In communication systems, information may be transmitted from one physical location to another. Furthermore, it is typically desirable that the transport of this information is reliable, is fast and consumes a minimal amount of resources. One of the most common information transfer media is the serial communications link, which may be based on a single wire circuit relative to ground or other common reference, multiple such circuits relative to ground or other common reference, or multiple circuits used in relation to each other.
In the general case, a serial communications link is used over multiple time periods. In each such time period, a signal or signals over the link represents, and thus conveys, some amount of information typically measured in bits. Thus, at a high level, a serial communications link connects a transmitter to a receiver and the transmitter transmits a signal or signals each time period, the receiver receives the signal or signals (or at least something close, as noise and other effects might keep the received signal from being identical to the sent signal). The information being conveyed by the transmitter is “consumed” by the transmitter, and representative signals are generated. The receiver attempts to determine the conveyed information from the signals it receives. In the absence of overall errors, the receiver can output exactly the bits that were consumed by the transmitter.
The optimum design of a serial communications link often depends on the application for which it is used. In many cases, there are trade-offs between various performance metrics, such as bandwidth (number of bits that can be conveyed per unit time and/or per period), pin efficiency (number of bits or bit equivalents that can be conveyed at one time divided by the number of wires required for that conveyance), power consumption (units of energy consumed by the transmitter, signal logic, receiver, etc. per bit conveyed), SSO resilience and cross-talk resilience, and expected error rate.
An example of a serial communications link is a differential signaling (DS) link. Differential signaling operates by sending a signal on one wire and the opposite of that signal on a paired wire; the signal information is represented by the difference between the wires rather than their absolute values relative to ground or other fixed reference. Differential signaling enhances the recoverability of the original signal at the receiver over single ended signaling (SES), by cancelling crosstalk and other common-mode noise. There are a number of signaling methods that maintain the desirable properties of DS while increasing pin-efficiency over DS. Many of these attempts operate on more than two wires simultaneously, using binary signals on each wire, but mapping information in groups of bits.
Vector signaling is a method of signaling. With vector signaling, pluralities of signals on a plurality of wires are considered collectively although each of the plurality of signals may be independent. Each of the collective signals is referred to as a component and the number of plurality of wires is referred to as the “dimension” of the vector. In some embodiments, the signal on one wire is entirely dependent on the signal on another wire, as is the case with DS pairs, so in some cases the dimension of the vector may refer to the number of degrees of freedom of signals on the plurality of wires instead of the number of wires in the plurality of wires.
With binary vector signaling, each component takes on a coordinate value (or “coordinate”, for short) that is one of two possible values. As an example, eight SES wires may be considered collectively, with each component/wire taking on one of two values each signal period. A “code word” of this binary vector signaling is one of the possible states of that collective set of components/wires. A “vector signaling code” or “vector signaling vector set” is the collection of valid possible code words for a given vector signaling encoding scheme. A “binary vector signaling code” refers to a mapping and/or set of rules to map information bits to binary vectors. In the example of eight SES wires, where each component has a degree of freedom allowing it to be either of the two possible coordinates, the number of code words in the collection of code words is 2^8, or 256.
With non-binary vector signaling, each component has a coordinate value that is a selection from a set of more than two possible values. A “non-binary vector signaling code” refers to a mapping and/or set of rules to map information bits to non-binary vectors.
Examples of vector signaling methods are described in Cronie I, Cronie II, Cronie III, Fox I, Fox II, and Fox III.
A transmitter and receiver can communicate using a serial communications link, wherein the serial communications link uses signaling that is vector signaling, balanced and can be detected using a plurality of comparators having inputs coupled to differing combinations of sums of components of a vector signal.
The number of components can be four, or more or less than four. The number of coordinate values for a component can be four, or more or less than four. For example, a link might use four components with four possible coordinate values, a high value, a low value, and inverses of the high and low values, such that a signal having the high value cancels out three signals having the inverse of the low value and a signal having the inverse of the high value cancels out three signals having the low value and, in this manner, the link can convey three bits in a signal period using those four components by mapping the eight possible three bit combinations onto the eight vector code words represented by the four permutations of one high value and three inverses of the low value plus the four permutations of the inverse of one high value and three low values. In a more specific embodiment, the high and low values are voltage values and relative to a reference, the high value and its inverse have the same magnitude but opposite signs, the low value and its inverse have the same magnitude but opposite signs, and the high value has a magnitude three times the low value.
In a receiver, some number of comparators compares sums of signals. In a specific embodiment, there are three comparators, each which compares sums of two of the received signals and collectively the output of the three comparators identify the three bits encoded by the signals. Signal equalization as commonly provided using Decision Feedback Equalization techniques may be advantageously applied at this receive comparison stage, or may more conventionally be applied to the received wire signals.
In accordance with at least one embodiment of the invention, processes and apparatuses provide for transmitting data over physical channels to provide a high speed, low latency interface providing high total bandwidth at low power utilization, such as to interconnect integrated circuit chips in a multi-chip system. In some embodiments, different voltage, current, etc. levels are used for signaling and more than two levels may be used, such as a ternary vector signaling code wherein each wire signal has one of three values, or a quaternary signaling system wherein each wire signal has one of four values.
This Brief Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Brief Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter. Other objects and/or advantages of the present invention will be apparent to one of ordinary skill in the art upon review of the Detailed Description and the included drawings.
Various embodiments in accordance with the present disclosure will be described with reference to the drawings. Same numbers are used throughout the disclosure and figures to reference like components and features.
