The present technology is generally directed to methods and systems for an improved quench tower. More specifically, the various embodiments herein are directed to an improved quench tower design and arrangement that includes one or more sheds attached to the quench tower, a dust suppression system, a baffle design formed of chevrons having multiple turns, and an automated quenching procedure.
Coke is a solid carbon fuel and carbon source used to melt and reduce iron ore in the production of steel. In one process, known as the “Thompson Coking Process,” coke is produced by batch feeding pulverized coal to an oven that is sealed and heated to very high temperatures for 24 to 48 hours under closely-controlled atmospheric conditions. Coking ovens have been used for many years to convert coal into metallurgical coke. During the coking process, finely crushed coal is heated under controlled temperature conditions to devolatilize the coal and form a fused mass of coke having a predetermined porosity and strength. Because the production of coke is a batch process, multiple coke ovens are operated simultaneously.
Coal particles or a blend of coal particles are charged into hot ovens, and the coal is heated in the ovens in order to remove volatile matter (“VM”) from the resulting coke. The coking process is highly dependent on the oven design, the type of coal, and conversion temperature used. Typically, ovens are adjusted during the coking process so that each charge of coal is coked out in approximately the same amount of time. Once the coal is fully coked out, the resulting coke may take the form of a substantially intact coke loaf that is then quenched with water or another liquid. Because the coke loaf may stay intact during quenching, the quenching liquid may encounter difficulty penetrating the intact coke loaf. Moreover, an unacceptable amount of coke may be lost during the quenching process. For example, coke may fly out of the container in which it is otherwise contained (i.e., “flied coke”) during the quenching process. In addition, an amount of particulate matter may be generated during the quenching process and vented through the quench tower into the atmosphere outside of the quench tower.
These problems of conventional systems lead to myriad disadvantages that lower the overall efficiency of the coking operation. For example, the difficulty of penetrating an intact or partially intact coke loaf may result in increased water usage, longer quench times that can cripple the throughput of the coke plant, excessive moisture levels in the coke, large variations in coke moisture, and increased risk of melting plant equipment if the coke is not cooled rapidly enough. In addition, conventional systems may vent an unacceptable level of particulate matter into the environment, thereby creating a need for more effective environmental controls. These problems may occur in any coking operation but are particularly applicable to stamp charged coking operations, in which the coal is compacted prior to heating. As another example, a large amount of flied coke or particulate matter that escapes the quench tower may lower the efficiency of the coking operation by yielding less coke for screening and loading into rail cars or trucks for shipment at the end of the quenching process. Therefore, a need exists for an improved quench tower that provides a quenching operation that more efficiently penetrates an amount of coke with a quenching liquid, reduces the amount of coke loss due to flied coke, reduces the amount of particulate matter that escapes the quench tower, and reduces the particulate matter, emissions, and steam that escapes the bottom of the quench tower.
The present technology is generally directed to methods and systems for an improved quench tower. More specifically, some embodiments are directed to methods and systems that improve the ability of the quench tower to recover particulate matter, steam, and emissions that escape from the base of the quench tower (i.e., improved recovery). Moreover, some embodiments are directed to methods and systems that improve the draft and draft distribution (or “draft distribution profile”) of the quench tower. The improved quench tower includes one or more sheds (each having a shed physical perimeter) to enlarge the physical perimeter or the effective physical perimeter of the quench tower to reduce the amount of particulate matter, emissions, and steam loss during the quenching process. Some embodiments are directed to methods and systems for an improved quench baffle design and arrangement formed of a plurality of single chevrons or multi-turn chevrons adapted to prevent particulate matter from escaping the quench tower. Some embodiments are directed to methods and systems for an improved quench baffle spray nozzle design and arrangement that enables one or more quench spray nozzles to wet the baffles prior to quenching, suppress dust during quenching, and/or clean the baffles after quenching. Some embodiments are directed to a quench nozzle design and arrangement that enables the quench nozzles to be fired in one or more discrete stages during the quenching process. Some embodiments are directed to methods and systems for a flied coke reclaim baffle that redirects flied coke into a train car located within the quench tower.
