A turntable is a circular rotating platform of a record player. Turntables can be used in a skillful manner by DJs to mix and scratch records. Many professional CD players now have been provided with the same capability. Such devices can be velocity and directionally sensitive in that they produce sounds that are based on the direction and the velocity of turntable movement.
One shortcoming of conventional turntables and other sound producing systems is that they are packaged in conventional modules and can occupy significant space. Accordingly, the use of these devices outside of their traditional workspaces is not feasible. This represents a significant shortcoming as musicians and other users of these instruments are precluded from using them in non-traditional venues where such use might be advantageous.
Some software based systems such as garage band TM allow the actuation of certain sounds via a computer system. These systems provide a computer generated graphical interface that can be employed to control the generation of sounds. These operations can be controlled by conventional point and click technologies. However, the control offered by such conventional software based systems provide a very limited range of sound actuation control options in the face of the rapidly changing needs of consumers.
A system that enables the control of a velocity and directionally sensitive sound generating application using non-traditional media (e.g., paper) and mechanisms would be advantageous. Embodiments of the present invention provide such a system, as well as methods and applications that can be implemented using such a system.
In one embodiment, a system for graphical control of a velocity and directionally sensitive sound generation application is disclosed that enables the control of an optical pen based velocity and directionally sensitive sound generation application from graphical elements that are placed on (drawn, printed etc.) an encoded surface. In one embodiment, the graphical elements depict a turntable. In other embodiments, the graphical elements can depict other velocity sensitive and directionally sensitive sound generating instruments (violin, cello, trombone etc.). An optical pen user can use the optical pen to traverse one or more graphical elements that are a part of the graphically depicted device or instrument on the encoded surface that corresponds to particular sounds. For example, a user can generate a scratch sound by drawing across the turntable. Moreover, the pitch, volume, and other characteristics of the scratch sound produced by the pen device can be generated, for example, in accordance with the direction of the drawing.
In one embodiment, methods and systems for graphical actuation of a velocity and directionally sensitive sound generation application are disclosed. An identifier of a graphical element or elements that are traversed is received wherein the graphical element or elements are located on a coded surface. In one embodiment, the traversal has a velocity and a direction. Moreover, the traversal can be performed with an optical pen on a graphical representation of a sound generation system. The velocity and the direction of the traversal are determined and used to actuate a sound generation application.
In one embodiment, using the optical pen, a region is defined on an item of encoded media (e.g., on a piece of encoded paper). A velocity sensitive and directionally sensitive sound is then associated with that region. When the region is subsequently scanned, the velocity sensitive and directionally sensitive sound is produced.
The content of a region may be handwritten by a user, or it may be preprinted. Although the velocity sensitive and directionally sensitive sound associated with a region may be selected to evoke the content of the region, the sound can be independent of the region's content (other than the encoded pattern of markings within the region). Thus, the content of a region can be changed without changing the sound associated with the region, or the sound can be changed without changing the content.
As mentioned above, once a sound is associated with a region, that sound can be generated or played back when the region is subsequently scanned by the device.
In summary, according to embodiments of the present invention, a user can interact with a device (e.g., an optical pen) and an input media (e.g., encoded paper) to graphically control the actuation of velocity sensitive and directionally sensitive sounds. These and other objects and advantages of the present invention will be recognized by one skilled in the art after having read the following detailed description, which are illustrated in the various drawing figures.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention:
In the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be recognized by one skilled in the art that the present invention may be practiced without these specific details or with equivalents thereof. In other instances, well-known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present invention.
Some portions of the detailed descriptions, which follow, are presented in terms of procedures, steps, logic blocks, processing, and other symbolic representations of operations on data bits that can be performed on computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. A procedure, computer executed step, logic block, process, etc., is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present invention, discussions utilizing terms such as “sensing” or “scanning” or “storing” or “defining” or “associating” or “receiving” or “selecting” or “generating” or “creating” or “decoding” or “invoking” or “accessing” or “retrieving” or “identifying” or “prompting” or the like, refer to the actions and processes of a computer system (e.g., flowchart 600 of
Exemplary Computer System Environment of System for Graphical Actuation of a Velocity and Directionally Sensitive Application According to Embodiments
Devices such as optical readers or optical pens emit light that can be reflected off of a surface for receipt by a detector or imager. As the device is moved relative to the surface, successive images can be rapidly captured. By analyzing the images, the movement of the optical device relative to the surface can be tracked.