Despite the increasing technological ability to integrate entire systems into a single integrated circuit, multiple chip systems and subsystems retain significant advantages. The physical infrastructure to support high-bandwidth chip-to-chip connectivity is available, if the power, complexity, and other circuit implementation issues for such interfaces could be resolved.
For purposes of description and without limitation, example embodiments of at least some aspects of the invention herein described assume a systems environment of (1) at least one point-to-point communications interface connecting two integrated circuit chips representing a transmitter and a receiver, (2) wherein the communications interface is supported by an interconnection group of four high-speed transmission line signal wires providing medium loss connectivity at, as an example, 18.75 GHz (37.3 GigaSymbols/second) without excessive ripple loss characteristics or reflections, (3) the interconnection group of signal wires displaying low intra-ensemble skew, and (4) the communications interface operating at the example signaling rate of 37.3 GigaSymbols/second, delivering an aggregate throughput of approximately 112 gigabits/sec over the four wire circuit.
As subsequently described, at least one embodiment of the invention uses low signal swing current mode logic pin drivers and interconnection wiring terminated at both transmitter and receiver.
Physical Channel Wiring
Several example physical channel topologies in accordance with at least one embodiment of the invention are shown in
Example configuration 201 illustrates in cross-section a quad-box stripline, with four signal conductors 202 embedded in dielectric medium 203 between ground planes 204. In some embodiments, vias 205 are incorporated to interconnect ground planes 204. In some embodiments, the locations of signal conductors 202 are modified by introducing periodic horizontal position offsets so as to provide more uniform characteristics for the four signal paths. As one example, the upper two signal conductors of 202 may be shifted left as the lower two signal conductors of 202 are simultaneously shifted right as illustrated in 210, and then the direction of these shifts reversed on each subsequent offset cycle, with the period and extent of the offsets chosen to provide more uniform characteristics for the four signal paths.
Example configuration 211 illustrates in cross-section a quadax cable, with four signal conductors 212 embedded in dielectric medium 213 surrounded or essentially surrounded by conductive shield 214. The external profile of the dielectric medium and conductive shield will in practice be a balance between manufacturing simplicity (e.g. a round profile as in conventional coax cable) and optimized transmission characteristics (e.g. the square or rectangular shape of 201) as is suggested by the profile provided for illustrative purposes at 214. As with the previous example, periodic perturbations of the inter-wire spacing of conductors 212 and/or their locations may be made to provide more uniform characteristics for the four signal paths.
Example configuration 221 shows a twisted quad cable, where individually insulated signal conductors 222 are twisted as a group around a common axis, either with or without a central insulating strand 223 to control overall diameter and spacing. Some embodiments may further optionally incorporate at least one of a central conductive neutral wire, surrounding insulation layer, and surrounding conductive shield layer to allow additional control over impedance characteristics and/or noise isolation.
It will be apparent to one familiar with the art that each example of
Other known cable designs including quad microstripline, dual pair microstripline, and dual twisted pair may also be usable with the described invention under some conditions. With such cables, not all signal propagation modes for the subsequently described H4 coded signals are identical, typically with one of the three major propagation modes experiencing reduced receive signal levels and slower propagation velocity. Some embodiments of the invention provide compensation for these effects through additional amplification of received signals of the degraded mode and delayed sampling of that mode's received signal values. Other embodiments provide a legacy communication capability, where signals are communicated using conventional dual differential transmission and reception, with reduced aggregate communications throughput.
Example signal levels, signal frequencies, and physical dimensions described herein are provided for purposes of explanation, and are not limiting. Other embodiments of the invention may utilize different signaling levels, connection topology, termination methods, and/or other physical interfaces, including optical, inductive, capacitive, or electrical interconnection. Similarly, examples based on unidirectional communication from transmitter to receiver are presented for clarity of description; combined transmitter-receiver embodiments and bidirectional communication embodiments are also explicitly in accordance with the invention.
Encoding Information Using Hadamard Transforms
The Hadamard Transform, also known as the Walsh-Hadamard transform, is a square matrix of entries +1 and −1 so arranged that both all rows and all columns are mutually orthogonal. Hadamard matrices are known for all sizes 2N as well as for selected other sizes. In particular, the descriptions herein rely on 2×2 and 4×4 Hadamard matrices.
The order 2 Hadamard matrix is:
and conventional differential encoding of one bit A may be obtained by multiplying A by the Hadamard matrix H2 to obtain values for the resulting output signals W and X. It will be apparent to one familiar with the art that multiplication times the upper vector of the matrix corresponds to introduction of a positive or negative common-mode signal onto W and X, a transmission mode not generally used in practice on differential circuits, while multiplication times the lower vector of the matrix produces the familiar differential signals of {+1, −1} for A positive, and {−1, +1} for A negative. This is illustrated in
The order 4 Hadamard matrix is:
and encoding of the three bits A, B, C may be obtained by multiplying those bits times the Hadamard matrix H4 to obtain four output values. As in the previous example, the uppermost vector corresponds to common mode signaling, which is not used herein, with the next three vectors being used to encode bits A, B, and C respectively into outputs W, X, Y, Z. This is graphically illustrated in
As in the example of
One familiar with the art will note that all possible values of A, B, C encoded in this manner result in mode summed values for W, X, Y, Z which are balanced; that is, summing to the constant value zero. If the mode summed values for W, X, Y, Z are scaled such that their maximum absolute value is 1 (that is, the signals are in the range +1 to −1 for convenience of description) it will be noted that all achievable values are permutations of the values {+1, −⅓, −⅓, −⅓} or of the values {−1, ⅓, ⅓, ⅓}. These are called the code words of the vector signaling code H4.
