The present invention relates to various material handling and/or delivery systems and related components, including material handling and/or delivery systems for performing surgical procedures through a natural orifice or a single incision. Certain embodiments include various material handling and/or systems for performing surgical procedures in the peritoneal cavity of a patient.
Endoscopic medical procedures have been in use for nearly a century, and are used for a number of procedures such as foreign object removal, ultrasonic imaging, injection therapy, and perhaps most recently for surgical procedures. Endoluminal endoscopic surgery traditionally uses flexible instruments introduced through canals (working channels) in an endoscope to perform a number of procedures, mainly in the peritoneal cavity.
Natural orifice translumenal endoscopic surgery (NOTES) is a surgical procedure done endoscopically through an incision in tissue (e.g., stomach, colon, vagina, or bladder) accessible via a natural orifice (e.g., mouth, anus, urethra, or vagina) and can be done without external incisions, reducing the risk of infection and speeding recovery. The natural orifice access point, while having many patient benefits, presents challenges for introducing instrumentation through a restrictive lumen size, and when using multiple tools, as typical in many laparoscopic procedures for example, tool triangulation can be difficult.
An alternative to traditional endoscope based techniques is using in vivo robots via a natural orifice approach. These in vivo robots can be fully introduced into the peritoneal cavity. Once inserted, these robots have much more freedom and flexibility, as space constraints and tool triangulation issues are greatly reduced in the insufflated abdominal cavity.
Fully inserting in vivo robots into the body introduces a limitation as they are physically isolated from the medical professionals performing the procedure. Without external incisions, there is also a need for additional functional features, such as workspace lighting, a method of irrigating and evacuating fluids produced during procedures, and any other functionalities commonly associated with traditional endoscopic procedures.
There is a need for an improved material handling system for use with surgical procedures.
One embodiment disclosed herein relates to a system for handling and/or delivering materials during endoscopic surgery, the system including a compliant overtube, a material capture device, and a drive member.
In one embodiment, a system provided herein is configured to transport a material between the outside of an endoscopic surgery patient and the inside of the endoscopic surgery patient, the system comprising a compliant overtube having a primary lumen and a proximal end and a distal end; a material capture device including a retaining mechanism disposed within the primary lumen; and a drive member configured to shuttle the material capture device between the proximal end and the distal end. The drive member can be a helical drive member disposed within the primary lumen. The capture device can further include a tab that can be disposed between adjoining coils of the helical drive member and the slot further can be disposed into a slot defined in the wall of the primary lumen. The slot can constrain the orientation of the material capture device within the primary lumen.
In another embodiment, the system can have a drive member that is a hydraulic or pneumatic system.
In some embodiments, the retaining mechanism comprises a passive spring-type grasper, which, in some embodiments, can comprise a shape memory alloy. A passive spring-type grasper retaining mechanism can be shaped into a plateau-like profile.
In some embodiments, the system can include a motor that drives the drive member housed within an electronic housing. Motor controls can be disposed on or within the electronic housing, or the motor can be controlled using components remote from the electronic housing.
In some embodiments, the system is configured for use in transgastric endoscopic surgery.
In some embodiments, the system includes a compliant overtube comprising silicone.
In one embodiment, a method for transporting a material between the outside of an endoscopic surgery patient and the inside of the endoscopic surgery patient is provided. The method comprises inserting through an incision in the endoscopic surgery patient a distal end of a compliant overtube having: a primary lumen; a material capture device comprising a retaining mechanism disposed within the primary lumen; and a drive member configured to shuttle the material capture device between the proximal end and the distal end. The method further comprises retaining the material in the retaining mechanism of the material capture device and actuating the drive member to advance the material capture device and the retained material from the inside of the patient to the outside of the patient or from the outside of the patient to the inside of the patient. The drive member can be a helical drive member disposed within the primary lumen, or the drive member can be a hydraulic or pneumatic system.
In some embodiments, the distal end of the compliant overtube is inserted through an incision that is in a tissue that is accessible through a natural orifice.
In some embodiments, the retaining mechanism comprises a passive spring-type grasper, which, in some embodiments, can comprise a shape memory alloy.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention.
Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
It is to be understood that the figures are illustrated for simplicity and clarity and are not necessarily drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated, relative to other elements, to improve the understanding of aspects and sample embodiments of the invention.
The various systems and devices disclosed herein relate to devices for use in medical procedures and systems. More specifically, the various embodiments relate to systems that can be used to handle and/or deliver materials in endoscopic surgery, such as natural orifice translumenal endoscopic surgery (NOTES). Various embodiments of the disclosed systems and devices can be used to handle and/or deliver or transport one or more materials between the outside of an endoscopic surgery patient and the inside of the endoscopic surgery patient. In some embodiments, the provided systems improve the ability of a medical professional to perform surgical procedures in the peritoneal cavity of a patient, executed through a natural orifice or other access point in conjunction with other surgical equipment.
Certain embodiments disclosed herein relate to devices for use in endoscopic surgery, including certain embodiments for use in natural orifice translumenal endoscopic surgery (NOTES).
As best shown in
Materials suitable for use in the overtube 200 include, for example, silicone, PTFE, or vinyl. The type of material selected for use in the overtube 200 may depend on the specific use. For example, silicone may be used in an overtube 200 for use in transgastric NOTES in order to provide sufficient flexibility along the length of the esophagus. In addition, in some embodiments, the properties of the material used for the overtube 200 may be modified using known techniques to provide the desired flexibility, frictional properties, and/or abrasion resistance. For example, the coefficient of friction of materials (e.g., silicone and other rubbery materials) can be decreased by the addition of wet and/or dry lubricants, or permanently bonded coatings.
Overtube 200 is shaped and dimensioned as appropriate for the desired use. For example, an overtube 200 for use in transgastric NOTES can have an outer surface of any shape to accommodate the primary lumen 210 and any other lumens, so long as the overall diameter allows the overtube 200 to traverse an esophagus having an average bend radius of about 7.5 cm.
As best shown in
Material capture device 220 and retaining mechanism 208 are configured such that, as the material capture device 220 slides between the proximal and distal ends 60, 70 of the compliant overtube 200, the one or more materials are transported between the proximal and distal ends 60, 70 of compliant overtube 200. The material capture device 220 is dimensioned and shaped as appropriate to accommodate a desired retaining mechanism 208 and to allow access to the retaining mechanism 208 at both the proximal 60 and distal 70 ends of the compliant overtube. In the embodiment shown in
As best shown in
Alternatively, as best shown in
In a further alternative, the material capture device 220 can have any known structure for allowing the device 220 to be urged along the length of the overtube 200.
As best shown in
As best shown in
In another embodiment (not shown), the drive member may be a hydraulic or pneumatic system where a secondary lumen 230 or tertiary lumen 240 as shown in
Continuing with
In one embodiment, as best shown in
In one embodiment, the motor 400 may operate using an open-loop logic from a micro-control unit 402. The motor speed and the number of coils per unit length of the drive member 206 can be adjusted to control the rate of speed at which the material capture device 220 traverses the length of the overtube 200. For example, a rotation rate of 650 rpm with a drive member 206 having 3 coils per inch will allow the material capture device 220 to traverse an overtube 200 with a length of about 1 meter in 10 seconds. The motor speed and number of coils per unit length of the drive member 206 can additionally be adjusted to control the level of friction between the material capture device 220 and the drive member 206 and/or the overtube 200.
The micro-control unit 402 can include a motor position sensor (not shown) that can be used to calculate the position of the material capture device 220 within compliant overtube 200 based on the rotation count of the motor 400 and the coil configuration of the drive member 206. In one embodiment, as best shown in
The provided material handling system 100 can be used to provide the bridge between other surgical instrumentation, such as in vivo robots, and medical professionals. To facilitate this function, the compliant overtube 200 may contain a secondary lumen 230 and/or a tertiary lumen 240, as best shown in
In use, the material handling system 100 may be inserted into a person by a medical professional in a number of ways. In one embodiment, the compliant overtube 200 and the components located within may be passed through a natural orifice without active steering, relying only on the compliance in the system to guide the device into the peritoneal cavity. In another embodiment, an articulated fiberscope may be inserted into a secondary lumen 230, after which the compliant overtube 200 and the components located within may be passed through a natural orifice, as a medical professional actively steers the device with the articulated fiberscope. In yet another embodiment, the drive member 206, material capture device 200, and overtube coupling 42 may be removed from the compliant overtube 200, an articulated endoscope may be inserted into the lumen 210 where the removed components were located, after which the compliant overtube 200 may be passed through a natural orifice, as a medical professional actively steers the device using the articulated endoscope. The endoscope would then be removed, and the drive member 206, material capture device 220, and overtube coupling 42 may be reinstalled on the compliant overtube 200.