Specific details of several embodiments of the technology are described below with reference to
An improved quench tower design is provided herein that maximizes the overall efficiency of the quenching process, particularly as it relates to lowering emissions and particulate matter generated during the quenching process. The improved design maximizes efficiency by expanding the actual perimeter and/or the effective perimeter of the quench tower. As explained in more detail below, the actual perimeter may be expanded through the addition of one or more sheds attached to the sides of the quench tower geometry in order to increase the physical area enclosed by the quench tower. The effective perimeter likewise may be expanded by adding one or more sheds to the quench tower geometry. In addition, as also explained in more detail below, the recovery of particulate matter and steam can also be improved by closing one or more sides of the quench tower. A variety of means may be used to close the one or more sides of the quench tower, including the installation of a barrier such as a door or curtain. A person of ordinary skill in the art will appreciate that any such barrier may be used to cover one or more openings in any number of walls of the quench tower and/or to cover one or more openings in any number of sheds attached to the quench tower.
Closing off more sides of the quench tower improves the particulate matter, emissions, and steam recovery by improving the draft at the sections of the quench tower still open to the atmosphere. The draft of the tower can also be improved to lower the amount of particulate matter, emissions, and steam that escape from the bottom by making the tower taller. In cases where there is still loss of particulate matter, emissions, and steam from the quench tower, a shed can be added above the open areas to funnel the lost particulates, emissions, and steam back into the tower leading to improved overall particulate matter, emissions, and steam recovery. By using sheds, closing off select walls of the quench tower, and varying the quench tower height, the quench tower design can be optimized to give better environmental performance at a lower cost. A shed may have one or more side walls, or may have no side walls. In addition, sheds can be retrofitted to existing quench towers to improve their performance. The performance is improved by enlarging the coverage area effectively corresponding to the existing quench tower height based on the proposed correlations.
The improved quench tower design disclosed herein also includes one or more openings in the quench tower in order to improve the airflow (or “draft distribution”) through the quench tower. The one or more openings may be located in a wall, shed, or barrier of the quench tower and preferably are located at an elevation that is lower than the elevation of a train car containing an amount of coke to be quenched. The lower evaluation of the openings allows air to flow into the quench tower from the bottom of the quench tower, where the air then flows in an upward direction through the quench tower. As the air flows upwards through the quench tower, the draft contacts the train car and carries steam and emissions from the train car in an upward direction. As a result, steam and emissions generated during quenching are carried upward through the quench tower—as opposed to escaping from one or more sides of the quench tower—where particulate matter may be trapped from the air by one or more baffles residing in an upper portion of the quench tower, as described more fully below. The improved quench tower also provides reclaim baffles for recapturing flied coke generated during the quenching process. The improved quench tower therefore allows for improved retention of flied coke and overall lower emissions, particulate matter, and steam loss as compared to conventional quenching systems.
Further, each shed may contain one or more exterior openings that may be used for a variety of purposes, including entry and/or exit of a train car, dumping of coke from a train car, or improving the draft distribution through the quench tower. The exterior opening may be uncovered, fully covered, or partially covered by one or more doors or curtains. One or more doors may be formed of any material suitable to provide partial or full coverage of an exterior opening in the shed, such as wood, metal, or composite material. Furthermore, a door may be of any type suitable to provide partial or full coverage of the exterior opening of the shed, such as a sliding door or a hinged door. The curtain may be formed of metal, fabric, mesh, or any other material that is relatively easily movable and suitable to provide partial or full coverage of an exterior opening of the shed. For example, the curtain may be formed of any material allowing an amount of coke to be emptied out of a quench car without the need to manually operate a door or other barrier. In the case of an opening with a door, curtain or partially covered opening that can have particulate matter, emissions or steam leaking out of the bottom, a shed can be placed over the opening to collect the lost particulate matter, emissions, and steam. The shed may have an opening above the door to allow the collected particulates, emissions, and steam to be fed back into the quench tower leading to improved environmental performance, as discussed in additional detail below in reference to
As illustrated in the embodiment of
One or more surfaces of the quench tower may include any number of openings to increase the amount of particulate matter that is captured by the quench tower. For example, referring to
In the embodiment of
The embodiments described herein are useful for designing new quench towers that are more efficient than current towers, as well as retrofitting existing towers that would benefit from more efficient operations. For example, one or more sheds can be added to an existing tower to improve otherwise poor recovery of steam, particulate matter, and emissions from the bottom of the tower. Moreover, the embodiments are useful to design an optimal quench tower by optimizing the quench tower effective perimeter area, quench tower exit perimeter area, quench tower height, sheds, walls (e.g., used to block bottom openings of the quench tower), doors, and train cars. These optimizations allow the design of a more effective and less costly quench tower (i.e., shorter quench tower) with equivalent or better recovery.
