The agricultural yields of plants depend upon several factors including soil fertility, sunlight, temperature, and rainfall. Increasing soil fertility encompasses not only providing enough essential minerals to the plant, such as potassium, but also promoting the growth of beneficial microbes. These microbes can interact with the plants in complex ways, increasing agricultural yield. Although numerous beneficial microbes exist, their survival and proliferation depends upon numerous aspects of the soil. Moreover, whether a certain microbe is beneficial or harmful depends upon various factors, such as the identity of the agricultural plant.
Provided are methods for increasing the fertility of a soil at a soil location by assessing a parameter of the soil, aerobically culturing a feedstock based on the assessment, generating a soil fertility composition from the cultured feedstock, and applying the soil fertility composition. The assessing can include measuring a biological parameter of the soil, a non-biological parameter of the soil, or a combination thereof. The culturing step includes thermally composting a feedstock, cooling the feedstock, and adding worms, and continuing to culture the feedstock. The methods can include inoculating the feedstock in order to enhance the quality of the final product, which will increase the fertility of the soil. Also provided are systems for performing the methods. The systems can include two or more subunits such that a cultured feedstock in one subunit can inoculate a fresh feedstock in another subunit.
An exemplary method of increasing the fertility of a soil at a soil location includes:
The assessing can include measuring a biological parameter of the soil. In some cases, the biological parameter is the mass of one or more of the fungi, bacteria, protozoa, nematodes, rotifers, or a combination thereof in the soil. In some cases, the assessed soil parameter is pH; the mass percentage of the soil that is sand, silt, and clay; moisture; or a combination thereof. The feedstock can include, for example, plant matter, animal fecal matter, or a combination thereof.
In some cases, the provided system is a system for aerobically culturing a feedstock to produce a culturing product, that includes:
Provided are methods for increasing the fertility of a soil at a soil location by assessing a parameter of the soil, aerobically culturing a feedstock based on the assessment, generating a soil fertility composition from the cultured feedstock, and applying the soil fertility composition. The assessing can include measuring a biological parameter of the soil, a non-biological parameter of the soil, or a combination thereof. The culturing step includes thermally composting a feedstock, cooling the feedstock, and adding worms, and continuing to culture the feedstock. The methods can include inoculating the feedstock in order to enhance the quality of the final product, which will increase the fertility of the soil. Also provided are systems for performing the methods. The systems can include two or more subunits such that a cultured feedstock in one subunit can inoculate a fresh feedstock in another subunit.
Before the present invention is described in greater detail, it is to be understood that this invention is not limited to particular embodiments described, as such may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Each smaller range between any stated value or intervening value in a stated range and any other stated or intervening value in that stated range is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded in the range, and each range where either, neither or both limits are included in the smaller ranges is also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, some potential and exemplary methods and materials may now be described. Any and all publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. It is understood that the present disclosure supersedes any disclosure of an incorporated publication to the extent there is a contradiction.
It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a droplet” includes a plurality of such droplets and reference to “the discrete entity” includes reference to one or more discrete entities, and so forth. It is further noted that the claims may be drafted to exclude any element, e.g., any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely”, “only” and the like in connection with the recitation of claim elements, or the use of a “negative” limitation.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed. To the extent the definition or usage of any term herein conflicts with a definition or usage of a term in an application or reference incorporated by reference herein, the instant application shall control.
As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present invention. Any recited method can be carried out in the order of events recited or in any other order which is logically possible.
Methods
As described above, provided are methods of increasing the fertility of a soil at a soil location. In some cases, the method follows the generalized method 100, as shown in
In generalized method 100, a parameter of the soil is first assessed in step 110. Next, based on the assessed soil parameter, a feedstock is cultured in step 120. Step 120 includes individual steps of thermally composting the feedstock (121), cooling the feedstock (122), adding worms to the feedstock (123), and continuing to culture the feedstock for a period of time (124). Optionally, during the culturing the feedstock can be inoculated with an inoculant, e.g. a microbe. This inoculation can occur at any time, such as before the feedstock is thermally composted 121, during the cooling of the feedstock 122, or during the continuing of the culturing 124. After the feedstock is continued to be cultured for a period of time, a soil fertility composition is generated from the cultured feedstock in step 130. The soil fertility composition is then applied to the soil at the soil location in step 140. Optionally, steps 110, 120, 130, and 140 can be repeated one or more times. In such cases, after applying 140, a period of time is waited 150 before the assessing 110 is performed again. In such cases, the assessing can determine the effect of the first iteration of the method on the soil.
Exemplary Method
To illustrate one embodiment of generalized method 100, exemplary method 200 is shown in
In exemplary method 200, assessing 210 involves assessing the mass of both fungi and bacteria in the soil. In some cases, the assessing 210 can include determining the ratio by mass of fungi and bacteria.
Based on the assessed masses of bacteria and fungi of the soil, culturing with a combined feedstock of corn plant matter and cow fecal matter is performed in step 220. This culturing is performed at 200 km or less, e.g. 50 km or less, from the location of the soil in order to employ environmental conditions that are similar to those at the soil location. Stated in another manner, the humidity, temperature, wind, sunlight, atmospheric pressure, and microbes present are similar at the culturing location to that of the soil location since the locations are within 200 km, e.g. 50 km, of one another.
Culturing 210 involves thermally composting the feedstock in step 221 and passively cooling the feedstock in step 222. Afterwards, Eisenia fetida (red wiggler) worms are added to the feedstock in step 223 to begin vermiculturing. The optional step of inoculating the feedstock is performed in exemplary method 200 by adding the inoculant Trichoderma in step 224 to the feedstock. Next, the feedstock is continued to be cultured for nine months in step 225. During the continuing step 225, optionally water, nutrients, microbe food, or other components can be added culturing feedstock. During the continuation of culturing 225, optionally a parameter of the feedstock can be monitored, e.g., moisture. In other cases, the continuation of culturing 225 is passive, i.e., wherein no actions are taken.
After the continuation of culturing 225, the soil fertility composition is generated by mixing the cultured feedstock with water in step 230. Optionally, the resulting composition can be filtered in order to separate solids from liquids. Afterwards, the soil fertility composition is applied to the soil at the soil location by spraying the liquid in step 240.
In addition, in exemplary method 200 the steps of 210 through 240 are repeated twice. In particular, step 250 of waiting a period of three months is performed, after which the soil parameter of the mass of fungi and bacteria is assessed a second time (210). The waiting period 250 allows time for the soil fertility composition to have an effect on the soil.
For example, if the mass ratio of fungi:bacteria was determined to be lower than desired in the original assessing step, the original culturing could have been performed such that the soil fertility composition is high in fungi and low in bacteria. In fact, the inoculant of Trichoderma refers to a genus of fungi. During the second assessing step, the ratio of fungi:bacteria can once again be measured, and it can be determined whether the ratio was increased sufficiently. Accordingly, a second or possibly subsequent culturing, generating, and applying steps can be performed in order to achieve a fungi:bacteria ratio within an acceptable range.
The term “soil” is used interchangeably with “dirt” and refers to a mixture including minerals, organic matter, gases, and liquids. The soil can provide both the physical structure and chemical features that interact with roots of the plant and allow the plant to grow.