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the above described features.
This application claims priority to Provisional Application No. 61/371,361, filed Aug. 6, 2010, which is herein incorporated by reference in its entirety.
This invention was made with government support under Grant No. 2611120123004 awarded by the Department of Defense Telemedicine and Advanced Technology Research Center (TATRC). Accordingly, the government may have certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3870264 | Robinson | Mar 1975 | A |
3989952 | Hohmann | Nov 1976 | A |
4246661 | Pinson | Jan 1981 | A |
4258716 | Sutherland | Mar 1981 | A |
4278077 | Mizumoto | Jul 1981 | A |
4538594 | Boebel et al. | Sep 1985 | A |
4568311 | Miyake | Feb 1986 | A |
4623183 | Amori | Nov 1986 | A |
4736645 | Zimmer | Apr 1988 | A |
4771652 | Zimmer | Sep 1988 | A |
4852391 | Ruch et al. | Aug 1989 | A |
4896015 | Taboada et al. | Jan 1990 | A |
4897014 | Tietze | Jan 1990 | A |
4922755 | Oshiro et al. | May 1990 | A |
4990050 | Tsuge et al. | Feb 1991 | A |
5019968 | Wang et al. | May 1991 | A |
5108140 | Bartholet | Apr 1992 | A |
5172639 | Wiesman et al. | Dec 1992 | A |
5176649 | Wakabayashi | Jan 1993 | A |
5178032 | Zona et al. | Jan 1993 | A |
5187032 | Sasaki et al. | Feb 1993 | A |
5187796 | Wang et al. | Feb 1993 | A |
5195388 | Zona et al. | Mar 1993 | A |
5201325 | McEwen et al. | Apr 1993 | A |
5217003 | Wilk | Jun 1993 | A |
5263382 | Brooks et al. | Nov 1993 | A |
5271384 | McEwen et al. | Dec 1993 | A |
5284096 | Pelrine et al. | Feb 1994 | A |
5297443 | Wentz | Mar 1994 | A |
5297536 | Wilk | Mar 1994 | A |
5304899 | Sasaki et al. | Apr 1994 | A |
5307447 | Asano et al. | Apr 1994 | A |
5353807 | DeMarco | Oct 1994 | A |
5363935 | Schempf et al. | Nov 1994 | A |
5382885 | Salcudean et al. | Jan 1995 | A |
5388528 | Pelrine et al. | Feb 1995 | A |
5436542 | Petelin et al. | Jul 1995 | A |
5441494 | Ortiz | Aug 1995 | A |
5458131 | Wilk | Oct 1995 | A |
5458583 | McNeely et al. | Oct 1995 | A |
5458598 | Feinberg et al. | Oct 1995 | A |
5471515 | Fossum et al. | Nov 1995 | A |
5515478 | Wang | May 1996 | A |
5524180 | Wang et al. | Jun 1996 | A |
5553198 | Wang et al. | Sep 1996 | A |
5562448 | Mushabac | Oct 1996 | A |
5588442 | Scovil et al. | Dec 1996 | A |
5620417 | Jang et al. | Apr 1997 | A |
5623582 | Rosenberg | Apr 1997 | A |
5624398 | Smith et al. | Apr 1997 | A |
5632761 | Smith et al. | May 1997 | A |
5645520 | Nakamura et al. | Jul 1997 | A |
5657429 | Wang et al. | Aug 1997 | A |
5657584 | Hamlin | Aug 1997 | A |
5674030 | Sigel | Oct 1997 | A |
5728599 | Rosteker et al. | Mar 1998 | A |
5736821 | Suyaman et al. | Apr 1998 | A |
5754741 | Wang et al. | May 1998 | A |
5762458 | Wang et al. | Jun 1998 | A |
5769640 | Jacobus et al. | Jun 1998 | A |
5791231 | Cohn et al. | Aug 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5797900 | Madhani et al. | Aug 1998 | A |
5807377 | Madhani et al. | Sep 1998 | A |
5815640 | Wang et al. | Sep 1998 | A |
5825982 | Wright et al. | Oct 1998 | A |
5841950 | Wang et al. | Nov 1998 | A |
5845646 | Lemelson | Dec 1998 | A |
5855583 | Wang et al. | Jan 1999 | A |
5860987 | Ratcliff et al. | Jan 1999 | A |
5876325 | Mizuno et al. | Mar 1999 | A |
5878193 | Wang et al. | Mar 1999 | A |
5878783 | Smart | Mar 1999 | A |
5895417 | Pomeranz et al. | Apr 1999 | A |
5906591 | Dario et al. | May 1999 | A |
5907664 | Wang et al. | May 1999 | A |
5911036 | Wright et al. | Jun 1999 | A |
5971976 | Wang et al. | Oct 1999 | A |
6001108 | Wang et al. | Dec 1999 | A |
6007550 | Wang et al. | Dec 1999 | A |
6030365 | Laufer | Feb 2000 | A |
6031371 | Smart | Feb 2000 | A |
6058323 | Lemelson | May 2000 | A |
6063095 | Wang et al. | May 2000 | A |
6066090 | Yoon | May 2000 | A |
6102850 | Wang et al. | Aug 2000 | A |
6107795 | Smart | Aug 2000 | A |
6132368 | Cooper | Oct 2000 | A |
6132441 | Grace | Oct 2000 | A |
6156006 | Brosens et al. | Dec 2000 | A |
6159146 | El Gazayerli | Dec 2000 | A |
6162171 | Ng et al. | Dec 2000 | A |
6193692 | Harris et al. | Feb 2001 | B1 |
D438617 | Cooper et al. | Mar 2001 | S |
6206903 | Ramans | Mar 2001 | B1 |
D441076 | Cooper et al. | Apr 2001 | S |
6223100 | Green | Apr 2001 | B1 |
D441862 | Cooper et al. | May 2001 | S |
6238415 | Sepetka et al. | May 2001 | B1 |
6240312 | Alfano et al. | May 2001 | B1 |
6241730 | Alby | Jun 2001 | B1 |
6244809 | Wang et al. | Jun 2001 | B1 |
6246200 | Blumenkranz et al. | Jun 2001 | B1 |
D444555 | Cooper et al. | Jul 2001 | S |
6286514 | Lemelson | Sep 2001 | B1 |
6292678 | Hall et al. | Sep 2001 | B1 |
6293282 | Lemelson | Sep 2001 | B1 |
6296635 | Smith et al. | Oct 2001 | B1 |
6309397 | Julian et al. | Oct 2001 | B1 |
6309403 | Minor et al. | Oct 2001 | B1 |
6312435 | Wallace et al. | Nov 2001 | B1 |
6321106 | Lemelson | Nov 2001 | B1 |
6327492 | Lemelson | Dec 2001 | B1 |
6331181 | Tierney et al. | Dec 2001 | B1 |
6346072 | Cooper | Feb 2002 | B1 |
6352503 | Matsui et al. | Mar 2002 | B1 |
6364888 | Niemeyer et al. | Apr 2002 | B1 |
6371952 | Madhani et al. | Apr 2002 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6398726 | Ramans et al. | Jun 2002 | B1 |
6400980 | Lemelson | Jun 2002 | B1 |
6408224 | Okamoto et al. | Jun 2002 | B1 |
6424885 | Niemeyer et al. | Jul 2002 | B1 |
6432112 | Brock et al. | Aug 2002 | B2 |
6436107 | Wang et al. | Aug 2002 | B1 |
6441577 | Blumenkranz et al. | Aug 2002 | B2 |
6450104 | Grant et al. | Sep 2002 | B1 |
6451027 | Cooper et al. | Sep 2002 | B1 |
6454758 | Thompson et al. | Sep 2002 | B1 |
6459926 | Nowlin et al. | Oct 2002 | B1 |
6463361 | Wang et al. | Oct 2002 | B1 |
6468203 | Belson | Oct 2002 | B2 |
6468265 | Evans et al. | Oct 2002 | B1 |
6470236 | Ohtsuki | Oct 2002 | B2 |
6491691 | Morley et al. | Dec 2002 | B1 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6493608 | Niemeyer et al. | Dec 2002 | B1 |
6496099 | Wang et al. | Dec 2002 | B2 |
6508413 | Bauer et al. | Jan 2003 | B2 |
6512345 | Borenstein | Jan 2003 | B2 |
6522906 | Salisbury, Jr. et al. | Feb 2003 | B1 |
6544276 | Azizi | Apr 2003 | B1 |
6548982 | Papanikolopoulos et al. | Apr 2003 | B1 |
6554790 | Moll | Apr 2003 | B1 |
