A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
Embodiments of the current implementations relate generally to workflow management. More particularly embodiments of the implementations relate to techniques and mechanisms for generating dynamic workflows in multi-tenant database environments.
The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also correspond to embodiments of the claimed inventions.
Business processes span every department in every industry. They define the best practices of a company. In most companies, processes are manual. They are defined and enforced with, for example, spreadsheets, email, and word of mouth. The result is inconsistent execution, lost opportunities, and higher operating costs.
Embodiments of the invention are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings in which like reference numerals refer to similar elements.
In the following description, numerous specific details are set forth. However, embodiments of the invention may be practiced without these specific details. In other instances, well-known circuits, structures and techniques have not been shown in detail in order not to obscure the understanding of this description.
Systems and methods are provided herein for providing dynamic workflow management in a multi-tenant database system. As used herein, a multi-tenant database system refers to those systems in which various elements of hardware and software of the database system may be shared by one or more customers. For example, a given application server may simultaneously process requests for a great number of customers, and a given database table may store rows for a potentially much greater number of customers.
In one embodiment, a multi-tenant database system utilizes tenant identifiers (IDs) within a multi-tenant environment to allow individual tenants to access their data while preserving the integrity of other tenant's data. In one embodiment, the multitenant database stores data for multiple client entities each identified by a tenant ID having one of one or more users associated with the tenant ID. Users of each of multiple client entities can only access data identified by a tenant ID associated with their respective client entity. In one embodiment, the multitenant database is a hosted database provided by an entity separate from the client entities, and provides on-demand and/or real-time database service to the client entities.
Cloud computing and/or multitenant environments make a new class of applications possible. To help get the most from these process-aware applications, a visual process manager may be provided. This design tool lets a user visually draw process flows or decision trees, and automatically build these processes into a corresponding application. In one embodiment, these applications can then be run by applications in a cloud computing or multitenant environment.
In one embodiment, the visual process manager may function like having a navigation system inside an application to help users make better and faster decisions. Applications may become more useful when users are provided with recommendations, wizards, and automated tasks. Previously, applications began with someone drawing out the business process. The process then gets hardcoded into the application and cannot be easily changed as the business grows and adapts to the marketplace.
Yet processes change on a monthly, weekly, and even daily basis. As a cloud-based process management solution, the visual process manager combines the speed and ease of the cloud with graphical process design to create a solution designed for continual process iteration. In one embodiment, designing and changing business processes may be done in a drag-and-drop designer. It may be accomplished in as little as four steps:
Step 1: Visual process designer—A user may design the processes with an intuitive user interface. For example, draw from a library of process tools, including presentation components (e.g., forms, questions, choices, and more) and logic components (e.g., task assignments, decision trees, and approval processes). The user may add components to a visual process design diagram through, for example, drag-and-drop actions. The development environment may provide wizards to the user interface so that a user may build an application with no programming. In one embodiment, wizards can guide users through a process by deciding which pages to display next based on user input.
Step 2: Process simulator—The user and/or the development environment may function to optimize the process design by simulating processes before deploying them. This simulation may identify bottlenecks and conflicts, and iterate the process as needed.
Step 3: Real-time process engine—When an application is ready, the development environment may deploy it to the cloud or multitenant environment. In one embodiment, the real-time process engine automatically scales the application to fit the needs of a tenant based on, for example, size. The run-time engine may ensure the process is run consistently without fail, including security measures, process decisions, callouts, and automated actions, etc.
Once the application(s) is/are ready the files associated with the application(s) can be stored in the cloud or multitenant environment. In one embodiment, these files are archive files that include multiple class files that loaded and executed in running the application(s). As described in greater detail below, these archive files may be discovered via an automated mechanism that scans files of a host system to find archive files.
Classes included in the archive files may be copied to a class path so that the environment in which the applications are executed may access the classes. In one embodiment, the classes may be registered without need of rebooting or otherwise restarting the host system or the virtual machine environment in which the applications may run.