A person of ordinary skill in the art will appreciate that additional embodiments of the quench tower are possible that are consistent with the designs disclosed herein. For example, the quench tower may consist of more than four side walls, may consist of fewer than four side walls, or may take a variety of different physical shapes, including shapes that may be fully or partially curvilinear. A person of ordinary skill in the art will appreciate that the base of the quench tower base may contain any number of sheds, including no sheds, and will further recognize that each shed may or may not contain one or more doors of various types, including door types not specifically disclosed herein. A person of ordinary skill in the art will further appreciate that a train car may enter the quench tower through multiple different openings, may exit the quench tower through multiple different openings, and may enter the quench tower through a same or different opening than used for exiting the quench tower.
As used herein, a quench tower exit perimeter refers to the perimeter at the top of the quench tower defined by a partially open top portion of the quench tower that is defined by the side walls of the quench tower. A quench tower physical perimeter refers to the perimeter at the bottom of the quench tower defined by a partially open top portion of the quench tower that is defined by the side walls of the quench tower. A shed physical perimeter refers to the perimeter defined by one or more outwardly extending surfaces joined to a side wall of the quench tower to create a substantially closed top portion. A quench tower effective perimeter refers to the combination of the quench tower physical perimeter and one or more shed physical perimeters. A train car perimeter refers to the perimeter defined by the sides of a train car. An improved draft distribution or an improved draft distribution profile refers to improved three-dimensional spatial draft distribution within the quench tower effective perimeter that can be actively or passively enhanced by altering the dimensions of the tower or by adding a shed. As discussed herein, one of the benefits of enhancing draft distribution of the quench tower is lowering the loss of particulate matter, emissions and steam from one or more openings in the bottom portion of the quench tower.
The effective perimeter of the quench tower can be enlarged by adding a shed. The performance of the quench tower can be enhanced by adjusting the quench tower effective perimeter (i.e., adding a shed to the quench tower physical perimeter in order to expand the quench tower effective perimeter), adjusting the quench tower exit perimeter at the top of quench tower (e.g., making the quench tower exit perimeter significantly larger than the quench car), and adjusting the height of the quench tower to increase overall draft of the quench tower).
The coverage area ratio is calculated by dividing the quench tower effective perimeter area by the quench tower exit perimeter area. The percentage of steam captured by the quench tower is then modeled as a graph by plotting the coverage area ratio against the tower height. For example, in the steam capture graph 550, the coverage area ratio is plotted on the y axis and the tower height is plotted on the x axis. In the example of graph 550, a given tower height/coverage area ratio combination that falls on slope 560 would result in steam capture of 60 percent, a given tower height/coverage area ratio combination that falls on slope 565 would result in steam capture of 80 percent, a given tower height/coverage area ratio combination that falls on slope 570 would result in steam capture of 90 percent, and a given tower height/coverage area ratio combination that falls on slope 575 would result in steam capture of 100 percent. The increased steam capture coverage and reduced loss from the bottom of the quench tower are also indicative of lower losses of particulate matter and other emissions from one or more openings in the bottom portion of the quench tower.