H4 Code
As used herein, “H4” code, also called Ensemble NRZ code, refers to a vector signaling code and associated logic for such code wherein a transmitter consumes three bits and outputs signals on four wires in each symbol period. In some embodiments, parallel configurations comprising more than one group may be used, with each group comprising three bits transmitted on four wires per symbol period and an H4 encoder and an H4 decoder per group. With an H4 code, there are four signal wires and four possible coordinate values, represented herein as +1, +⅓, −⅓, and −1. The H4 code words are balanced, in that each code word is either one of the four permutations of (+1, −⅓, −⅓, −⅓) or one of the four permutations of (−1, +⅓, +⅓, +⅓), all such permutations summing to the equivalent of a zero value. H4 encoded signal waveforms are shown in
In a specific embodiment, a +1 might be sent as a signal using an offset of 200 mV, while a −1 is sent as a signal using an offset of −200 mV, a +⅓ is sent as a signal using an offset of 66 mV, and a −⅓ is sent as a signal using an offset of −66 mV, wherein the voltage levels are with respect to a fixed reference. Note that the average of all of the signals sent (or received, disregarding asymmetric effects of skew, crosstalk, and attenuation) in any single time interval regardless of the code word represented is “0”, corresponding to the offset voltage. There are eight distinct code words in H4, which is sufficient to encode three binary bits per transmitted symbol interval.
Other variants of the H4 coding described above exist as well. The signal levels are given as examples, without limitation, and represent incremental signal values from a nominal reference level.
Encoder and Transmitter
High-speed communications embodiments often exceed the performance capabilities of a single communications circuit instance. As an example of how such a limitation is overcome,
In one embodiment in accordance with the invention, source data, which may be subjected to scrambling, encryption, or encapsulation beyond the scope of this disclosure, is provided at 405. Multiplexer 410 sequentially distributes consecutive source data elements to the four encoding phases, and multiplexer 440 sequentially combines the resulting four encoded results into a single data stream for transmission. One embodiment accepts source data in twelve bit increments, which is then distributed as four three-bit portions to the four processing phases, and subsequently combined to produce the higher rate transmitted stream. Each H4 encoder 420 maps three bits of user data to one H4 code word, with the results buffered in flip-flops 430. At each symbol interval, one buffered H4 code word is selected, and then converted to the chosen wire signal levels by line drivers 450 for transmission on interconnection 460. This allows for transmission rates to be multiples of the processing rates of a single encoder or decoder.
The specific mapping function between three bits of source data and a specific H4 code word may be chosen for implementation convenience, as will be subsequently described.
Receiver and Decoder
The complementary receiver and decoder for the described H4 transmitter system perform a number of operations. The interconnection wires are terminated in a matched impedance, conventional amplification and filtration may be applied to compensate for channel attenuation, received signal levels corresponding to the symbol representations of the H4 code are measured, symbols interpreted as valid code words of the H4 code, and the detected code words mapped back to received data.
At least one embodiment in accordance with the invention combines at least some aspects of these receiver and decoder operations for efficiency. One embodiment in accordance with the invention shown in
Three instances of such multi-input comparator circuits operating on permutations of the same four input signals are sufficient to detect all code words of H4. That is, given a multi-input comparator that performs the operation
R=(J+L)−(K+M) (Eqn. 3)
where J, K, L, M are variables representing the four input signals values, then as one example and without limitation, the input permutations producing the three results R0, R1, R2 based on the equations
R0=(W+Y)−(X+Z) (Eqn. 4)
R1=(Y+Z)−(W+X) (Eqn. 5)
R2=(Y+X)−(Z+W) (Eqn. 6)
are sufficient to unambiguously identify each code word of vector signaling code H4 as represented by receive signal input values W, X, Y, Z. The values R0, R1, R2 may represent analog signal results if both the addition and difference functions are performed linearly, or may represent binary outputs if the difference function is performed by a digital comparator, equivalent to performing a sign( ) function on analog outputs. Because of the nature of the encoded H4 code words, none of the analog results R0, R1, R2 will be at zero, implying that none of the corresponding digital comparator results will be ambiguous.
For some encoder mappings of source data to transmitted H4 code words, a direct relationship between the detected result of these three receive comparators and the receive data exists, eliminating the need for additional decode mapping logic at the receiver. Thus, a preferred embodiment will first select the desired permutations of input signals to be processed by each of the three multi-input receive comparators, will then document the three comparator output values obtained for each valid code word, and will then define a transmit mapping function that performs the corresponding mapping of three transmit data bits to the four transmit signal values of the corresponding code word. One example of such a mapping is shown in
As with the described transmitter example, multiple processing phases may be used to allow symbol signaling rates greater than might be supported by a single circuit instance in the available semiconductor technology.
As shown in
H4 Code with Digital Feedback Equalization
Modern high-speed serial receiver designs are strongly reliant on Decision Feedback Equalization (DFE) methods, which are well known solutions for compensation of transmission medium perturbations including signal reflections and crosstalk. It had been observed that such perturbations are driven by delayed components of previously transmitted data (e.g. as delayed reflections from impedance discontinuities in the communications path) which interfere with subsequently transmitted data. Thus, detected data may be stored by a DFE system at the receiver, and suitably delayed and attenuated components subtracted from the current input signal so as to nullify those effects.
This simple feedback loop DFE is constrained by the need to fully detect the value of the currently received data bit in time to feed it back as compensation for signals in the next signal interval. As transmission rates increase, this window of time becomes smaller. Furthermore, distributing receive processing across multiple processing phases increases throughput, at the cost of latency. Thus, information about a given receive interval's data may not be available for many receive cycles. Solutions using “unrolled” DFE correction are known, allowing inline compensation to be performed for the critical initial receive intervals of the DFE process.
