peterson et al. Feb 2010 B2
7681606 Khan et al. Mar 2010 B2
7685026 McGrady et al. Mar 2010 B1
D616092 Domkowski et al. May 2010 S
7717897 Burg et al. May 2010 B2
D620108 Eitenmueller et al. Jul 2010 S
7753085 Tribble et al. Jul 2010 B2
7758560 Connell et al. Jul 2010 B2
7789850 Roger Sep 2010 B2
7814731 Bender et al. Oct 2010 B2
7850051 Py et al. Dec 2010 B2
7882863 Pestotnik et al. Feb 2011 B2
7900658 Osborne et al. Mar 2011 B2
7913720 Tribble et al. Mar 2011 B2
7963201 Willoughby et al. Jun 2011 B2
7963954 Kavazov Jun 2011 B2
7967202 Durrell et al. Jun 2011 B2
7981381 Lurvey et al. Jul 2011 B2
7997304 Ranalletta et al. Aug 2011 B2
8034041 Domkowski et al. Oct 2011 B2
8037659 Osborne et al. Oct 2011 B2
8075545 Moy et al. Dec 2011 B2
8091727 Domkowski Jan 2012 B2
8091860 Thompson et al. Jan 2012 B2
8104644 Py et al. Jan 2012 B2
8117809 McErlean et al. Feb 2012 B2
8140351 Tribble et al. Mar 2012 B2
8141601 Fehr et al. Mar 2012 B2
8151835 Khan et al. Apr 2012 B2
8162903 Reilly et al. Apr 2012 B2
8162914 Kraushaar et al. Apr 2012 B2
8162915 Brandenburger et al. Apr 2012 B2
D660423 Hermle May 2012 S
8172823 Rondeau et al. May 2012 B2
8182744 Mlodzinski et al. May 2012 B2
8197459 Jansen et al. Jun 2012 B2
8206367 Warrne et al. Jun 2012 B2
D664647 Becker Jul 2012 S
D664648 Becker Jul 2012 S
D664649 Becker Jul 2012 S
8209941 Osborne et al. Jul 2012 B2
8216207 Moy et al. Jul 2012 B2
8220503 Tribble et al. Jul 2012 B2
8220504 Hartman et al. Jul 2012 B2
8221382 Moy et al. Jul 2012 B2
8225824 Eliuk et al. Jul 2012 B2
8225826 Horppu et al. Jul 2012 B2
8231567 Tennican et al. Jul 2012 B2
8231749 Dent et al. Jul 2012 B2
8241265 Moy et al. Aug 2012 B2
D667946 Levesque et al. Sep 2012 S
8267129 Doherty et al. Sep 2012 B2
8267912 Ferris Sep 2012 B2
8287513 Ellstrom et al. Oct 2012 B2
8328082 Bochenko et al. Dec 2012 B1
8336587 Rosenquist et al. Dec 2012 B2
8353318 Ranalletta et al. Jan 2013 B2
8356644 Chong et al. Jan 2013 B2
8356645 Chong et al. Jan 2013 B2
8357137 Yandell Jan 2013 B2
8374887 Alexander Feb 2013 B1
8381776 Horppu Feb 2013 B2
8382696 Beiriger et al. Feb 2013 B2
8386070 Eliuk et al. Feb 2013 B2
8403905 Yow Mar 2013 B2
8409165 Niedospial, Jr. et al. Apr 2013 B2
8414556 Garfield et al. Apr 2013 B2
8425487 Beiriger et al. Apr 2013 B2
8430859 McConnell Apr 2013 B2
8449521 Thorne, Jr. et al. May 2013 B2
D687948 Levesque et al. Aug 2013 S
8506548 Okiyama Aug 2013 B2
8522832 Lopez et al. Sep 2013 B2
8551037 Suchecki et al. Oct 2013 B2
8562583 Akerlund et al. Oct 2013 B2
8567235 Bojan et al. Oct 2013 B2
8571708 Rob et al. Oct 2013 B2
8562584 Beiriger et al. Nov 2013 B2
8602067 Kuhni et al. Dec 2013 B2
8608723 Lev et al. Dec 2013 B2
8622985 Ellstrom Jan 2014 B2
8636720 Truitt et al. Jan 2014 B2
8639525 Levine et al. Jan 2014 B2
8679075 Lurvey et al. Mar 2014 B2
8684994 Lev et al. Apr 2014 B2
8701696 Guala Apr 2014 B2
8702675 Imai Apr 2014 B2
8720496 Huwiler et al. May 2014 B2
