1. Field of the Invention
The present invention relates generally to medical apparatus and methods. More particularly, the present invention relates to a method and system for separating and optionally classifying solids removed from a patient in a fluid aspirate.
Aspiration is a part of many surgical procedures performed in various body structures and lumens. Blood and/or other natural body fluids may be aspirated from various hollow body structures, such as blood vessels, cysts, pseudocysts, abscesses, blood vessel grafts, lung passages, bile ducts, ureters, urethras, fallopian tubes, ear canals, the gastrointestinal tract, and the like. In some instances, aspiration is performed on a natural body fluid(s) only, while in many other instances, a liquid irrigant will be introduced which will form at least part of the aspirated fluid. Such irrigants may comprise saline or other biologically inert fluids. Alternatively, such irrigants may comprise biologically active agents, such as thrombolytic agents introduced to occluded blood vessels, antiseptic or antibiotic agents introduced to infected body locations, or the like.
Of particular interest to the present invention, fluids aspirated from any of these hollow body structures will often contain solid materials, such as cellular debris, damaged tissue, thrombus, or the like, which is aspirated together with the fluid. In many instances, such removed solid materials will have diagnostic or other value to a treating physician. For example, during aspiration, it may be desirable to monitor the solid materials which are being removed in order to decide when to terminate or alter or adjust the aspiration protocol. Additionally, the identification of the aspirated material may serve as a diagnostic tool to direct further intervention or other therapies.
While the collected materials may be observed in the aspirate collection bags which are commonly employed in such procedures, it will usually be difficult to remove the materials while additional aspirate is entering the collection bags and the solids will frequently remain suspended and difficult to separate from the collected materials.
For these reasons, it would be desirable to provide improved and additional systems and protocols for separating solid materials from liquid and fluid aspirates removed from a hollow body structure. It would be particularly desirable if the methods and protocols permitted direct observation and/or removal of the separated solid materials while an aspiration protocol was continuing. It would be further desirable if the separated solid materials were collected in a form substantially separated from a liquid fraction of the materials removed from the hollow body structure and further that the separated solid materials be in a convenient structure or assembly to permit easy removal and observation. In some instances, it would also be desirable to provide for classification of the solid materials, i.e. separation based on size, while the aspiration protocol was being performed. At least some of these objectives will be met by the inventions described and claimed hereinbelow.
2. Description of the Background Art
Patient irrigation and aspiration systems which may employ the separation technology of the present application are described in commonly assigned U.S. Pat. Nos. 6,827,701 and 6,878,128, the full disclosures of which are incorporated herein by reference.
In a first aspect of the present invention, methods are provided for separating materials in fluid aspirates removed from a hollow body structure. The fluid is aspirated from the hollow body structure, where the fluid carries entrained solid materials in the aspirate. The solid materials are filtered from the fluid to produce both a filtrate and a fluid stream. The fluid stream is collected separately from the filtrate. In this way, the filtrate may be easily observed and optionally removed from the aspiration circuit even while the aspiration protocol continues.
The fluid may be aspirated from a variety of hollow body organs and other structures, including blood vessels, cysts, pseudocysts, abscesses, blood vessel grafts, lung passages, bile ducts, ureters, urethras, fallopian tubes, ear canals, joint capsules, the gastrointestinal tract, and the like. Thus, natural body fluids which may be aspirated according to the present invention include blood, bile, urine, synovial fluid, and the like. In addition to such natural body fluids, the hollow body structures may optionally be irrigated prior to and/or during aspiration. The introduction of irrigation fluid may improve debris capture through the aspiration channel by creating localized mixing/turbulence and possibly decreasing the viscosity of the aspirant. Thus, the aspirated fluids may comprise or consist of a variety of irrigant fluids introduced to the hollow body structure. Suitable irrigant fluids include saline, lactated ringers, and the like. The irrigant fluids may further comprise active agents intended for therapeutic or diagnostic purposes. For example, in the case of occluded blood vessels, thrombolytic agents may be introduced as part of an irrigant stream. Alternatively, in the case of infected hollow body structures, the irrigant may include antibiotics, antiseptics, or the like.
Most typically, aspiration will be performed by introducing an aspiration catheter, cannula, or other tubular or needle-like device into the hollow body structure. By applying a vacuum to a proximal end of the aspiration device, the fluid may be withdrawn through a port or ports at or near the distal end of the device which has been placed within an interior region of the hollow body structure. For convenience, as used hereinafter and in the claims, the aspiration structure will be referred to as a “catheter,” but it will be appreciated that this term is intended to be broad enough to encompass needles, cannulas, tubular structures, conduits, and other aspiration structures known in the medical art.
The aspirated fluids will usually be collected in an aspirate receptacle, such as a conventional fluid collection bag. A syringe, vacuum connection, or other conventional vacuum source may be connected at or through the catheter and/or the aspiration receptacle in order to aspirate the fluid from the hollow body structure, through the aspiration catheter, and into the aspirate receptacle. The filter(s) may be positioned before or after the aspiration source.