Classic binary DFE solutions may be combined with the described H4 receiver designs at the point where individual modulation modes (representing individual data bits) are detected, if the signal reflections requiring compensation are similar for the four signal paths. Each mode is communicated as signals over all four signal paths, but the combinations of such signals is by definition orthogonal for each mode, thus signal perturbations on distinct paths is possible through judicious combination of modal compensations. It should be noted that signals encoded on the wire may take on any of four values (albeit two at any one time) while signals representing each transmission mode are always two-valued. Thus, storage and delay components of a DFE are at least twice as complex if performed on wire signals versus modulation mode signals.
One embodiment in accordance with the invention is shown in the block diagram of
As is well known to those familiar with the art, the required high gain of a digital comparator is often obtained using a series of stages of moderate gain. External signals may be injected at an interconnecting circuit node between two such stages; in one common example, an adjustable DC level is introduced at such a node to correct the comparator's input balance or offset. In another embodiment, elements 710 and 740 may thus represent stages within a multi-input comparator as in 520 of
As is common practice, the Decision Feedback Equalization corresponding to at least the first several bit times preceding the current receive interval are “unrolled” or performed inline along with the data path processing for higher performance, rather than by a closed loop feedback method, by the three unrolled binary DFE circuits 720, with DFE corresponding to the remaining bit times being compensated being performed by conventional feedback loop DFE at 730.
In the embodiment shown, feedback DFE circuits 730 accept digital bit inputs and output appropriately scaled and delayed analog signals, while unrolled DFE circuits 720 accepts digital inputs and produces digital bit outputs. Other embodiments in accordance with the invention may utilize different combinations of input signals and output results in the DFE components. In one embodiment, the three DFE circuits 730 operate on analog values 725, rather than from the equivalent binary values 745 obtained from comparators 740.
An alternative and more complex DFE embodiment of the invention is also known, which may be applied if the reflections are markedly different amongst the four wires. In this approach shown in
The number of bits of DFE compensation utilized in either described embodiment of the invention, both as inline “unrolled” DFE and as conventional feedback DFE, may be chosen based on the needs of the specific communications system, without limitation. At least one embodiment in accordance with the invention includes at least some DFE operations within the multiphase processing portion of the receiver.
Receive Method Description
To summarize and clarify the previous descriptions of receiver operations and their interactions with receive mode DFE and/or receive signal DFE, the following descriptions are made using the diagram of
In element 910, signals from the separate channels of the communications medium are received, obtaining channel signal values representing the signal of each channel.
In some embodiments, additional processing including amplification, filtering, and frequency-dependent amplification may be performed on the signals of each channel as part of obtaining channel signal values, as is common practice. In some embodiments, correction signals derived from past channel activity are incorporated in this additional processing, as one example to neutralize past signal reflections and other spurious communications channel effects. Such correction based on past activity is known as Decision Feedback Equalization, herein being applied to channel signals.
In element 920, elements of the vector signaling code are detected by a method comprising obtaining a first sum of two selected channel signal values, obtaining a second sum of the remaining two channel signal values, and comparison of the first sum and the second sum to obtain the detected element. Multiple elements are detected by choosing different selected channel signal values for each element; for the example H4 vector signaling code, three such elements may be detected by three different permutations of channel signal values used to produce a first sum and a second sum.
In some embodiments, modulation mode equalization may be formed by incorporating correction signals derived from previously detected elements of the vector signaling code into detection of current elements of the vector signaling code, as one example in an alternative method of neutralizing past signal reflections and other spurious communications channel effects. As examples, a correction signal representing a compensation for past signal reflections and other spurious communication channel effects impacting one or more particular modulation modes may be introduced into element detection, so as to modify inputs to the comparison (e.g., the first or second sums), or to bias the comparison operation itself. Such correction based on past activity is known as Decision Feedback Equalization, herein being applied to modulation modes of the communications channel to perform modulation mode equalization.
In element 920, elements of the vector signaling code are detected by a method comprising obtaining a first sum of two selected channel signal values, obtaining a second sum of the remaining two channel signal values, and comparison of the first sum and the second sum to obtain the detected element. Multiple elements are detected by choosing different selected channel signal values for each element; for the example H4 vector signaling code, three such elements may be detected by three different permutations of channel signal values used to produce a first sum and a second sum.
In element 930, received data derived from the detected elements of the vector signaling code are output. As previously described, in preferred embodiments the transmit encoding is chosen such that the detected elements of the vector signaling code directly correspond to bits of the received data.
The described method thus measures and acts upon physical signal inputs, and produces a physical result of received data, which may be acted upon by subsequent components of a larger system or process.
The examples presented herein illustrate the use of vector signaling codes for point-to-point chip-to-chip interconnection. However, this should not been seen in any way as limiting the scope of the described invention. The methods disclosed in this application are equally applicable to other interconnection topologies and other communication media including optical, capacitive, inductive, and wireless communications. Thus, descriptive terms such as “voltage” or “signal level” should be considered to include equivalents in other measurement systems, such as “optical intensity”, “RF modulation”, etc. As used herein, the term “physical signal” includes any suitable behavior and/or attribute of a physical phenomenon capable of conveying information. Physical signals may be tangible and non-transitory.