8721612 Moy et al. May 2014 B2
8721614 Takemoto et al. May 2014 B2
8721627 Alpert May 2014 B2
D706415 Levesque et al. Jun 2014 S
8753325 Lev et al. Jun 2014 B2
8763798 Paul Jul 2014 B2
8795231 Chong et al. Aug 2014 B2
8801689 Moy et al. Aug 2014 B2
8821436 Mosler et al. Sep 2014 B2
8834444 Domkowski Sep 2014 B2
8852147 Callan et al. Oct 2014 B2
8863788 Ranalletta et al. Oct 2014 B2
8864725 Ranalletta et al. Oct 2014 B2
8864737 Hasegawa et al. Oct 2014 B2
8870832 Raday et al. Oct 2014 B2
8882739 Domkowski et al. Nov 2014 B2
8894627 Garfield et al. Nov 2014 B2
8911421 Domkowski et al. Dec 2014 B2
D721803 Dubach Jan 2015 S
8926554 Okuda et al. Jan 2015 B2
8958112 Matsui et al. Feb 2015 B2
D724198 Oostman et al. Mar 2015 S
8973622 Lopez et al. Mar 2015 B2
8979792 Lev et al. Mar 2015 B2
9033006 Perazzo et al. May 2015 B2
9043019 Eliuk et al. May 2015 B2
9056164 Tate et al. Jun 2015 B2
9057363 Capone Jun 2015 B2
9057370 Mundt et al. Jun 2015 B2
9060923 Hossainy Jun 2015 B2
9061130 Truitt et al. Jun 2015 B2
9076115 Utech et al. Jul 2015 B2
9079686 Domkowski et al. Jul 2015 B2
9089474 Cederschiöld Jul 2015 B2
9089647 Haenggi et al. Jul 2015 B2
9101717 Mansour et al. Aug 2015 B2
9132062 Fangrow Sep 2015 B2
9132063 Lev et al. Sep 2015 B2
9139316 Husnu et al. Sep 2015 B2
9144646 Barron, III et al. Sep 2015 B2
9149576 Bullington et al. Oct 2015 B2
9198832 Moy et al. Dec 2015 B2
9211231 Mansour et al. Dec 2015 B2
9212762 Duncan Dec 2015 B2
9220661 Garfield et al. Dec 2015 B2
D747472 Bradley et al. Jan 2016 S
9227048 Frattini Jan 2016 B2
9241875 Davis et al. Jan 2016 B2
9242039 Valk et al. Jan 2016 B2
9270890 Okuma et al. Feb 2016 B2
9345640 Mosler et al. May 2016 B2
9345641 Kraus et al. May 2016 B2
9345643 Okiyama May 2016 B2
9381135 Reynolds et al. Jul 2016 B2
9381137 Garfield et al. Jul 2016 B2
9382021 Tribble et al. Jul 2016 B2
9402786 Petrone Aug 2016 B2
9408966 Kamen Aug 2016 B2
9466088 Perazzo et al. Oct 2016 B2
9474690 Ranalletta et al. Oct 2016 B2
9475019 Kaucky et al. Oct 2016 B2
9481477 Kjar Nov 2016 B2
D774192 Fuchs Dec 2016 S
D775325 Larson et al. Dec 2016 S
9511989 Lopez et al. Dec 2016 B2
9561893 Root et al. Feb 2017 B2
9579255 Eliuk et al. Feb 2017 B2
9615997 Fangrow Apr 2017 B2
9744102 Kubo Aug 2017 B2
9770388 Noike et al. Sep 2017 B2
9775778 Qiu et al. Oct 2017 B2
9801787 Py Oct 2017 B2
9802171 Konrad, Jr. et al. Oct 2017 B2
9802172 Konrad, Jr. et al. Oct 2017 B2
D803396 Oberkircher et al. Nov 2017 S
9827163 Lopez et al. Nov 2017 B2
9827680 Davey et al. Nov 2017 B2
D804651 Loonan Dec 2017 S
9833605 Sanders et al. Dec 2017 B2
9849236 Hachey et al. Dec 2017 B2
9883987 Lopez et al. Feb 2018 B2
9930297 Alexander et al. Mar 2018 B2
9931276 Lopez et al. Apr 2018 B2
D819414 Solomon Jun 2018 S
10106278 Chang et al. Oct 2018 B2
10143985 Brown et al. Dec 2018 B2
D837983 Fangrow Jan 2019 S
10181186 Kriheli et al. Jan 2019 B2
10188849 Fangrow Jan 2019 B2
10189616 Kraft Jan 2019 B2
