Methods and systems for liquid desiccant air conditioning system retrofit

Information

  • Patent Grant
  • 9709285
  • Patent Number
    9,709,285
  • Date Filed
    Friday, March 14, 2014
    10 years ago
  • Date Issued
    Tuesday, July 18, 2017
    7 years ago
Abstract
Methods and systems are disclosed for utilizing liquid desiccant air conditioning systems in connection with existing HVAC equipment to achieve reductions in electricity consumption.
Description
BACKGROUND

The present application relates generally to the use of liquid desiccants to dehumidify and cool, or heat and humidify an air stream entering a space. More specifically, the application relates to an optimized system configuration to retrofit 2- or 3-way liquid desiccant mass and heat exchangers that employ micro-porous membranes to separate the liquid desiccant from an air stream in large commercial and industrial buildings while at the same time modifying existing Heating Ventilation and Air Conditioning (HVAC) equipment to achieve a significant reduction in electricity consumption in the building.


Desiccant dehumidification systems—both liquid and solid desiccants—have been used parallel to conventional vapor compression HVAC equipment to help reduce humidity in spaces, particularly in spaces that require large amounts of outdoor air or that have large humidity loads inside the building space itself. (ASHRAE 2012 Handbook of HVAC Systems and Equipment, Chapter 24, p. 24.10). Humid climates, such as for example Miami, Fla. require a lot of energy to properly treat (dehumidify and cool) the fresh air that is required for a space's occupant comfort. Conventional vapor compression systems have only a limited ability to dehumidify and tend to overcool the air, oftentimes requiring energy intensive reheat systems, which significantly increase the overall energy costs, because reheat adds an additional heat-load to the cooling coil. Desiccant dehumidification systems—both solid and liquid—have been used for many years and are generally quite efficient at removing moisture from the air stream. However, liquid desiccant systems generally use concentrated salt solutions such as ionic solutions of LiCl, LiBr or CaCl2 and water. Such brines are strongly corrosive, even in small quantities, so numerous attempts have been made over the years to prevent desiccant carry-over to the air stream that is to be treated. In recent years efforts have begun to eliminate the risk of desiccant carry-over by employing micro-porous membranes to contain the desiccant.


Liquid desiccant systems generally have two separate functions. The conditioning side of the system provides conditioning of air to the required conditions, which are typically set using thermostats or humidistats. The regeneration side of the system provides a reconditioning function of the liquid desiccant so that it can be re-used on the conditioning side. Liquid desiccant is typically pumped between the two sides. A control system is used to properly balance the liquid desiccant between the two sides as conditions necessitate and that excess heat and moisture are properly dealt with without leading to over-concentrating or under-concentrating the desiccant.


In large stores, supermarkets, commercial and industrial buildings, energy is wasted because the existing unitary HVAC units serving the building do not adequately dehumidify the ventilation air that they provide to the building. This excess humidity winds up being condensed out of the air with excess energy usage from refrigeration and freezer equipment inside the building, which creates a load on that equipment resulting in a higher than necessary energy consumption.


Older buildings typically have been designed with HVAC equipment that recirculates a large portion (80-90%) of the air from the space through its cooling coil. The equipment takes in approximately 10-20% of fresh outside air, which as discussed above requires dehumidification, which is not adequately done by this equipment. At time of construction and design, engineers will sometime add a desiccant system to create the necessary dehumidification, but such equipment is heavy, complex and expensive and is not retrofitable on buildings that were not originally designed to accommodate them.


There thus remains a need to provide a retrofitable cooling system for buildings with high humidity loads, wherein the dehumidification of outside air can be accommodated at low capital and energy costs.


BRIEF SUMMARY

Provided herein are methods and systems used for the efficient cooling and dehumidification of an air stream in a large commercial or industrial building using a liquid desiccant. In accordance with one or more embodiments, the liquid desiccant flows down the face of a support plate as a falling film. In accordance with one or more embodiments, the desiccant is contained by a microporous membrane, and the air stream is directed in a primarily vertical or primarily horizontal orientation over the surface of the membrane and whereby both latent and sensible heat are absorbed from the air stream into the liquid desiccant. In accordance with one or more embodiments, the support plate is filled with a heat transfer fluid that ideally flows in a direction counter to the air stream. In accordance with one or more embodiments, the system comprises a conditioner that removes latent and sensible heat through the liquid desiccant into the heat transfer fluid and a regenerator that rejects the latent and sensible heat from the heat transfer fluid to the environment. In accordance with one or more embodiments, the heat transfer fluid in the conditioner is cooled by a refrigerant compressor or an external source of cold heat transfer fluid. In accordance with one or more embodiments, the regenerator is heated by a refrigerant compressor or an external source of hot heat transfer fluid. In accordance with one or more embodiments, the refrigerant compressor is reversible to provide heated heat transfer fluid to the conditioner and cold heat transfer fluid to the regenerator, and the conditioned air is heated and humidified and the regenerated air is cooled and dehumidified.


