Embodiments of the present invention comprise methods and systems for identifying characteristics in a digital image.
Many digital image processing enhancements that improve the visual quality of a digital image, often a scanned image of a document, rely on the accurate identification of different image regions in the digital image. Additionally, accurate detection of various regions in an image is critical in many compression processes. Image characteristics may be used in the identification of image regions.
Some embodiments of the present invention comprise systems and methods for identifying image characteristics by aggregating information from multiple histograms wherein each histogram corresponds to a segment of the image.
The foregoing and other objectives, features, and advantages of the invention will be more readily understood upon consideration of the following detailed description of the invention taken in conjunction with the accompanying drawings.
Embodiments of the present invention will be best understood by reference to the drawings, wherein like parts are designated by like numerals throughout. The figures listed above are expressly incorporated as part of this detailed description.
It will be readily understood that the components of the present invention, as generally described and illustrated in the figures herein, could be arranged and designed in a wide variety of different configurations. Thus, the following more detailed description of the embodiments of the methods and systems of the present invention is not intended to limit the scope of the invention, but it is merely representative of the presently preferred embodiments of the invention.
Elements of embodiments of the present invention may be embodied in hardware, firmware and/or software. While exemplary embodiments revealed herein may only describe one of these forms, it is to be understood that one skilled in the art would be able to effectuate these elements in any of these forms while resting within the scope of the present invention.
Some embodiments of the present invention comprise methods and systems for identifying image characteristics. Some embodiments of the present invention are shown in
In some embodiments of the present invention, the input image 10 may be a luminance image. A luminance image may be derived from a scan, such as a color scan of a color or a black-and-white document, or by other methods. In other embodiments of the present invention, the input image 10 may be a chromaticity image derived from a scan, such as a color scan of a color or a black-and-white document, or by other methods. In still other embodiments of the invention, the input image 10 may be a grayscale image such as one derived from a black-and-white scan of a color or a black-and-white document or by other methods.
The input image 10 is not limited to digital images resulting from a scanning operation. The digital input image 10 may be generated in electronic form (e.g., from a digital camera, a computer application, or another method). In some embodiments of the present invention, the input image 10 may be a single-channel digital image. In other embodiments of the invention, the input image 10 may be a multi-channel digital image. In some embodiments of the present invention, the input image 10 may be generated by processing a digital image to form a new, processed digital image. Some examples of such processing include, but are not limited to: thresholding, edge-strength determination, and edge-direction determination.
In some embodiments, the n segments may be of arbitrary shape. In some embodiments, all n segments may be the same shape and/or size. In some embodiments, the n segments may be different shapes.
In some embodiments, the segments may be strips. In some embodiments, n non-overlapping strips may each comprise an equal number of rows of the input image 10. In other embodiments, the n non-overlapping strips may not be the same size, in terms of number of rows. In some embodiments, the n non-overlapping strips may cover the input image 10 in its entirety. In some embodiments, the n non-overlapping strips may cover only a part of the input image 10.
In some embodiments of the present invention, the input image 10 may be divided into n non-overlapping blocks (i.e., the segments are blocks). These non-overlapping blocks may cover the input image 10 in its entirety or may cover only a part of the input image 10. These non-overlapping blocks may be the same size or they may differ in size.
In the embodiments shown in
In some embodiments of the method shown by
Occurrences of features in each of the segment histograms may be identified at step 13. Identification of occurrences of features may generate feature information describing the feature occurrence. The feature information from the segment histograms may be aggregated to form aggregate feature information at step 14. A significance value may be assigned to portions of the aggregate feature information at step 15. In some embodiments, image characteristics may be determined from the aggregate feature information. In some embodiments, image characteristics may be determined from the aggregate feature information in conjunction with the significance values.
In some embodiments comprising the process shown by
In some embodiments comprising the method shown by
In some embodiments of the method shown in
In some embodiments, the regions of occurrence of the features in the page feature histogram may correspond to image characteristics. The image characteristics may be, but are not limited to, the color of uniform-color regions of the input image 10, the luminance of uniform-luminance regions of the input image 10, the color of large text regions in the input image 10, the luminance of large text regions in the input image.
In an exemplary embodiment shown in
In this exemplary embodiment, the input image 50 may be divided into n non-overlapping image segments, step 51. Segment histograms are constructed for the non-overlapping image segments, step 52. Peaks may be identified in the segment histograms, step 53. In some embodiments, identification of a peak may comprise identification of a starting bin and an ending bin in the segment histogram between which the peak occurs. Data identifying the starting bin and the ending bin in the segment histogram between which the peak occurs may be referred to as peak information in some embodiments. The peak information from the segment histograms may be aggregated to form aggregate peak information, step 54. Significance values may be assigned to the peaks in the aggregate peak information, step 55.
