The invention generally relates to search engines. More particularly, the invention relates to methods and systems for improving a search ranking using article information such as client-side information.
Search engines are useful for locating a specific desired or relevant article from a large collection of articles. Conventional search engines often return results based on a scoring or ranking system. For example, conventional search engines sort articles of a search result based on the contents of the articles, such as on the number of times a keyword or particular word or phrase appears in each article.
Conventional client-side applications return results based, for example, on certain article attributes or history data. For example, existing client-side search applications provide search results ranked by the date and time the article was last saved, the type of article, or the size of the article. The user can restrict the search by entering other parameters such as last edit time, other words or phrases in the article, or article type. The article attributes and history data used by conventional client-side search applications to rank the located articles is limited.
The sorting and ranking aspects of such conventional systems are insufficient. The lack of an effective ranking capability often results in an overwhelming number of search results, and requires such things as a lot of cognitive effort on behalf of the user in crafting (or re-crafting) useful search queries and further investments of time. Existing client-side search applications do not effectively rank articles according to, or even evaluate, many relevant factors that could serve to better narrow a search to the desirable articles. Accordingly, existing client-side search applications can be time and labor intensive, burdensome to use, slow, and generally ineffective.
The need exists then for methods and systems for improving search ranking using article information, such as client-side information. For example, a need exists for a client-side search application that will rank articles that reside in the client computer's file structure or have been previously accessed by the user based on sufficient factors so that the most relevant articles are returned quickly and easily to the user.
Embodiments of the present invention comprise systems and methods that improve searching. One aspect of one embodiment of the present invention comprises sorting and ranking search results based at least in part on client-side behavior data associated with the ranked articles. This allows, for example, a client-side search engine to better evaluate which potential search results will be of most interest to a user. Further features and advantages of the present invention are set forth below.
The present invention comprises methods and systems for improving a search ranking using article information. Various systems in accordance with the present invention may be constructed.
The system 100 shown in
Embodiments of computer-readable media include, but are not limited to, an electronic, optical, magnetic, or other storage or transmission device capable of providing a processor with computer-readable instructions. Other examples of suitable media comprise, but are not limited to, a floppy disk, CD-ROM, magnetic disk, memory chip, ROM, RAM, an ASIC, a configured processor, all optical media, all magnetic tape or other magnetic media, or any other medium from which a computer processor can read instructions. Also, various other forms of computer-readable media may transmit or carry instructions to a computer, including a router, private or public network, or other transmission device or channel, both wired and wireless. The instructions may comprise code from any computer-programming language, including, for example, C, C++, C#, Visual Basic, HTML, Java, and JavaScript.
Client devices 102a-n may also comprise a number of external or internal devices such as a mouse, a CD-ROM, a keyboard, voice recognition hardware, a display, or other input or output devices. Examples of client devices 102a-n are personal computers, digital assistants, personal digital assistants, cellular phones, mobile phones, smart phones, pagers, digital tablets, laptop computers, wearable computers, a processor-based device, and similar types of systems and devices. In general, a client device 102a-n may be any type of processor-based platform that interacts with one or more application programs. The client devices in 102a-n shown in
The memory 108 comprises a monitoring engine 140, a client application 170, a client article 171, and a query processor 180. Articles may comprise, documents, for example, web pages of various formats, such as HTML, XML, XHTML, Portable Document Format (PDF) files, and word processor, database, and application program document files, chat messages, email messages, audio, video, or any other information of any type whatsoever made available on a network (such as the Internet), a personal computer, or other computing or storage means. The client article 171 comprises any article associated with the user or client device. In the embodiment shown, the client application 170 comprises a word processor application, and the client article 171 comprises a document in a format usable with the word processor application.
The monitoring engine 140 shown determines client-side behavior data associated with the client application 170. The client-side behavior data may comprise, for example, input data, correspondence data, article history data, and, reference data, as well as other forms of client-side behavior data. Each of these types of data will be discussed more fully below. The monitoring engine 140 monitors the user's interactions and the client computer's interactions with articles on the client computer. In other embodiments, the monitoring engine 140 monitors multiple users' interactions with articles, on the client computer, on an associated network, or elsewhere. As one example, the monitoring engine 140 monitors the client article 171 and detects that the user 112a is typing data into the client article 171 using the client application 170. The monitoring engine 140 monitors and records the amount of time the user 112a spends typing data into the article. The monitoring engine 140 monitors and records interactions with multiple articles (not shown here) on client 102a. The gathering and use of client-side behavior data is described further below.