In accordance with one or more embodiments, a liquid desiccant membrane system employs an indirect evaporator to generate a cold heat transfer fluid wherein the cold heat transfer fluid is used to cool a liquid desiccant conditioner. Furthermore in one or more embodiments, the indirect evaporator receives a portion of the air stream that was earlier treated by the conditioner. In accordance with one or more embodiments, the air stream between the conditioner and indirect evaporator is adjustable through some convenient means, for example through a set of adjustable louvers or through a fan with adjustable fan speed. In one or more embodiments, the water supplied to the indirect evaporator is seawater. In one or more embodiments, the water is waste water. In one or more embodiments, the indirect evaporator uses a membrane to inhibit or prevent carry-over of non-desirable elements from the seawater or waste water. In one or more embodiments, the water in the indirect evaporator is not cycled back to the top of the indirect evaporator such as would happen in a cooling tower, but between 20% and 80% of the water is evaporated and the remainder is discarded.


In accordance with one or more embodiments, the indirect evaporator is used to provide heated, humidified air to a supply air stream to a space while a conditioner is simultaneously used to provide heated, humidified air to the same space. This allows the system to provide heated, humidified air to a space in winter conditions. The conditioner is heated and is desorbing water vapor from a desiccant and the indirect evaporator can be heated as well and is desorbing water vapor from liquid water. In combination the indirect evaporator and conditioner provide heated humidified air to the building space for winter heating conditions.


In accordance with one or more embodiments, some number of Liquid Desiccant Air Conditioning systems (LDACs) is installed at existing large stores, supermarkets or other commercial or industrial buildings to replace a subset of the existing unitary heating ventilating and air conditioning (HVAC) recirculating rooftop units (RTUs) already present. In accordance with one or more embodiments, the new liquid desiccant air conditioning units are operated to provide heated or cooled 100% outside air ventilation to the conditioned space. In accordance with one or more embodiments, the remaining RTUs are modified in such a way that they no longer supply outside air to the space, but become 100% recirculating RTU's. In one or more embodiments, the modification is achieved by removing power to a damper motor. In one or more embodiments, the modification is achieved by removing a lever from a damper mechanism. In accordance with one or more embodiments, the remaining RTUs are modified to have a higher evaporator temperature so that moisture no longer condenses on the evaporator coils and the unit becomes more energy efficient. In one or more embodiments, the increase in evaporator temperature is achieved by replacing an expansion valve. In one or more embodiments, the increase in evaporator temperature is achieved by adding an APR valve such as the valve assembly supplied by Rawal Devices, Inc. of Woburn, Mass. In one or more embodiments, the increase in evaporator temperature is achieved by adding a hot-gas bypass system or some other convenient means of increasing the evaporator temperature.


In accordance with one or more embodiments, the new liquid desiccant air conditioning units provide all of the cooled, dehumidified outside air ventilation required by the building during the cooling season and warm humidified outside air ventilation during the heating season. The remaining existing unitary HVAC units have their outside air dampers shut so that they only provide heating or cooling of the indoor air. The benefit of this system retrofit that the new LDACs are more energy efficient and effective at dehumidifying the required ventilation air than the unitary HVAC units they replace. Another benefit of this system approach is that by the improved ability to reduce the space humidity in the building, the energy used by refrigeration and freezer units inside of the conditioned space is significantly reduced because they waste less energy having to condense humidity out of the air. Furthermore by modifying the remaining RTUs their energy consumption is also reduced. And lastly the advantage of replacing only a portion of the RTUs the cost of the upgrade is relatively minor since one can elect to replace mostly the oldest RTUs that are due for replacement anyway and payback periods are short because of the low upgrade cost and large energy savings.


In accordance with one or more embodiments, a liquid desiccant air conditioning system is constructed of repeatable membrane module elements and membrane module support tubs. In one or more embodiments, the scalable membrane modules are sized so as to fit through a standard access hatch for a roof with an opening of about 2.5 ft×2.5 ft. In one or more embodiments, the repeatable module support tubs are arranged in a linear fashion in such a way that the module support tubs form a support structure and an air duct simultaneously. In one or more embodiments, the module support tubs are hollow. In one or more embodiments, the module support tubs have double walls so that they can hold a liquid. In one or more embodiments, the liquid is a liquid desiccant. In one or more embodiments, the liquid desiccant is stratified with higher concentrations near the bottom and lower concentrations near the top of the tub. In one or more embodiments, the tub bottom is sloped so as the conduct any spilled liquid to a single corner of the tub. In one or more embodiments, the corner is equipped with a sensor or detector that can detect if any liquid has collected in the corner. In one or more embodiments, such a sensor is a conductivity sensor. In one or more embodiments, the module support tubs have openings on both ends. In one or more embodiments, the two ends are used to provide two different air streams into a series of support tubs. In one or more embodiments, the air streams are a return air stream and an outside air air-stream.