D846146 Amos et al. Apr 2019 S
10259608 Fianchini et al. Apr 2019 B2
D851745 Shauver et al. Jun 2019 S
10307338 Hellenbrand Jun 2019 B2
10314765 Lopez et al. Jun 2019 B2
10315174 Konrad, Jr. et al. Jun 2019 B2
10327987 Bochenko et al. Jun 2019 B1
10327988 Tribble et al. Jun 2019 B2
10336477 Perazzo et al. Jul 2019 B2
10417758 Alexander Sep 2019 B1
10420927 Fangrow Sep 2019 B2
10494126 Joplin Dec 2019 B2
10503873 Prince et al. Dec 2019 B2
10512885 Janders et al. Dec 2019 B2
D874644 Shauver et al. Feb 2020 S
10554937 Alexander et al. Feb 2020 B2
10556062 Simpson et al. Feb 2020 B2
10576211 Hang et al. Mar 2020 B2
D887577 Shor et al. Jun 2020 S
10791975 Wilkinson et al. Oct 2020 B2
D905228 Shauver et al. Dec 2020 S
11007119 Lopez et al. May 2021 B2
11020541 Fangrow et al. Jun 2021 B2
11033459 Ariagno et al. Jun 2021 B2
11135416 Fangrow Oct 2021 B2
D943732 Shauver et al. Feb 2022 S
20020017328 Loo Feb 2002 A1
20020085952 Ellingboe et al. Jul 2002 A1
20020095121 Norton et al. Jul 2002 A1
20020179544 Johnson et al. Dec 2002 A1
20020189712 Safabash Dec 2002 A1
20030023226 Lopez Jan 2003 A1
20030153895 Leinsing Aug 2003 A1
20030236500 Scheu Dec 2003 A1
20040031756 Suzuki et al. Feb 2004 A1
20040035743 Tighe et al. Feb 2004 A1
20040073161 Tachibana Apr 2004 A1
20040087888 Digianfilippo et al. May 2004 A1
20040116891 Curutcharry Jun 2004 A1
20040118477 Desmond Jun 2004 A1
20040225274 Jansen et al. Nov 2004 A1
20050033260 Kubo et al. Feb 2005 A1
20050096627 Howard May 2005 A1
20050131357 Denton et al. Jun 2005 A1
20050230575 Zelenski et al. Oct 2005 A1
20050252572 Khan et al. Nov 2005 A1
20050252574 Khan et al. Nov 2005 A1
20060048844 Merrill Mar 2006 A1
20060064053 Bollish et al. Mar 2006 A1
20060169348 Yigal Aug 2006 A1
20060259195 Eliuk et al. Nov 2006 A1
20070007478 Leinsing et al. Jan 2007 A1
20070017583 Fangrow Jan 2007 A1
20070088252 Pestotnik et al. Apr 2007 A1
20070088313 Zinger et al. Apr 2007 A1
20070106244 Mosler et al. May 2007 A1
20070151984 Baker et al. Jul 2007 A1
20070169836 Djurle et al. Jul 2007 A1
20070244447 Capitaine et al. Oct 2007 A1
20070287953 Ziv et al. Dec 2007 A1
20080059228 Bossi et al. Mar 2008 A1
20080065006 Roger et al. Mar 2008 A1
20080077116 Dailey Mar 2008 A1
20080086094 Peters Apr 2008 A1
20080114328 Doherty et al. May 2008 A1
20080125897 DiGianfilippo et al. May 2008 A1
20080169043 Osborne et al. Jul 2008 A1
20080169044 Osborne et al. Jul 2008 A1
20080177222 De Marco et al. Jul 2008 A1
20080195416 Tribble et al. Aug 2008 A1
20080199353 Mlodzinski et al. Aug 2008 A1
20080269680 Ibranyan et al. Oct 2008 A1
20080287920 Fangrow Nov 2008 A1
20090012449 Lee et al. Jan 2009 A1
20090050216 Trocki et al. Feb 2009 A1
20090067973 Eliuk et al. Mar 2009 A1
20090069743 Krishnamoorthy et al. Mar 2009 A1
20090082649 Muller et al. Mar 2009 A1
20090088687 Yardimci et al. Apr 2009 A1
20090099547 Radmer Apr 2009 A1
20090101576 Rohde et al. Apr 2009 A1