The monitoring engine 140, according to the illustrated embodiment, stores the gathered client-side behavior data in a data store 160. The data store 160 in the illustrated embodiment comprises a client behavior data database 164. According to other aspects or embodiments of the present invention, the data store 160 could comprise a pre-existing database. Data storage elements of the data store 160 may comprise any one or combination of methods for storing data, including without limitation, arrays, hashtables, lists, and pairs. Other similar types of data storage devices can be accessed by the client device 102. The client behavior data database 164 stores data associated with the client application 170 and client-side behavior data, such as printing, viewing, scrolling, mouse movement, emailing, or other forms of client-side behavior data. The client behavior data may be combined with other data in a single database, or may be stored in multiple databases.
The query processor 180 comprises software and hardware that enable the query processor 180 to receive either an explicit search query 114 entered by the user 112a or generate an implicit query based on client-side behavior data. The query processor 180 then formats the implicit or explicit query into a query signal 182 that is receivable by a search engine 120.
The memory 108 further comprises the search engine 120. The search engine 120 locates relevant information in response to the query signal 182 from the query processor 180. The query signal 182 may correspond, for example, to an explicit query signal generated based on the search query entered by a user 112a, or an implicit query signal generated based on event signals from the monitoring engine 140. The search engine 120 responds to the query signal 182 by returning a set of relevant information or a search result 150 to the user 112a.
The search engine 120 shown comprises an article locator 134, a ranking processor 138, and a client behavior data processor 136. In the embodiment shown, each comprises computer code residing in the memory 108. The article locator 134 identifies a set of relevant articles responsive to the query signal 182 from the query processor 180. The client behavior data processor 136 retrieves from the data store 160, or otherwise determines, client-side behavior data associated with articles in the set of relevant articles returned by the article locator 134. The ranking processor 138 ranks or scores each article in the set of relevant articles identified by the article locator 134 based upon relevance to the query signal 182 in light of the client-side behavior data determined by the client behavior data processor 136. Note that other functions and characteristics of the article locator 134, ranking processor 138, and user data processor 138 are further described below.
The monitoring engine 140 monitors the actions of the user 112a and/or the client 102a and determines corresponding client-side behavior data. The corresponding client-side behavior data may comprise, for example, input action data 172a-c, correspondence action data 174a-c, article history action data 176a-c, or reference action data 178a-c. More generally, the client-side behavior data may comprise any type of client activity that can occur in a given application. The given application may have one or more input action methods, each of which can be associated with client-side behavior data and may convey an associated ranking weight to the article that is being acted upon. For illustration purposes only four general categories of client-side behavior data have been depicted in
The input action data 172a-c depicted in
After determining the corresponding client-side behavior data for the client articles 171a-c, the monitoring engine 140 processes the client-side behavior data associated with the client articles 171a-c so that it is ready to be received by a client behavior data database 164 located within a data store 160. The monitoring engine 140 then transmits the data to the data store 160 for storage. The client-side behavior data is transmitted with identity information for the article associated with the data, and the data is stored in association with the identity information.
The monitoring engine 140 determines client-side behavior data for multiple user articles and ensures that the client-side behavior data associated with an article is identified with that particular article. The monitoring engine 140 transmits the client-side behavior data, together with identifying information that associates the data with a particular article to which it relates, to the data store 160 for storage in a manner that preserves associations between the article and the client behaviors.
As an example of the functioning of the monitoring engine 140, consider a user 112a working with an article associated with a word processing application. In this example, the article is represented by the client article 171a of
In this example, if the user 112a types text into client article 171a, the monitoring engine 140 detects this activity and receives input action data 173a comprising, for example, data indicating what the user 112a typed and for how long the user 112a typed. If the user 112a then saves the article and emails it to a friend, the monitoring engine 140 detects this activity and receives additional user behavior data comprising, for example, article history action data 177a comprising, for example, the time and date the article was saved and the total number of bytes of data in the article. The monitoring engine 140 has also created correspondence action data 175a comprising, for example, the fact that the article was emailed, the recipient to whom the article was sent, and any description accompanying the article.