A user may interact with graphical user interface 100 to design a process (e.g., a business process, a work flow, a sales flow) that may be implemented in virtual machine environment 180. In one embodiment, the user may interact with graphical user interface 100 to use graphical representations of process steps or elements that may be manipulated via user interactions with graphical interface 100 to construct a process to be implemented in virtual machine environment 180.
The process constructed via graphical interface 100 may be parsed and/or compiled by parser/compiler 120. Parser/compiler 120 may function to convert the graphical representation of the process to be implemented to code 140 that may be executed in virtual machine environment 180. In one embodiment, parser/compiler 120 desterilizes the process and stores the result in a database. In one embodiment, parser/compiler 120 does not convert the process to bytecode to be executed.
In one embodiment, a state machine utilizes metadata from the process to construct and execute the process. Metadata refers to a process description that is not compiled, but is converted from a description to an object model that is utilized by the state machine.
In one embodiment, parser/compiler 120 may provide analysis and/or debugging functionality to assist the user in determining whether the process designed using graphical user interface 100 will provide the desired functionality. In one embodiment, parser/compiler 120 operates on a pre-selected set of entry points or “hooks” that may be utilized to integrate code 140 into existing code that may be executed in virtual machine environment 180.
Once code 140 is created, it may be stored on storage device 175 that may be accessible by virtual machine environment 180. In one embodiment, storage device 175 represents a physical storage medium that is part of a host system (not illustrated in
User input may be received by process creation interface 230 to assemble one or more process nodes (e.g., 232, 234, 236, 238, 240) to construct a process. The nodes may represent pre-defined operations or responses that the user desires to be included in the process being constructed. One or more of the nodes may include calls to lower level code blocks (e.g., 265, 270, 275, 280) that may provide access to certain types of operations associated with the code blocks.
For example, node 234 may include an operation that uses a message that may be passed to another entity. In one embodiment, node 234 includes a call to message code 270 to provide an entry into messaging operations supported by the virtual machine interface in which the process will operate. Similarly, node 238 may use a different kind of message, but still include a call to message code 270 to implement the message functionality of node 238.
As another example, node 240 may include a call to table code 275, which may provide the functionality to create a table based on input from node 240. The example of
All or a portion of the file system of the host computer system is scanned for archive files or other files including classes to be used by a process (created as described above) or other functionality, 310. In one embodiment, the scanning is triggered by a call to a class or function that is not registered. In another embodiment, the scanning is triggered by a user-generated request. In yet another embodiment, the scanning may be triggered by a timer function (e.g., scan every 60 minutes, 4 times a day, every 30 minutes). Combinations of these triggering events may also be supported.
In one embodiment, an agent or other component on the host system analyzing file directories of the host system to find files that may include classes that have not been registered accomplishes scanning In one embodiment, the agent scans the file directories for archive files (e.g., .jar files for JAVA®) or class files (e.g., .class files for JAVA®).
The identified class files are extracted, 320, if necessary. If a file includes only a single class, then no extraction may be necessary. If a file includes multiple classes, the multiple classes may be extracted and, for example, stored as individual files, or links/pointers to the individual classes.
The identified classes are stored on the class path, 330. Storing the classes on the class path allows the virtual machine environment to determine what classes are supported. The new classes may be registered, 350, without requiring a restart of the virtual machine environment.
Class management agent 400 includes control logic 410, which implements logical functional control to direct operation of class management agent 400, and/or hardware associated with directing operation of class management agent 400. Logic may be hardware logic circuits and/or software routines. In one embodiment, class management agent 400 includes one or more applications 412, which represent code sequence and/or programs that provide instructions to control logic 410.
Class management agent 400 includes memory 414, which represents a memory device and/or access to a memory resource for storing data and/or instructions. Memory 414 may include memory local to class management agent 400, as well as, or alternatively, including memory of the host system on which class management agent 400 resides. Class management agent 400 also includes one or more interfaces 416, which represent access interfaces to/from (an input/output interface) class management agent 400 with regard to entities (electronic or human) external to class management agent 400.