Assessing Step
The methods involve assessing one or more parameters of the soil, and the culturing step is performed based on the assessment. Soil parameters include biological parameters and non-biological parameters, e.g. chemical or physical parameters. The assessing can involve 2 or more parameters, such as 3 or more, 4 or more, 5 or more, or 10 or more. The assessing can involve 1 or more biological parameters, such as 2 or more, 3 or more, 4 or more, 5 or more, or 10 or more. The assessing can involve 1 or more non-biological parameters, such as 2 or more, 3 or more, 4 or more, 5 or more, or 10 or more. In some cases, the assessing involves 1 or more each of biological and non-biological parameters, such as 2 or more each, 3 or more each, 4 or more each, or 5 or more each.
An exemplary biological parameter is the total mass of one or more of fungi, bacteria, protozoa, nematodes, and rotifer. For example, the biological parameter might involve an assessment that there is 2 grams of fungi, 5 grams of bacteria, 1 gram of protozoa, and 3 grams of nematodes in a soil sample. In other cases, the soil parameter might be an assessment that there is 8 grams of fungi and 2 grams of bacteria, i.e., a 4:1 mass ratio of fungi:bacteria. Thus, the biological parameter can be a ratio between the masses of any two of fungi, bacteria, protozoa, rotifers, and nematodes.
In some cases, the biological parameter is which species of microbes are present in the soil. In some cases, the biological parameter is mass of a particular type of microbe. Exemplary types of microbes include nitrifiers, phosphorous mobilizers, potassium mobilizers, and carbon mineralizers. Additional exemplary types of microbes include protective, stimulatory, nutrient mobilizing, carbon sequestering, and immunizing. These functions can be the result of a single organism or as the combined result of multiple different organisms. For example, a first bacillus mobilizes nitrogen and a second bacillus mobilizes phosphorous. However, together the two bacillus mobilize nitrogen, phosphorous, and potassium. The biological parameter can also account for the relative amount of each species of microbe in the soil. In some cases, the biological parameter is the relative amounts of two or more species of microbes to one another. The two or more microbes that are assessed can be fungi, bacteria, protozoa, rotifers, and nematodes. The biological parameter can be the ratio of two microbes to another by mass. The assessed parameter can be a biological parameter, such as the amount of fungi, bacteria, protozoa, nematodes, rotifer, and other organisms in the soil.
An exemplary non-biological parameter is the mass percentage of the soil that is sand, silt, and clay. In some cases, the non-biological parameter is pH, the ratio of organic matter to inorganic matter by mass, or the ratio of calcium to magnesium by mass. The non-biological parameter can also be the concentration of nitrogen, phosphorous, potassium, or a combination thereof in the soil.
The soil parameters can be assessed with any suitable method known in the art. For example, the presence and relative amount of different types of microbes, e.g., bacteria and fungi, can be assessed by polymerase chain reaction (PCR).
In some cases, the assessed pH of the soil ranges from 4.0 to 10.0, such as from 4.5 to 9.5, from 5.0 to 9.0, from 5.5 to 8.5, from 6.0 to 8.0, or from 6.5 to 7.5. In some cases, the pH is 8.0 or less. In some cases, the pH is 6.0 or more.
In some cases, the assessed soil moisture is measured on a volume/volume basis, i.e., the volume of water present in certain volume of soil. In some cases, the volumetric water content ratio is 0.5 or less, such as 0.4 or less, 0.3 or less. 0.2 or less, or 0.1 or less. In some cases, the volumetric water content is 0.1 or more, such as 0.2 or more, 0.3 or more, 0.4 or more, or 0.5 or more. In some cases, the water content ranges from 0.05 to 0.3, such as from 0.15 to 0.25. Water content, which is also referred to as moisture content and soil moisture, of the soil can be measured by any suitable method, such as drying in an oven or the Dean-Stark or Karl Fischer titration methods.
In some cases, the assessed amount of organic matter in soil by mass ranges from 0.1% to 90%, such as from 0.5% to 50%, from 1% to 25%, from 2% to 10%, or from 3% to 8%. Such amounts refer to the amount of organic matter compared to the total amount of inorganic and organic matter in the soil. For example, 2% organic matter refers to a mass ratio of 2:98 of organic matter to inorganic matter.
In some cases, the amount of sand in the soil ranges from 2% to 95%, such as from 5% to 75%, from 10% to 50%, and from 20% to 40%. In some cases, the amount of silt in the soil ranges from 2% to 95%, such as from 5% to 75%, from 10% to 50%, and from 20% to 40%. In some cases, the amount of clay in the soil ranges from 2% to 95%, such as from 5% to 75%, from 10% to 50%, and from 20% to 40%.
Culturing Step
During culturing and breakdown of the feedstock, various microbe populations grow in the feedstock. The identities and relative amounts of these microbes depend upon various factors, including the type of feedstock employed, which microbes were initially present in the feedstock, which microbes are present in the culturing environment, temperature, sunshine, wind, and moisture, among other factors. As such, “culturing a feedstock” refers to the biological degradation of the feedstock by microbes.
Thermal composting refers to the significant initial heating of the feedstock due to microbe activity during the culturing step. In some cases, the feedstock is heated to 50° C. or more for 10 minutes or more, such as for 20 minutes or more, 30 minutes or more, 50 minutes or more, 100 minutes or more, 500 minutes or more, or 1,000 minutes or more. In some cases, the feedstock is heated to 50° C. for 10 minutes or more, such as for 20 minutes or more, 30 minutes or more, 50 minutes or more, 100 minutes or more, 500 minutes or more, or 1,000 minutes or more. In some cases, the feedstock is heated to 110° C. for 10 minutes or more, such as for 20 minutes or more, 30 minutes or more, 50 minutes or more, 100 minutes or more, 500 minutes or more, or 1,000 minutes or more.
After the thermal composting step, the feedstock is cooled, either through passive cooling or active cooling. As used herein, passively cooled refers to the cooling of the feedstock without intervention. Active cooling refers to any action that increases the rate of cooling compared to passive cooling. Active cooling can include moving the feedstock, such as by churning or rotating, in order to expose higher temperature regions to the cooler external environment, or by passing liquids or gasses through the compost functioning as a heat exchanger.
After the cooling step, worms are added to cause vermicomposting. Exemplary species of worms that can be added include Eisenia fetida (red wiggler worm), Eisenia andrei, Eisenia hortensis, and Dendrobaena veneta. In some cases, the method involves adding Eisenia fetida (red wiggler) worms. In some cases, the ratio of worms to feedstock ranges from 1:50 to 1:10,000 by mass, such as from 1:100 to 1:5,000, from 1:200 to 1:1,000, and from 1:300 to 1:700. In some cases, the ratio of worms to feedstock is 1:200 or less, such as 1:500 or less or 1:1,000 or less. In some cases, the ratio of worms to feedstock is 1:1,000 or more, such as 1:500 or more, or 1:200 or more.
After adding worms, the feedstock continues to be cultured for a period of time before the soil fertility composition is generated. Stated in another manner, the feedstock is continued to be cultured for a period of time. This time period can be referred to as the vermicomposting time period or maturation time period.
In some cases, the continuation of culturing step is performed for a time period ranging from 30 days to 720 days, such as 60 days to 630 days, 120 days to 540 days, 180 days to 450 days, or 270 days to 360 days. In some cases, the continuation is for 120 days or more, such as 180 days or more, 270 days or more, or 360 days or more. During the vermicomposting time period the relative amounts of each microbe will vary. The time at which the vermicomposting is ended, i.e., when the feedstock is used to generate the soil fertility composition, is chosen in order to maximize the fertility benefit at the soil location. Stated in another manner, when the optimal mixture of microbes is achieved for increasing soil fertility, the vermicomposting, i.e. the continuation of culturing step, is ended and the soil fertility composition is generated.
