The present disclosure relates generally to inverters and, more specifically, to inverters utilizing insulated gate bipolar transistors (IGBT) modules.
Electric and hybrid vehicle propulsion systems typically employ an alternating current (AC) motor drive inverter to transform direct current (DC) voltage of the energy storage battery to variable speed AC waveforms in order to drive the electric motor. Most commonly, the inverter uses a current controlled voltage source configuration. Power semiconductor switches, such as, for example, insulated gate bipolar transistors (or IGBTs) can be used to pulse width modulate (PWM) the voltage applied to the motor. The motor acts as a large filter and smooths the waveforms such that the current becomes nearly sinusoidal.
In high performance vehicles, it may be desired to have a large motor torque. Torque is roughly proportional to the current, so a high performance vehicle typically requires a large AC current to drive the motor, making protection circuits even more essential.
According to various embodiments, the present disclosure may be directed to methods for interconnecting parallel insulated gate bipolar transistor (IGBT) modules. An example method includes assigning a pair of switches selected from a plurality of the IGBT modules to a driver integrated circuit (IC). The pair of switches can include a first IGBT switch and a second IGBT switch. The method further includes electrically coupling the first IGBT switch and the second IGBT switch to the driver IC, the electrically coupling including electrically coupling the driver IC to a protective circuit of a selected one of the first and second IGBT switches.
In some embodiments, the first IGBT switch includes at least one protective circuit. The protective circuit may include a temperature sense and a current sense circuit. In some embodiments, the plurality of the IGBT modules includes a pre-determined number of discrete IGBT switches. In certain embodiments, the plurality of the IGBT modules includes a pre-determined number of half-bridge modules. Each of the half-bridge modules can include an upper IGBT switch and a lower IGBT switch.
In some embodiments of the disclosure, the plurality of the IGBT modules includes a first hexpack power module and a second hexpack power module. Each of the first hexpack power module and the second hexpack power module can include six IGBT switches with three upper IGBT switches and three lower IGBT switches.
Certain embodiments of the present disclosure are illustrated by the accompanying figures. It will be understood that the figures are not necessarily to scale and that all details not necessary for understanding the technology or that render other details difficult to perceive may be omitted. It will be understood that the technology is not necessarily limited to the particular embodiments illustrated herein.
While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the present disclosure. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings with like reference characters. It will be further understood that several of the figures are merely schematic representations of the present disclosure. As such, some of the components may have been distorted from their actual scale for pictorial clarity.
In general, various embodiments of the present disclosure are directed to a method for interconnecting IGBT modules to provide better protection and relatively equal current sharing. The IGBT modules can be used in inverters configured to transform direct current (DC) voltage of the energy storage battery to variable speed AC waveforms in order to drive the electric motor. An example inverter assembly is described in U.S. patent application Ser. No. 14/841,520, filed Aug. 31, 2015, titled “Inverter Assembly”, the disclosure of which is incorporated herein by reference for all purposes.
Various embodiments of the present disclosure may facilitate reduction in the number of driver integrated circuits for driving inverters while providing better protection of the parallel IGBT devices. Some embodiments can comprise a driver integrated circuit (IC) and a pair of switches selected from a plurality of the IGBT modules. The pair of switches can include a first IGBT switch and a second IGBT switch. The first IGBT switch, the second IGBT switch, and the driver IC can be electrically coupled to allow the first IGBT switch and the second IGBT switch to receive at least a command signal from the driver IC. The first IGBT switch can be electrically coupled to the driver IC to allow the driver IC to receive a signal from at least one protective circuit of the first IGBT switch. The protective circuit can include a temperature sensor and a current sense circuit. Although the second IGBT switch in the pair of switches also has protective circuits, in various embodiments, the protective circuits of the second IGBT switch are not coupled to the driver IC. Thus, only the protective circuits of the first IGBT switch may be coupled to the driver IC; with both IGBT switches of the pair being coupled to the gate command of the driver IC. Various embodiment can allow a single driver IC to drive each pair of paralleled IGBT switches, rather than requiring a separate driver IC for each switch.
In some embodiments, to generate a high current, two or more IGBT devices can be connected in parallel. In one example embodiment, 12 individual discrete IGBT switches (with an integral diode) are used so that each inverter switch is composed of two devices connected in parallel. Alternatively in other embodiments, half-bridge modules can be used. Each half-bridge module can include an upper switch and a lower switch and diodes in a single package. Six half-bridge modules can form a single high current inverter, with two modules connected in parallel for each phase.
Hexpack power modules may be used to form a high current inverter. While the present disclosure describes an interconnection of IGBT devices in two hexpack power modules, similar approaches can be applied to either half-bridge modules or individual discrete IGBT modules. In various embodiments, with proper packaging and electrical design, the parallel IGBT device can be configured to share the load current relatively equally.
In conventional designs, each IGBT switch is assigned a driver integrated circuit (IC). The driver IC includes built in features to provide over-current and overtemperature protection. In various embodiments, in the case of parallel IGBT devices, a single driver IC is assigned to each pair of parallel IGBT switches. On one hand, assigning a single driver IC to each pair of parallel IGBT switches may reduce costs. On the other hand, assigning the single driver IC to each pair of parallel IGBT switches can provide for (relatively) equal current sharing of the parallel IGBT devices.