In accordance with one or more embodiments, a first series of membrane modules and module support tubs are arranged in a primarily linear fashion with a duct section that allows for a majority of air to be entered into a building and a portion of air to transported to a second series of membrane modules and module support tub sections. In one or more embodiments, the first series of modules and support tubs contain a membrane conditioner. In one or more embodiments, the membrane conditioner contains a desiccant behind the membrane. In one or more embodiments, the second series of modules contain a membrane conditioner. In one or more embodiments, the second conditioner contains water behind the membrane. In one or more embodiments, the water is seawater. In one or more embodiments, the water is waste water. In one or more embodiments, the water is potable water. In one or more embodiments, the air flow in the second series of membrane modules and module support tubs is reversible. In one or more embodiments, the first series of membrane modules receives a hot heat transfer fluid in winter mode from a heat source and receives a cold heat transfer fluid in summer mode. In one or more embodiments, the second series of membrane modules supplies the cold heat transfer fluid to the first series of membrane module in cooling mode and receives a hot heat transfer fluid from a heat source in winter mode. In one or more embodiments, the first series and second series of modules receive hot heat transfer fluid from the same heat source in winter mode.


In no way is the description of the applications intended to limit the disclosure to these applications. Many construction variations can be envisioned to combine the various elements mentioned above each with its own advantages and disadvantages. The present disclosure in no way is limited to a particular set or combination of such elements.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an exemplary 3-way liquid desiccant air conditioning system using a chiller or external heating or cooling sources.



FIG. 2 shows an exemplary flexibly configurable membrane module that incorporates 3-way liquid desiccant plates.



FIG. 3 illustrates an exemplary single membrane plate in the liquid desiccant membrane module of FIG. 2.



FIG. 4 shows an exemplary building roof layout showing existing rooftop units (RTUs) and RTUs that would be replaced as part of a retrofit.



FIG. 5 shows a schematic aspect of an exemplary recirculating rooftop unit on a building space.



FIG. 6 shows a schematic aspect of an exemplary modified recirculating rooftop unit assisted by a liquid desiccant dedicated outdoor air system.



FIG. 7 depicts a psychrometric chart showing the processes of an exemplary recirculating rooftop unit as well as the liquid desiccant dedicated outdoor air system.



FIG. 8 shows an implementation of an exemplary scalable liquid desiccant dedicated outdoor air system.



FIG. 9A shows a schematic diagram of the conditioner side of the system of FIG. 8.



FIG. 9B shows a schematic diagram of the regenerator side of the system of FIG. 8.



FIG. 10 shows how the system of FIG. 8 can be expanded to increase the system's air flow and cooling capacity.



FIG. 11 shows an alternate embodiment of the system of FIG. 8 wherein the chiller has been replaced by an indirect evaporative cooling system.



FIG. 12 shows a detail of the membrane mass and heat exchanger tub support structure of FIG. 8.





DETAILED DESCRIPTION


FIG. 1 depicts a new type of liquid desiccant system as described in more detail in U.S. Patent Application Publication No. US 20120125020, which is incorporated by reference herein. A conditioner 101 comprises a set of plate structures that are internally hollow. A cold heat transfer fluid is generated in cold source 107 and entered into the plates. Liquid desiccant solution at 114 is brought onto the outer surface of the plates and runs down the outer surface of each of the plates. The liquid desiccant runs behind a thin membrane that is located between the air flow and the surface of the plates. Outside air 103 is now blown through the set of wavy plates. The liquid desiccant on the surface of the plates attracts the water vapor in the air flow and the cooling water inside the plates helps to inhibit the air temperature from rising. The treated air 104 is put into a building space.


The liquid desiccant is collected at the bottom of the wavy plates at 111 and is transported through a heat exchanger 113 to the top of the regenerator 102 to point 115 where the liquid desiccant is distributed across the wavy plates of the regenerator. Return air or optionally outside air 105 is blown across the regenerator plate and water vapor is transported from the liquid desiccant into the leaving air stream 106. An optional heat source 108 provides the driving force for the regeneration. The hot transfer fluid 110 from the heat source can be put inside the wavy plates of the regenerator similar to the cold heat transfer fluid on the conditioner. Again, the liquid desiccant is collected at the bottom of the wavy plates 102 without the need for either a collection pan or bath so that also on the regenerator the air flow can be horizontal or vertical. An optional heat pump 116 can be used to provide cooling and heating of the liquid desiccant. It is also possible to connect a heat pump between the cold source 107 and the hot source 108, which is thus pumping heat from the cooling fluids rather than the desiccant.