The monitoring engine 140 then configures the client-side behavior data associated with the word processing application to be received by the client behavior data database 164 located within the data store 160 in a manner so that it remains associated with the article to which it relates.
Thus, in the present example, the monitoring engine 140 creates client-side behavior data in response to the typing, saving, and emailing of the user 112a. This client-side behavior data is associated with the word processing document that the user 112a was using when the events generating the client-side behavior data occurred. This association is preserved in the data store 160 so that if the word processing document is determined by the article locator 134 to be relevant to the query signal 182, the client behavior data processor 136 can retrieve the client-side behavior data associated with the word processing document.
The client-side behavior data created by the monitoring engine 140 may then be used to score or rank the article by the search engine 120. For example, an article associated with a lot of printing, editing, viewing, and scrolling activity will potentially receive a higher ranking score than an article with little or no printing, editing, viewing, and scrolling activity associated with it because the activity likely indicates a higher interest of the user 112a in the article associated with this activity. A text document, for example, that was opened but never printed or edited is less likely to have been read by a user than a text document that had extensive editing and printing activity associated with it.
Similarly, a text document that does not have any typing activity associated with it is less likely to have been edited by a user than one with a lot of typing activity. An article less likely to have been edited by a user or read by a user is less likely to be as important to that user. The ranking processor 138 could, therefore, assign a lower ranking score to the article with less user activity associated with it.
It should be noted that the present invention may comprise systems having different architecture than that which is shown in
Various methods in accordance with the present invention may be carried out. One exemplary method according to the present invention comprises receiving a search query, determining a relevant article associated with the search query, and determining a ranking score for the relevant article based at least in part on client-side behavior data associated with the relevant article.
For example, if the user 112a desires to retrieve articles relating to a sales meeting the user 112a recently attended, the user 112a may enter the terms “sales meeting” as a search query 114. The present invention will take this search query 114, “sales meeting,” and locate documents that are relevant to this search. This may include, for example, an email that contains these words in the subject field, a text document that contains these words in the body of the document, and a spreadsheet that contains these words in the title. Not all of the articles located as being relevant to the search query 114 will necessarily be of high interest to the user 112a. The present invention reflects this by ranking the relevant articles according to various actions of the user 112a when working with that article. For example, if the user 112a scrolled through the spreadsheet, clicked on it with a mouse, typed text into it, printed it, and viewed it frequently, it is likely the user 112a was editing or preparing the spreadsheet, or that it was otherwise of primary interest to the user 112a. If on the other hand, the user 112a conducted almost no activity with the text document, it is more likely this was not of primary interest to the user 112a. Thus the present invention can reflect the relative importance of the spreadsheet over the text document by ranking it with a higher ranking score. Thus, when the results of the search query 114 are returned to the user 112a, the spreadsheet can be displayed in a way that emphasizes it over the text document. Emphasizing the spreadsheet will help the user 112a select it from search results, such as the text document, that are less interesting to the user 112a.
Each block shown in
Referring now to
Block 208 is followed by block 224, in which the client-side behavior data gathered in block 208 is stored. According to the system illustrated in
Referring now to
Block 210 is followed by block 211, in which printing data associated with an article is determined. Printing data may comprise, for example, data relating to when an article or article was printed, how often an article or article has been printed, what portions of an article or articles have been printed, or any other information relating to the printing of an article or article.
Block 211 is followed by block 212, in which book-marking data associated with an article is determined. Book-marking information may comprise, for example, information about book marking of an internet URL, book marking within a text article to other portions of the same article or of a separate article, how many bookmarks are connected with a particular article, the textual content of the book mark associated with the article, or any other information relating to book marks associated with the article or article.
Block 212 is followed by block 213, in which idleness data associated with an article is determined. Idleness data, may comprise, for example, data relating to how much time has elapsed since user activity with a particular article ceased, whether a particular article is active or visible to the user, whether a particular article is receiving input from a user or another program, whether other programs are receiving user input or activity, or any other data relating to idleness of a particular article.
Block 213 is followed by block 214, in which use of computer program application data associated with an article is determined. Use of computer program application data may comprise, for example, data relating to which programs are active, which programs are visible to the user, the type of input a particular application handles or processes, or other data relating to computer program application data. This could also include the number of times the application has been used, the average amount of time the user spends during a session. This information can transfer a ranking weight to the articles produced by the application.