6565554 | Niemeyer | May 2003 | B1 |
6574355 | Green | Jun 2003 | B2 |
6587750 | Gerbi et al. | Jul 2003 | B2 |
6591239 | McCall et al. | Jul 2003 | B1 |
6594552 | Nowlin et al. | Jul 2003 | B1 |
6610007 | Belson et al. | Aug 2003 | B2 |
6620173 | Gerbi et al. | Sep 2003 | B2 |
6642836 | Wang et al. | Nov 2003 | B1 |
6645196 | Nixon et al. | Nov 2003 | B1 |
6646541 | Wang et al. | Nov 2003 | B1 |
6648814 | Kim et al. | Nov 2003 | B2 |
6659939 | Moll et al. | Dec 2003 | B2 |
6661571 | Shioda et al. | Dec 2003 | B1 |
6671581 | Niemeyer et al. | Dec 2003 | B2 |
6676684 | Morley et al. | Jan 2004 | B1 |
6684129 | Salisbury, Jr. et al. | Jan 2004 | B2 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6685698 | Morley et al. | Feb 2004 | B2 |
6687571 | Byme et al. | Feb 2004 | B1 |
6692485 | Brock et al. | Feb 2004 | B1 |
6699177 | Wang et al. | Mar 2004 | B1 |
6699235 | Wallace et al. | Mar 2004 | B2 |
6702734 | Kim et al. | Mar 2004 | B2 |
6702805 | Stuart | Mar 2004 | B1 |
6714839 | Salisbury, Jr. et al. | Mar 2004 | B2 |
6714841 | Wright et al. | Mar 2004 | B1 |
6719684 | Kim et al. | Apr 2004 | B2 |
6720988 | Gere et al. | Apr 2004 | B1 |
6726699 | Wright et al. | Apr 2004 | B1 |
6728599 | Wright et al. | Apr 2004 | B2 |
6730021 | Vassiliades, Jr. et al. | May 2004 | B2 |
6731988 | Green | May 2004 | B1 |
6746443 | Morley et al. | Jun 2004 | B1 |
6764441 | Chiel et al. | Jul 2004 | B2 |
6764445 | Ramans et al. | Jul 2004 | B2 |
6766204 | Niemeyer et al. | Jul 2004 | B2 |
6770081 | Cooper et al. | Aug 2004 | B1 |
6774597 | Borenstein | Aug 2004 | B1 |
6776165 | Jin | Aug 2004 | B2 |
6780184 | Tanrisever | Aug 2004 | B2 |
6783524 | Anderson et al. | Aug 2004 | B2 |
6785593 | Wang et al. | Aug 2004 | B2 |
6788018 | Blumenkranz | Sep 2004 | B1 |
6793653 | Sanchez et al. | Sep 2004 | B2 |
6799065 | Niemeyer | Sep 2004 | B1 |
6799088 | Wang et al. | Sep 2004 | B2 |
6801325 | Farr et al. | Oct 2004 | B2 |
6804581 | Wang et al. | Oct 2004 | B2 |
6810281 | Brock et al. | Oct 2004 | B2 |
6817972 | Snow | Nov 2004 | B2 |
6817974 | Cooper et al. | Nov 2004 | B2 |
6817975 | Farr et al. | Nov 2004 | B1 |
6820653 | Schempf et al. | Nov 2004 | B1 |
6824508 | Kim et al. | Nov 2004 | B2 |
6824510 | Kim et al. | Nov 2004 | B2 |
6832988 | Sprout | Dec 2004 | B2 |
6832996 | Woloszko et al. | Dec 2004 | B2 |
6836703 | Wang et al. | Dec 2004 | B2 |
6837846 | Jaffe et al. | Jan 2005 | B2 |
6837883 | Moll et al. | Jan 2005 | B2 |
6839612 | Sanchez et al. | Jan 2005 | B2 |
6840938 | Morley et al. | Jan 2005 | B1 |
6852107 | Wang et al. | Feb 2005 | B2 |
6858003 | Evans et al. | Feb 2005 | B2 |
6860346 | Burt et al. | Mar 2005 | B2 |
6860877 | Sanchez et al. | Mar 2005 | B1 |
6866671 | Tiemey et al. | Mar 2005 | B2 |
6870343 | Borenstein et al. | Mar 2005 | B2 |
6871117 | Wang et al. | Mar 2005 | B2 |
6871563 | Choset et al. | Mar 2005 | B2 |
6879880 | Nowlin et al. | Apr 2005 | B2 |
6892112 | Wang et al. | May 2005 | B2 |
6899705 | Niemeyer | May 2005 | B2 |
6902560 | Morley et al. | Jun 2005 | B1 |
6905460 | Wang et al. | Jun 2005 | B2 |
6905491 | Wang et al. | Jun 2005 | B1 |
6911916 | Wang et al. | Jun 2005 | B1 |
6917176 | Schempf et al. | Jul 2005 | B2 |
6933695 | Blumenkranz | Aug 2005 | B2 |
6936001 | Snow | Aug 2005 | B1 |
6936003 | Iddan | Aug 2005 | B2 |
6936042 | Wallace et al. | Aug 2005 | B2 |
6943663 | Wang et al. | Sep 2005 | B2 |
6949096 | Davison et al. | Sep 2005 | B2 |
6951535 | Ghodoussi et al. | Oct 2005 | B2 |
6965812 | Wang et al. | Nov 2005 | B2 |
6974411 | Belson | Dec 2005 | B2 |
6974449 | Niemeyer | Dec 2005 | B2 |
6979423 | Moll | Dec 2005 | B2 |
6984203 | Tartaglia et al. | Jan 2006 | B2 |
6984205 | Gazdzinski | Jan 2006 | B2 |
6991627 | Madhani et al. | Jan 2006 | B2 |
6993413 | Sunaoshi | Jan 2006 | B2 |
6994703 | Wang et al. | Feb 2006 | B2 |
6994708 | Manzo | Feb 2006 | B2 |
6997908 | Carrillo, Jr. et al. | Feb 2006 | B2 |
7025064 | Wang et al. | Apr 2006 | B2 |
7027892 | Wang et al. | Apr 2006 | B2 |
7033344 | Imran | Apr 2006 | B2 |
7039453 | Mullick | May 2006 | B2 |
7042184 | Oleynikov et al. | May 2006 | B2 |
7048745 | Tierney et al. | May 2006 | B2 |
7053752 | Wang et al. | May 2006 | B2 |
7063682 | Whayne et al. | Jun 2006 | B1 |
7066879 | Fowler et al. | Jun 2006 | B2 |
7066926 | Wallace et al. | Jun 2006 | B2 |
7074179 | Wang et al. | Jul 2006 | B2 |
7077446 | Kameda et al. | Jul 2006 | B2 |
7083571 | Wang et al. | Aug 2006 | B2 |
7083615 | Peterson et al. | Aug 2006 | B2 |
7087049 | Nowlin et al. | Aug 2006 | B2 |
7090683 | Brock et al. | Aug 2006 | B2 |
7097640 | Wang et al. | Aug 2006 | B2 |
7105000 | McBrayer | Sep 2006 | B2 |
7107090 | Salisbury, Jr. et al. | Sep 2006 | B2 |
7109678 | Kraus et al. | Sep 2006 | B2 |
7118582 | Wang et al. | Oct 2006 | B1 |
7121781 | Sanchez et al. | Oct 2006 | B2 |
7125403 | Julian et al. | Oct 2006 | B2 |
7126303 | Farritor et al. | Oct 2006 | B2 |
7147650 | Lee | Dec 2006 | B2 |
7155315 | Niemeyer et al. | Dec 2006 | B2 |
7169141 | Brock et al. | Jan 2007 | B2 |
7182025 | Ghorbel et al. | Feb 2007 | B2 |
7182089 | Ries | Feb 2007 | B2 |
7199545 | Oleynikov et al. | Apr 2007 | B2 |
7206626 | Quaid, III | Apr 2007 | B2 |
7206627 | Abovitz et al. | Apr 2007 | B2 |
7210364 | Ghorbel et | May 2007 | B2 |
7214230 | Brock et al. | May 2007 | B2 |
7217240 | Snow | May 2007 | B2 |
7239940 | Wang et al. | Jul 2007 | B2 |
7250028 | Julian et al. | Jul 2007 | B2 |
7259652 | Wang et al. | Aug 2007 | B2 |
7273488 | Nakamura et al. | Sep 2007 | B2 |
7311107 | Harel et al. | Dec 2007 | B2 |
7339341 | Oleynikov et al. | Mar 2008 | B2 |
7372229 | Farritor et al. | May 2008 | B2 |
7447537 | Funda et al. | Nov 2008 | B1 |
7492116 | Oleynikov et al. | Feb 2009 | B2 |
7566300 | Devierre et al. | Jul 2009 | B2 |
7574250 | Niemeyer | Aug 2009 | B2 |
7637905 | Saadat et al. | Dec 2009 | B2 |
7645230 | Mikkaichi et al. | Jan 2010 | B2 |
7655004 | Long | Feb 2010 | B2 |
7670329 | Flaherty et al. | Mar 2010 | B2 |
7727163 | Behl | Jun 2010 | B2 |
7731727 | Sauer | Jun 2010 | B2 |
7762825 | Burbank et al. | Jul 2010 | B2 |
7772796 | Farritor et al. | Aug 2010 | B2 |
7785251 | Wilk | Aug 2010 | B2 |