20090126825 Eliuk et al. May 2009 A1
20090145509 Baker et al. Jun 2009 A1
20090149743 Barron et al. Jun 2009 A1
20090154764 Khan et al. Jun 2009 A1
20090163860 Patrick et al. Jun 2009 A1
20090177149 Childers et al. Jul 2009 A1
20090198215 Chong et al. Aug 2009 A1
20090223592 Procyshyn et al. Sep 2009 A1
20090223990 Bailey et al. Sep 2009 A1
20090254031 Lee Oct 2009 A1
20090270832 Vancaillie et al. Oct 2009 A1
20090306621 Thome, Jr. et al. Dec 2009 A1
20100024904 Hoffman et al. Feb 2010 A1
20100049157 Fangrow Feb 2010 A1
20100121246 Peters et al. May 2010 A1
20100245056 Braun et al. Sep 2010 A1
20100276034 Gonnelli et al. Nov 2010 A1
20100280430 Caleffi et al. Nov 2010 A1
20100286606 Ding Nov 2010 A1
20110004143 Beiriger et al. Jan 2011 A1
20110062703 Lopez et al. Mar 2011 A1
20110067781 Osborne Mar 2011 A1
20110152757 Beck et al. Jun 2011 A1
20110175347 Okiyama Jul 2011 A1
20110178493 Okiyama Jul 2011 A1
20110196304 Kramer et al. Aug 2011 A1
20110204144 Waugh et al. Aug 2011 A1
20110229517 Strahlendorf et al. Sep 2011 A1
20110276031 Hoang et al. Nov 2011 A1
20110305545 Davis et al. Dec 2011 A1
20120157914 Stroup Jan 2012 A1
20120041391 Fangrow et al. Feb 2012 A1
20120067429 Mosler et al. Mar 2012 A1
20120109077 Ryan May 2012 A1
20120123298 Mendels et al. May 2012 A1
20120298254 Brem et al. Nov 2012 A1
20120302986 Brem et al. Nov 2012 A1
20130006214 Garfield et al. Jan 2013 A1
20130018356 Prince et al. Jan 2013 A1
20130053815 Mucientes et al. Feb 2013 A1
20130085439 Sansoucy Apr 2013 A1
20130102772 Eshima et al. Apr 2013 A1
20130180618 Py Jul 2013 A1
20130211332 Beiriger et al. Aug 2013 A1
20130218121 Waller et al. Aug 2013 A1
20130220484 De Marco Aug 2013 A1
20130292002 Lopez Nov 2013 A1
20130292004 Ducret et al. Nov 2013 A1
20140020790 Yuyama et al. Jan 2014 A1
20140039392 Geipel et al. Feb 2014 A1
20140124087 Anderson et al. May 2014 A1
20140124092 Gonnelli et al. May 2014 A1
20140135732 Spronken et al. May 2014 A1
20140136229 Levine et al. May 2014 A1
20140150925 Sjogren et al. Jun 2014 A1
20140174596 Lopez Jun 2014 A1
20140261727 Mansour et al. Sep 2014 A1
20140261860 Heath Sep 2014 A1
20140261877 Ivosevic et al. Sep 2014 A1
20140263614 Keefe et al. Sep 2014 A1
20140276386 Mansour et al. Sep 2014 A1
20140276649 Ivosevic et al. Sep 2014 A1
20140299221 Lopez Oct 2014 A1
20140323970 Duncan Oct 2014 A1
20140350949 Utech et al. Nov 2014 A1
20150000784 Jamaledine Jan 2015 A1
20150008664 Tachizaki Jan 2015 A1
20150025453 Ledford et al. Jan 2015 A1
20150040987 Reichert et al. Feb 2015 A1
20150040988 Reichert et al. Feb 2015 A1
20150041531 Vavala et al. Feb 2015 A1
20150045772 Reichert et al. Feb 2015 A1
20150068640 Garfield et al. Mar 2015 A1
20150082746 Ivosevic et al. Mar 2015 A1
20150101707 Ranalletta et al. Apr 2015 A1
20150119820 Kanamoto Apr 2015 A1
20150123398 Sanders et al. May 2015 A1
20150126958 Sanders et al. May 2015 A1
20150133879 Kanamoto et al. May 2015 A1