Feedstock
The feedstock for the culturing step is the material that is subjected to the thermal composting, cooling, and addition of worms steps. During the culturing step, the feedstock is referred to herein interchangeably as “the feedstock” and “the partially cultured feedstock”. The feedstock can include plant material, animal fecal matter, or a combination thereof. The plant material can be leaf material, wood material, grass material, or a combination thereof. Exemplary animals that the animal fecal matter can be sourced from include cows, sheep, pigs, horses, turtles, llamas and chickens.
In some cases, the feedstock is obtained from within 200 km, e.g. within 50 km, of the soil location. In such cases, the method can provide the advantage that the feedstock contains microbes that are able to survive and proliferate in the environment of the soil location. Exemplary factors that are included in “the environment” include any of the soil parameters described elsewhere, in addition to patterns of rainfall, temperature, sunlight, humidity, and wind. Such microbes present in the feedstock might increase the fertility of the soil.
The feedstock can include material from a plant that is planned to be grown at the soil location, e.g. corn, soybean, cotton, wheat, barley, and banana. This material can be leaf material, stalk material, root material, seed, or fruit. For instance, the corn kernels from a corn plant can be used as part of the feedstock. In cases wherein the plant material includes root material, the roots can have microbes that specifically interact with the plant. For instance, if the roots of a corn plant are included in the feedstock, then microbes associated with the corn plant can be placed into the feedstock, potentially making the cultured feedstock more suitable for application to soil where additional corn is planned to be grown.
Other advantages of employing feedstock obtained from within 200 km, e.g. within 50 km, of the soil location feedstock include reducing costs and ecological harm from the transport of feedstock over long distances and reducing the introduction of non-native species of microbes to the soil location.
In some cases, the feedstock is plant material from a species of plant that is the same species planned to be grown at the soil location. As such, the feedstock might contain a microbe that could benefit the species of plant to be grown at the soil location.
In some cases, the feedstock includes plant material, wherein the plant was grown without one or more of pesticides, herbicides, and manmade fertilizers. In some cases, the plant was not genetically engineered. In some cases, the feedstock includes animal fecal matter, and the animal was not genetically engineered.
Culturing Conditions
By culturing the feedstock at a certain location, certain factors such as temperature, presence of microbes during culturing, sunshine, wind, and moisture can be selected for. In particular, by selecting a culturing location that has a similar environment to the location of the intended use of the soil fertility composition, i.e., the “soil location” as used herein, then culturing can select for and acclimatize microbes suitable for the soil location during the culturing step. Stated in another manner, in order to increase the soil fertility at a soil location then certain microbe populations can be produced during the culturing step. However, since the survival and proliferation of microbes depends on various environmental factors, culturing in an environment similar to the soil location will provide for microbes that can survive, proliferate, and benefit the agricultural plant at the soil location. This environmental similarity is achieved at least in part by culturing within a certain distance, e.g., within 200 km or within 50 km, of the soil location.
In some cases, the soil fertility composition can be designed to benefit a particular type or species of plant that is being grown, or is planned to be grown, at the soil fertility location. Exemplary plants include corn, wheat, rice, potato, or soy. The designing can involve which parameter is assessed, how the aerobic culturing is performed, or a combination thereof. In some cases, the soil fertility composition is not designed for a particular type or species of plant, but rather is designed to increase soil fertility in general.
The culturing step is performed at a location, i.e. a “culturing location”. In some cases, the culturing is performed within 200 km of the soil location, such as within 150 km, 100 km, 75 km, 50 km, 40 km, within 30 km, within 20 km, within 10 km, within 5 km, within 2 km, within 1 km, or within 0.5 km. The culturing step can be performed outdoors. The culturing step can be performed indoors. In some cases, the culturing is performed at a single culturing location. In some cases, the culturing is performed at two or more locations that are each within 50 km or less of the soil location, such as within 40 km, within 30 km, within 20 km, within 10 km, within 5 km, within 2 km, within 1 km, or within 0.5 km
The culturing step can be performed such that the temperature, humidity, atmospheric pressure, soil moisture, or a combination thereof is relatively similar to that at the soil location.
In some cases, for 50% or more of the duration of the culturing step the air temperature at the culturing location is with 5° C. of the air temperature at the soil location, such as 75% or more, 90% or more, 95% ore more, or 99% or more.
In some cases, for 50% or more of the duration of the culturing step the relative humidity at the culturing location is with 10% of the relative humidity at the soil location, such as 75% or more, 90% or more, 95% or more, or 99% or more.
Atmospheric pressure at a particular location, i.e. the pressure of outdoor air at a particular location, varies based on several factors including elevation above sea level and current weather conditions. Although atmospheric pressure can vary on an hourly, daily, or weekly basis based on weather events like rainstorms and monsoons, the average pressure at a location primarily depends on its elevation above sea level. The present methods can in some cases be used to select for microbes that are adapted to the atmospheric pressure at the soil location. Thus, in some cases the culturing location, e.g. during the continuing to culture step, can have an atmospheric pressure similar to the soil location. For example, atmospheric pressure at sea level is about 100 kPa whereas the atmospheric pressure at an elevation of 2,000 m is about 80 kPa (Portland State Aerospace Society, 2004, “A Quick Derivation Relating Altitude to Air Pressure”). In some cases, the difference in average atmospheric pressure between the culturing location and the soil location is 20 kPa or less, such as 10 kPa or less or 5 kPa or less. The culturing location and soil location can differ in elevation by, for example, 2000 m or less, 1000 m or less, or 500 m or less.
In some cases, for 50% of the duration of the culturing step the feedstock being cultured is within 10% of the moisture of the soil moisture at the soil location, such as 75% or more, 90% or more, 95% or more, or 99% or more.
In some cases, for 50% of the duration of the culturing step the feedstock being cultured is within 10% of the moisture of the soil moisture at the soil location and the temperature at the culturing location is within 5° C. of the temperature at the soil location, such as 75% or more, 90% or more, 95% or more, or 99% or more.
The culturing step is performed aerobically. As used herein, aerobic culturing is culturing wherein the average ratio of aerobic microbes to anaerobic microbes during the culturing step greater than 1:1 by mass. In some cases, the ratio of aerobic microbes to anaerobic microbes during the culturing step is 5:1 or more by mass, such as 10:1 or more, 15:1 or more, 20:1 or more, 50:1 or more, or 100:1 or more. In some cases, the aerobic culturing is performed at an oxygen concentration in the feedstock of 0.5 ppm or more, such as 3 ppm or more or 10 ppm or more.
Aerobic culturing is culturing wherein the average ratio of aerobic microbes to anaerobic microbes during the culturing step greater than 1:1 by mass. The terms aerobically culturing and aerobically composting are used interchangeably herein.
Actions During Culturing
During the culturing step, one or more culturing parameters of the feedstock can be monitored. The monitoring can be continuous or intermittent. In some cases, the monitoring is performed automatically by an electronic sensor, e.g. that is operably connected to an electromechanical device that can add material to the feedstock.
Non-biological culturing parameters include pH, moisture content, temperature, ratio of organic matter to inorganic matter by mass, and the size distribution of the pieces of feedstock.
Biological culturing parameters include: the mass of fungi, bacteria, protozoa, nematodes, rotifers, or a combination; the species of such organisms present; ratio by mass of particular species of such organisms that are present; whether a given species of such organisms are present. In some cases, the biological culturing parameter is the ratio by mass of two of fungi, bacteria, protozoa, rotifers, nematodes, e.g., the ratio of fungi to bacteria by mass.