7785333 | Miyamoto et al. | Aug 2010 | B2 |
7789825 | Nobis et al. | Sep 2010 | B2 |
7794494 | Sahatjian et al. | Sep 2010 | B2 |
7865266 | Moll et al. | Jan 2011 | B2 |
7960935 | Farritor et al. | Jun 2011 | B2 |
8179073 | Farritor et al. | May 2012 | B2 |
20010018591 | Brock et al. | Aug 2001 | A1 |
20010049497 | Kalloo et al. | Dec 2001 | A1 |
20020003173 | Bauer et al. | Jan 2002 | A1 |
20020026186 | Woloszko et al. | Feb 2002 | A1 |
20020038077 | de la Torre et al. | Mar 2002 | A1 |
20020065507 | Azizi | May 2002 | A1 |
20020091374 | Cooper | Jul 2002 | A1 |
20020103417 | Gazdzinski | Aug 2002 | A1 |
20020111535 | Kim et al. | Aug 2002 | A1 |
20020120254 | Julian et al. | Aug 2002 | A1 |
20020128552 | Nowlin et al. | Sep 2002 | A1 |
20020140392 | Borenstein et al. | Oct 2002 | A1 |
20020147487 | Sundquist et al. | Oct 2002 | A1 |
20020151906 | Demarais et al. | Oct 2002 | A1 |
20020156347 | Kim et al. | Oct 2002 | A1 |
20020171385 | Kim et al. | Nov 2002 | A1 |
20020173700 | Kim et al. | Nov 2002 | A1 |
20020190682 | Schempf et al. | Dec 2002 | A1 |
20030020810 | Takizawa et al. | Jan 2003 | A1 |
20030045888 | Brock et al. | Mar 2003 | A1 |
20030065250 | Chiel et al. | Apr 2003 | A1 |
20030089267 | Ghorbel et al. | May 2003 | A1 |
20030092964 | Kim et al. | May 2003 | A1 |
20030097129 | Davison et al. | May 2003 | A1 |
20030100817 | Wang et al. | May 2003 | A1 |
20030114731 | Cadeddu et al. | Jun 2003 | A1 |
20030135203 | Wang et al. | Jul 2003 | A1 |
20030139742 | Wampler et al. | Jul 2003 | A1 |
20030144656 | Ocel et al. | Jul 2003 | A1 |
20030167000 | Mullick et al. | Sep 2003 | A1 |
20030172871 | Scherer | Sep 2003 | A1 |
20030179308 | Zamorano et al. | Sep 2003 | A1 |
20030181788 | Yokoi et al. | Sep 2003 | A1 |
20030229268 | Uchiyama et al. | Dec 2003 | A1 |
20030230372 | Schmidt | Dec 2003 | A1 |
20040024311 | Quaid | Feb 2004 | A1 |
20040034282 | Quaid | Feb 2004 | A1 |
20040034283 | Quaid | Feb 2004 | A1 |
20040034302 | Abovitz et al. | Feb 2004 | A1 |
20040050394 | Jin | Mar 2004 | A1 |
20040070822 | Shioda et al. | Apr 2004 | A1 |
20040099175 | Perrot et al. | May 2004 | A1 |
20040106916 | Quaid et al. | Jun 2004 | A1 |
20040111113 | Nakamura et al. | Jun 2004 | A1 |
20040138552 | Harel et al. | Jul 2004 | A1 |
20040140786 | Borenstein | Jul 2004 | A1 |
20040153057 | Davison | Aug 2004 | A1 |
20040173116 | Ghorbel et al. | Sep 2004 | A1 |
20040176664 | Iddan | Sep 2004 | A1 |
20040215331 | Chew et al. | Oct 2004 | A1 |
20040225229 | Viola | Nov 2004 | A1 |
20040254680 | Sunaoshi | Dec 2004 | A1 |
20040267326 | Ocel et al. | Dec 2004 | A1 |
20050014994 | Fowler et al. | Jan 2005 | A1 |
20050029978 | Oleynikov et al. | Feb 2005 | A1 |
20050043583 | Killmann et al. | Feb 2005 | A1 |
20050049462 | Kanazawa | Mar 2005 | A1 |
20050054901 | Yoshino | Mar 2005 | A1 |
20050054902 | Konno | Mar 2005 | A1 |
20050064378 | Toly | Mar 2005 | A1 |
20050065400 | Banik et al. | Mar 2005 | A1 |
20050083460 | Hattori et al. | Apr 2005 | A1 |
20050096502 | Khalili | May 2005 | A1 |
20050143644 | Gilad et al. | Jun 2005 | A1 |
20050154376 | Riviere et al. | Jul 2005 | A1 |
20050165449 | Cadeddu et al. | Jul 2005 | A1 |
20050203344 | Orban et al. | Sep 2005 | A1 |
20050283137 | Doyle et al. | Dec 2005 | A1 |
20050288555 | Binmoeller | Dec 2005 | A1 |
20050288665 | Woloszko | Dec 2005 | A1 |
20060020272 | Gildenberg | Jan 2006 | A1 |
20060046226 | Bergler et al. | Mar 2006 | A1 |
20060119304 | Farritor et al. | Jun 2006 | A1 |
20060149135 | Paz | Jul 2006 | A1 |
20060152591 | Lin | Jul 2006 | A1 |
20060155263 | Lipow | Jul 2006 | A1 |
20060195015 | Mullick et al. | Aug 2006 | A1 |
20060196301 | Oleynikov et al. | Sep 2006 | A1 |
20060198619 | Oleynikov et al. | Sep 2006 | A1 |
20060241570 | Wilk | Oct 2006 | A1 |
20060241732 | Denker et al. | Oct 2006 | A1 |
20060253109 | Chu | Nov 2006 | A1 |
20060258954 | Timberlake et al. | Nov 2006 | A1 |
20070032701 | Fowler et al. | Feb 2007 | A1 |
20070043397 | Ocel et al. | Feb 2007 | A1 |
20070055342 | Wu et al. | Mar 2007 | A1 |
20070080658 | Farritor et al. | Apr 2007 | A1 |
20070106113 | Ravo | May 2007 | A1 |
20070123748 | Meglan | May 2007 | A1 |
20070142725 | Hardin et al. | Jun 2007 | A1 |
20070156019 | Larkin et al. | Jul 2007 | A1 |
20070156211 | Ferren et al. | Jul 2007 | A1 |
20070161864 | Sloan | Jul 2007 | A1 |
20070167955 | De La Menardiere et al. | Jul 2007 | A1 |
20070225633 | Ferren et al. | Sep 2007 | A1 |
20070225634 | Ferren et al. | Sep 2007 | A1 |
20070241714 | Okeynikov et al. | Oct 2007 | A1 |
20070244520 | Ferren et al. | Oct 2007 | A1 |
20070250064 | Darois et al. | Oct 2007 | A1 |
20070255273 | Fernandez et al. | Nov 2007 | A1 |
20080004634 | Farritor et al. | Jan 2008 | A1 |
20080015565 | Davison | Jan 2008 | A1 |
20080015566 | Livneh | Jan 2008 | A1 |
20080033569 | Ferren et al. | Feb 2008 | A1 |
20080058835 | Farritor et al. | Mar 2008 | A1 |
20080058989 | Oleynikov et al. | Mar 2008 | A1 |
20080103440 | Ferren et al. | May 2008 | A1 |
20080111513 | Farritor et al. | May 2008 | A1 |
20080119870 | Williams et al. | May 2008 | A1 |
20080132890 | Woloszko et al. | Jun 2008 | A1 |
20080164079 | Jacobsen | Jul 2008 | A1 |
20080183033 | Bern et al. | Jul 2008 | A1 |
20080221591 | Farritor et al. | Sep 2008 | A1 |
20080269557 | Marescaux et al. | Oct 2008 | A1 |
20090020724 | Paffrath | Jan 2009 | A1 |
20090024142 | Ruiz Morales | Jan 2009 | A1 |
20090048612 | Farritor et al. | Feb 2009 | A1 |
20090054909 | Farritor et al. | Feb 2009 | A1 |
20090069821 | Farritor et al. | Mar 2009 | A1 |
20090076536 | Rentschler et al. | Mar 2009 | A1 |
20090137952 | Ramamurthy et al. | May 2009 | A1 |
20090143787 | De La Pena | Jun 2009 | A9 |
20090163929 | Yeung et al. | Jun 2009 | A1 |
20090171373 | Farritor et al. | Jul 2009 | A1 |
20090234369 | Bax et al. | Sep 2009 | A1 |
20090236400 | Cole et al. | Sep 2009 | A1 |
20090240246 | Devill et al. | Sep 2009 | A1 |
20090247821 | Rogers | Oct 2009 | A1 |
20090248038 | Blumenkranz et al. | Oct 2009 | A1 |
20090281377 | Newell et al. | Nov 2009 | A1 |
20090305210 | Guru et al. | Dec 2009 | A1 |
20100010294 | Conlon et al. | Jan 2010 | A1 |
20100016659 | Weitzner | Jan 2010 | A1 |