Class management agent 400 also includes class management engine 420, which represents one or more functions or module that enable class management agent 400 to provide the indexing services as described above. The example of
Scanning module 430 operates to scan the host system for files that may include one or more classes. In one embodiment, scanning module 430 may scan the contents of files located on the host system for classes. Scanning module 430 may, for example, search for tags or other character strings that indicate a class definition. Other techniques for identifying classes may also be used. Scanning module 430 may provide an identification of, or link or path to, one or more files including one or more classes to other modules in class management agent 400.
Extraction module 440 operates to extract classes from files that include the classes. In one embodiment, extraction module 440 operates in information provided by scanning module 430 to locate files including classes. Extraction module 440 extracts one or more classes from the files. Class copy module 450 operates to copy the classes to the class path, or other location, where the classes may be registered. Class copy module 450 may operate with extraction module 440 to copy the classes.
Class register module 460 operates to register the classes with the host system and/or virtual machine. In one embodiment, class register module 460 scans the class path to determine whether any classes on the class path have not been registered, and registers the classes. Class register module 460 causes the classes to be registered without requiring that the host system and/or virtual machine to be restarted.
Trigger module 470 operates to trigger the scanning and registration process discussed above. In one embodiment, trigger module 470 operates as a timer to trigger scanning and/or registration upon the expiration of specified time intervals. In another embodiment, trigger module 470 operates to trigger scanning and/or registration upon detecting specified conditions, for example, a call to a class that has not been registered. Other conditions may also be supported.
In one embodiment, environment 510 is an environment in which an on-demand database service exists. In another embodiment, environment 510 is a cloud computing environment that provides services to multiple users. User system 512 may be any machine or system that is used by a user to access a database user system. For example, any of user systems 512 can be a handheld computing device, a mobile phone, a laptop computer, a work station, and/or a network of computing devices. As illustrated in
An on-demand database service, such as system 516, is a database system that is made available to outside users that do not need to necessarily be concerned with building and/or maintaining the database system, but instead may be available for their use when the users need the database system (e.g., on the demand of the users). Some on-demand database services may store information from one or more tenants stored into tables of a common database image to form a multi-tenant database system (MTS). Accordingly, “on-demand database service 516” and “system 516” will be used interchangeably herein.
A database image may include one or more database objects. A relational database management system (RDMS) or the equivalent may execute storage and retrieval of information against the database object(s). Application platform 518 may be a framework that allows the applications of system 516 to run, such as the hardware and/or software, e.g., the operating system. In an embodiment, on-demand database service 516 may include an application platform 518 that enables creation, managing and executing one or more applications developed by the provider of the on-demand database service, users accessing the on-demand database service via user systems 512, or third party application developers accessing the on-demand database service via user systems 512.
Network 514 is any network or combination of networks of devices that communicate with one another. For example, network 514 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration. Indexer(s) 530 may include one or more indexers that operate as described herein with the indexes created by indexer(s) 530 being backed up as described herein.
One arrangement for elements of system 516 is shown in
In one embodiment, class management agent 530 resides in system 516. In one embodiment, class management agent 530 may provide some or all of the functionality of the agent described above, for example, the agent of
Several elements in the system shown in
The user interface device can be used to access data and applications hosted by system 516, and to perform searches on stored data, and otherwise allow a user to interact with various GUI pages that may be presented to a user. As discussed above, embodiments are suitable for use with the Internet, which refers to a specific global internetwork of networks. However, it should be understood that other networks can be used instead of the Internet, such as an intranet, an extranet, a virtual private network (VPN), a non-TCP/IP based network, any LAN or WAN or the like.