The feedstock can be acted upon during the culturing step according to a pre-determined schedule, based on one or more culturing parameters, or a combination thereof. The acting upon includes, for example, adding a biological inoculant, adding water, adding microbe food, adding worms, or a combination thereof. The addition can be performed automatically or due to action by an operator.
Material that can be added during the culturing includes water, a microbe food, a microbe growth accelerator, worms, a biological inoculant, a pH adjusting agent, and a mineral. For instance, the mineral can have phosphorous, calcium, magnesium, nitrogen, or another chemical element that can help with biological activity.
Biological Inoculation
The terms inoculation and biological inoculation are used interchangeably herein. The feedstock can be inoculated before the beginning of the culturing step, or at any time during the culturing step. In some cases, the feedstock is inoculated before the culturing step. In some cases, the feedstock is inoculated during the culturing step. The feedstock can be inoculated during the thermal composting, cooling, adding worms steps, or after adding worms steps, or a combination thereof. In some cases, the feedstock is inoculated in response to the monitoring of the feedstock.
In some cases, the biological inoculant is rhizosphere soil obtained from the rhizosphere surrounding a plant. In some cases, the rhizosphere soil is obtained from within 200 km, e.g. within 50 km, or less of the soil location. In some cases, the biological inoculant is one or more microbes isolated from rhizosphere soil obtained from the rhizosphere surrounding a healthy plant located within 200 km, e.g. within 50 km, of the soil location. In some cases, the rhizosphere soil is obtained from the rhizosphere surrounding a plant, e.g. a healthy plant, located within 200 km, e.g. within 50 km, or less of the soil location. In some cases the plant is a species planned to be grown, or currently being grown, at the soil location. In some cases, the plant planned to be grown, or currently being grown, at the soil location is corn, wheat, rice, potato, or soy. The biological inoculant can include one or more of a fungus, protozoa, rotifer, bacterium, and nematode.
In some cases, the biological inoculant is a laboratory microbe, i.e., an isolated microbe obtained from a laboratory. In such cases, the culturing may result in the laboratory microbe adapting to the culturing environment and the resulting soil fertility composition includes the laboratory microbe. Exemplary laboratory microbes include Bacillus bacteria, Glomus fungi, and Trichoderma fungi. In some cases, the biological inoculant includes two or more laboratory microbes, e.g., a composition that includes two or three of Glomus fungi, Bacillus bacteria, and Trichoderma fungi.
In some cases, the inoculant includes a microbe that was not detected in the soil during the assessing step. In some cases, the inoculant includes a microbe was detected in the soil during the assessing step in an amount determined to be less than a desirable amount of the microbe. The desirable amount of the microbe can be determined based on one or more of: a) a soil parameter other than the amount of the microbe; b) the identity of a plant planned to be grown in the soil; c) the average rainfall pattern, temperature pattern, sunlight pattern, humidity pattern, wind pattern, or a combination thereof at the soil location; and d) the time of year that the soil fertility composition is planned to be applied to the soil.
The inoculating can be performed at any suitable time during the culturing step, such as before the thermal composting step, during the thermal composting step, after the thermal composting but before the cooling, during the cooling, after the cooling but before the adding worms, during the adding worms, or during the continuing to culture the feedstock. Inoculation can also be performed two or more times.
Ultrasound
The culturing step can include contacting the feedstock with ultrasound. For instance, the ultrasound can be intermittent ultrasound with a low frequency in the range of 20 kHz to 100 kHz. As used herein, “intermittent” means that the ultrasound is applied for a time, stopped, and then applied for an additional time. The cycle of application and stopping the ultrasound can continue for 2 or more cycles, such as 10 or more cycles, or 100 or more cycles. The ultrasound in some cases can modify which types of microbes grow in the feedstock, e.g. by affecting the cell walls to allow increased absorption of nutrients or to rupture cell walls leading to cell death. An exemplary publication describing how ultrasound can affect bacteria is Cai et al (BioMed Research International, 2017, doi: 10.115/2017/2317846, “A Review of the Combination Therapy of Low Frequency Ultrasound with Antibiotics), which is incorporated herein by reference. In addition, the ultrasound can increase the rate of bacterial growth. Additional references describing the effects of ultrasound on microbial death and growth are Pitt et al (Biotechnology Progress, 2003, 19, 3, 1038, doi: 10.1021/bp0340685), Chisti (Trends in Biotechnology, 2003, 21, 2, doi:10.1016/S0167-7799(02)00033-1), and Matsuhashi et al (Journal of General and Applied Microbiology, 1998, 44, 49, doi: 10.2323/jgam.44.49), which are incorporated herein by reference.
Growing a Plant in the Feedstock
The culturing step can also include growing a plant in the feedstock, e.g. during the continuing to culture step. For instance, the plant can be from the same species as the plant planned to be grown at the soil location. If the soil location is planned for soybeans, then a soybean plant can be grown in the feedstock. In some cases, this can cause the microbial community in the feedstock to be adapted to the soybean species. The plant can be grown from seed or by transplanting an existing plant, which can have an additional advantage of introducing microbes from the rhizome associated with the plant roots.
Aeration
The culturing step can include aerating the feedstock, such as by using a fan to direct air through the feedstock. The fan can blow air towards the feedstock or suck air away from the feedstock. In some cases, the fan is positioned above the feedstock and draws air upwards and through the feedstock. In some embodiments, the air is directed through a filter before it contacts the feedstock. In some cases, this filter provides an advantage by removing microbes from the air, thereby aerating the feedstock without introducing outside microbes or excessively modifying the microbe community. The filter can retain dust particles that the microbes can be present on. For instance, the filter can be a High Efficiency Particulate Air (HEPA) filter that removes 99.97% or more of 3.0 μm diameter airborne particles according to the DOE-STD-3020-2015 standard from the United States Department of Energy.
Generating and Applying Steps
After the culturing step, which results in a culturing product, a soil fertility composition is generated from the culturing product. This generating step refers to the physical production of a soil fertility composition. For example, the culturing product can be mixed with water in order to form a soil fertility solution or suspension. In other cases the culturing product is merely removed from the culturing location in order to generate the soil fertility composition.
The soil fertility composition can be applied to the soil at the soil location in any suitable manner. If the soil fertility composition is a solution or suspension, e.g. with water, the composition can be sprayed onto the plants, irrigated at ground level, or irrigated into the soil below ground level. If the soil fertility composition is a solid, or predominantly a solid, then the composition can be physically mixed into the soil at the soil location. The soil fertility composition can be added by hand, with electrically powered or internal combustion powered equipment, or in any other manner.
Repeating the Steps of the Methods
Provided are methods wherein the assessing, aerobic culturing, generating, and applying are repeated one or more times. For example, after the soil fertility composition is applied a first time, a second assessing step can be conducted. The second assessing step can be any suitable amount of time after the first application step, e.g., 1 day to 360 days, such as 90 days to 270 days. Stated in another manner, the waiting time period can be any suitable amount of time after the first application step, e.g., 1 day to 360 days, such as 90 days to 270 days. In some cases, the second assessing is conducted 180 or more days after the first application, such as 270 or more days, 360 or more days, 540 or more days, or 720 or more days. Based on the second assessing, the second aerobic culturing can be modified to further increase the fertility of the soil.
In some cases, biological parameter of the second assessing is the ratio of bacteria to fungi in the soil by mass, wherein the ratio increased or decreased by 50% or more between the first assessing and the second assessing, such as 75% or more, 100% or more, or 200% or more.