Block 214 is followed by block 215, in which frequency of article access data associated with an article is determined. Frequency of article access data may comprise, for example, data relating to how often a particular article has been accessed, how often a particular article has been accessed by a particular user, how often a particular article is accessed compared to the frequency of other application use, the amount of time between periods of access to the article, the frequency of access as a function of other variables such as time of day, or any other data relating to frequency of use access.
Block 215 is followed by block 216, in which time of access data associated with an article is determined. Time of access data may comprise, for example, the time of day a particular article of article was accessed, the duration of access time associated with a particular article, the elapsed time since prior access to the article, the time of access of an article relative to the time of access or use of other applications, the time of use of an application or any other information relating to time of access data.
Block 216 is followed by block 217, in which manner of client interactions with a second article data is determined. Manner of client interactions with second article data may comprise, for example, the manner of input a user 112a sends to a second article, the type of input a user sends to a second article, the type of output a second article generates for a user, or the amount of output a second article generates.
Block 217 is followed by block 218, in which amount of client interactions with a second article data is determined. Manner of client interactions with second article data may comprise, for example, the amount of input a user 112a sends to a second article, the type of input a user sends to a second article, the type of output a second article generates for a user, or the amount of output a second article generates.
Block 218 is followed by block 219, in which mouse movement data is determined. Mouse movement data may comprise, for example, the amount of mouse movement within a particular article, the manner of mouse movement within an article, the likelihood that the mouse movement associated with a particular article is intentional or inadvertent, or any other data relating to mouse movement information associated with an article. The position of a mouse can also be important. If the mouse hovers over a certain area for a long period of time after being moved there, this can indicate an area of interest.
Block 219 is followed by block 220, in which replying data associated with an article is determined. Replying data may comprise, for example, whether a reply was sent via email, instant messaging, or other correspondence medium in response to an article, whether an article was received as a reply to another correspondence, whether an article requests a reply, or any other replying data associated with an article.
Block 220 is followed by block 221, in which copying data associated with an article is determined. Copying data may comprise, for example, whether a text, graphics, or other material within an article has been copied, the amount of material within an article that has been copied, whether an article comprises material that has been copied from another application, or any other copying data associated with an article.
Block 221 is followed by block 222, in which forwarding data associated with an article is determined. Forwarding data may comprise, for example, whether an article has been forwarded, whether a particular article was received as a forwarded message, or any other forwarding information associated with an article.
Block 222 is followed by block 223, in which location data associated with an article is determined. Location data may comprise, for example, the full path name pointing to a location where an article is stored or a history of where the document has been stored previously. For example, if an article is stored in “c:\documents\budgets\proposals\December Forecast.txt” then each of these terms could be associated with the article even if they do not explicitly appear in the article itself. Additionally, if the article is moved from an old location to a new location, the location data associated with the article could comprise information relating to both the path name associated with the old location and the path name associated with the new location.
The method 208 illustrated in
Returning now to
Referring now again to
Block 228 is followed by block 230, in which a set of relevant articles relevant to the query signal 182 is determined by the article locator 134. In this block, the article locator 134 located within the search engine 120 determines a relevant article or a plurality of relevant articles from article data located in the data store 160 or memory 108. For example, if the search query 114 input by the user is “budget meeting proposal,” the article locator 134 will determine which articles in the data store 160 or the memory 108 are relevant to the search terms. This set may comprise, for example, emails, word processing documents, chat sessions, and spreadsheets that contains the words “budget,” “meeting,” and/or “proposal.” The relevant articles determined in this block are potentially numerous compared to the search result 150 that will ultimately be returned to the user 112a following a ranking, sorting, and displaying of the relevant articles. The relevant articles determined in this block may be sorted by relevance using a traditional method without client-side behavior information, or may be sorted by date.
Block 230 is followed by block 232, in which a total number of relevant articles T in the set of relevant articles returned by the article locator 134 is determined. Preferably, the total number of relevant articles T reflects all of the articles determined to be relevant to the search, though other embodiments may use a different number (e.g. a maximum of 100). The variable T is used in connection with a counter n to determine how many iterations of part of the shown method 200 to complete.