According to one embodiment, each user system 512 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Pentium® processor or the like. Similarly, system 516 (and additional instances of an MTS, where more than one is present) and all of their components might be operator configurable using application(s) including computer code to run using a processing unit such as processor system 517, which may include an Intel Pentium® processor or the like, and/or multiple processor units.
A computer program product embodiment includes a machine-readable storage medium (media) having instructions stored thereon/in which can be used to program a computer to perform any of the processes of the embodiments described herein. Computer code for operating and configuring system 516 to intercommunicate and to process web pages, applications and other data and media content as described herein are preferably downloaded and stored on a hard disk, but the entire program code, or portions thereof, may also be stored in any other volatile or non-volatile memory medium or device as is well known, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data.
Additionally, the entire program code, or portions thereof, may be transmitted and downloaded from a software source over a transmission medium, e.g., over the Internet, or from another server, as is well known, or transmitted over any other conventional network connection as is well known (e.g., extranet, VPN, LAN, etc.) using any communication medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well known. It will also be appreciated that computer code for implementing embodiments of the present invention can be implemented in any programming language that can be executed on a client system and/or server or server system such as, for example, C, C++, HTML, any other markup language, Java™, JavaScript, ActiveX, any other scripting language, such as VBScript, and many other programming languages as are well known may be used. (Java™ is a trademark of Sun Microsystems, Inc.).
According to one embodiment, each system 516 is configured to provide webpages, forms, applications, data and media content to user (client) systems 512 to support the access by user systems 512 as tenants of system 516. As such, system 516 provides security mechanisms to keep each tenant's data separate unless the data is shared. If more than one MTS is used, they may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B).
As used herein, each MTS could include one or more logically and/or physically connected servers distributed locally or across one or more geographic locations. Additionally, the term “server” is meant to include a computer system, including processing hardware and process space(s), and an associated storage system and database application (e.g., OODBMS or RDBMS) as is well known in the art. It should also be understood that “server system” and “server” are often used interchangeably herein. Similarly, the database object described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.
In
User system 512, network 514, system 516, tenant data storage 522, and system data storage 524 were discussed above in
As shown by
Within each tenant storage area 612, user storage 614 and application metadata 616 might be similarly allocated for each user. For example, a copy of a user's most recently used (MRU) items might be stored to user storage 614. Similarly, a copy of MRU items for an entire organization that is a tenant might be stored to tenant storage area 612. A UI 630 provides a user interface and an API 632 provides an application programmer interface to system 516 resident processes to users and/or developers at user systems 512. The tenant data and the system data may be stored in various databases, such as one or more Oracle™ databases.
Application platform 518 includes an application setup mechanism 638 that supports application developers' creation and management of applications, which may be saved as metadata into tenant data storage 522 by save routines 636 for execution by subscribers as one or more tenant process spaces 604 managed by tenant management process 610, for example. Invocations to such applications may be coded using PL/SOQL 534 that provides a programming language style interface extension to API 632. A detailed description of some PL/SOQL language embodiments is discussed in commonly owned co-pending U.S. Provisional Patent Application 60/828,192 entitled, PROGRAMMING LANGUAGE METHOD AND SYSTEM FOR EXTENDING APIS TO EXECUTE IN CONJUNCTION WITH DATABASE APIS, by Craig Weissman, filed Oct. 4, 2006, which is incorporated in its entirety herein for all purposes. Invocations to applications may be detected by one or more system processes, which manages retrieving application metadata 616 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.
Each application server 600 may be communicably coupled to database systems, e.g., having access to system data 525 and tenant data 523, via a different network connection. For example, one application server 6001 might be coupled via the network 514 (e.g., the Internet), another application server 600N−1 might be coupled via a direct network link, and another application server 600N might be coupled by yet a different network connection. Transfer Control Protocol and Internet Protocol (TCP/IP) are typical protocols for communicating between application servers 600 and the database system. However, other transport protocols may be used to optimize the system depending on the network interconnect used.