In some cases, the parameter of the second assessing changes by 10% or more compared to the same parameter being assessed during the first assessing, such as by 25% or more, 50% or more, 75% or more, 100% or more, or 200% or more.
Systems
Also provided are systems for aerobically culturing a feedstock to produce a culturing product. In some cases, the system includes:
An exploded view of an exemplary system 1000 that can be used with the methods described herein is show in
As shown in
As shown in
As shown in
As shown in
Dimensions of Systems
The systems and components thereof can have any suitable dimensions.
In an exemplary embodiment, the overall assembled system has a length of about 44 inches, a width of about 44 inches, and a height of about 57 inches. Each subunit has a length of about 22 inches, a width of about 22 inches, and a height of about 51 inches. Each subunit top can have a height of about 5 inches, which is included in the about 51 inch height of the overall subunit. The base can have a width of about 44 inches, a length of about 44 inches, and a height of about 6 inches. The top can have dimensions of about 45 inches long, about 45 inches wide, and about 4 inches high.
In some cases, the subunits have assembled length ranging from 15 inches to 150 inches, such as from 25 inches to 100 inches or from 35 inches to 75 inches. In some cases, the subunits have overall assembled width ranging from 15 inches to 150 inches, such as from 25 inches to 100 inches or from 35 inches to 75 inches. In some cases, the width and length of system are within 5% or less of one another. In other cases, the width and length of the system is more than 5% different.
In some cases, the subunits have assembled height ranging from 15 inches to 250 inches, such as from 25 inches to 200 inches, from 40 inches to 150 inches, or from 50 inches to 100 inches.
It is to be understood that the terms length, width, and height refer to the perspective from which the system is viewed. Such dimensions can also be referred to as a first dimension, a second dimension, and a third dimension.
The embodiments shown in
As shown in
As shown in
In some cases, the elements of the base are welded to one another. In other cases, the elements of the base are connected to one another by bolts or screws and nuts. In other cases, the elements are connected by an adhesive.
Any suitable number of subunits may be employed. As shown in
In some cases, one or more elements of the subunits are metal or a metal alloy. In such cases, the metal or metal alloy elements have thicknesses ranging from, for example, 0.05 inches to 0.5 inches, such as from 0.10 inches to 0.35 inches.
Inoculation Between Subunits
The systems can also include two internal side panels and two external side panels, wherein each external panel forms a portion of the exterior of the system and is impermeable to air and water, wherein each internal panel is permeable to microbes and is in contact with an internal panel of another subunit.
In such cases, the methods can include the inoculation of an un-inoculated feedstock in a first subunit by a feedstock in a second subunit. As an example, the first feedstock can be placed into the first subunit, where it undergoes thermal composting, cooling, and addition of worms. The first feedstock can either be partially cultured, i.e. not yet ready for the generation of a soil fertility composition, or fully cultured, i.e. ready for generation of a soil fertility composition. Afterwards, a second feedstock can be added to a second subunit. In some cases, the second feedstock is added to the second subunit in 1 day or less since the subunit was emptied, such as 1 hour or less. Since the internal side panels are in contact with one another and the internal side panels are permeable to microbes, the cultured feedstock in the first subunit can inoculate the feedstock in the second subunit with the microbes present in the first subunit. Afterwards, the first subunit can be removed from the system and the first feedstock can be used to generate a soil fertility composition. As such, sequential inoculations between subunits can be performed, e.g., the second subunit can inoculate a third subunit, and a third subunit can inoculate a fourth subunit.
Additional Elements
In some cases, one or more of the side panels, open top, bottom, first attachment member, and second attachment member are made of a metal or a metal alloy. In some cases, all of such elements are made of metal or a metal alloy.
In some cases, the thermal composting and cooling steps are performed outside the subunits. In fact, the thermal compositing and cooling steps can be performed at a different facility or location from the system. In such cases, the feedstock can then be moved into the subunits, either before or after addition of worms, and the continuing to culture step can be performed. In other cases all the steps of the culturing will be performed wherein the feedstock remains in a single subunit of the system.
For clarity, the two or more subunits described above can be referred to as including a first subunit and a second subunit.
Electronic sensors and electromechanical addition elements can also be part of the systems. For instance, the system can further comprise a first electronic sensor configured to monitor a parameter of a feedstock located within the first subunit. Exemplary parameters include moisture; pH; and concentration of nitrogen, phosphorous, potassium, calcium, magnesium, or a combination thereof. The system can also include a first electromechanical device configured to add a liquid to the feedstock in the first subunit based on a signal from the electronic sensor, a pre-determined schedule, or a command from a user.
For instance, if the first electronic sensor detects that the pH is higher than a desired range, e.g. the pH is 8.1 and the maximum desired pH is 8.0, then the electronic sensor can direct the electromechanical device to add a liquid that includes an acid, such as hydrochloric acid, thereby reducing the pH to the desired range, e.g. 7.9. In another case, the electronic sensor does not directly cause the addition of the liquid, but rather provides an active or passive notification to a human user. Upon reviewing the notification, the human user can then direct the electromechanical device to add the liquid, thereby returning the feedstock to the desired range.
The system can also include a second sensor that monitors a second subunit, and optionally a second electromechanical device. In fact, any number and combination of sensors and electromechanical addition devices can be included in the system, thereby monitoring any number of different parameters in any number of different subunits. In some cases, the system comprises an electromechanical addition device configured to selectively add a liquid to a first subunit but not a second subunit.
In some cases, the system includes a moisture sensor, a water addition element, or a combination thereof. In some cases, the water addition element is operatively connected to the moisture sensor and configured to automatically add water based upon a signal from the moisture sensor. As such, the methods can involve monitoring and additions that employ such elements. The systems might also include elements for addition of any other substance, e.g., microbe food or inoculants. In some cases, the microbe food addition element is configured to automatically add microbe food based on a schedule.
Ultrasound generators can also be included in the system. These ultrasound generators can be configured to generate ultrasound that contacts the feedstock in one or more of the subunits, e.g. independently contact each subunit.
The system can further include a fan for directing air through a subunit. For instance, the fan can draw air upwards through the subunit. The system can include a filter, e.g. a High Efficiency Particulate Air (HEPA) filter that removes 99.97% or more of 3.0 μm diameter airborne particles according to the DOE-STD-3020-2015 standard from the United States Department of Energy. The filter can remove dust particles than can have microbes attached thereon. As such, by removing microbes from the air, the filter can reduce any changes in the microbial community in the feedstock due to introduction of the air.
The system can also include filtration membrane operatively connected to one of the two or more subunits, wherein the bottom door is positioned adjacent to the filtration membrane such that a culturing product in the subunit can be filtered. The system can further comprise a vibration device that is able to vibrate the filtration membrane. In some cases, the vibration device is able to vibrate the filtration member at a frequency of 30 to 300 vibrations per minute, such from 60 to 150 vibrations or from 90 to 120 vibrations. In other cases, the vibration device vibrates at a frequency ranging from 1,000 vibrations per minute to 50,000 vibrations per minute, such as 5,000 vibrations per minute to 20,000 vibrations per minute.
In some cases the culturing is indoors. In other cases the culturing is outdoors.
The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the present invention, and are not intended to limit the scope of what the inventors regard as their invention nor are they intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (e.g. amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is weight average molecular weight, temperature is in degrees Celsius, and pressure is at or near atmospheric. Standard abbreviations may be used, e.g., bp, base pair(s); kb, kilobase(s); pl, picoliter(s); s or sec, second(s); min, minute(s); h or hr, hour(s); aa, amino acid(s); nt, nucleotide(s); and the like.