20150151041 Yodfat et al. Jun 2015 A1
20150157536 Qiu et al. Jun 2015 A1
20150161354 Blomquist Jun 2015 A1
20150202382 Juretich et al. Jul 2015 A1
20150202383 Juretich et al. Jul 2015 A1
20150202384 Juretich et al. Jul 2015 A1
20150202385 Juretich et al. Jul 2015 A1
20150209230 Lev et al. Jul 2015 A1
20150209233 Fukuoka Jul 2015 A1
20150209495 Biset et al. Jul 2015 A1
20150209510 Burkholz et al. Jul 2015 A1
20150209572 Garfield et al. Jul 2015 A1
20150250680 Browka et al. Sep 2015 A1
20150250681 Lev et al. Sep 2015 A1
20150257977 Bochenko et al. Sep 2015 A1
20150265500 Russo et al. Sep 2015 A1
20150297451 Mariei et al. Oct 2015 A1
20150297453 Kim et al. Oct 2015 A1
20150297454 Sanders et al. Oct 2015 A1
20150297456 Mariei et al. Oct 2015 A1
20150297459 Sanders et al. Oct 2015 A1
20150297460 Mansour et al. Oct 2015 A1
20150297839 Sanders et al. Oct 2015 A1
20150297881 Sanders et al. Oct 2015 A1
20150314066 Shimizu Nov 2015 A1
20150320992 Bonnet et al. Nov 2015 A1
20150346013 Feng et al. Dec 2015 A1
20150359709 Kriheli et al. Dec 2015 A1
20150366758 Noguchi et al. Dec 2015 A1
20160000653 Kramer Jan 2016 A1
20160001003 Perazzo et al. Jan 2016 A1
20160038373 Ohlin Feb 2016 A1
20160038374 Merhold et al. Feb 2016 A1
20160051446 Lev et al. Feb 2016 A1
20160058666 Strahlendorf et al. Mar 2016 A1
20160058667 Kriheli Mar 2016 A1
20160081878 Marks et al. Mar 2016 A1
20160081879 Garfield et al. Mar 2016 A1
20160101020 Guala Apr 2016 A1
20160114922 Bonhora et al. Apr 2016 A1
20160136051 Lavi May 2016 A1
20160136412 McKinnon et al. May 2016 A1
20160140315 Diaz et al. May 2016 A1
20160158104 Ali et al. Jun 2016 A1
20160158437 Biasi et al. Jun 2016 A1
20160206511 Garfield et al. Jul 2016 A1
20160213568 Mansour et al. Jul 2016 A1
20160213861 Whitaker et al. Jul 2016 A1
20160213862 Whitaker et al. Jul 2016 A1
20160250102 Garfield et al. Sep 2016 A1
20160256632 Fangrown Sep 2016 A1
20160262981 Carrez et al. Sep 2016 A1
20160310362 Lane et al. Oct 2016 A1
20160331893 Yeh et al. Nov 2016 A1
20160354281 O'Neill et al. Dec 2016 A1
20170007501 Schuldt-Lieb et al. Jan 2017 A1
20170020428 Rogers Jan 2017 A1
20170079883 Lopez Mar 2017 A1
20170081168 Seay et al. Mar 2017 A1
20170128666 Davis May 2017 A1
20170129763 Fangrow, Jr. May 2017 A1
20170146381 Eckel et al. May 2017 A1
20170165435 Green Jun 2017 A1
20170165436 Haddad et al. Jun 2017 A1
20170255760 Lee et al. Sep 2017 A1
20170312716 Konrad, Jr. et al. Nov 2017 A1
20170354571 David et al. Dec 2017 A1
20180043323 Janders et al. Feb 2018 A1
20180055738 Chen et al. Mar 2018 A1
20180065097 Konrad, Jr. et al. Mar 2018 A1
20180133667 Lee et al. May 2018 A1
20180161244 Lopez Jun 2018 A1
20180168930 Tunesi Jun 2018 A1
20180168935 Chen et al. Jun 2018 A1
20180194505 Amano et al. Jul 2018 A1
20180207063 Lopez Jul 2018 A1
20180232497 Hoffman et al. Aug 2018 A1
20180263850 Schneider et al. Sep 2018 A1
20180272117 Fangrow Sep 2018 A1