According to embodiments of the present invention, device 100 can be used with a sheet of “digital paper” on which a pattern of markings—specifically, very small dots—are printed. Digital paper may also be referred to herein as encoded media or encoded paper. In one embodiment, the dots can be printed on paper in a proprietary pattern with a nominal spacing of about 0.3 millimeters (0.01 inches). In one such embodiment, the pattern consists of 669,845,157,115,773,458,169 dots, and can encompass an area exceeding 4.6 million square kilometers, corresponding to about 73 trillion letter-size pages. This “pattern space” is subdivided into regions that are licensed to vendors (service providers)—where each region is unique from other regions. In this manner, service providers are licensed pages of the pattern that are exclusively for their use. Different parts of the pattern can be assigned different functions.
In one embodiment, in operation, an optical pen such as device 100 can take snapshots of the surface of the aforementioned digital paper. By interpreting the positions of the dots captured in each snapshot, device 100 can precisely determine its position on a page of the digital paper in two dimensions. That is, device 100 can determine an x-coordinate and a y-coordinate position of the device relative to the page (based on a Cartesian coordinate system). The pattern of dots allows the dynamic position information coming from the optical sensor/detector in device 100 to be translated into signals that are indexed to instructions or commands that can be executed by a processor in the device.
In the
Memory 105 can include one or more types of computer-readable media, such as static or dynamic read only memory (ROM), random access memory (RAM), flash memory, magnetic disk, optical disk and/or the like. Memory 105 can be used to store one or more sets of instructions and data that, when executed by the processor 110, cause the device 100 to perform the functions described herein. In one embodiment, one such set of instructions can include a system for associating a region on a surface with a sound 105A. In the
Device 100 can further include an external memory controller 135 for removably coupling an external memory 140 to the one or more buses 125. Device 100 can also include one or more communication ports 145 communicatively coupled to the one or more buses 125. The one or more communication ports can be used to communicatively couple device 100 to one or more other devices 150. Device 110 may be communicatively coupled to other devices 150 by either wired and/or a wireless communication link 155. Furthermore, the communication link may be a point-to-point connection and/or a network connection.
Input/output interface 115 can include one or more electro-mechanical switches operable to receive commands and/or data from a user. Input/output interface 115 can also include one or more audio devices, such as a speaker, a microphone, and/or one or more audio jacks for removably coupling an earphone, headphone, external speaker and/or external microphone. The audio device is operable to output audio content and information and/or receiving audio content, information and/or instructions from a user. Input/output interface 115 can include video devices, such as a liquid crystal display (LCD) for displaying alphanumeric and/or graphical information and/or a touch screen display for displaying and/or receiving alphanumeric and/or graphical information.
Optical tracking interface 120 includes a light source or optical emitter and a light sensor or optical detector. The optical emitter can be a light emitting diode (LED) and the optical detector can be a charge coupled device (CCD) or complementary metal-oxide semiconductor (CMOS) imager array, for example. The optical emitter is used to illuminate a surface of a media or a portion thereof, and light reflected from the surface is received at the optical detector.
The surface of the media can contain a pattern detectable by the optical tracking interface 120. Referring now to
Media 210 can be smaller or larger than a conventional (e.g., 8.5×11-inch) page of paper. In general, media 210 can be any type of surface upon which markings (e.g., letters, numbers, symbols, etc.) can be printed or otherwise deposited, or media 210 can be a type of surface wherein a characteristic of the surface changes in response to action on the surface by device 100.
In one embodiment, the media 210 is provided with a coding pattern in the form of optically readable position code that consists of a pattern of dots. As the writing instrument 130 and the optical tracking interface 120 move together relative to the surface, successive images are captured. The optical tracking interface 120 (specifically, the optical detector) can take snapshots of the surface at a rate of 100 times or more per second. By analyzing the images, position on the surface and movement relative to the surface of the media can be tracked.