The relative amount of different species of bacteria and fungi in a sample soil at a sample soil location were determined as part of an assessing step described above. 351 bacterial species and 109 fungal species were detected in the relative amounts shown in Tables 1 and 2 below.
Aspergillus fumigatus
Debaryomyces hansenii
Mycothermus thermophilus
Massarina sp.
Zopfiella sp.
Aspergillus flavus
Penicillium ilerdanum
Acremonium sp.
Epicoccum nigrum
Penicillium coffeae
Penicillium purpurogenum
Sagenomella sp.
Coprinopsis calospora
Talaromyces aurantiacus
Penicillium citrinum
Myceliophthora sp.
Ascobolus sp.
Microascus brevicaulis
Thermomyces lanuginosus
Metarhizium anisopliae
Coprinus annuloporus
Penicillium simplicissimum
Phaeomoniella
Custingophora olivacea
chlamydospora
Aspergillus piperis
Cryptococcus magnus
Microascus sp.
Aspergillus sp.
Mortierella wolfii
Mortierella sp.
Penicillium anatolicum
Phialophora geniculata
Paraconiothyrium brasiliense
Lecanicillium saksenae
Aspergillus terreus
Pichia manshurica
Wallemia sebi
Acremonium stromaticum
Hydropisphaera sp.
Nakazawaea ishiwadae
Issatchenkia orientalis
Capnodium sp.
Botrytis cinerea
Aspergillus melleus
Cryptococcus diffluens
Thermomucor indicae-seudaticae
Aspergillus insuetus
Podospora dimorpha
Penicillium sumatrense
Aspergillus caesiellus
Metschnikowia pulcherrima
Aspergillus ochraceus
Cladosporium herbarum
Acremonium persicinum
Cephalosporium serrae
Myriococcum sp.
Scedosporium prolificans
Candida intermedia
Aspergillus sclerotiorum
Sporothrix sp.
Acremonium hennebertii
Stachybotrys echinata
Penicillium terrigenum
Myrothecium cinctum
Tetracladium sp.
Ceratocystis paradoxa
Trechispora sp.
Geosmithia sp.
Penicillium paxilli
Hyphopichia burtonii
Filobasidium floriforme
Aspergillus bombycis
Aspergillus sydowii
Penicillium georgiense
Aspergillus flocculosus
Aspergillus brasiliensis
Cladosporium
Rhodosporidium babjevae
sphaerospermum
Spiromastix warcupii
Alternaria alternata
Pilobolus longipes
Penicillium brevicompactum
Chrysosporium sp.
Aureobasidium pullulans
Hanseniaspora uvarum
Ulocladium chartarum
Arachnotheca glomerata
Mortierella elongata
Beauveria sp.
Mortierella rishikesha
Cryptococcus aerius
Cladosporium cladosporioides
Paraphaeosphaeria sp.
Calvatia cyathiformis
Fusarium keratoplasticum
Talaromyces purpurogenus
Acremonium polychromum
Penicillium expansum
Penicillium sizovae
Selenophoma mahoniae
Penicillium menonorum
Aspergillus aculeatus
Isaria cateniannulata
Cryptococcus oeirensis
Wallrothiella subiculosa
Pyrenochaeta sp.
Exophiala exophialae
Leucoagaricus leucothites
Penicillium sp.
Escherichia sp.
Alterococcus sp.
Azospira sp.
Cellvibrio sp.
Planctomyces sp.
Fonticella sp.
Hyphomicrobium sp.
Arenimonas sp.
Chryseolinea sp.
Bythopirellula goksoyri
Nitrososphaera sp.
Fodinicola sp.
Roseiflexus sp.
Solibacter sp.
Bacillus sp.
Caulobacter sp.
Sphaerobacter sp.
Novosphingobium capsulatum
Chloroflexus sp.
Pseudomonas aeruginosa
Phycisphaera sp.
Tuberibacillus sp.
Pedomicrobium sp.
Nitriliruptor sp.
Planifilum sp.
Sulfobacillus sp.
Coxiella sp.
Arenibacter sp.
Gemmata sp.
Nocardioides sp.
Gemmatimonas sp.
Nitrosomonas communis
Nitrospira sp.
Rubrobacter sp.
Bauldia sp.
Blautia sp.
Pirellula sp.
Filomicrobium sp.
Nitrolancea sp.
Crocinitomix sp.
Novosphingobium sp.
Hepatincola sp.
Blastopirellula sp.
Rheinheimera sp.
Alysiosphaera sp.
Parvularcula sp.
Symbiobacterium
Dichotomicrobium sp.
thermophilum
Blastocatella sp.
Silanimonas sp.
Rhodopirellula sp.
Atopococcus sp.
Clostridium sp.
Kiloniella sp.
Bdellovibrio sp.
Stackebrandtia sp.
Sufflavibacter sp.
Thioalkalispira sp.
Sandaracinus sp.
Metachlamydia elodeae
Pedosphaera parvula
Demequina sp.
Lysinibacillus sp.
Owenweeksia sp.
Steroidobacter sp.
Bradyrhizobium elkanii
Rhodoplanes sp.
Adhaeribacter sp.
Ohtaekwangia sp.
Gracilibacter thermotolerans
Thermobispora bispora
Acidovorax cattleyae
Geobacillus sp.
Ensifer meliloti
Bryobacter sp.
Pedobacter sp.
Legionella sp.
Tepidanaerobacter sp.
Haliangium sp.
Sedimentibacter sp.
Iamia sp.
Butyrivibrio sp.
Thermobacillus sp.
Prosthecobacter sp.
Virgibacillus halodenitrificans
Saccharopolyspora emeiensis
Thermoflavimicrobium sp.
Caminicella sp.
Thermopolyspora sp.
Calditerricola sp.
Mariprofundus sp.
Algoriphagus sp.
Longispora sp.
Brevundimonas diminuta
Devosia insulae
Pseudonocardia sp.
Sorangium sp.
Alkaliphilus transvaalensis
Bacillus thermolactis
Pseudomonas sp.
Acidovorax sp.
Singulisphaera sp.
Thermoactinomyces sp.
Clostridium stercorarium
Lewinella sp.
Proteiniborus sp.
Litorilinea sp.
Alicyclobacillus sp.
Rhodomicrobium sp.
Bacillus alkalitelluris
Ardenscatena sp.
Acanthopleuribacter sp.
Xiphinematobacter sp.
Stella sp.
Pedosphaera sp.
Laceyella sacchari
Paenibacillus sp.
Hymenobacter sp.
Oceanibaculum sp.
Bacillus foraminis
Liberibacter sp.
Pseudolabrys sp.
Fictibacillus barbaricus
Hirschia sp.
Bosea sp.
Pelagibius sp.
Metachlamydia lacustris
Symbiobacterium sp.
Nannocystis sp.
Truepera sp.
Marinoscillum sp.
Woodsholea sp.
Elioraea tepidiphila
Anaeromyxobacter sp.
Lysobacter sp.
Rhodobium sp.
Corynebacterium stationis
Saccharomonospora viridis
Luteivirga sp.
Glycomyces mongolensis
Captivus sp.
Bacillus aryabhattai
Taibaiella sp.
Bacillus aquimaris
Achromobacter xylosoxidans
Ilumatobacter sp.
Syntrophaceticus sp.
Marinicella sp.
Brevundimonas sp.
Thiothrix sp.
Intrasporangium sp.
Aquicella sp.
Inquilinus sp.