20100042097 | Newton et al. | Feb 2010 | A1 |
20100056863 | Dejima et al. | Mar 2010 | A1 |
20100069710 | Yamatani et al. | Mar 2010 | A1 |
20100069940 | Miller et al. | Mar 2010 | A1 |
20100081875 | Fowler et al. | Apr 2010 | A1 |
20100139436 | Kawashima et al. | Jun 2010 | A1 |
20100198231 | Scott | Aug 2010 | A1 |
20100204713 | Ruiz | Aug 2010 | A1 |
20100245549 | Allen et al. | Sep 2010 | A1 |
20100262162 | Omori | Oct 2010 | A1 |
20100318059 | Farritor et al. | Dec 2010 | A1 |
20110015569 | Kirschenman et al. | Jan 2011 | A1 |
20110020779 | Hannaford et al. | Jan 2011 | A1 |
20110071347 | Rogers et al. | Mar 2011 | A1 |
20110077478 | Freeman et al. | Mar 2011 | A1 |
20110152615 | Schostek et al. | Jun 2011 | A1 |
20110224605 | Farritor et al. | Sep 2011 | A1 |
20110230894 | Simaan et al. | Sep 2011 | A1 |
20110237890 | Farritor et al. | Sep 2011 | A1 |
20110238080 | Ranjit et al. | Sep 2011 | A1 |
20110270443 | Kamiya et al. | Nov 2011 | A1 |
20120035582 | Nelson et al. | Feb 2012 | A1 |
20120095492 | Babkes et al. | Apr 2012 | A1 |
20120109150 | Quaid et al. | May 2012 | A1 |
20120253515 | Coste-Maniere et al. | Oct 2012 | A1 |
20130041360 | Farritor | Feb 2013 | A1 |
20130131695 | Scarfogliero et al. | May 2013 | A1 |
Number | Date | Country |
---|---|---|
2286756 | Feb 2011 | EP |
2004144533 | May 1990 | JP |
5115425 | May 1993 | JP |
200716235 | Jun 1993 | JP |
2006507809 | Sep 1994 | JP |
07 136173 | May 1995 | JP |
7306155 | Nov 1995 | JP |
08-224248 | Sep 1996 | JP |
2003220065 | Aug 2003 | JP |
2004322310 | Jun 2004 | JP |
2004180781 | Jul 2004 | JP |
2004329292 | Nov 2004 | JP |
2006508049 | Mar 2006 | JP |
WO 9221291 | Dec 1992 | WO |
WO 02082979 | Oct 2002 | WO |
WO 02100256 | Dec 2002 | WO |
WO 2005009211 | Feb 2005 | WO |
WO 2006 005075 | Jan 2006 | WO |
WO 2006079108 | Jan 2006 | WO |
WO 2006052927 | May 2006 | WO |
WO 2007111571 | Oct 2007 | WO |
WO 2007149559 | Dec 2007 | WO |
WO 2009023851 | Aug 2008 | WO |
WO 2009144729 | Dec 2009 | WO |
WO2010042611 | Apr 2010 | WO |
WO2010046823 | Apr 2010 | WO |
WO 2011118646 | Sep 2011 | WO |
WO 2011135503 | Nov 2011 | WO |
WO 2013009887 | Jan 2013 | WO |
Entry |
---|
Patronik et al., “Crawling on the Heart: A Mobile Robotic Device for Minimally Invasive Cardiac Interventions,” MICCAI, 2004, pp. 9-16. |
Patronik et al., “Preliminary evaluation of a mobile robotic device for navigation and intervention on the beating heart,” Computer Aided Surgery, 10(4): 225-232, Jul. 2005. |
Peirs et al., “A miniature manipulator for integration in a self-propelling endoscope,” Sensors and Actuators A, 2001, 92: 343-349. |
Peters, “Minimally Invasive Colectomy: Are the Potential Benefits Realized?” Dis Colon Rectum 1993; 36: 751-756. |
Phee et al., “Analysis and Development of Locomotion Devices for the Gastrointestinal Tract,” IEEE Transaction on Biomedical Engineering, vol. 49, No. 6, Jun. 2002, pp. 613-616. |
Phee et al., “Development of Microrobotic Devices for Locomotion in the Human Gastrointestinal Tract,” International Conference on Computational Intelligence, Robotics and Autonomous Systems (CIRAS 2001), Nov. 28-30, (2001), Singapore. |
Platt et al., “In Vivo Robotic Cameras can Enhance Imaging Capability During Laparoscopic Surgery,” in the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, Ft. Lauderdale, FL, Apr. 13-16, 2005, I pg. |
Preliminary Amendment filed Apr. 11, 2007, in related case U.S. Appl. No. 11/403,756, 7 pp. |
Preliminary Amendment filed Jul. 30, 2008, in related case U.S. Appl. No. 12/171,413, 4 pp. |
RCE and Amendment filed Jun. 13, 2007, in related case U.S. Appl. No. 11/403,756, 8 pp. |
Rentschler et al., “Mobile In Vivo Biopsy and Camera Robot,” Studies in Health and Infonnatics Medicine Meets Virtual Reality, vol. 119., pp. 449-454, IOS Press, Long Beach, CA, 2006e. |
Rentschler et al., “Mobile In Vivo Biopsy Robot,” IEEE International Conference on Robotics and Automation, Orlando, Florida, May 2006, pp. 4155-4160. |
Rentschler et al., “Miniature in vivo Robots for Remote and Harsh Environments,” IEEE Transactions on Information Technology in Biomedicine, Jan. 2006; 12(1): 66-75. |
Rentschler et al., “An In Vivo Mobile Robot for Surgical Vision and Task Assistance,” Journal of Medical Devices, Mar. 2007, vol. 1: 23-29. |
Rentschler et al., “In vivo Robotics during the NEEMO 9 Mission,” Medicine Meets Virtual Reality, Feb. 2007, I pg. |
Rentschler et al., “In Vivo Robots for Laparoscopic Surgery,” Studies in Health Technology and Infonnatics—Medicine Meets Virtual Reality, ISO Press, Newport Beach, CA, 2004a, 98: 316-322. |
Rentschler et al., “Mechanical Design of Robotic In Vivo Wheeled Mobility,” ASME Journal of Mechanical Design, 2006a, pp, I-II. |
Rentschler et al., “Mobile In Vivo Camera Robots Provide Sole Visual Feedback for Abdominal Exploration and Cholecystectomy,” Journal of Surgical Endoscopy, 20-I: 135-138, 2006b. |
Rentschler et al., “Mobile In Vivo Robots Can Assist in Abdominal Exploration,” from the Proceedings of the Society of American Gastrointestinal Endoscopic Surgeons (SAGES) Scientific Conference, Ft. Lauderdale, FL, Apr. 13-16, 2005b. |
Rentschler et al., “Modeling, Analysis, and Experimental Study of In Vivo Wheeled Robotic Mobility,” IEEE Transactions on Robotics, 22 (2): 308-321, 2005c. |
Rentschler et al., “Natural Orifice Surgery with an Endoluminal Mobile Robot,” The Society of American Gastrointestinal Endoscopic Surgeons, Dallas, TX, Apr. 2006d, 14 pp. |
Rentschler et al., “Theoretical and Experimental Analysis of In Vivo Wheeled Mobility,” ASME Design Engineering Technical Conferences: 28th Biennial Mechanisms and Robotics Conference, Salt Lake City, Utah, Sep. 28-Oct. 2, 2004, pp. 1-9. |
Rentschler et al., “Toward In Vivo Mobility,” Studies in Health Technology and Informatics—Medicine Meets Virtual Reality, ISO Press, Long Beach, CA, 2005a, III: 397-403. |
Response to Rule 312 Amendment in related case U.S. Appl. No. 11/695,944, dated Jan. 12, 2009, 2 pp. |
Riviere et al., “Toward Active Tremor Canceling in Handheld Microsurgical Instruments,” IEEE Transactions on Robotics and Automation, Oct. 2003, 19(5): 793-800. |