In one embodiment, the optical detector fits the dots to a reference system in the form of a raster with raster lines 230 and 240 that intersect at raster points 250. Each of the dots 220 is associated with a raster point. For example, the dot 220 is associated with raster point 250. For the dots in an image, the displacement of a dot 220 from the raster point 250 associated with the dot 220 is determined. Using these displacements, the pattern in the image is compared to patterns in the reference system. Each pattern in the reference system is associated with a particular location on the surface. Thus, by matching the pattern in the image with a pattern in the reference system, the position of the device 100 (
With reference to
In addition, different parts of the pattern of markings can be assigned different functions, and software programs and applications may assign functionality to the various patterns of dots within a respective region. Furthermore, by placing the optical detector in a particular position on the surface and performing some type of actuating event, a specific instruction, command, data or the like associated with the position can be entered and/or executed. For example, the writing instrument 130 can be mechanically coupled to an electromechanical switch of the input/output interface 115. Therefore, in one embodiment, for example, double-tapping substantially the same position can cause a command assigned to the particular position to be executed.
The writing instrument 130 of
A user, in one embodiment, can use writing instrument 130 to create a character, for example, an “M” at a given position on the encoded media. In this embodiment, the user may or may not create the character in response to a prompt from computing device 100. In one embodiment, when the user creates the character, device 100 records the pattern of dots that are uniquely present at the position where the character is created. Moreover, computing device 100 associates the pattern of dots with the character just captured. When computing device 100 is subsequently positioned over the “M,” the computing device 100 recognizes the particular pattern of dots associated therewith and recognizes the position as being associated with “M.” Accordingly, computing device 100 actually recognizes the presence of the character using the pattern of markings at the position where the character is located, rather than by recognizing the character itself.
In another embodiment, strokes can instead be interpreted by device 100 using optical character recognition (OCR) techniques that recognize handwritten characters. In one such embodiment, computing device 100 analyzes the pattern of dots that are uniquely present at the position where the character is created (e.g., stroke data). That is, as each portion (stroke) of the character “M” is made, the pattern of dots traversed by the writing instrument 130 of device 100 are recorded and stored as stroke data. Using a character recognition application, the stroke data captured by analyzing the pattern of dots can be read and translated by device 100 into the character “M.” This capability can be useful for applications such as, but not limited to, text-to-speech and phoneme-to-speech synthesis.
In another embodiment, a character is associated with a particular command. For example, a user can write a character composed of a circled “M” that identifies a particular command, and can invoke that command repeatedly by simply positioning the optical detector over the written character. In other words, the user does not have to write the character for a command each time the command is to be invoked; instead, the user can write the character for a command one time and invoke the command repeatedly using the same written character.
In another embodiment, the encoded paper can be preprinted with one or more graphics at various locations in the pattern of dots. For example, the graphic can be a preprinted graphical representation of a button. The graphics lies over a pattern of dots that is unique to the position of the graphic. By placing the optical detector over the graphic, the pattern of dots underlying the graphics are read (e.g., scanned) and interpreted, and a command, instruction, function or the like associated with that pattern of dots is implemented by device 100. Furthermore, some sort of actuating movement may be performed using the device 100 in order to indicate that the user intends to invoke the command, instruction, function or the like associated with the graphic.
In yet another embodiment, a user can identify information by placing the optical detector of the device 100 over two or more locations. For example, the user can place the optical detector over a first location and then over a second location to specify a bounded region (e.g., a box having corners corresponding to the first and second locations). In this example, the first and second locations identify the information lying within the bounded region. In another example, the user may draw a box or other shape around the desired region to identify the information. The content within the region can be present before the region is selected, or the content can be added after the bounded region is specified.