This application claims priority to U.S. provisional application No. 61/812,667 filed on Apr. 16, 2013, the contents of which are incorporated herein by reference in their entirety. The following references are herein incorporated by reference in their entirety for all purposes: U.S. Patent Publication No. 2011/0268225 of U.S. patent application Ser. No. 12/784,414, filed May 20, 2010, naming Harm Cronie and Amin Shokrollahi, entitled “Orthogonal Differential Vector Signaling” (hereinafter “Cronie I”);U.S. Patent Publication No. 2011/0302478 of U.S. patent application Ser. No. 12/982,777, filed Dec. 30, 2010, naming Harm Cronie and Amin Shokrollahi, entitled “Power and Pin Efficient Chip-to-Chip Communications with Common-Mode Resilience and SSO Resilience” (hereinafter “Cronie II”);U.S. patent application Ser. No. 13/030,027, filed Feb. 17, 2011, naming Harm Cronie, Amin Shokrollahi and Armin Tajalli, entitled “Methods and Systems for Noise Resilient, Pin-Efficient and Low Power Communications with Sparse Signaling Codes” (hereinafter “Cronie III”);U.S. Provisional Patent Application No. 61/753,870, filed Jan. 17, 2013, naming John Fox, Brian Holden, Peter Hunt, John D Keay, Amin Shokrollahi, Richard Simpson, Anant Singh, Andrew Kevin John Stewart, and Giuseppe Surace, entitled “Methods and Systems for Chip-to-chip Communication with Reduced Simultaneous Switching Noise” (hereinafter called “Fox I”); andU.S. Provisional Patent Application No. 61/763,403, filed Feb. 11, 2013, naming John Fox, Brian Holden, Ali Hormati, Peter Hunt, John D Keay, Amin Shokrollahi, Anant Singh, Andrew Kevin John Stewart, Giuseppe Surace, and Roger Ulrich, entitled “Methods and Systems for High Bandwidth Chip-to-Chip Communications Interface” (hereinafter called “Fox II”).U.S. Provisional Patent Application No. 61/773,709, filed Mar. 6, 2013, naming John Fox, Brian Holden, Peter Hunt, John D Keay, Amin Shokrollahi, Andrew Kevin John Stewart, Giuseppe Surace, and Roger Ulrich, entitled “Methods and Systems for High Bandwidth Chip-to-Chip Communications Interface” (hereinafter called “Fox III”).
Number | Name | Date | Kind |
---|---|---|---|
3196351 | Slepian | Jul 1965 | A |
3636463 | Ongkiehong | Jan 1972 | A |
3939468 | Mastin | Feb 1976 | A |
4163258 | Ebihara et al. | Jul 1979 | A |
4181967 | Nash et al. | Jan 1980 | A |
4206316 | Burnsweig et al. | Jun 1980 | A |
4276543 | Miller | Jun 1981 | A |
4486739 | Franaszek et al. | Dec 1984 | A |
4499550 | Ray et al. | Feb 1985 | A |
4722084 | Morton | Jan 1988 | A |
4772845 | Scott | Sep 1988 | A |
4774498 | Traa | Sep 1988 | A |
4864303 | Ofek | Sep 1989 | A |
4897657 | Brubaker | Jan 1990 | A |
5053974 | Penz | Oct 1991 | A |
5166956 | Baltus et al. | Nov 1992 | A |
5168509 | Nakamura et al. | Dec 1992 | A |
5283761 | Gillingham | Feb 1994 | A |
5287305 | Yoshida | Feb 1994 | A |
5311516 | Kuznicki | May 1994 | A |
5412689 | Chan et al. | May 1995 | A |
5449895 | Hecht | Sep 1995 | A |
5459465 | Kagey | Oct 1995 | A |
5511119 | Lechleider | Apr 1996 | A |
5553097 | Dagher | Sep 1996 | A |
5566193 | Cloonan | Oct 1996 | A |
5599550 | Kohlruss et al. | Feb 1997 | A |
5659353 | Kostreski et al. | Aug 1997 | A |
5727006 | Dreyer | Mar 1998 | A |
5802356 | Gaskins | Sep 1998 | A |
5825808 | Hershey et al. | Oct 1998 | A |
5856935 | Moy | Jan 1999 | A |
5875202 | Venters | Feb 1999 | A |
5945935 | Kusumoto | Aug 1999 | A |
5949060 | Schattschneider | Sep 1999 | A |
5995016 | Perino | Nov 1999 | A |
6005895 | Perino et al. | Dec 1999 | A |
6084883 | Norrell et al. | Jul 2000 | A |
6172634 | Leonowich et al. | Jan 2001 | B1 |
6175230 | Hamblin et al. | Jan 2001 | B1 |
6232908 | Nakaigawa | May 2001 | B1 |
6278740 | Nordyke | Aug 2001 | B1 |
6346907 | Dacy | Feb 2002 | B1 |
6359931 | Perino et al. | Mar 2002 | B1 |
6378073 | Davis | Apr 2002 | B1 |
6398359 | Silverbrook | Jun 2002 | B1 |
6404820 | Postol | Jun 2002 | B1 |
6417737 | Moloudi et al. | Jul 2002 | B1 |
6452420 | Wong | Sep 2002 | B1 |
6473877 | Sharma | Oct 2002 | B1 |
6483828 | Balachandran | Nov 2002 | B1 |
6504875 | Perino et al. | Jan 2003 | B2 |
6509773 | Buchwald | Jan 2003 | B2 |
6556628 | Poulton et al. | Apr 2003 | B1 |
6563382 | Yang et al. | May 2003 | B1 |
6621427 | Greenstreet | Sep 2003 | B2 |