20180344572 Zollinger et al. Dec 2018 A1
20180353381 Pak et al. Dec 2018 A1
20180353382 Zollinger et al. Dec 2018 A1
20180354662 Feith et al. Dec 2018 A1
20180357476 Klumph Dec 2018 A1
20180360689 Zollinger et al. Dec 2018 A1
20190019576 DeCiccio et al. Jan 2019 A1
20190021947 Bomgaars et al. Jan 2019 A1
20190056419 Procyshyn et al. Feb 2019 A1
20190070405 Fangrow Mar 2019 A1
20190091639 Brown et al. Mar 2019 A1
20190105619 Wilson et al. Apr 2019 A1
20190151569 Fangrow May 2019 A1
20190152663 Kraft May 2019 A1
20190163876 Remme et al. May 2019 A1
20190170663 Pirkle et al. Jun 2019 A1
20190216683 Yaegashi Jul 2019 A1
20190244466 Berg et al. Aug 2019 A1
20190247280 Hellenbrand Aug 2019 A1
20190262790 Konrad, Jr. et al. Aug 2019 A1
20190275243 Deck et al. Sep 2019 A1
20190307643 Tribble et al. Oct 2019 A1
20190388302 Schobel et al. Dec 2019 A1
20200016037 Oda et al. Jan 2020 A1
20200066389 Prince et al. Feb 2020 A1
20200093699 Oda et al. Mar 2020 A1
20200113784 Lopez Apr 2020 A1
20200113785 Lopez Apr 2020 A1
20200206492 Fangrow Jul 2020 A1
20200289370 Lopez Sep 2020 A1
20200297581 Lopez Sep 2020 A1
20210002008 Min et al. Jan 2021 A1
20210121363 Oda et al. Apr 2021 A1
20210259921 Lopez Aug 2021 A1
20220008711 Fangrow Jan 2022 A1
20220054766 Fangrow Feb 2022 A1
Foreign Referenced Citations (76)
Number Date Country
1707379 Dec 2005 CN
101244297 Aug 2008 CN
106860003 Jun 2017 CN
107198658 Sep 2017 CN
108210332 Jun 2018 CN
202 16 791 Feb 2003 DE
20 2004 014 868 Nov 2004 DE
0 521 460 Sep 1995 EP
0 974 330 Jan 2000 EP
1 533 597 May 2005 EP
1 563 819 Aug 2005 EP
1 997 471 Dec 2008 EP
3 375 427 Sep 2018 EP
55-156750 Nov 1980 JP
55-173339 Dec 1980 JP
56-95247 Aug 1981 JP
62-189072 Aug 1987 JP
06-343706 Dec 1994 JP
10-118158 May 1998 JP
2001-190689 Jul 2001 JP
2002-238979 Aug 2002 JP
2002-355318 Dec 2002 JP
2003-144546 May 2003 JP
2003-199823 Jul 2003 JP
2003-225305 Aug 2003 JP
2004-049497 Feb 2004 JP
2007-14618 Jan 2007 JP
2007-215775 Aug 2007 JP
2011-0019800 Mar 2011 KR
10-1574194 Dec 2015 KR
WO 199714493 Apr 1997 WO
WO 199823353 Jun 1998 WO
WO 199919012 Apr 1999 WO
WO 199963547 Dec 1999 WO
WO 200041751 Jul 2000 WO
WO 200103757 Jan 2001 WO
WO 2001039874 Jun 2001 WO
WO 2002013890 Feb 2002 WO
WO 2005041846 May 2005 WO
WO 2005110007 Nov 2005 WO
WO 2005123162 Dec 2005 WO
WO 2007033013 Mar 2007 WO
WO 2007061424 May 2007 WO
WO 2007062315 May 2007 WO
WO 2007079305 Jul 2007 WO
WO 2007148708 Dec 2007 WO
WO 2008051998 May 2008 WO
WO 2008128074 Oct 2008 WO
WO 2008144447 Nov 2008 WO
WO 2009060419 May 2009 WO
WO 2009130147 Oct 2009 WO
WO 2011002853 Jan 2011 WO
WO 2011012313 Feb 2011 WO
WO 2011014525 Feb 2011 WO
WO 2011058545 May 2011 WO
WO 2011058548 May 2011 WO
WO 2011091542 Aug 2011 WO
WO 2011091543 Aug 2011 WO
WO 2011104711 Sep 2011 WO
WO 2011104712 Sep 2011 WO
WO 2011150037 Dec 2011 WO
WO 2012119225 Sep 2012 WO
WO 2013096911 Jun 2013 WO
WO 2014122643 Aug 2014 WO
WO 2014126473 Aug 2014 WO
WO 2014177347 Nov 2014 WO