The graph 550 therefore demonstrates the relationship between the quench tower effective perimeter area, the quench tower exit perimeter area at the top of the quench tower, and the height of the quench tower as related to the amount of steam captured by the quench tower. For example, a graph such as graph 550 may indicate that a straight quench tower (i.e., a quench tower having a quench tower effective perimeter area that is substantially equal to the quench tower exit perimeter area, thereby resulting in a coverage area ratio equal to 1) may require a height of 250 feet in order to capture 100 percent of steam from the quench tower, while a quench tower with sheds yielding a Coverage Area Ratio of 2.0 would reduce the quench tower height requirement from 250 feet to 130 feet in order to capture 100 percent of steam from the quench tower. Moreover, the graph 551 includes a preferred slope 575 that represents various combinations of coverage area ratio and tower height that result in 100 percent steam capture. For example, according to graph 551, a coverage area ratio of 1.7 and a tower height of 150 feet would yield a 100 percent steam capture rate (as indicated by point 576). Similarly, a coverage area ratio of 1.33 and a tower height of 172 feet would yield a 100 percent steam capture rate (as indicated by point 577).
The steam capture properties of the quench tower may vary with as one or more sides of the quench tower are opened or closed.
Graph 651 includes a preferred slope 675 that represents various combinations of coverage area ratio and tower height that result in 100 percent steam capture (as indicated by point 676). For example, according to graph 651, a coverage area ratio of 1.93 and a tower height of 110 feet would yield a 100 percent steam capture rate (as indicated by point 677). Similarly, a coverage area ratio of 1.7 and a tower height of 130 feet would yield a 100 percent steam capture rate.
A person of ordinary skill in the art will recognize that a graph depicting the amount of steam captured in a quench tower as a function of coverage area ratio to tower height, as depicted in
The quench tower design disclosed herein may include one or more quench baffles located inside of the quench tower and situated above a train car containing an amount of coke to be quenched. The quench baffle comprises a plurality of chevrons, each of which may be attached, affixed, mounted, hooked, or otherwise connected to a structure inside of the quench tower. For example, the chevrons of the baffle may be hooked onto a baffle support structure that is mounted to one or more walls of the quench tower. The quench baffle may span substantially the length and/or width of the quench tower exit perimeter area formed by the quench tower side walls, as discussed in more detail below. The chevrons of the baffle are adapted to trap particulate matter to prevent its escape from the quench tower during the quenching process. The one or more chevrons may be formed from a variety of different materials including wood, plastic, metal, steel, or any other material suitable for trapping particulate matter. For example, a wood baffle may be advantageous in some instances because the natural profile of the wood may have a wider profile than other materials, thereby resulting in a path that is more tortuous and able to trap a greater amount of particulate matter. In addition, a wood chevron may be hooked to the quench tower rather than attached to the quench tower. A plastic chevron may be advantageous in some instances because, when statically charged, the plastic material may attract more particulate matter that can then be trapped. Similarly, a steel chevron may be advantageous in some instances because steel may allow for easier construction and/or mounting to the quench tower, and may result in a more tortuous path and a more desirable pressure drop in the tower.
The one or more chevrons may take a variety of shapes, including a single chevron shape or a multi-turn chevron shape. In the case of a single chevron shape, the single chevron is attached or hooked to the quench tower at an angle that provides a surface area that contacts air that flows in an upward direction through the quench tower. As the air contacts the single chevron, particulate matter in the air becomes trapped on the surface area of the chevron, thereby preventing the particulate matter from being vented out of the quench tower and into the surrounding atmosphere external to the quench tower. The ability to trap particulate matter may increase further when multi-turn chevrons are used. In a multi-turn chevron design, two or more chevrons may be located relative to one another at an angle that increases the effective surface area of the chevron.