6624699 | Yin | Sep 2003 | B2 |
6650638 | Walker et al. | Nov 2003 | B1 |
6661355 | Cornelius et al. | Dec 2003 | B2 |
6766342 | Kechriotis | Jul 2004 | B2 |
6839429 | Gaikwald et al. | Jan 2005 | B1 |
6865234 | Agazzi | Mar 2005 | B1 |
6865236 | Terry | Mar 2005 | B1 |
6954492 | Williams | Oct 2005 | B1 |
6990138 | Bejjani et al. | Jan 2006 | B2 |
6999516 | Rajan | Feb 2006 | B1 |
7023817 | Kuffner | Apr 2006 | B2 |
7053802 | Cornelius | May 2006 | B2 |
7085153 | Ferrant et al. | Aug 2006 | B2 |
7142612 | Horowitz et al. | Nov 2006 | B2 |
7142865 | Tsai | Nov 2006 | B2 |
7167019 | Broyde et al. | Jan 2007 | B2 |
7180949 | Kleveland et al. | Feb 2007 | B2 |
7184483 | Rajan | Feb 2007 | B2 |
7335976 | Chen | Feb 2008 | B2 |
7356213 | Cunningham et al. | Apr 2008 | B1 |
7358869 | Chiarulli et al. | Apr 2008 | B1 |
7362130 | Broyde et al. | Apr 2008 | B2 |
7389333 | Moore et al. | Jun 2008 | B2 |
7400276 | Sotiriadis | Jul 2008 | B1 |
7428273 | Foster | Sep 2008 | B2 |
7620116 | Bessios | Nov 2009 | B2 |
7633850 | Ahn | Dec 2009 | B2 |
7643588 | Visalli | Jan 2010 | B2 |
7656321 | Wang | Feb 2010 | B2 |
7697915 | Behzad | Apr 2010 | B2 |
7706524 | Zerbe | Apr 2010 | B2 |
7746764 | Rawlins et al. | Jun 2010 | B2 |
7787572 | Scharf et al. | Aug 2010 | B2 |
7841909 | Murray | Nov 2010 | B2 |
7869497 | Benvenuto | Jan 2011 | B2 |
7869546 | Tsai | Jan 2011 | B2 |
7882413 | Chen et al. | Feb 2011 | B2 |
7933770 | Kruger et al. | Apr 2011 | B2 |
8064535 | Wiley | Nov 2011 | B2 |
8091006 | Prasad et al. | Jan 2012 | B2 |
8106806 | Toyomura | Jan 2012 | B2 |
8149906 | Saito | Apr 2012 | B2 |
8159375 | Abbasfar | Apr 2012 | B2 |
8159376 | Abbasfar | Apr 2012 | B2 |
8199849 | Oh | Jun 2012 | B2 |
8253454 | Lin | Aug 2012 | B2 |
8279094 | Abbasfar | Oct 2012 | B2 |
8295250 | Gorokhov | Oct 2012 | B2 |
8310389 | Chui | Nov 2012 | B1 |
8406315 | Tsai | Mar 2013 | B2 |
8429495 | Przybylski | Apr 2013 | B2 |
8442099 | Sederat | May 2013 | B1 |
8442210 | Zerbe | May 2013 | B2 |
8443223 | Abbasfar | May 2013 | B2 |
8462891 | Kizer et al. | Jun 2013 | B2 |
8498368 | Husted | Jul 2013 | B1 |
8520493 | Goulahsen | Aug 2013 | B2 |
8547272 | Nestler et al. | Oct 2013 | B2 |
8578246 | Mittelholzer | Nov 2013 | B2 |
8588280 | Oh et al. | Nov 2013 | B2 |
8593305 | Tajalli et al. | Nov 2013 | B1 |
8638241 | Sudhakaran | Jan 2014 | B2 |
8649445 | Cronie | Feb 2014 | B2 |
8649460 | Ware et al. | Feb 2014 | B2 |
8718184 | Cronie | May 2014 | B1 |
8780687 | Clausen | Jul 2014 | B2 |
8782578 | Tell | Jul 2014 | B2 |
8879660 | Peng | Nov 2014 | B1 |
8949693 | Ordentlich | Feb 2015 | B2 |
8951072 | Hashim | Feb 2015 | B2 |
8989317 | Holden | Mar 2015 | B1 |
9036764 | Hossain | May 2015 | B1 |
9069995 | Cronie | Jun 2015 | B1 |
9077386 | Holden | Jul 2015 | B1 |
9093791 | Liang | Jul 2015 | B2 |
9100232 | Hormati | Aug 2015 | B1 |
9281785 | Sjoland | Mar 2016 | B2 |
9331962 | Lida | May 2016 | B2 |
9362974 | Fox | Jun 2016 | B2 |
9374250 | Musah | Jun 2016 | B1 |
20010006538 | Simon et al. | Jul 2001 | A1 |
20010055344 | Lee et al. | Dec 2001 | A1 |
20020034191 | Shattil | Mar 2002 | A1 |
20020044316 | Myers | Apr 2002 | A1 |
20020057592 | Robb | May 2002 | A1 |
20020154633 | Shin | Oct 2002 | A1 |
20020163881 | Dhong | Nov 2002 | A1 |
20020174373 | Chang | Nov 2002 | A1 |
20030071745 | Greenstreet | Apr 2003 | A1 |
20030086366 | Branlund | May 2003 | A1 |
20030105908 | Perino et al. | Jun 2003 | A1 |
20030146783 | Bandy et al. | Aug 2003 | A1 |
20030227841 | Tateishi et al. | Dec 2003 | A1 |
20040003336 | Cypher | Jan 2004 | A1 |
20040003337 | Cypher | Jan 2004 | A1 |
20040057525 | Rajan et al. | Mar 2004 | A1 |
20040086059 | Eroz et al. | May 2004 | A1 |
20040156432 | Hidaka | Aug 2004 | A1 |
20050057379 | Jansson | Mar 2005 | A1 |
20050135182 | Perino et al. | Jun 2005 | A1 |
20050149833 | Worley | Jul 2005 | A1 |
20050152385 | Cioffi | Jul 2005 | A1 |
20050174841 | Ho | Aug 2005 | A1 |
20050213686 | Love et al. | Sep 2005 | A1 |
20050259727 | Benvenuto | Nov 2005 | A1 |
20050286643 | Ozawa et al. | Dec 2005 | A1 |
20060115027 | Srebranig | Jun 2006 | A1 |
20060159005 | Rawlins et al. | Jul 2006 | A1 |
20060269005 | Laroia et al. | Nov 2006 | A1 |
20070030796 | Green | Feb 2007 | A1 |
20070188367 | Yamada | Aug 2007 | A1 |