Tepidimicrobium sp.
Flavisolibacter sp.
Ignavibacterium sp.
Simkania negevensis
Bacillus muralis
Sneathiella sp.
Peredibacter sp.
Fodinicurvata fenggangensis
Ammoniphilus sp.
Gracilibacter sp.
Oceanobacillus sp.
Spirochaeta sp.
Patulibacter sp.
Pseudonocardia zijingensis
Bacillus decolorationis
Criblamydia sequanensis
Bythopirellula sp.
Actinomycetospora sp.
Altererythrobacter sp.
Methylocaldum sp.
Desulfitibacter sp.
Parvibaculum sp.
Thermomonospora curvata
Pleomorphomonas sp.
Aneurinibacillus sp.
Amaricoccus sp.
Methylohalomonas sp.
Brevibacterium aureum
Defluviicoccus sp.
Collinsella sp.
Coprococcus sp.
Pelagibacterium sp.
Microbispora sp.
Arthrobacter agilis
Microbacterium arthrosphaerae
Anaerobranca sp.
Caldalkalibacillus sp.
Shimazuella sp.
Phyllobacterium sp.
Bacillus gibsonii
Halocella sp.
Arenicella sp.
Caldicoprobacter sp.
Mesorhizobium tianshanense
Phaselicystis sp.
Pseudomonas citronellolis
Ornatilinea sp.
Smithella sp.
Rhodococcus sp.
Dehalobacter sp.
Euzebya sp.
Ornithinimicrobium sp.
Streptomyces sp.
Aeromicrobium sp.
Constrictibacter sp.
Gemella sp.
Hyphomonas sp.
Paracoccus chinensis
Variovorax sp.
Caldanaerocella sp.
Haloplasma sp.
Arthrobacter festucae
Azoarcus sp.
Smaragdicoccus niigatensis
Paucisalibacillus sp.
Anaerolinea sp.
Acidiferrobacter sp.
Alkaliphilus crotonatoxidans
Haloferula sp.
Catellatospora citrea
Lautropia sp.
Mesorhizobium sp.
Chthoniobacter sp.
Protochlamydia sp.
Afifella sp.
Turneriella parva
Achromobacter sp.
Methanobacterium sp.
Opitutus sp.
Methanomassiliicoccus sp.
Nitrosococcus sp.
Promicromonospora
kroppenstedtii
Criblamydia sp.
Rummeliibacillus sp.
Enhygromyxa sp.
Rhizomicrobium sp.
Luteimonas composti
Anaerostipes sp.
Actinopolyspora sp.
Mycobacterium sp.
Bacillus clausii
Longilinea sp.
Melghirimyces
Rickettsia sp.
thermohalophilus
Fimbriimonas sp.
Leadbetterella sp.
Thermaerobacter marianensis
Luteolibacter sp.
Waddlia chondrophila
Tumebacillus ginsengisoli
Exiguobacterium sibiricum
Bacteroides sp.
Haliea sp.
Bdellovibrio bacteriovorus
Ureibacillus sp.
Thermocrispum municipale
Microthrix sp.
Thalassobaculum sp.
Phenylobacterium sp.
Tissierella sp.
Pseudospirillum sp.
Tumebacillus sp.
Thermasporomyces composti
Stenotrophomonas sp.
Cohnella arctica
Arthrobacter cereus
Reichenbachiella sp.
Sporomusa sp.
Reyranella sp.
Desulfobacca sp.
Agaricicola sp.
Paenibacillus alginolyticus
Sphingomonas sp.
Defluviitalea sp.
Sphaerisporangium rubeum
Odyssella sp.
Mycobacterium celatum
Deinococcus aquaticus
Coprothermobacter sp.
Amycolatopsis pigmentata
Devosia sp.
Nitrososphaera gargensis
Caldibacillus sp.
Dermatophilus crocodyli
Desulfotomaculum sp.
Massilia sp.
Gracilibacillus sp.
Corynebacterium sp.
Brevibacillus formosus
Martelella sp.
Brevibacillus sp.
Anaerosalibacter sp.
Methanobrevibacter sp.
Entotheonella sp.
Ferruginibacter sp.
Arthrobacter nitroguajacolicus
Phaeospirillum fulvum
Kocuria rhizophila
Gaiella sp.
Fluviicola sp.
Litorilinea aerophila
Halomonas sp.
Lutispora sp.
Paenibacillus taihuensis
Aeribacillus barengoltzii
Perlucidibaca sp.
Solirubrobacter sp.
Sporocytophaga sp.
Bradyrhizobium sp.
Algoriphagus terrigena
Actinomadura sp.
Sphingopyxis alaskensis
Portibacter sp.
Aerococcus viridans
Rubricoccus sp.
Skermanella sp.
Verrucomicrobium sp.
Simiduia sp.
Legionella londiniensis
Schlegelella sp.
Caldilinea sp.
Sanguibacter suarezii
Plesiocystis sp.
Salinicoccus sp.
Bacillus litoralis
Rhodococcus equi
Mycobacterium hassiacum
Clostridium intestinale
Bacillus aerophilus
Rhizobium sp.
Halorhodospira sp.
Pseudoxanthomonas mexicana
Tepidimicrobium ferriphilum
Cerasibacillus quisquiliarum
Desulfotomaculum peckii
Propionibacterium acnes
Luteimonas sp.
Pontibacter sp.
Marmoricola sp.
Phytohabitans sp.
Alkaliphilus oremlandii
Allokutzneria multivorans
Actinomadura bangladeshensis
Clostridium bowmanii
Thermomonas sp.
Corn is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 3 below, the experimentally determined soil values are compared with the target soil values for growing corn. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 107.2 is determined to be the optimal feedstock for corn growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 107.2.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 4, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.53 L of phosphorous mobilizer solution is added to increase the amount of phosphorous mobilizing bacteria because the actual soil value is lower than the target soil value.
Corn is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 5 below, the experimentally determined soil values are compared with the target soil values for growing corn. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 79.2 is determined to be the optimal feedstock for corn growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 92.2.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 6, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.00 L of phosphorous mobilizer solution is added because the actual soil value is higher than the target soil value.
Corn is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 7 below, the experimentally determined soil values are compared with the target soil values for growing corn. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 86.2 is determined to be the optimal feedstock for corn growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 86.2.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 8, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.00 L of phosphorous mobilizer solution is added because the actual soil value is equal to the target soil value.
Cotton is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 9 below, the experimentally determined soil values are compared with the target soil values for growing cotton. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 107.2 is determined to be the optimal feedstock for cotton growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 107.2.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 10, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.00 L of phosphorous mobilizer solution is added because the actual soil value is higher than the target soil value.
Cotton is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 11 below, the experimentally determined soil values are compared with the target soil values for growing cotton. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 100.2 is determined to be the optimal feedstock for cotton growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 100.2.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 12, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.10 L of phosphorous mobilizer solution is added to increase the amount of phosphorous mobilizing bacteria because the actual soil value is lower than the target soil value.
Cotton is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 13 below, the experimentally determined soil values are compared with the target soil values for growing cotton. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 86.2 is determined to be the optimal feedstock for cotton growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 86.2.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 14, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.00 L of phosphorous mobilizer solution is added because the actual soil value is equal to the target soil value.
Soybean is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 15 below, the experimentally determined soil values are compared with the target soil values for growing soybean. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 86.2 is determined to be the optimal feedstock for soybean growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 86.2.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 16, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.07 L of phosphorous mobilizer solution is added to increase the amount of phosphorous mobilizing bacteria because the actual soil value is lower than the target soil value.