WO 2014181320 Nov 2014 WO
WO 2015029020 Mar 2015 WO
WO 2015077184 May 2015 WO
WO 2015077466 May 2015 WO
WO 2015122921 Aug 2015 WO
WO 2016010909 Jan 2016 WO
WO 2017096072 Jun 2017 WO
WO 2018009996 Jan 2018 WO
WO 2018022640 Feb 2018 WO
WO 2019018195 Jan 2019 WO
Non-Patent Literature Citations (42)
Entry
Burrows, et al., “Intravenous (IV) Fluidmaker IV. A Disposable Device for Preparation of Sterile Water for Injection In a Field Setting,” Fort Detrick, US Army Biomedical Research & Development Laboratory, Sep. 1991. https://apps.dtc.mil/dtic/tr/fulltest/u2/a247385.pdf.
Abbott “Plum A+,” System Operating Manual (For use with List 11971-04) in 85 pages, May 2001.
U.S. Appl. No. 29/571,547, filed Jul. 19, 2016, Shauver et al.
U.S. Appl. No. 29/586,575, filed Dec. 5, 2016, Fangrow.
Autoyec 50, from KRZ, Dec. 6, 2007.
B. Braun Medical Inc. Two-Bag Irrigation Set, Two Non-vented Spikes, dated Jul. 2012, in 1 page.
BioExpert International Inc., Company overview, credentials for Rabih Jamaleddine, Nabil Kereknawi, and Danica Robillard Corso, copyright 2010 BioExpert International Inc. in 3 pages [retrieved on Jan. 6, 2015; Publication Date Unknown]; accessed on the world wide web at http://bloexpert.ca/about.html.
Cato (Computer Aided Therapy For Oncology)—Reference Manual—Vienna, May 2005, 255 pgs.
ISO/Tech Design, QC, Canada, “CHEMOSPHERE,” product brochure, in 2 pages [Publication Date Unknown].
Clearlink Needleless IV Access System, dated Aug. 2007, in 2 pages.
CytoCare, by Health Robotics, Brochure, Date Unknown, downloaded on May 25, 2012 from http://www.health-robotics.com/smartedit/downloads/en/cytocare7.pdf, 6 pages.
European Supplemental Search Report, re EP Application No. 14864639, dated May 12, 2017.
Exacta-Mix 2400, from Baxa, which appears to have a date of 2007, 2 pages.
Flickinger, Bruce, “Misperceptions Cloud the Issue of Sterile Drug Compounding,” Jun. 2007.
Fox, Brent I., “Pharmacy Automation and Technology: Automated Intravenous Preparation: Robots for the Pharmacy,” Hospital Pharmacy, vol. 44, Mar. 2009, pp. 255-257.
Healthmark, “Hospital Medication Preparation, Packaging and Dispensing,” Chemo Drug Preparation/Administration in 2 pages [retrieved on Jan. 6, 2015; Publication Date Unknown]; accessed on the world wide web at http://www.healthmark.ca/2-36-88-Chemo-Drug-Preparation-Administration_en.html.
Healthmark, “Hospital Medication Preparation, Packaging and Dispensing,” Chemosphere, Sterile Chemo Compounding (Isolator) in 1 page [retrieved on Jan. 6, 2015; Publication Date Unknown]; accessed on the world wide web at http://www.healthmark.ca/2-36-10-ChemoSphere_en.html?ProduitID=244.
Healthmark, “Hospital Medication Preparation, Packaging and Dispensing” in 1 page [retrieved on Jan. 6, 2015; Publication Date Unknown]; accessed on the world wide web at http://www.healthmark.ca/2-en-Hospital-Medication-Preparation-Packaging-and-Dispensing.html.