Block 232 is followed by block 234, in which the search engine 120 determines an “nth” relevant article from the total number of relevant articles T associated with the query signal 182. During the first iteration of the method 200, the counter n is equal to 1 and so the search engine 120 determines the first relevant article associated with the query signal 182. On subsequent iterations, the search engine 120 determines the subsequent relevant document within the total number of relevant articles T. In alternate embodiments, the relevant articles associated with the query signal 182 may already be sorted. For example, the articles may be sorted by a relevance measure that does not include client behavior data, or the articles may be sorted by date.
Block 234 is followed by block 236, in which client-side behavior data associated with the nth article is determined. In this block 236, in the embodiment shown, the client behavior data processor 136 located within the search engine 120 receives from the article locator 134 information indicating the nth article associated with the query. The client behavior data processor 136 then determines the client-side behavior data from the data store 160 that is associated with the nth article determined by the article locator 134 to be relevant to the query signal 182.
For example, if the query signal 182 relates to a search query 114 for “Budget meeting proposal” then the article locator 134 will locate all articles relevant to this query which may comprise, for example, all articles with the words “budget meeting proposal” in the text, title, subject field, etc. A particular nth article is then selected from all the relevant articles determined to be relevant to this query. The nth article in this example could be, for example, a spreadsheet titled “proposal for budget meeting.” According to the embodiment illustrated here, the client behavior data processor 136 can then retrieve from the data store 160 all client-side behavior data associated with the spreadsheet. This may include, for example, the amount of scrolling within the spreadsheet, whether the spreadsheet was sent via email, when it was last saved, and how many times it was printed. This client-side behavior data is then used in block 238 to help formulate a ranking score for the article.
In block 238, which follows block 236, client-side behavior data associated with the nth article is provided to the ranking processor 138. In this block 238, the client-side behavior data determined by the client behavior data processor 136 to be associated with the nth article relevant to the query signal 182 is retrieved from the client behavior data database 164 within the data store 160. The client-side behavior data retrieved from the client behavior data database 164 is then sent to the ranking processor 138. Thus, in this block, the client-side behavior data associated with an article determined to be relevant to the query signal 182 is retrieved and sent to the ranking processor 138 where it can be used to generate a ranking score as described in block 240.
In other embodiments, a “client behavior score” reflecting the relative frequency and type of interactions by the user 112a and/or client 102a with an article or a type of article, for example a web page or web pages from a particular site, is predetermined and stored in the data store 160. According to aspects of embodiments comprising a client behavior score, when the search engine 120 receives a query signal 182, the client behavior score is sent to the ranking processor 138 instead of, or in addition to, the client-side behavior data associated with the article. The client behavior score may be determined.
Following block 238 is block 240, in which a ranking score for the nth article is determined. In this block 240 in the embodiment shown, the ranking processor 138 receives the client-side behavior data from the client behavior data processor 136. The ranking processor 138 also receives the query signal 182. The ranking processor 138 determines a ranking score based at least in part on the client-side behavior data retrieved from the client behavior data processor 136 associated with the nth article. This may be accomplished, for example, by a ranking algorithm that weights the various client behavior data and other ranking factors associated with the query signal 182 to produce a ranking score. The different types of client behavior data may have different weights and these weights may be different for different applications. In addition to the client behavior data, the ranking processor 138 may utilize conventional methods for ranking articles according to the terms contained in the articles. It may further use information obtained from a server on a network, for example in the case of web pages, the ranking processor 138 may request a PageRank value for the web page from a server and additionally use that value to compute the ranking score. The ranking score may also depend on the type of article. The ranking score may further depend on the time such as the time of day or the day of the week. For example, a user may typically be working on and interested in certain types of articles during the day, and interested in different kinds of articles during the evening or weekends.
Consider again the example where a user 112a desires to retrieve articles relating to a sales meeting the user 112a recently attended. The user 112a may enter the terms “sales meeting” as a search query 114. A query signal 182 corresponding to the search query 114, “sales meeting,” will be generated and the article locator 134 will locate articles that are relevant to this search. This may include an email containing the words “sales meeting” in the subject field, a text document containing the words “sales meeting” in the body of the text document, and a spreadsheet containing these words in the title. Once relevant articles are located, the client behavior data processor 136 will determine what client-side behavior data is associated with that article.