Rosen et al., “Force Controlled and Teleoperated Endoscopic, Grasper for Minimally Invasive Surgery—Experimental Performance Evaluation,” IEEE Transactions of Biomedical Engineering, Oct. 1999; 46(10): 1212-1221. |
Rosen et al., “Objective Laparoscopic Skills Assessments of Surgical Residents Using Hidden Markov Models Based on Haptic Information and Tool/Tissue Interactions,” Studies in Health Technology and Informatics—Medicine Meets Virtual Reality, Jan. 2001, 7 pp. |
Rosen et al., “Spherical Mechanism Analysis of a Surgical Robot for Minimally Invasive Surgery—Analytical and Experimental Approaches,” Studies in Health Technology and Informatics—Medicine Meets Virtual Reality, pp. 442-448, Jan. 2005. |
Rosen et al., “Task Decomposition of Laparoscopic Surgery for Objective Evaluation of Surgical Residents' Learning Curve Using Hidden Markov Model,” Computer Aided Surgery, vol. 7, pp. 49-61, 2002. |
Rosen et al., “The Blue DRAGON—A System of Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo,” Proc. of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, pp. 1876-1881, May 2002. |
Ruurda et al., “Robot-Assisted surgical systems: a new era in laparoscopic surgery,” Ann R. Coll Surg Engl., 2002; 84: 223-226. |
Ruurda et al., “Feasibility of Robot-Assisted Laparoscopic Surgery,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1):41-45. |
Sackier et al., “Robotically assisted laparoscopic surgery,” Surgical Endoscopy, 1994; 8: 63-66. |
Salky, “What is the Penetration of Endoscopic Techniques into Surgical Practice?” Digestive Surgery, 2000; 17:422-426. |
Satava, “Surgical Robotics: The Early Chronicles,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1): 6-16. |
Schippers et al., (1996) “Requirements and Possibilities of Computer-Assisted Endoscopic Surgery,” In: Computer Integrated Surgery: Technology and Clinical Applications, pp. 561-565. |
Schurr et al., “Robotics and Telemanipulation Technologies for Endoscopic Surgery,” Surgical Endoscopy, 2000; 14: 375-381. |
Schwartz, “In the Lab: Robots that Slink and Squirm,” The New York Times, Mar. 27, 2007, 4 pp. |
Sharp LL-151-3D, http://www.sharp3d.com, 2006, 2 pp. |
Slatkin et al., “The Development of a Robotic Endoscope,” Proceedings of the 1995 IEEE International Conference on Robotics and Automation, pp. 162-171, 1995. |
Smart Pill “Fastastic Voyage: Smart Pill to Expand Testing,” http://www.smartpilldiagnostics.com, Apr. 13, 2005, 1 pg. |
Southern Surgeons Club (1991), “A prospective analysis of 1518 laparoscopic cholecystectomies,” N. Eng. 1 Med. 324 (16): 1073-1078. |
Stefanini et al., “Modeling and Experiments on a Legged Microrobot Locomoting in a Tubular Compliant and Slippery Environment,” Int. Journal of Robotics Research, vol. 25, No. 5-6, pp. 551-560, May-Jun. 2006. |
Stiff et al.., “Long-term Pain: Less Common After Laparoscopic than Open Cholecystectomy,” British Journal of Surgery, 1994; 81: 1368-1370. |
Strong, et al., “Efficacy of Novel Robotic Camera vs. a Standard Laproscopic Camera,” Surgical Innovation vol. 12, No. 4, Dec. 2005, Westminster Publications, Inc., pp. 315-318. |
Suzumori et al., “Development of Flexible Microactuator and its Applications to Robotics Mechanisms,” Proceedings of the IEEE International Conference on Robotics and Automation, 1991: 1622-1627. |
Taylor et al., “A Telerobotic Assistant for Laparoscopic Surgery,” IEEE Eng Med Biol, 1995; 279-287. |
Tendick et al.. (1993), “Sensing and Manipulation Problems in Endoscopic Surgery: Experiment, Analysis, and Observation,” Presence 2( 1): 66-81. |
Abbott et al., “Design of an Endoluminal NOTES Robotic System,” from the Proceedings of the 2007 IEEE/RSJ Int'l Conf. on Intelligent Robot Systems, San Diego, CA, Oct. 29-Nov. 2, 2007, pp. 410-416. |
Allendorf et al., “Postoperative Immune Function Varies Inversely with the Degree of Surgical Trauma in a Murine Model,” Surgical Endoscopy 1997; 11:427-430. |
Ang, “Active Tremor Compensation in Handheld Instrument for Microsurgery,” Doctoral Dissertation, tech report CMU-RI-TR-04-28, Robotics Institute, Carnegie Mellon Unviersity, May 2004, 167pp. |
Applicant Amendment after Notice of Allowance under Rule 312, filed Aug. 25, 2008, in related case U.S. Appl. No. 11/695,944, 6pp. |
Applicant Response to Office Action dated Apr. 17, 2007, in related case U.S. Appl. No. 11/552,379, filed Aug. 8, 2007, 7 pp. |
Applicant Response to Office Action dated Aug. 18, 2006, in related case U.S. Appl. No. 11/398,174, filed Nov. 7, 2006, 8pp. |
Applicant Response to Office Action dated Aug. 21, 2006, in related case U.S. Appl. No. 11/403,756, filed Nov. 21, 2006, 52pp. |
Applicant Response to Office Action dated Oct. 29, 2007, in related case U.S. Appl. No. 11/695,944, filed Jan. 22, 2008, 6pp. |
Atmel 80C5X2 Core, http://www.atmel.com, 2006, 186pp. |
Bailey et al., “Complications of Laparoscopic Surgery,” Quality Medical Publishers, Inc., 1995, 25pp. |
Ballantyne, “Robotic Surgery, Telerobotic Surgery, Telepresence, and Telementoring,” Surgical Endoscopy, 2002; 16: 1389-1402. |
Bauer et al., “Case Report: Remote Percutaneous Renal Percutaneous Renal Access Using a New Automated Telesurgical Robotic System,” Telemedicine Journal and e-Health 2001; (4): 341-347. |
Begos et al., “Laparoscopic Cholecystectomy: From Gimmick to Gold Standard,” J Clin Gastroenterol, 1994; 19(4): 325-330. |
Berg et al., “Surgery with Cooperative Robots,” Medicine Meets Virtual Reality, Feb. 2007, 1 pg. |
Breda et al., “Future developments and perspectives in laparoscopy,” Eur. Urology 2001; 40(1): 84-91. |
Breedveld et al., “Design of Steerable Endoscopes to Improve the Visual Perception of Depth During Laparoscopic Surgery,” ASME, Jan. 2004; vol. 126, pp. 1-5. |
Breedveld et al., “Locomotion through the Intestine by means of Rolling Stents,” Proceedings of the ASME Design Engineering Technical Conferences, 2004, pp. 1-7. |
Calafiore et al., Multiple Arterial Conduits Without Cardiopulmonary Bypass: Early Angiographic Results,: Ann Thorac Surg, 1999; 67: 450-456. |
Camarillo et al., “Robotic Technology in Surgery: Past, Present and Future,” The American Journal of Surgery, 2004; 188: 2S-15. |