Any one of many possible peak detection methods may be employed to identify the peaks in the segment histograms. In some embodiments peak detection may comprise, but is not limited to, one of the following peak detection methodologies: thresholding, neural-network-based methods, fuzzy-logic-based methods, methods based on determining positive to negative zero crossings to represent the start of a peak, and maxima following such a zero crossing to represents the end of a peak, and operator-assisted peak detection.
Indicated, for illustration, on each histogram peak in
In some embodiments, the aggregate peak information formed at step 54 may be a page peak counter. The page peak counter may be a histogram with the same bins as those in the segment histograms. If a bin in a segment histogram is detected as part of a peak in that histogram, then the corresponding bin in the page peak counter is incremented. Thus, the page peak counter accumulates the occurrence of a bin as part of a peak in a segment histogram.
After the peak information in the segment histogram shown in
In this exemplary embodiment, step 55, the peak regions in the page peak counter may be normalized by the percentage of pixels in the input image 50 with a pixel value in the range of the peak, that is, values between the starting and ending bin values for that peak. In some embodiments, if a peak contains too few pixels, the region corresponding to that peak occurrence may be deemed insignificant. In some embodiments, the regions of occurrence of the peaks in the page feature histogram may correspond to image characteristics. These image characteristics may be, but are not limited to, the color of uniform-color regions of the input image 50, the luminance of uniform-luminance regions of the input image 50, the color of large text regions in the input image 50, the luminance of large text regions in the input image.
Image formation and region shapes may be as discussed with respect to embodiments described above.
In the embodiments shown in
In some embodiments of the method shown by
Occurrences of features in each of the segment histograms may be identified at the next step, step 63, and the feature information from the segment histograms may be aggregated to form aggregate feature information at step 64. A significance value may be assigned to portions of the aggregate feature information at step 65. In some embodiments, image characteristics may be determined from the aggregate feature information. In some embodiments, image characteristics may be determined from the aggregate feature information in conjunction with the significance values.
In some embodiments of the method shown by
In some embodiments of the method shown by
In some embodiments of the method shown in
In some embodiments of the invention, image region masks may be formed, step 66. In these embodiments, the starting and ending bins of each occurrence of a feature in the page feature histogram may be determined to indicate the range of pixel values belonging to a region. In some embodiments, if the region corresponding to that feature occurrence was deemed insignificant, then a region mask may not be formed for that insignificant region. In some embodiments of the invention, the region mask is a binary image of the input image 60 with pixels in the range of values belonging to the region masked.
Some embodiments of the present invention detect regions of uniform color in an image. Page background, which is typically the color of the stock on which a scanned document is printed, is often removed and not reproduced in the enhanced, output image. Local background regions, however, should be enhanced and maintained in the output image. Accurate detection of both page and local background regions in an image is critical in many compression processes. Both page and local background regions are often regions of uniform color in the digital image.
The peak information from the strip histograms may be aggregated into a page peak counter, step 84. The page peak counter may comprise a page peak histogram. The page peak histogram has the same bins as the strip histograms. Each bin in the page peak histogram counts the frequency of occurrence of that bin number in a peak in the strip histograms. The peaks in the page peak histogram correspond to luminance values for which there may be uniform regions of the same luminance in the input image 80.
Each peak in the page peak histogram may be normalized by a significance value assigned to said peak, step 85. The significance value may be the number of image pixels, as a percentage of pixels in the image, with luminance value between and including the starting bin value and ending bin value for said peak. In some embodiments, if the height of a normalized peak falls below a threshold, the peak is deemed insignificant. In some embodiments, all peaks are considered significant.
A binary image region mask corresponding to a significant peak in the page peak histogram is formed at step 85 by generating a binary image of the same size as the input image 80. In the binary image, pixels corresponding to pixels in the input image 80 with luminance value in the input image 80 falling between, inclusively, the starting and ending luminance value of the peak, are considered part of the mask. The mask pixels in the binary image take value 1, and the non-mask pixels take value 0, or the mask pixels in the binary image take value 0, and the non-mask pixels take value 1.
In some embodiments, a single region mask may be formed in which all, or some portion, of significant regions are identified. A single region mask may comprise an indexed image in which each index corresponds to a region.
Preferred embodiments of the present invention are described using non-overlapping image segments. Alternate embodiments of the present invention may use overlapping image segments.
The terms and expressions which have been employed in the foregoing specification are used therein as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding equivalence of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.