The user 112a conducted certain actions in relation to the article including printing it, scrolling through the spreadsheet, clicking on it with a mouse, viewing it, and typing text into it. Because of this activity, it is likely the user 112a was editing or preparing the spreadsheet, of that it was otherwise of primary interest to user 112a. The ranking processor 138 reflects the relative importance of the spreadsheet over the other articles determined to be relevant to the search that were not associated with the same amount and type of client-side behavior data by assigning it a higher ranking score than the other relevant articles. When the results of the search query 114 are returned to the user 112a, the spreadsheet can be listed higher in the search results or otherwise displayed in a way that emphasizes it over the text document. This facilitates the user 112a in recognizing it over other articles associated with the query but of less interest to the user 112a.
Block 242 follows block 240. In block 242, it is determined whether the current article number n is equal to the total number of search results T. If n is equal to T, then the method proceeds to block 244. If n is not equal to T, the method proceeds to block 243. In block 243 n is incremented to the next integer and the method returns to block 234 to repeat the blocks 234-242. A threshold may be used on the number of articles to process or the processing time, such that less than T articles are processed. For example, no more than 1,000 articles may be processed, or processing may only be allowed to take a maximum of 500 ms.
For example, on the first run through the method 200, n is equal to 1 and so the first relevant article is selected from the set of relevant articles. If there are 10 documents in the set of relevant articles then T is equal to 10. In block 242, since 1 is not equal to 10, the method will proceed to block 243 where n will receive the value n+1, which will make n now equal to 2. This process repeats until n is equal to 10. When n is equal to 10, the tenth (and final) article will be selected from the set of relevant articles. Then in block 242, since n is now equal to T, the method 200 will proceed to block 244.
In block 244, the relevant articles processed in blocks 234-240 are arranged in a ranking order according to the ranking score associated with each relevant article from block 240.
Block 244 is followed by block 246, in which the relevant articles arranged in a ranking order in the block 244 are displayed to the user 112a. There are numerous ways in which the results can be displayed to the user 112a that will reflect the ranking order from block 244. One possible way is to list the top three articles as hyperlinks and to list a single hyperlink to all other relevant articles, which the user can select if the desired article is not located within the three hyperlinks.
Block 246 is followed by block 248, in which the method 200 ends. In an alternative version of the method 200 it is possible to use the user behavior data to score documents independent of a query. For example, PageRank, although not employed here, is an example of a method that can compute a query-independent score. Later when a query is received, the method 200 can combine the query-independent user behavior score with conventional matching methods. In one version, the articles are processed in the order specified by the query-independent user behavior score. This allows the system to save processing time because it may not be necessary to process all articles. Additionally, the processing may be split into phases where the first phase produces an initial score based on the query-independent user behavior score and conventional methods, and a second phase does more expensive processing on the highest ranked articles from the first phase.
One or more scores based at least in part on client-side behavior data may also be shown to the user without reference to a search query. For example, the score or scores for a web page may be shown in a toolbar when the user browses to a site.
The present invention is not limited to returning results based on only client-side articles or searching only client-side articles. By way of example, additional embodiments of the present invention may comprise combining search results from a network, such as the internet or a local intranet, with the search results obtained by the method 200. Additionally, the present invention may determine a ranking score for an article in part on client-side behavior data and in part on internet ranking scores. Moreover, the present invention may use client-side behavior data, alone or in combination with other factors, to determine a ranking score for articles located on a network such as the internet or a local intranet. The present invention may use client-side behavior data, alone or in combination with other factors, to determine a ranking score for articles located on a client 102a, for articles located on a network 106, such as the internet or a local intranet, or any other article stored on any medium or in any location accessible by the search engine 120 locally or over a remote connection.
While the above description contains many specifics, these specifics should not be construed as limitations on the scope of the invention, but merely as exemplifications of the disclosed embodiments. Those skilled in the art will envision many other possible variations that are within the scope of the invention.
This application relates to Attorney Docket No. GP-175-25-US, filed herewith, titled “Systems and Methods for Unification of Search Results,” the entirety of which is incorporated herein by reference. This application also relates to Attorney Docket No. GP-175-29-US, filed herewith, titled “Methods and Systems for Improving a Search Ranking by Propagating a Ranking Score Based in Part on Client-side Behavior Data,” the entirety of which is incorporated herein by reference.