20070260965 | Schmidt et al. | Nov 2007 | A1 |
20070263711 | Kramer et al. | Nov 2007 | A1 |
20070265533 | Tran | Nov 2007 | A1 |
20070283210 | Prasad et al. | Dec 2007 | A1 |
20080104374 | Mohamed | May 2008 | A1 |
20080159448 | Anim-Appiah et al. | Jul 2008 | A1 |
20080169846 | Lan et al. | Jul 2008 | A1 |
20080273623 | Chung et al. | Nov 2008 | A1 |
20080284524 | Kushiyama | Nov 2008 | A1 |
20090059782 | Cole | Mar 2009 | A1 |
20090092196 | Okunev | Apr 2009 | A1 |
20090132758 | Jiang | May 2009 | A1 |
20090154500 | Diab et al. | Jun 2009 | A1 |
20090154604 | Lee et al. | Jun 2009 | A1 |
20090185636 | Palotai et al. | Jul 2009 | A1 |
20090193159 | Li | Jul 2009 | A1 |
20090212861 | Lim et al. | Aug 2009 | A1 |
20090228767 | Oh et al. | Sep 2009 | A1 |
20090257542 | Evans et al. | Oct 2009 | A1 |
20100020898 | Stojanovic | Jan 2010 | A1 |
20100023838 | Shen | Jan 2010 | A1 |
20100046644 | Mazet | Feb 2010 | A1 |
20100104047 | Chen et al. | Apr 2010 | A1 |
20100180143 | Ware et al. | Jul 2010 | A1 |
20100205506 | Hara | Aug 2010 | A1 |
20100296550 | Abou Rjeily | Nov 2010 | A1 |
20100296556 | Rave | Nov 2010 | A1 |
20110014865 | Seo et al. | Jan 2011 | A1 |
20110051854 | Kizer et al. | Mar 2011 | A1 |
20110072330 | Kolze | Mar 2011 | A1 |
20110084737 | Oh et al. | Apr 2011 | A1 |
20110127990 | Wilson et al. | Jun 2011 | A1 |
20110235501 | Goulahsen | Sep 2011 | A1 |
20110268225 | Cronie et al. | Nov 2011 | A1 |
20110299555 | Cronie | Dec 2011 | A1 |
20110302478 | Cronie et al. | Dec 2011 | A1 |
20110317559 | Kern et al. | Dec 2011 | A1 |
20120063291 | Hsueh | Mar 2012 | A1 |
20120152901 | Nagorny | Jun 2012 | A1 |
20120161945 | Single | Jun 2012 | A1 |
20120213299 | Cronie et al. | Aug 2012 | A1 |
20130010892 | Cronie et al. | Jan 2013 | A1 |
20130051162 | Amirkhany et al. | Feb 2013 | A1 |
20130259113 | Kumar | Oct 2013 | A1 |
20140016724 | Cronie | Jan 2014 | A1 |
20140226455 | Schumacher | Aug 2014 | A1 |
20140254730 | Kim et al. | Sep 2014 | A1 |
20150010044 | Zhang | Jan 2015 | A1 |
20150078479 | Whitby-Stevens | Mar 2015 | A1 |
20150333940 | Shokrollahi | Nov 2015 | A1 |
20150381232 | Ulrich | Dec 2015 | A1 |
20160020796 | Hormati | Jan 2016 | A1 |
20160020824 | Ulrich | Jan 2016 | A1 |
20160036616 | Holden | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
101478286 | Jul 2009 | CN |
2039221 | Mar 2009 | EP |
2003163612 | Jun 2003 | JP |
2009084121 | Jul 2009 | WO |
2010031824 | Mar 2010 | WO |
2011119359 | Sep 2011 | WO |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority, mailed Nov. 5, 2012, in International Patent Application S.N. PCT/EP2012/052767, 7 pages. |
International Search Report and Written Opinion of the International Searching Authority, mailed Jul. 14, 2011 in International Patent Application S.N. PCT/EP2011/002170, 10 pages. |
Healey, A., et al., “A Comparison of 25 Gbps NRZ & PAM-4 Modulation used in Legacy & Premium Backplane Channels”, DesignCon 2012, 16 pages. |
International Search Report for PCT/US2014/053563, dated Nov. 11, 2014, 2 pages. |
Clayton, P., “Introduction to Electromagnetic Compatibility”, Wiley-Interscience, 2006. |
She et al., “A Framework of Cross-Layer Superposition Coded Multicast for Robust IPTV Services over WiMAX,” IEEE Communications Society subject matter experts for publication in the WCNC 2008 proceedings, Mar. 31, 2008-Apr. 3, 2008, pp. 3139-3144. |
Poulton, et al., “Multiwire Differential Signaling”, UNC-CH Department of Computer Science Version 1.1, Aug. 6, 2003. |
Skliar et al., A Method for the Analysis of Signals: the Square-Wave Method, Mar, 2008, Revista de Matematica: Teoria y Aplicationes, pp. 09-129. |
Loh, M., et al., “A 3×9 Gb/s Shared, All-Digital CDR for High-Speed, High-Density I/O”, Matthew Loh, IEEE Journal of Solid-State Circuits, Vo. 47, No. 3, Mar. 2012. |
International Search Report and Written Opinion for PCT/US14/052986 mailed Nov. 24, 2014. |
Burr, “Spherical Codes for M-ARY Code Shift Keying”, University of York, Apr. 2, 1989, pp. 67-72, United Kingdom. |
Slepian, D., “Premutation Modulation”, IEEE, vol. 52, No. 3, Mar. 1965, pp. 228-236. |
Stan, M., et al., “Bus-Invert Coding for Low-Power I/O, IEEE Transactions on Very Large Scale Integration (VLSI) Systems”, vol. 3, No. 1, Mar. 1995, pp. 49-58. |