In a preferred aspect of the present invention, at least one filter assembly including a filter housing and a removable (and replaceable) filter element is placed between the aspiration catheter and the aspirate receptacle in order to remove solid materials from the aspirate before the remaining liquid phase of the aspirate flows to the aspirate receptacle. The filter element may be any conventional filter element, such as a paper, polymer, a woven filter membrane, a screen, other porous member, or the like. The filter element may have any one of a variety of geometries including cup-shaped, conical and the filter could be inclined or slanted in the filter-housing to spread the filtrate over the filter to permit differentiation of the filtrate material. Additionally, the filter element could be coated or otherwise combined with a chemical, biological, or other indication or marker to facilitate identification of different analytes or markers present in the filtrate, typically using colormetric indicating systems. Preferably, the filter element will allow the separated solid materials to collect on an exposed surface so that the solid materials will be easily removed and/or absorbed. The filter element will have a pore size or screen size selected to separate solid particles at a desired particle size cutoff. For example, suitable filter membranes may have a pore size in the range from 1 μm to 1000 μm, usually from 5 μm to 240 μm, and preferably from 20 μm to 120 μm. For separation of larger particles, screens having mesh sizes in the range from 0.1 mm to 5 mm, and preferably from 0.2 mm to 1 mm may be used.
In a specific aspect of the methods of the present invention, at least two filter assemblies may be provided between the aspiration catheter and the aspirate receptacle. The two or more filter assemblies may be disposed in parallel, in series, or in a combination of parallel and series arrangements. Typically, valving will be provided so that the multiple filter assemblies may be isolated from the flowing stream of aspirate so that the filter elements may be removed and the collected solids observed even while the aspiration protocol continues. In some cases, an unfiltered bypass path will be provided with valving so that a single filter assembly or group of filter assemblies may be isolated while the aspirate is directed or shunted to the aspirate receptacle without any filtration.
In a further specific aspect of the methods of the present invention, two or more filter elements may be employed in series or in parallel in order to size classify the materials being removed. Most simply, two, three, or more filter elements having progressively smaller pore or mesh sizes may be provided in series in a single filter housing. Alternatively, such a series of progressively smaller filtering elements could be provided in separate filter assemblies which are disposed in series between the aspiration catheter and the aspirate receptacle. Alternatively, separate filter assemblies having filter elements with differing particle size cutoffs could be provided in parallel or in a series-parallel arrangement in order to separately collect and classify particles having different sizes. In any of these ways, the solid materials may be filtered and separated into at least two size groups, often at least three size groups, and into virtually any number of different sized collection groups desired.
In a second aspect of the present invention, systems for aspirating a hollow body structure comprise an aspiration catheter, an aspirate receptacle connectable to receive aspirate from the aspiration catheter, and at least one filter assembly disposed between the aspiration catheter and the aspirate receptacle. Typically, the aspirate receptacle will be a fluid collection bag, although any other conventional medical receptacle would be suitable. The aspirate receptacle will typically be connected by a flexible tube between the aspiration catheter and the aspirate receptacle. Usually, a syringe, vacuum connector, or other conventional vacuum source will be provided in order to effect the system aspiration.
The filter assembly usually comprises at least one filter housing having at least one filter element removably disposed in an interior thereof. The filter element, as described above, may comprise a filter membrane, a mesh, link, or the like, having a pore or mesh size selected to collect and separate solids having a target threshold size or sizes. The filter housing and optionally filter element may be at least partially transparent to permit observation of the solid materials as they collect. In an exemplary embodiment, the filter housing has an upper shell and a lower shell which may be taken apart to permit introduction, removal, and replacement of the filter element in the interior of the housing. The housing will further have conventional connectors to permit connection at an upper end to the aspiration catheter and at a lower end to the aspirate receptacle.
The system may further comprise at least a second filter assembly, a third filter assembly, or even greater number of filter assemblies which may be disposed in parallel or series to the first filter assembly. Additionally, at least one unfiltered flow path may be provided in parallel to the filter assembly(ies), and valving will be provided to permit selective flow through any one or more of the filter assemblies as well as through the unfiltered flow path. The different filter assemblies may each have a filter element with a different pore or mesh size. Alternatively, two or more filter elements may be provided within a single filter assembly, where the individual filter elements within the individual assembly may optionally have different pore or mesh sizes.
The present invention provides systems and methods for separating solid materials, typically particulate materials, from aspirated body fluids, including both natural body fluids and introduced fluids. As shown in
The irrigation/aspiration catheter 12 illustrated in
The catheter 12 has a distal end or portion 26 which is introducible into a target hollow body structure in order to withdraw fluid therefrom to produce the aspirate stream. In the preferred example of the irrigation aspiration catheter, described in the previously incorporated commonly owned U.S. patents, the catheter 12 will be intended for introduction to a blood vessel for introducing a thrombolytic agent in order to disrupt clot. In this exemplary use, the solid material aspirated by the catheter will frequently comprise disrupted clot, thrombus, and/or plaque, which is then discharged through the aspirate line 16 to the aspirate receptacle. It will be appreciated, however, that the present invention is not limited to vascular use, clot disruption, or any other particular treatment protocol, and may instead extend to the different hollow body structures and body fluids described above.
In the simplest embodiment of the present invention, a single filter housing 18 is disposed between the aspiration catheter 12 and the aspirate receptacle 14, as illustrated in
The filter elements 34 may comprise any one of a variety of conventional filtering materials, as generally described above in the Summary of the Invention. The geometries in which the filter elements 34 are arranged will depend in large part on the construction of the remainder of the filter assembly. In the embodiment of
In many instances, it will be desirable to provide two or more filter assemblies 18 between the aspiration catheter 12 and the aspirate receptacle 14. As illustrated in
The filter assembly arrangement of
As a still further option, as shown in broken line in
Referring now to
The filter elements 70, 72, and 74 could also be arranged in parallel, as shown in
The collected elements could be used for a variety of therapeutic purposes. For example, when collecting aspirated thrombus in thrombolytic procedures,
The collected material could be used to diagnose certain disease states or conditions. These diagnostic findings could then be used to direct further interventions and/or treatments.
While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.