In certain embodiments, each application server 600 is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there may no server affinity for a user and/or organization to a specific application server 600. In one embodiment, therefore, an interface system implementing a load balancing function (e.g., an F5 Big-IP load balancer) is communicably coupled between the application servers 600 and the user systems 512 to distribute requests to the application servers 600.
In one embodiment, the load balancer uses a least connections algorithm to route user requests to the application servers 600. Other examples of load balancing algorithms, such as round robin and observed response time, also can be used. For example, in certain embodiments, three consecutive requests from the same user could hit three different application servers 600, and three requests from different users could hit the same application server 600. In this manner, system 516 is multi-tenant, wherein system 516 handles storage of, and access to, different objects, data and applications across disparate users and organizations.
As an example of storage, one tenant might be a company that employs a sales force where each salesperson uses system 516 to manage their sales process. Thus, a user might maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (e.g., in tenant data storage 522). In an example of a MTS arrangement, since all of the data and the applications to access, view, modify, report, transmit, calculate, etc., can be maintained and accessed by a user system having nothing more than network access, the user can manage his or her sales efforts and cycles from any of many different user systems. For example, if a salesperson is visiting a customer and the customer has Internet access in their lobby, the salesperson can obtain critical updates as to that customer while waiting for the customer to arrive in the lobby.
While each user's data might be separate from other users' data regardless of the employers of each user, some data might be organization-wide data shared or accessible by a plurality of users or all of the users for a given organization that is a tenant. Thus, there might be some data structures managed by system 516 that are allocated at the tenant level while other data structures might be managed at the user level. Because an MTS might support multiple tenants including possible competitors, the MTS should have security protocols that keep data, applications, and application use separate. Also, because many tenants may opt for access to an MTS rather than maintain their own system, redundancy, up-time, and backup are additional functions that may be implemented in the MTS. In addition to user-specific data and tenant specific data, system 516 might also maintain system level data usable by multiple tenants or other data. Such system level data might include industry reports, news, postings, and the like that are sharable among tenants.
In certain embodiments, user systems 512 (which may be client systems) communicate with application servers 600 to request and update system-level and tenant-level data from system 516 that may require sending one or more queries to tenant data storage 522 and/or system data storage 524. System 516 (e.g., an application server 600 in system 516) automatically generates one or more SQL statements (e.g., one or more SQL queries) that are designed to access the desired information. System data storage 524 may generate query plans to access the requested data from the database.
Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data fitted into predefined categories. A “table” is one representation of a data object, and may be used herein to simplify the conceptual description of objects and custom objects according to the present invention. It should be understood that “table” and “object” may be used interchangeably herein. Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema.
Each row or record of a table contains an instance of data for each category defined by the fields. For example, a CRM database may include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc. Another table might describe a purchase order, including fields for information such as customer, product, sale price, date, etc. In some multi-tenant database systems, standard entity tables might be provided for use by all tenants. For CRM database applications, such standard entities might include tables for Account, Contact, Lead, and Opportunity data, each containing pre-defined fields. It should be understood that the word “entity” may also be used interchangeably herein with “object” and “table”.
In some multi-tenant database systems, tenants may be allowed to create and store custom objects, or they may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields. U.S. patent application Ser. No. 10/817,161, filed Apr. 2, 2004, entitled “Custom Entities and Fields in a Multi-Tenant Database System”, and which is hereby incorporated herein by reference, teaches systems and methods for creating custom objects as well as customizing standard objects in a multi-tenant database system. In certain embodiments, for example, all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. It is transparent to customers that their multiple “tables” are in fact stored in one large table or that their data may be stored in the same table as the data of other customers.
Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.
While the invention has been described in terms of several embodiments, those skilled in the art will recognize that the invention is not limited to the embodiments described, but can be practiced with modification and alteration within the spirit and scope of the appended claims. The description is thus to be regarded as illustrative instead of limiting.