Tallani, L., et al., “Transmission Time Analysis for the Parallel Asynchronous Communication Scheme”, IEEE Tranactions on Computers, vol. 52, No. 5, May 2003, pp. 558-571. |
International Search Report and Written Opinion for PCT/EP2012/052767 mailed May 11, 2012. |
International Search Report and Written Opinion for PCT/EP2011/059279 mailed Sep. 22, 2011. |
International Search Report and Written Opinion for PCT/EP2011/074219 mailed Jul. 4, 2012. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/EP2013/002681, dated Feb. 25, 2014, 15 pages. |
Ericson, T., et al., “Spherical Codes Generated by Binary Partitions of Symmetric Pointsets”, IEEE Transactions on Information Theory, vol. 41, No. 1, Jan. 1995, pp. 107-129. |
Farzan, K., et al., “Coding Schemes for Chip-to-Chip Interconnect Applications”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14, No. 4, Apr. 2006, pp. 393-406. |
Abbasfar, A., “Generalized Differential Vector Signaling”, IEEE International Conference on Communications, ICC '09, (Jun. 14, 2009), pp. 1-5. |
Dasilva et al., “Multicarrier Orthogonal CDMA Signals for Quasi-Synchronous Communication Systems”, IEEE Journal on Selected Areas in Communications, vol. 12, No. 5 (Jun. 1, 1994), pp. 842-852. |
Wang et al., “Applying CDMA Technique to Network-on-Chip”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 15, No. 10 (Oct. 1, 2007), pp. 1091-1100. |
Cheng, W., “Memory Bus Encoding for Low Power: A Tutorial”, Quality Electronic Design, IEEE, International Symposium on Mar. 26-28, 2001, pp. 199-204, Piscataway, NJ. |
Brown, L., et al., “V.92: The Last Dial-Up Modem?”, IEEE Transactions on Communications, IEEE Service Center, Piscataway, NJ., USA, vol. 52, No. 1, Jan. 1, 2004, pp. 54-61. XP011106836, ISSN: 0090-6779, DOI: 10.1109/tcomm.2003.822168, pp. 55-59. |
Notification of Transmittal of International Search Report and the Written Opinion of the International Searching Authority, for PCT/US2015/018363, mailed Jun. 18, 2015, 13 pages. |
Counts, L., et al., “One-Chip Slide Rule Works with Logs, Antilogs for Real-Time Processing,” Analog Devices Computational Products 6, Reprinted from Electronic Design, May 2, 1985, 7 pages. |
Design Brief 208 Using the Anadigm Multiplier CAM, Copyright 2002 Anadigm, 6 pages. |
Grahame, J., “Vintage Analog Computer Kits,” posted on Aug. 25, 2006 in Classic Computing, 2 pages, http.//www.retrothing.com/2006/08/classic—analog—html. |
Schneider, J., et al., “ELEC301 Project: Building an Analog Computer,” Dec. 19, 1999, 8 pages, http://www.clear.rice.edu/elec301/Projects99/anlgcomp/. |
Tierney, J., et al., “A digital frequency synthesizer,” Audio and Electroacoustics, IEEE Transactions, Mar. 1971, pp. 48-57, vol. 19, Issue 1, 1 page Abstract from http://ieeexplore. |
“Introduction to: Analog Computers and the Dspace System,” Course Material ECE 5230 Spring 2008, Utah State University, www.coursehero.com, 12 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2014/015840, dated May 20, 2014. 11 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2014/043965, dated Oct. 22, 2014, 10 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, dated Mar. 3, 2015, for PCT/US2014/066893, 9 pages. |
International Preliminary Report on Patentability for PCT/US2014/015840, dated Aug. 11, 2015, 7 pages. |
Jiang, A., et al., “Rank Modulation for Flash Memories”, IEEE Transactions of Information Theory, Jun. 2006, vol. 55, No. 6, pp. 2659-2673. |
Zouhair Ben-Neticha et al, “The streTched”-Golay and other codes for high-SNR finite-delay quantization of the Gaussian source at ½Bit per sample, IEEE Transactions on Communications, vol. 38, No. 12 Dec. 1, 1990, pp. 2089-2093, XP000203339, ISSN: 0090-6678, DOI: 10.1109/26.64647. |
Oh, et al., Pseudo-Differential Vector Signaling for Noise Reduction in Single-Ended Signaling, DesignCon 2009. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/039952, dated Sep. 23, 2015, 8 pages. |
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration, for PCT/US2015/041161, dated Oct. 7, 2015, 8 pages. |
International Search Report and Written Opinion from PCT/US2014/034220 mailed on Aug. 21, 2014. |
Number | Date | Country | |
---|---|---|---|
20160218894 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
61812667 | Apr 2013 | US |