The increased surface area of the multi-chevron design and the tortuous path through the multi-turn chevron design allow for improved trapping of particulate matter that comes into contact with the chevrons as the air flows upward through the quench tower. The one or more baffles may be sprayed with liquid to pre-wet the baffles prior to quenching in order to increase the trapping capabilities of the baffles. Additionally or alternatively, the one or more baffles may be sprayed with liquid to apply a continuous stream or spray of liquid to the baffles of the chevron during quenching. Additionally or alternatively, the one or more baffles may be sprayed with high pressure liquid to reclaim trapped particulate matter after quenching, as explained in more detail below. A person of ordinary skill in the art will appreciate that the quench tower design may employ a number of additional means to improve the ability of the baffles to trap particulate matter, including for example providing a charged baffle made of plastic or any other material suitable for attracting particulate matter to be trapped.
The quench baffles disclosed herein may be equipped with one or more quench baffle spray nozzles that may be used to clean the quench baffle (including one or more chevrons comprising the quench baffle), wet the quench baffle prior to quenching in order to increase the amount of particulate matter that may be trapped during quenching, dislodge trapped particulate matter from the quench baffle after quenching for recapture, as described above, and/or suppress dust generated during quenching, as described in more detail below. The quench baffle spray nozzles may be mounted in a variety of positions within the quench tower. In one embodiment, a quench baffle spray nozzle may be located on the interior of the quench tower in a position that is situated above at least one quench baffle. If situated above a quench baffle, the quench baffle spray nozzle may be angled in a downward direction in order to dispose an amount of liquid onto the quench baffle below or towards a mass of coke below. In another embodiment, a quench baffle spray nozzle may be located on the interior of the quench tower in a position that is situated below at least one quench baffle. If situated below a quench baffle, the quench baffle spray nozzle may be angled in an upward direction in order to dispose an amount of liquid onto the quench baffle above.
In another embodiment, a quench baffle spray nozzle may be located on the interior of the quench tower between two quench baffles. If situated between two quench baffles, the quench baffle spray nozzle may be angled in an upward direction in order to dispose an amount of liquid onto the quench baffle above or may be angled in a downward direction in order to dispose an amount of liquid onto the quench baffle below or towards a mass of coke below. Additionally, the nozzle may employ a mechanism allowing the angle to be adjusted upward or downward in order to service either the above baffle or the below baffle (as well as the dust generated from quenching the mass of coke below), as needed. In still another embodiment, a quench baffle spray nozzle may be located on the exterior of the quench tower and angled in a downward direction in order to dispose an amount of liquid onto one or more quench baffles located inside of the quench tower as well as to suppress an amount of dust that is generated before and during quenching. A person of ordinary skill in the art will appreciate that the one or more quench baffle spray nozzles dispose a stream or spray of liquid that is either pressurized or unpressurized. A person of ordinary skill in the art will further appreciate that the one or more quench baffle spray nozzles may dispose a variety of liquids, including water, a cleaning solution, a protective sealant, or any other liquid (or combination thereof) suitable for cleaning the quench baffle, removing particulate matter from the quench baffle, or protecting the materials of the quench baffle. A person of ordinary skill in the art will further appreciate that the one or more quench baffle spray nozzles may dispose the one or more liquids in a continuous intermittent stream or spray.