This application claims the benefit of U.S. Provisional Patent Application 61/349,135, entitled Methods and Systems for Generating a Dynamic Workflow In a Multi-Tenant Database Environment, by Steve Wood, et al., filed May 27, 2010, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5577188 | Zhu | Nov 1996 | A |
5608872 | Schwartz et al. | Mar 1997 | A |
5649104 | Carleton et al. | Jul 1997 | A |
5715450 | Ambrose et al. | Feb 1998 | A |
5761419 | Schwartz et al. | Jun 1998 | A |
5819038 | Carleton et al. | Oct 1998 | A |
5821937 | Tonelli et al. | Oct 1998 | A |
5831610 | Tonelli et al. | Nov 1998 | A |
5873096 | Lim et al. | Feb 1999 | A |
5918159 | Fomukong et al. | Jun 1999 | A |
5963953 | Cram et al. | Oct 1999 | A |
6092083 | Brodersen et al. | Jul 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6178425 | Brodersen et al. | Jan 2001 | B1 |
6189011 | Lim et al. | Feb 2001 | B1 |
6216135 | Brodersen et al. | Apr 2001 | B1 |
6233617 | Rothwein et al. | May 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6324568 | Diec | Nov 2001 | B1 |
6324693 | Brodersen et al. | Nov 2001 | B1 |
6336137 | Lee et al. | Jan 2002 | B1 |
D454139 | Feldcamp | Mar 2002 | S |
6367077 | Brodersen et al. | Apr 2002 | B1 |
6393605 | Loomans | May 2002 | B1 |
6405220 | Brodersen et al. | Jun 2002 | B1 |
6434550 | Warner et al. | Aug 2002 | B1 |
6446089 | Brodersen et al. | Sep 2002 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6542887 | Abbott | Apr 2003 | B1 |
6549908 | Loomans | Apr 2003 | B1 |
6553563 | Ambrose et al. | Apr 2003 | B2 |
6560461 | Fomukong et al. | May 2003 | B1 |
6574635 | Stauber et al. | Jun 2003 | B2 |
6577726 | Huang et al. | Jun 2003 | B1 |
6601087 | Zhu et al. | Jul 2003 | B1 |
6604117 | Lim et al. | Aug 2003 | B2 |
6604128 | Diec | Aug 2003 | B2 |
6609150 | Lee et al. | Aug 2003 | B2 |
6621834 | Scherpbier et al. | Sep 2003 | B1 |
6633892 | Chan et al. | Oct 2003 | B1 |
6654032 | Zhu et al. | Nov 2003 | B1 |
6665648 | Brodersen et al. | Dec 2003 | B2 |
6665655 | Warner et al. | Dec 2003 | B1 |
6684438 | Brodersen et al. | Feb 2004 | B2 |
6711565 | Subramaniam et al. | Mar 2004 | B1 |
6724399 | Katchour et al. | Apr 2004 | B1 |
6728702 | Subramaniam et al. | Apr 2004 | B1 |
6728960 | Loomans | Apr 2004 | B1 |
6732095 | Warshavsky et al. | May 2004 | B1 |
6732100 | Brodersen et al. | May 2004 | B1 |
6732111 | Brodersen et al. | May 2004 | B2 |
6754681 | Brodersen et al. | Jun 2004 | B2 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6763501 | Zhu et al. | Jul 2004 | B1 |
6768904 | Kim | Jul 2004 | B2 |
6782383 | Subramaniam et al. | Aug 2004 | B2 |
6804330 | Jones et al. | Oct 2004 | B1 |
6826565 | Ritchie et al. | Nov 2004 | B2 |
6826582 | Chatterjee et al. | Nov 2004 | B1 |
6826745 | Coker et al. | Nov 2004 | B2 |
6829655 | Huang et al. | Dec 2004 | B1 |
6842748 | Warner et al. | Jan 2005 | B1 |
6850895 | Brodersen et al. | Feb 2005 | B2 |