Additional information is provided by the following patents and patent applications, herein incorporated by reference in their entirety for all purposes: U.S. Pat. No. 6,502,756; U.S. patent application Ser. No. 10/179,966 filed on Jun. 26, 2002; WO 01/95559; WO 01/71473; WO 01/75723; WO 01/26032; WO 01/75780; WO 01/01670; WO 01/75773; WO 01/71475; WO 01/73983; and WO 01/16691. See also Patent Application No. 60/456,053 filed on Mar. 18, 2003, and patent application Ser. No. 10/803,803 filed on Mar. 17, 2004, both of which are incorporated by reference in their entirety for all purposes.
Referring to
By placing the optical detector of device 100 (
In one embodiment, there can be multiple levels of functions, etc., associated with a single graphic element such as element 310. For example, element 310 can be associated with a list of functions, etc.—each time device 100 scans (e.g., taps) element 310, the name of a function, command, etc., in the list is presented to the user. In one embodiment, the names in the list can be vocalized or otherwise made audible to the user. To select a particular function, etc., from the list, an actuating movement of device 100 can be made. In one embodiment, the actuating movement includes tracing, tapping, or otherwise sensing the checkmark 315 in proximity to element 310.
In the
A region 350 can be defined on the surface of media 300 by using device 100 to draw the boundaries of the region. Alternatively, a rectilinear region 350 can be defined by touching device 100 to the points 330 and 332 (in which case, lines delineating the region 350 are not visible to the user).
In the example of
Importantly, the content of region 350 can be created either before or after region 350 is defined. That is, for example, a user can first write the word “Mars” on the surface of media 300 (using either device 100 of
Although content can be added, using either device 100 or another writing utensil, adding content using device 100 permits additional functionality. In one embodiment, as discussed above, stroke data can be captured by device 100 as the content is added. Device 100 can analyze the stroke data to in essence read the added content. Then, using text-to-speech synthesis (TTS) or phoneme-to-speech synthesis (PTS), the content can be subsequently verbalized.
For example, the word “Mars” can be written in region 350 using device 100. As the word is written, the stroke data is captured and analyzed, allowing device 100 to recognize the word as “Mars.”
In one embodiment, stored on device 100 is a library of words along with associated vocalizations of those words. If the word “Mars” is in the library, device 100 can associate the stored vocalization of “Mars” with region 350 using TTS. If the word “Mars” is not in the library, device 100 can produce a vocal rendition of the word using PTS and associate the rendition with region 350. In either case, device 100 can then render (make audible) the word “Mars” when any portion of region 350 is subsequently sensed by device 100.
Referring to
In the
In one embodiment, optical pen 403 can include an optical tracking interface (e.g., 120 in
Graphical elements 407a and 407b, and regions within these elements, correspond to particular locations on encoded media 409 that can be correlated to the aforementioned velocity and directionally sensitive sound generation application sounds. The encoded media can be read, such as through use of an optical pen 403, to cause the graphical actuation of the correlated velocity and directionally sensitive sounds.
Optical pen 403 facilitates the actuation of sounds of an associated velocity and directionally sensitive sound generation application (e.g., 105B in
SGVD 105N accesses identifiers of regions of a graphical element or elements, that are a part of the graphically depicted velocity and directionally sensitive sound generation device (e.g., turntable), that are traversed by optical pen 403. Moreover, SGVD 105N provides access to determinations of the velocity and direction of this traversal of graphical elements.
In one embodiment, SGVD 105N can implement an algorithm for graphical actuation of a velocity and directionally sensitive sound generation application. In one embodiment, SGVD 105N can be implemented in either hardware or software, or in a combination of both.
Referring to
At B, based upon the traversal of graphical elements made at A by a user, a user traversal of a graphical element or elements is identified by SGVD 105N
At C, identifiers of the traversed graphical element or elements are provided to the velocity and directionally sensitive sound generation application.
At D, an audio signal is produced by the directionally sensitive sound generation application.
At E, an audio output device receives the audio signal generated by the velocity and directionally sensitive sound generation application.
At F, a velocity and directionally sensitive sound is produced.