A person of ordinary skill in the art will appreciate that a greater or smaller number of baffle spray nozzles may be used. For example the quench tower may contain only a single baffle spray nozzle or may contain multiple sets of baffle spray nozzles. A person of ordinary skill will further appreciate that the one or more baffle spray nozzles may be angled in different directions. For example, baffle spray nozzle 315c may be angled in a downward direction at the same time that baffle spray nozzle 315d is angled in an upward direction. A person of ordinary skill in the art will appreciate that one or more baffle spray nozzles may be dedicated to different functions. For example, one set of baffle spray nozzles may be dedicated to cleaning the baffle, a different set of baffle spray nozzles may be dedicated to wetting the baffle, and still a different set of baffle spray nozzles may be dedicated to dust suppression. A person of ordinary skill in the art will further appreciate that one or more baffle spray nozzles may deliver a pressurized stream or spray of liquid while one or more different baffle spray nozzles may deliver an unpressurized stream or spray of liquid. A person of ordinary skill in the art will appreciate that the pressure and/or type of baffle spray nozzle may be changed in accordance with the type of particulate matter to be removed from the baffles. For example, a larger nozzle with higher pressure may be used to remove relatively large particulate matter from one or more baffles, while a smaller nozzle with lower pressure may be used to remove relatively small particulate matter from one or more baffles. A person of ordinary skill in the art will further appreciate that the one or more baffle spray nozzles may dispose a different type of liquid onto a respective quench baffle, including water, a cleaning solution, a protective sealant, or any other liquid (or combination thereof) suitable for cleaning the quench baffle, removing particulate matter from the quench baffle, or protecting the materials of the quench baffle. A person of ordinary skill in the art will further appreciate that the one or more baffle spray nozzles may dispose the different types of liquids in a continuous intermittent stream or spray.
The improved quench tower disclosed herein includes one or more quench spray nozzles adapted to dispose an amount of liquid onto a mass of coke to be quenched. The one or more quench spray nozzles may be mounted in the interior of the quench tower in a position located above the mass of coke to be quenched. The quench spray nozzles may be coupled together at various angles to form a quench spray nozzle array. For example, one or more of the quench nozzles may be oriented to dispose an amount of liquid onto the mass of coke at an angle of between zero and 90 degrees with respect to a first or second side of the mass of coke, while one or more additional quench nozzles may be oriented to dispose an amount of liquid onto the mass of coke in a generally downward direction at an angle roughly perpendicular to the mass of coke.
Moreover, the one or more quench nozzles may be situated to dispose the amount of liquid onto different portions of the mass of coke. For example, one or more nozzles may be situated to dispose an amount of liquid onto a center region of the mass of coke, a different one or more nozzles may be situated to dispose an amount of liquid onto one edge of the mass of coke, and/or one or more nozzles may be situated to dispose an amount of liquid onto the opposite edge of the mass of coke. During quenching, the one or more nozzles may be fired in stages to optimize the quenching process. For example, one or more nozzles may dispose an amount of liquid onto the side regions of the mass of coke during an initial quenching stage, while a different one or more nozzles may dispose an amount of liquid onto the center region of the mass of coke during a subsequent quenching stage. A person of ordinary skill in the art will appreciate that the quenching process may include any number of quenching stages and that individual quench nozzles or groups of quench nozzles may be active during all or fewer than all of the quenching stages. In addition, each quench nozzle may be tuned in order to control the location, the amount of liquid disposed, and the firing of the individual nozzle.
While the quenching sequence is in progress—particularly towards the beginning of the quenching sequence—a dust suppression feature may be performed at step 420. The dust suppression feature fires one or more baffle spray nozzles before or during the quenching process in order to suppress dust or particulate matter that may rise from the mass of coke (before the quenching process, during the quenching process, or as a result of a delay in the quenching process) by knocking down particulate matter and dust in the air. The dust suppression feature may be activated towards the beginning of the quenching process and may be deactivated before quenching is completed at step 425. For example, the dust suppression feature may be activated during the first 10 seconds of the quenching process (when a plume of particulate matter typically rises from the coke being quenched), although a person of ordinary skill will recognize that the dust suppression period may last for a longer or shorter period of time during quenching. A person of ordinary skill also will recognize that one or more quench baffle spray nozzles may continue to wet one or more baffles (as discussed in reference to step 410) during the dust suppression period to increase the amount of particulate matter that is captured during quenching. After the quenching sequence has completed at step 425, the quench baffles are cleaned via the baffle spray nozzles, as described above. At step 435, the train car containing the quenched coke may exit the quench tower.
During the quenching process, an amount of flied coke and/or reclaimed coke may be directed back into the train car via one or more reclaim baffles 380 that are attached to an interior surface of the quench tower above the train car containing the coke to be quenched. The one or more reclaim baffles may be sloped downward such that any flied coke or reclaimed coke coming into contact with the reclaim baffles is redirected into the train car.