6850949 | Warner et al. | Feb 2005 | B2 |
7340411 | Cook | Mar 2008 | B2 |
7620655 | Larsson et al. | Nov 2009 | B2 |
8352941 | Protopopov et al. | Jan 2013 | B1 |
8479005 | Kojima et al. | Jul 2013 | B2 |
20010044791 | Richter et al. | Nov 2001 | A1 |
20020022986 | Coker et al. | Feb 2002 | A1 |
20020029161 | Brodersen et al. | Mar 2002 | A1 |
20020029376 | Ambrose et al. | Mar 2002 | A1 |
20020035577 | Brodersen et al. | Mar 2002 | A1 |
20020042264 | Kim | Apr 2002 | A1 |
20020042843 | Diec | Apr 2002 | A1 |
20020072951 | Lee et al. | Jun 2002 | A1 |
20020082892 | Raffel et al. | Jun 2002 | A1 |
20020129352 | Brodersen et al. | Sep 2002 | A1 |
20020140731 | Subramaniam et al. | Oct 2002 | A1 |
20020143997 | Huang et al. | Oct 2002 | A1 |
20020152102 | Brodersen et al. | Oct 2002 | A1 |
20020161734 | Stauber et al. | Oct 2002 | A1 |
20020162090 | Parnell et al. | Oct 2002 | A1 |
20020165742 | Robins | Nov 2002 | A1 |
20030004971 | Gong et al. | Jan 2003 | A1 |
20030018705 | Chen et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030066031 | Laane | Apr 2003 | A1 |
20030066032 | Ramachandran et al. | Apr 2003 | A1 |
20030069936 | Warner et al. | Apr 2003 | A1 |
20030070000 | Coker et al. | Apr 2003 | A1 |
20030070004 | Mukundan et al. | Apr 2003 | A1 |
20030070005 | Mukundan et al. | Apr 2003 | A1 |
20030074418 | Coker | Apr 2003 | A1 |
20030088545 | Subramaniam et al. | May 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030151633 | George et al. | Aug 2003 | A1 |
20030159136 | Huang et al. | Aug 2003 | A1 |
20030177480 | Arkwright et al. | Sep 2003 | A1 |
20030187921 | Diec | Oct 2003 | A1 |
20030189600 | Gune et al. | Oct 2003 | A1 |
20030191743 | Brodersen et al. | Oct 2003 | A1 |
20030204427 | Gune et al. | Oct 2003 | A1 |
20030206192 | Chen et al. | Nov 2003 | A1 |
20030225730 | Warner et al. | Dec 2003 | A1 |
20040001092 | Rothwein et al. | Jan 2004 | A1 |
20040010489 | Rio | Jan 2004 | A1 |
20040015935 | Sokolov et al. | Jan 2004 | A1 |
20040015981 | Coker et al. | Jan 2004 | A1 |
20040027388 | Berg et al. | Feb 2004 | A1 |
20040128001 | Levin et al. | Jul 2004 | A1 |
20040186860 | Lee et al. | Sep 2004 | A1 |
20040193510 | Catahan, Jr. et al. | Sep 2004 | A1 |
20040199489 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199536 | Barnes Leon et al. | Oct 2004 | A1 |
20040199543 | Braud et al. | Oct 2004 | A1 |
20040249854 | Barnes-Leon et al. | Dec 2004 | A1 |
20040260534 | Pak et al. | Dec 2004 | A1 |
20040260659 | Chan et al. | Dec 2004 | A1 |
20040268299 | Lei et al. | Dec 2004 | A1 |
20050050555 | Exley et al. | Mar 2005 | A1 |
20050091098 | Brodersen et al. | Apr 2005 | A1 |
20050278278 | Petev et al. | Dec 2005 | A1 |
20070169069 | Burka et al. | Jul 2007 | A1 |
20090204963 | Swart et al. | Aug 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20110296413 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
61349135 | May 2010 | US |