To summarize, at least one embodiment is directed to a velocity and directionally sensitive sound generation system. One embodiment is directed to the interaction processes facilitated by optical pen 403 in the actuation of a velocity and directionally sensitive sound generation application. The turntable can be pre-printed or user drawn. The sound generation application receives input from the user by sensing the direction and velocity of an actuation of the application via the graphical depiction of the turntable. For example, the user can generate a scratch sound by drawing across the turntable. Moreover, the pitch, volume, and other characteristics of the scratch sound produced by the pen device can be generated in accordance with, for example, the direction of the drawing (e.g., along the perimeter, across the width of the diameter, in a forward direction, in a backward direction, etc.). In other embodiments, other velocity and directionally sensitive instruments can be implemented (e.g., violin, cello, trombone, etc.).
It should be appreciated that aforementioned components of SGVD 105N can be implemented in hardware or software or in a combination of both. In one embodiment, components and operations of SGVD 105N can be encompassed by components and operations of one or more computer programs. In another embodiment, components and operations of SGVD 105N can be separate from the aforementioned one or more computer programs but can operate cooperatively with components and operations thereof.
Referring to
In one embodiment, actuation identifier 501 can identify an actuation such as a drawing with an optical pen across a graphical depiction of a turntable (e.g., a drawing along a perimeter, a drawing across the width of the diameter, a drawing in a forward direction, a drawing in a backward direction).
Velocity and direction determiner 503 determines the velocity and the direction of a graphical actuation. In one embodiment, the determination is based upon the movement, by a user, of an optical pen relative to surface based graphics (e.g., turntable, violin, trombone etc.). In one embodiment, the velocity and direction of the actuation can be determined based on the rate at which encoded regions of graphical elements are traversed and which encoded regions of graphical elements are traversed. In one embodiment, this information can be provided as input to a lookup table and/or an algorithm created to correlate movements of an optical pen relative to a surface with corresponding sounds.
Access provider 505 provides access to an identifier of a velocity and a direction of an actuation made by a user. In one embodiment, this information can be provided to a velocity and directionally sensitive sound generation application. In one embodiment, the velocity and directionally sensitive sound generation application can include the aforementioned lookup table and/or algorithm that determine corresponding sounds. In one embodiment, the sound (e.g., a scratching sound with pitch determined by direction and velocity of actuation) can be output by an output component of the optical pen.
Referring to
In one embodiment, actuation identifier 501 can identify an actuation such as a drawing with an optical pen across a graphical depiction of a turntable (e.g., a drawing along a perimeter, a drawing across the width of the diameter, a drawing in a forward direction, a drawing in a backward direction).
At step 603, the velocity and direction of a graphical actuation is determined. In one embodiment, a velocity and direction determiner (e.g., 503 in
At step 605, access is provided to an identifier of a velocity and a direction of an actuation. In one embodiment, an access provider (e.g., 505 in
In accordance with exemplary embodiments thereof, methods and systems for graphical actuation of a velocity and directionally sensitive sound generation application are disclosed. An identifier of a graphical element or elements that is traversed is received wherein the graphical element or elements are located on a coded surface. In one embodiment, the traversal has a velocity and a direction. Moreover, the traversal can be performed with an optical pen on a graphical representation of a sound generation system. The velocity and the direction of the traversal are determined and access is provided to an identifier of the velocity and the direction of the traversal for actuation of the velocity and directionally sensitive sound generation system.
Embodiments of the present invention are thus described. While the present invention has been described in particular embodiments, it should be appreciated that the present invention should not be construed as limited by such embodiments, but rather construed according to the claims listed below.
Number | Name | Date | Kind |
---|---|---|---|
4731859 | Holter et al. | Mar 1988 | A |
6555737 | Miyaki et al. | Apr 2003 | B2 |
6832724 | Yavid et al. | Dec 2004 | B2 |
20020125324 | Yavid et al. | Sep 2002 | A1 |
20070163427 | Rigopulos et al. | Jul 2007 | A1 |
20070180978 | Ozaki et al. | Aug 2007 | A1 |
20080062122 | Rosenberg et al. | Mar 2008 | A1 |
20080113797 | Egozy | May 2008 | A1 |
Number | Date | Country |
---|---|---|
59049669 | Jan 1999 | JP |
61169972 | Jan 1999 | JP |