Healthmark, “Hospital Medication Preparation, Packaging and Dispensing,” Oncology Preparation and Administration in 1 page [retrieved on Jan. 6, 2015; Publication Date Unknown]; accessed on the world wide web at http://www.healthmark.ca/2-36-10-COMPANY-PROFILEHospital-en.html.
Healthmark, “Hospital Medication Preparation, Packaging and Dispensing,”Phocus RX (Camera Verification System), Remote Rx Checking of admixtures in 2 pages [retrieved on Jan. 6, 2015; Publication Date Unknown]; accessed on the world wide web at http://www.healthmark.ca/2-36-10-PHOCUS-Rx-Camera-verification-System-_en.html?ProduitID=229.
Healthmark, “New Product Items” in 1 page [retrieved on Jan. 6, 2015; Publication Date Unknown]; accessed on the world wide web at http://www.healthmark.ca/home.html.
Healthmark, “Introducing the Precifill Dispensing Pump” product brochure in 2 pages [Publication Date Unknown].
Integra Brochure, from Eurospital, Brochure acquired in Mar. 2012.
International Preliminary Report on Patentability for International PCT Patent Application No. PCT/US2014/065972, dated Jun. 9, 2016.
International Search Report and Written Opinion for International PCT Patent Application No. PCT/US2014/065972, dated Feb. 24, 2015.
Neo Care Medical Products: Product Catalog, dated Jun. 2008, in 38 pages.
Grifols International, S.A., “PHOCUS Rx, Remote IV Compounding Validation” product brochure and “Product Description Sheet” in 13 pages [Publication Date unknown but may be May 29, 2013].
Pinnacle TPN Management System, from B Braun, downloaded May 5, 2009 from http://www.bbraunusa.com/index. cfm?uuid=7386ADF065B05CDOD22AF700339AA4092, 1 page.
“Precifill,” Trademark search (TESS) in 1 page, [retrieved on Jan. 6, 2015; Application Filing Date of Sep. 30, 2011]; accessed on the world wide web at http://tmsearch.uspto.gov/bin/showfield?ff=doc&state=4807:gz67gx.3.1.
Product detail for “NAMIC® Closed Fluid Systems” from Navilyst Medical, downloaded on May 11, 2010 from http://www.navilystmedical.com/Products/index.cfm/19, 2 pages.
Product detail for “RapidFill™Automated Syringe Filler,” from Baxa, downloaded on Mar. 31, 2010 from http://www.baxa/com/PharmacyProducts/AutomatedFillingSystems/ProductDetail/?id=B1, 2 pages.
Product detail for “Summit Medical DirectFlow” micro infusion extension set from Summit Medical Technologies, downloaded on May 10, 2010 from http://summitmedtech.com/p6line.php, 1 page.
Riva, downloaded in Apr. 2009 from http://www.rivasystem.com, 6 pages.
SmartSite Safety Disposables, with copyright notice dated 2004.
Smith, “Lifesaving Cancer Drugs May Put Workers' Lives at Risk,” downloaded on Jul. 12, 2010 from http://www.msnbc.msn.com/id/38114586/ns/health-cancer, 7 pages.
Spiros—Closed Male Connector, published Jan. 22, 2008.
Technical Data sheet for Analog Amplifiers Type VA, models V8-C and V8-D, STM Sensors dated Dec. 2007, 4 pages.
Technical Data sheet for Through Beam Sensors Type G2, 1480 nm, STM Sensors dated Dec. 2009, 2 pages.
Technical Data sheet for Through Beam Sensors Type G2, 645 nm, STM Sensors dated Sep. 2008, 2 pages.
User Guide for medOC 1xx Basic, Neo Care Medical Products GmbH, Version Jun. 2008, 23 pages.
User Manual for medOC 3xx /6xx /8xx, Neo Care Medical Products GmbH, Version May 2008, 44 pages.
Baxa Corp. v. McGaw Inc. 981 F. Supp. 1348 (1997), Memorandum Opinion and Order, 14 pages.
Related Publications (1)
Number Date Country
20180177940 A1 Jun 2018 US
Provisional Applications (1)
Number Date Country
61908674 Nov 2013 US
Continuations (2)
Number Date Country
Parent 14746048 Jun 2015 US
Child 15848368 US
Parent PCT/US2014/065972 Nov 2014 US
Child 14746048 US