A person of ordinary skill in the art will appreciate that the steps of the quenching procedure may be performed in the same order or a different order than depicted in the flow diagram of
Various aspects of the quenching procedure may be automated or optimized through the use of one or more sensors and/or input devices located in or around the quench tower and coupled to the quench tower control logic. For example, quenching parameters such as the oven number, coke tonnage, and/or coke size (e.g., height, width, or thickness of the mass of coke) may be fed into the control logic at the start of the quench process, either automatically via one or more sensors or weight scales, or by manual input on a device such as a key entry pad. After the coke enters the quench tower, the one or more sensors in or around the quench tower may automatically activate one or more spray nozzles (i.e., baffle spray nozzles, quench spray nozzles, dust suppression spray nozzles, or any other nozzles of the quench tower) to wet the quench baffles, to spray mist inside of the quench tower to suppress dust or smoke, or to perform a variety of different functions as described herein.
During quenching, the quench tower control logic may use the stored quenching parameters (e.g., oven number, coke tonnage, and/or size of the coke loaf) to adjust a quenching load profile that affects the quench valves in order to deliver a certain amount of quench liquid to the quench nozzle. In addition, the quench tower control logic may adjust the quenching load profile based on a quench tower profile that corresponds to one or more quenching characteristics of the quench tower (e.g., a tendency of the quench tower to quench a mass of coke for a period of time that is either too long or too short.) Additionally or alternatively, the quench nozzle control logic may use the stored or other available information to implement a different quenching sequence to ensure that the hot coke mass is cooled uniformly and to further ensure that the amount of moisture in the coke is maintained below a target range. Additional sensing systems located in or around the quench tower, such as infrared camera systems or thermocouple arrays, may be coupled to one or more secondary quench systems operable to further automatically or manually dispose an amount of quenching liquid onto the coke to reduce the temperature of one or more hot spots in the coke. The additional sensing systems also may be used to provide feedback to the quench tower control logic to adjust the quenching liquid for optimization of the current quench and/or future quenches. The quench tower profile may be updated in accordance with information collected by the sensing system during or after quenching. For example, if the sensing system detects that the duration of the quenching procedure was too long or too short for the amount of coke being quenched, the sensing system may update the quench tower profile to bias future quenching load profiles towards a longer or shorter quench duration, as appropriate. Additional sensing systems located outside of the quench tower may further monitor broken coke temperature and automatically or manually quench the broken coke (e.g., with a liquid cannon such as a water cannon) to cool any remaining hot spots identified by the sensing system. A person of ordinary skill will appreciate that the additional sensing system may quench the broken coke from a source (e.g., a liquid cannon such as a water cannon) that is located anywhere outside of the quench tower, such as a wharf or coke belt associated with the quench tower. For example, the source may be a spray array located above the wharf or coke belt, where one or more different sprays in the array may fire to quench one or more hot sections of the coke.
A person of ordinary skill will recognize that additional automations may be provided by the quench tower control logic. For example, the quench tower control logic may sense an amount of time that has elapsed since a mass of coke entered a quench tower. If the quench procedure for the mass of coke does not start within a predetermined amount of time, the quench tower control logic may automatically activate one or more spray nozzles to dispose an amount of liquid onto the mass of coke. Alternatively or additionally, if the baffles of the quench tower are not wet within a predetermined amount of time after the coke enters the quench tower, the quench tower control logic may automatically activate one or more baffle spray nozzles to cool down the quench tower structure. For example, if quenching does not begin within five minutes of a mass of coke entering the quench tower, then the quench tower control logic may activate a series of quench spray nozzles and dust suppression nozzles to automatically begin the quenching process.
From the foregoing it will be appreciated that, although specific embodiments of the technology have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the technology. Further, certain aspects of the new technology described in the context of particular embodiments may be combined or eliminated in other embodiments. Moreover, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein. Thus, the disclosure is not limited except as by the appended claims.