Soybean is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 17 below, the experimentally determined soil values are compared with the target soil values for growing soybean. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 86.2 is determined to be the optimal feedstock for soybean growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 86.2.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 18, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.00 L of phosphorous mobilizer solution is added because the actual soil value is higher than the target soil value.
Soybean is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 19 below, the experimentally determined soil values are compared with the target soil values for growing soybean. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 86.2 is determined to be the optimal feedstock for soybean growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 86.2.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 20, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.00 L of phosphorous mobilizer solution is added because the actual soil value is equal to the target soil value.
Hemp is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 21 below, the experimentally determined soil values are compared with the target soil values for growing hemp. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 65.2 is determined to be the optimal feedstock for hemp growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 65.2.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 22, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.55 L of phosphorous mobilizer solution is added to increase the amount of phosphorous mobilizing bacteria because the actual soil value is lower than the target soil value.
Hemp is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 23 below, the experimentally determined soil values are compared with the target soil values for growing hemp. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 79.2 is determined to be the optimal feedstock for hemp growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 79.2.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 24, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.00 L of phosphorous mobilizer solution is added because the actual soil value is higher than the target soil value.
Hemp is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 25 below, the experimentally determined soil values are compared with the target soil values for growing hemp. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 86.2 is determined to be the optimal feedstock for hemp growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 86.2.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 26, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.04 L of phosphorous mobilizer solution is added to increase the amount of phosphorous mobilizing bacteria because the actual soil value is lower than the target soil value.
Banana is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 27 below, the experimentally determined soil values are compared with the target soil values for growing banana. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 107.2 is determined to be the optimal feedstock for banana growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 107.2.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 28, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.57 L of phosphorous mobilizer solution is added to increase the amount of phosphorous mobilizing bacteria because the actual soil value is lower than the target soil value.
Banana is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 29 below, the experimentally determined soil values are compared with the target soil values for growing banana. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 107.2 is determined to be the optimal feedstock for banana growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 107.2.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 30, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.00 L of phosphorous mobilizer solution is added because the actual soil value is higher than the target soil value.
Banana is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 31 below, the experimentally determined soil values are compared with the target soil values for growing banana. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 103.7 is determined to be the optimal feedstock for banana growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 103.7.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 32, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.00 L of phosphorous mobilizer solution is added because the actual soil value is equal to the target soil value.
Grape is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 33 below, the experimentally determined soil values are compared with the target soil values for growing grape. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 114.9 is determined to be the optimal feedstock for grape growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 114.9.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 34, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.14 L of phosphorous mobilizer solution is added to increase the amount of phosphorous mobilizing bacteria because the actual soil value is lower than the target soil value.
Grape is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 35 below, the experimentally determined soil values are compared with the target soil values for growing grape. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 150.0 is determined to be the optimal feedstock for grape growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 150.0.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 36, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.00 L of phosphorous mobilizer solution is added because the actual soil value is higher than the target soil value.
Grape is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 37 below, the experimentally determined soil values are compared with the target soil values for growing grape. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 150.0 is determined to be the optimal feedstock for grape growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 150.0.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 38, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.00 L of phosphorous mobilizer solution is added because the actual soil value is equal to the target soil value.
Tea tree is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 39 below, the experimentally determined soil values are compared with the target soil values for growing tea trees. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 40.0 is determined to be the optimal feedstock for tea trees growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 40.0.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 40, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.31 L of phosphorous mobilizer solution is added to increase the amount of phosphorous mobilizing bacteria because the actual soil value is lower than the target soil value.
Tea tree is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 41 below, the experimentally determined soil values are compared with the target soil values for growing tea trees. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 142.7 is determined to be the optimal feedstock for tea trees growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 142.7.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 42, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.00 L of phosphorous mobilizer solution is added because the actual soil value is higher than the target soil value.
Tea tree is the crop intended to be grown at the soil location. To facilitate optimal plant growth, the soil is analyzed for the amounts of various life forms, such as bacteria, fungi, protozoa, and nematodes. As shown in Table 43 below, the experimentally determined soil values are compared with the target soil values for growing tea trees. The values shown below are recited relative to one gram of soil.
These analyses of soil life forms are used to determined what type of feedstock will be cultured. For instance, possible feedstocks of animal manure, tree bark, and leaves each have different properties that can make them more or less suitable, depending on the properties of the soil and depending on which crop is planned to be grown.
For example, a feedstock can be selected based on the optimal carbon to nitrogen ration (C:N ratio). In this embodiment, the optimal C:N ratio is calculated according to the equation below, wherein the ratio of fungi to bacteria (F:B ratio) is the life form parameter of interest. The optimal C:N ratio cannot be lower than 40 or greater than 150.
As such, a feedstock with a C:N ratio of 150.0 is determined to be the optimal feedstock for tea trees growing in this particular soil. A feedstock (e.g., cow manure) or a blend of feedstocks is selected to most closely match the desired C:N ratio of 150.0.
In addition to selecting the identity of the feedstock, certain additives can be added during culturing of the feedstock to further improve the soil. For example, if the amount of active fungi is determined to be lower than optimal, a liquid fungal activator can be added to the feedstock during culturing.
For this embodiment, as shown in Table 44, the soil is analyzed for biomass properties, diversity properties, and physio-chemical properties. Based on comparisons between the experimentally determined values and the target values for each property, different volumes (in liters) of each additives are calculated and added to the feedstock during culturing to provide for optimal growing conditions for corn according to the present invention. For example, 0.00 L of phosphorous mobilizer solution is added because the actual soil value is equal to the target soil value.
This application claims priority to U.S. Provisional Application 62/984,723, filed Mar. 3, 2020, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
20180105476 | Wallis et al. | Apr 2018 | A1 |
20190194081 | Bhallia et al. | Jun 2019 | A1 |
20190218153 | Price | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
105175177 | Dec 2015 | CN |
108017422 | May 2018 | CN |
108424184 | Aug 2018 | CN |
2000043329 | Jul 2000 | WO |
2005067550 | Jul 2005 | WO |
2018236227 | Dec 2018 | WO |
Entry |
---|
Cai et al. (2017) “A Review of the Combination Therapy of Low Frequency Ultrasound with Antibiotics” BioMed Research International, 2017: 1-14. |
Christi et al. (2003) “Sonobioreactors: using ultrasound for enhanced microbial productivity” Institute of Tech. and Engineering, 21(2): 89-93. |
Csu Chico (2021) “How to Build Your Own Bioreactor” Johnson-Su Beam Research & Bioreactor Registry. The Center for Regenerative Agriculture and Resilient Systems, California State University, Chico. 6 pages. (https://www.csuchico.edu/regenerativeagriculture/bioreactor/bioreactor-instructions.shtml). |
Matsuhashi et al. (1998) “Production of sound waves by bacterial cells and the response of bacterial cells to sound” J. Gen. Appl. Microbiol., 44: 49-55. |
Pitt et al. (2003) “Ultrasound Increases the Rate of Bacterial Cell Growth” Biotechnol Prog., 19(3): 1038-1044. |
Savchenko (2017) “Application of Low Intensity Pulsed Ultrasound for Microbial Cell Stimulation in Bioprocesses and development of Carbon-based Silver Covered Filters for Microbial Cells Removal in Water Systems” A Thesis written for the Dept. of Biomed. Engineering, 1-164. |
Number | Date | Country | |
---|---|---|---|
20210274703 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
62984723 | Mar 2020 | US |