Cavusoglu et al, “Telesurgery and Surgical Simulation: Haptic Interfaces to Real and Virtual Surgical Environments,” in McLaughliin, M.L., Hespanha, J.P., and Sukhatme, G., editors. Touch in virtual environments, IMSC Series in Multimedia 2001, 28pp. |
Cavusoglu et al., “Robotics for Telesurgery: Second Generation Berkeley/UCSF Laparoscopic Telesurgical Workstation and Looking Towards the Future Applications,” Industrial Robot: An International Journal, 2003; 30(1): 22-29. |
Chanthasopeephan et al., (2003), “Measuring Forces in Liver Cutting: New Equipment and Experimenal Results,” Annals of Biomedical Engineering 31: 1372-1382. |
Choi et al., “Flexure-based Manipulator for Active Handheld Microsurgical Instrument,” Proceedings of the 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Sep. 2005, 4pp. |
Cuschieri, “Technology for Minimal Access Surgery,” BMJ, 1999, 319: 1-6. |
Dakin et al., “Comparison of laparoscopic skills performance between standard instruments and two surgical robotic systems,” Surg Endosc., 2003; 17: 574-579. |
Dumpert et al., “Improving in Vivo Robot Visioin Quality,” from the Proceedings of Medicine Meets Virtual Realtiy, Long Beach, CA, Jan. 26-29, 2005. 1 pg. |
Dumpert et al., “Stereoscopic In Vivo Surgical Robots,” IEEE Sensors Special Issue on In Vivo Sensors for Medicine, Jan. 2007, 10 pp. |
Examiner Interview Summary dated Aug. 6 and Aug. 12, 2008, in related case U.S. Appl. No. 11/695,944, 1 pg. |
Examiner Interview Summary dated May 9, 2008, in related case U.S. Appl. No. 11/695,944, 1 pg. |
Examiner Interview Summary dated Nov. 30, 2006, in related case U.S. Appl. No. 11/398,174, 2pp. |
Falcone et al., “Robotic Surgery,” Clin. Obstet. Gynecol. 2003, 46(1): 37-43. |
Faraz et al., “Engineering Approaches to Mechanical and Robotic Design for Minimaly Invasive Surgery (MIS),” Kluwer Academic Publishers (Boston), 2000, 13pp. |
Fearing et al., “Wing Transmission for a Micromechanical Flying Insect,” Proceedings of the 2000 IEEE International Conference to Robotics & Automation, Apr. 2000; 1509-1516. |
Fireman et al., “Diagnosing small bowel Crohn's desease with wireless capsule endoscopy,” Gut 2003; 52: 390-392. |
Franklin et al., “Prospective Comparison of Open vs. Laparoscopic Colon Surgery for Carcinoma: Five-Year Results,” Dis Colon Rectum, 1996; 39: S35-S46. |
Franzino, “The Laprotek Surgical System and the Next Generation of Robotics,” Surg Clin North Am, 2003 83(6). |
Fraulob et al., “Miniature assistance module for robot-assisted heart surgery,” Biomed. Tech. 2002, 47 Suppl. 1, Pt. 1:12-15. |
Fukuda et al., “Mechanism and Swimming Experiment of Micro Mobile Robot in Water,” Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1994: 814-819. |
Fukuda et al, “Micro Active Catheter System with Multi Degrees of Freedom,” Proceedings of the IEEE International Conference on Robotics and Automation, May 1994, pp. 2290-2295. |
Fuller et al., “Laparoscopic Trocar Injuries: A Report from a U.S. Food and Drug Administration (FDA) Center for Devices and Radiological Health (CDRH) Systematic Technology Assessment of Medical Products (STAMP) Committe,” U.S. Food and Drug Adminstration, available at http://www.fdaJ:?;ov, Finalized: Nov. 7, 2003; Updated: Jun. 24, 2005, 11 pp. |
Grady, “Doctors Try New Surgery for Gallbladder Removal,” The New York Times, Apr. 20, 2007, 3 pp. |
Guber et al., “Miniaturized Instrumetn Systems for Minimally Invasive Diagnosis and Therapy,” Biomedizinishe Technic. 2002, Band 47, Erganmngsband 1, Teil 1. |
International Preliminary Report on Patentability from related case PCT/US20071014567, mailed Jan. 8, 2009, 11 pp. |
International Search report and Written Opinion from international application No. PCT/US2012/41911, mailed Mar. 13, 2013. |
International Search Report and Written Opinion from international application No. PCT/US12/46274, mailed Sep. 25, 2012. |
International Search Report and Written Opinion from international application No. PCT/US2007/089191, mailed Nov. 10, 2008, 20 pp. |
“International Search Report and Written Opinion from international application No. PCT/US07/14567, mailed Apr. 28, 2008, 19 pp.” |
International Search Report and Written Opinion of international application No. PCT/US2008/069822, mailed Aug. 5, 2009, 12 pp. |
International Search Report and Written Opinion of international application No. PCT/US2008/073334, mailed Jan. 12, 2009, 11 pp. |
International Search Report and Written Opinion of international application No. PCT/US2008/073369, mailed Nov. 12, 2008, 12 pp. |
International Search Report and Written Opinion issued in PCT/US11/46809, mailed Dec. 8, 2011. |
Ishiyama et al., “Spiral-type Micro-machine for Medical Applications,” 2000 International Symposium on Micromechatronics and Human Science, 2000: 65-69. |
Jagannath et al., “Peroral transgastric endoscopic ligation of fallopian tubes with long-term survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 61(3): 449-453. |
Kalloo et al., “Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity,” Gastrointestinal Endoscopy, 2004; 60(1): 114-117. |
Kang et al., “Robotic Assistants Aid Surgeons During Minimally Invasive Procedures,” IEEE Engineering in Medicine and Biology, Jan.-Feb. 2001; pp. 94-104. |
Kantsevoy et al., “Endoscopic gastrojejunostomy with survival in a porcine model,” Gastrointestinal Endoscopy, 2005; 62(2): 287-292. |
Kantsevoy et al., “Transgastric endoscopic splenectomy,” Surgical Endoscopy, 2006; 20: 522-525. |
Kazemier et al. (1998), “Vascular Injuries During Laparoscopy,” J. Am. Coli. Surg. 186(5): 604-5. |
Kim, “Early Experience with Telemanipulative Robot-Assisted Laparoscopic Cholecystectomy Using da Vinci,” Surgical Laparoscopy, Endoscopy & Percutaneous Techniques, 2002; 12(1):33-40. |
Ko et al., “Per-Oral transgastric abdominal surgery,” Chinese Journal of Digestive Diseases, 2006; 7: 67-70. |
Lafullarde et al., “Laparoscopic Nissen Fundoplication: Five-year Results and Beyond,” Arch/Surg, Feb. 2001; 136:180-184. |
Leggett et al. (2002), “Aortic injury during laparoscopic fundoplication,” Surg. Endoscopy 16(2): 362. |