In some example embodiments, a common buffer stage can be used to take the driver IC gate command signal and drive the two parallel IGBT switches. However, the driver IC is only designed, in various embodiments, to interface with a single IGBT switch's protection circuits (for example, current sense and temperature sense). In order to drive 12 IGBT switches, for example, the IGBT switches of the two hexpack power modules 202 and 204 shown in
In various embodiments, for each parallel pair of IGBTs, one IGBT device can be assigned as the “master” and another IGBT device can be assigned as the “slave”.
Referring back now to
In some embodiments, each phase leg in each module (202, 204) has two IGBT switches—a selected IGBT switch as “master” and another IGBT switch as “slave”. Also, for each leg, if the upper IGBT switch is selected as “master” in one of the hexpack power modules, then the lower IGBT switch in the other hexpack power module may also be selected as “master”. Similarly, for each leg, if the lower IGBT switch is selected as “master” in one of the hexpack power modules, then the upper IGBT switch in the other hexpack power module can also be selected as “master”. For example, referring to the example in
In the second hexpack power module 204 (also identified as “Module 2” in the example in
The protective circuits of IGBT switches 206, 208, and 210 (such as current sense and/or temperature sense) can be connected to a respective gate driver IC. Similarly, IGBT switches 212 (AL2), 214 (BL2) and 216 (CH2) are selected as masters from the second hexpack power module 204 in this example. Using this approach, according to various embodiments, at least one IGBT device in each phase leg of each module may be used for protection purposes. This approach, according to various embodiments, can insure that every phase leg is protected against shoot-through events. A shoot-through event can happen when both upper and lower IGBTs are accidentally turned on at the same time. Similarly, in various embodiments, if an IGBT device fails short, there will always be a master in the complementary position of the same phase (leg) which will detect shoot-through condition when that IGBT switch (ie the complementary master switch) is commanded on. Additionally, if one of the module's AC output terminals become disconnected, the remaining module can carry the entire current of the load. This can cause the remaining connected semiconductor devices can overheat. Since each phase has a master IGBT switch in each module, in various embodiments, the over temperature protection is able to detect this condition and protect the devices. Various embodiments for connecting the IGBT devices as described in
In block 406, the method 400 can proceed with electrically coupling the driver IC to receive a signal from the protective circuit of a selected one of the first and second IGBT switches.
In some embodiments, the protective circuit includes a temperature sense (sensor) for detecting if a preset temperature has been exceeded.
The method may further comprise electrically coupling the driver IC to another protective circuit of the selected one of the first and second IGBT switches. The other protective circuit can include a current sense circuit for detecting if a preset current has been exceeded. In various embodiments, the driver IC gate command signal is coupled to both the first IGBT switch and the second IGBT switch. In the example in
The pair of switches may be connected (for example, as shown in
The plurality of the IGBT modules may include a first hexpack power module and a second hexpack power module, each of the first hexpack power module and the second hexpack power module including six IGBT switches, the six IGBT switches including three upper IGBT switches and three lower IGBT switches.
The first IGBT switch may be selected from three of the six switches of the first hexpack power module or three of the six switches of the second hexpack power module.
In some embodiments, the plurality of the IGBT modules includes a pre-determined number of discrete IGBT switches.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. The descriptions are not intended to limit the scope of the technology to the particular forms set forth herein. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments.
It should be understood that the above description is illustrative and not restrictive. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the technology as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art. The scope of the technology should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.
Number | Name | Date | Kind |
---|---|---|---|
6618278 | Suzuki et al. | Sep 2003 | B2 |
6621701 | Tamba et al. | Sep 2003 | B2 |
7710721 | Matsuo et al. | May 2010 | B2 |
7830689 | Nakamura et al. | Nov 2010 | B2 |
7855887 | Kakuda et al. | Dec 2010 | B2 |
7965510 | Suzuki et al. | Jun 2011 | B2 |
8072758 | Groppo et al. | Dec 2011 | B2 |
8159849 | Nakajima et al. | Apr 2012 | B2 |
8432714 | Keronen | Apr 2013 | B2 |
8587977 | Nishikimi et al. | Nov 2013 | B2 |
8614906 | Nakajima et al. | Dec 2013 | B2 |
8699254 | Nishikimi et al. | Apr 2014 | B2 |
8717788 | Chen | May 2014 | B2 |
8848370 | Shin et al. | Sep 2014 | B2 |
8953335 | Abe et al. | Feb 2015 | B2 |
9042101 | Tokuyama et al. | May 2015 | B2 |
9042147 | Ishii et al. | May 2015 | B2 |
9048721 | Abe et al. | Jun 2015 | B2 |
9241428 | Doo et al. | Jan 2016 | B1 |
20020034087 | Suzuki et al. | Mar 2002 | A1 |
20030067748 | Tamba et al. | Apr 2003 | A1 |
20060052914 | Kubokawa et al. | Mar 2006 | A1 |
20060274561 | Ahmed et al. | Dec 2006 | A1 |
20080251909 | Tokuyama et al. | Oct 2008 | A1 |
20110205724 | Nakajima et al. | Aug 2011 | A1 |
20110279074 | Yeh | Nov 2011 | A1 |
20120217795 | Hasegawa | Aug 2012 | A1 |
20120235622 | Welchko | Sep 2012 | A1 |
20130039009 | Shin et al. | Feb 2013 | A1 |
20130314014 | Tremel | Nov 2013 | A1 |
20140104902 | Casares | Apr 2014 | A1 |
20150029666 | Kosuga et al. | Jan 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20170126145 A1 | May 2017 | US |