Li et al. (2000), “Microvascular Anastomoses Performed in Rats Using a Microsurgical Telemanipulator,” Comp. Aid. Surg. 5: 326-332. |
Liem et al., “Comparison of Conventional Anterior Surgery and Laparoscopic Surgery for Inguinal-hernia Repair,” New England Journal of Medicine, 1997; 336 (22): 1541-1547. |
MacFarlane et al., “Force-Feedback Grasper Helps Restore the Sense of Touch in Minimally Invasive Surgery,” Journal of Gastrointestinal Surgery, 1999; 3: 278-285. |
Mack et al., “Present Role of Thoracoscopy in the Diagnosis and Treatment of Diseases of the Chest,” Ann Thorac Surgery, 1992; 54: 403-409. |
Mack, “Minimally Invasive and Robotic Surgery,” JAMA, Feb. 2001; 285(5): 568-572. |
Mei et al., “Wireless Drive and Control of a Swimming Microrobot,” Proceedings of the 2002 IEEE International Conference on Robotics & Automation, May 2002: 1131-1136. |
Melvin et al., “Computer-Enhanced vs. Standard Laparoscopic Antireflux Surgery,” J Gastrointest Surg 2002; 6: 11-16. |
Menciassi et al., “Locomotion of a Leffed Capsule in the Gastrointestinal Tract: Theoretical Study and Preliminary Technological Results,” IEEE Int. Conf. on Engineering in Medicine and Biology, San Francisco, CA, pp. 2767-2770, Sep. 2004. |
Menciassi et al., “Robotic Solutions and Mechanisms for a Semi-Autonomous Endoscope,” Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems, Oct. 2002; 1379-1384. |
Menciassi et al., “Shape memory alloy clamping devices of a capsule for monitoring tasks in the gastrointestinal tract,” J. Micromech. Microeng, 2005, 15: 2045-2055. |
Meron, “The development of the swallowable video capsule (M2A),” Gastrointestinal Endoscopy 2000; 52 6: 817-819. |
Micron, http://www.micron.com, 2006, I/4-inch VGA NTSC/PAL CMOS Digital Image Sensor, 98 pp. |
Midday Jeff et al., “Material Handling System for Robotic natural Orifice Surgery”, Proceedings of the 2011 Design of medical Devices Conference, Apr. 12-14, 2011, Minneapolis, MN, 4 pages. |
Munro (2002), “Laparoscopic access: complications, technologies, and techniques,” Curro Opin. Obstet. Gynecol., 14(4): 365-74. |
Nio et al., “Efficiency of manual vs robotical (Zeus) assisted laparoscopic surgery in the performance of standardized tasks,” Surg Endosc, 2002; 16: 412-415. |
Office Action dated Apr. 17, 2007, received in related case U.S. Appl. No. 11/552,379, 5 pp. |
Office Action dated Apr. 3, 2009, received in related case U.S. Appl. No. 11/932,516, 43 pp. |
Office Action dated Aug. 18, 2006, received in related case U.S. Appl. No. 11/398,174, 6 pp. |
Office Action dated Aug. 21, 2006, received in related case U.S. Appl. No. 11/403,756, 6 pp. |
Office Action dated Oct. 29, 2007, received in related case U.S. Appl. No. 11/695,944, 6 pp. |
Office Action dated Oct. 9, 2008, received in related case U.S. Appl. No. 11/932,441, 4 pp. |
Oleynikov et al., “In Vivo Camera Robots Provide Improved Vision for Laparoscopic Surgery,” Computer Assisted Radiology and Surgery (CARS), Chicago, IL, Jun. 23-26, 2004b. |
Oleynikov et al., “In Vivo Robotic Laparoscopy,” Surgical Innovation, Jun. 2005, 12(2): 177-181. |
Oleynikov et al., “Miniature Robots Can Assist in Laparoscopic Cholecystectomy,” Journal of Surgical Endoscopy, 19-4: 473-476, 2005. |
O'Neill, “Surgeon takes new route to gallbladder,” The Oregonian, Jun. 2007, 2 pp. |
Orlando et al., (2003), “Needle and Trocar Injuries in Diagnostic Laparoscopy under Local Anesthesia: What Is the True Incidence of These Complications?” Journal of Laparoendoscopic & Advanced Surgical Techniques 13(3): 181-184. |
Park et al., “Trocar-less Instrumentation for Laparoscopy: Magnetic Positioning of Intra-abdominal Camera and Retractor,” Ann Surg, Mar. 2007; 245(3): 379-384. |
Park et al., “Experimental studies of transgastric gallbladder surgery: cholecystectomy and cholecystogastric anastomosis (videos),” Gastrointestinal Endoscopy, 2005; 61(4): 601-606. |
Tendick et al., “Applications of Micromechatronics in Minimally Invasive Surgery,” IEEE/ASME Transactions on Mechatronics, 1998; 3(1): 34-42. |
Thomann et al., “The Design of a new type of Micro Robot for the Intestinal Inspection,” Proceedings of the 2002 IEEE Intl. Conference on Intelligent Robots and Systems, Oct. 2002: 1385-1390. |
U.S. Appl. No. 60/180,960, filed Feb. 2000. |
U.S. Appl. No. 60/956,032, filed Aug. 15, 2007. |
U.S. Appl. No. 60/983,445, filed Oct. 29, 2007. |
U.S. Appl. No. 60/990,062, filed Nov. 26, 2007. |
U.S. Appl. No. 60/990,076, filed Nov. 26, 2007. |
U.S. Appl. No. 60/990,086, filed Nov. 26, 2007. |
U.S. Appl. No. 60/990,106, filed Nov. 26, 2007. |
U.S. Appl. No. 60/990,470, filed Nov. 27, 2007. |
U.S. Appl. No. 61/025,346, filed Feb. 1, 2008. |
U.S. Appl. No. 61/030,588, filed Feb. 22, 2008. |
U.S. Appl. No. 61/030,617, filed Feb. 22, 2008. |
Way et al., (editors), “Fundamentals of Laparoscopic Surgery,” Churchill Livingstone Inc., 1995, 14 pp. |
Wolfe et al., “Endoscopic Cholecystectomy: an analysis of Complications,” Arch. Surg. Oct. 1991; 126: 1192-1196. |
Worn et al., “Espirit Project No. 33915: Miniaturised Robot for Micro Manipulation (MINIMAN)”, Nov. 1998; http://www.ipr.ira.ujka.de/-microbot/miniman. |
Yu et al., “Microrobotic Cell Injection,” Proceedings of the 2001 IEEE International Conference on Robotics and Automation, May 2001; 620-625. |
International Search Report and Written Opinion of international application No. PCT/US2010/061137, mailed Feb. 11, 2011, 10 pp. |
Abbou et al., “Laparoscopic Radical Prostatectomy with a Remote Controlled Robot,” The Journal of Urology, Jun. 2001, 165: 1964-1966. |
Glukhovsky et al.., “The development and application of wireless capsule endoscopy,” Int. J. Med. Robot. Comput. Assist. Surgery, 2004; I(1): 114-123. |
Gong et al., Wireless endoscopy, Gastrointestinal Endoscopy 2000; 51(6): 725-729. |
Hanly et al., “Value of the SAGES Learning Center in introducing new technology,” Surgical Endoscopy, 2004; 19 (4): 477-483. |
Palm, William, “Rapid Prototyping Primer” May 1998 (revised Jul. 30, 2002) (htlp://www.me.psu.edu/lamancusa/rapidpro/primer/chapter2.htm). |
Number | Date | Country | |
---|---|---|---|
20120035582 A1 | Feb 2012 | US |
Number | Date | Country | |
---|---|---|---|
61371361 | Aug 2010 | US |