FIG. 2 describes a 3-way heat exchanger as described in further detail in U.S. patent application Ser. No. 13/915,199 filed on Jun. 11, 2013, Ser. No. 13/915,222 filed on Jun. 11, 2013, and Ser. No. 13/915,262 filed on Jun. 11, 2013, which are all incorporated by reference herein. A liquid desiccant enters the structure through ports 304 and is directed behind a series of membranes as described in FIG. 1. The liquid desiccant is collected and removed through ports 305. A cooling or heating fluid is provided through ports 306 and runs counter to the air stream 301 inside the hollow plate structures, again as described in FIG. 1 and in more detail in FIG. 3. The cooling or heating fluids exit through ports 307. The treated air 302 is directed to a space in a building or is exhausted as the case may be.



FIG. 3 describes a 3-way heat exchanger as described in more detail in U.S. Provisional Patent Application Ser. No. 61/771,340 filed on Mar. 1, 2013, which is incorporated by reference herein. The air stream 251 flows counter to a cooling fluid stream 254. Membranes 252 contain a liquid desiccant 253 that is falling along the wall 255 that contain a heat transfer fluid 254. Water vapor 256 entrained in the air stream is able to transition the membrane 252 and is absorbed into the liquid desiccant 253. The heat of condensation of water 258 that is released during the absorption is conducted through the wall 255 into the heat transfer fluid 254. Sensible heat 257 from the air stream is also conducted through the membrane 252, liquid desiccant 253 and wall 255 into the heat transfer fluid 254.



FIG. 4 shows an example of a commercial or industrial building 403 rooftop. Some of the existing Roof Top Units (RTUs) 401 are kept in place and modified to provide only sensible cooling and are further modified to no longer accept outside air. A few (typically 1 in 3 to 1 in 5) of the unitary rooftop units 402 are to be replaced with new liquid desiccant air conditioning (LDAC) dedicated outdoor air units (DOAS). The replacement units 402 are chosen based on age of the equipment that they are replacing as well as based on the air distribution requirements to ensure that fresh air is distributed evenly in the space.



FIG. 5 shows a schematic diagram of a typical RTU 401 installed on a building 403. The RTU will have between 10 and 25% outside air 503 and provide about 300-400 Cubic Feet per Minute (CFM) of total air flow per ton of cooling capacity. A typical 10 ton RTU will thus provide about 3,000 to 4,000 CFM of total air 505 with 300 to 1,000 CFM of outside air mixed in. It is well known that the outside ventilation air can represent more than 60% of the humidity load in grocery stores. (ASHRAE 2012 Handbook of HVAC Systems and Equipment, Chapter 24, p. 24.10). The air 505 supplied to the space is nearly 100% saturated unless some form of reheating is employed. Reheating however adds a significant heat load to the cooling coil since a lot of air 501 that is returned to the RTU 401 is internally directed 504 to the cooling coil and a small portion 502 is exhausted, typically about the same amount as the RTU took in. The evaporator coil 506 is providing the primary cooling function of the mixed air stream 503 and 504. Compressor 507 is providing a refrigerant 508 and rejecting its heat to condenser 509. A typical condenser will have some 800 CFM of outside air 510 per ton of cooling, or about 8,000 CFM for a 10 ton unit. An expansion valve 511 provides the cold liquid refrigerant to the evaporator coil 506.



FIG. 6 shows how the RTU 401 of FIGS. 4 and 500 can be modified and supplemented by a liquid desiccant dedicated outdoor air system 402. The RTU 401 has been modified to no longer provide or take in outside air. As a result only return air 501 from the building is recirculated 601 through the evaporator coil 506. Alternatively, the RTU is modified to reduce the intake of outside air. The evaporator temperature has also been increased from a normal 40 F to about 50-60 F. There are several ways that this can be accomplished: one can replace the expansion valve 511 with a different valve 610 set for a higher evaporator temperature. Other ways to increase the evaporator temperature is for example to provide an APR bypass valve made by Rawal Devices, Inc., Woburn, Mass. 01888-0058. By increasing evaporator temperature the cooling load of the remaining RTU is reduced and the system operates more efficiently.


One of the RTUs is replaced with a liquid desiccant system 402 as discussed earlier. The main liquid desiccant system components are the conditioner 603—which can be like component 101 in FIG. 1 and the regenerator 606—which can be like component 102 in FIG. 1. An optional compressor 609 pumps heat from the conditioner to the regenerator using refrigerant 608 and using expansion valve 610. Outside air 605 is brought through the conditioner 606 and supplied 607 at a lower temperature and humidity than the space requires. Return air 602 enters the regenerator 606 where it picks up heat and moisture after which is exhausted 604. (In case return air is unavailable for the liquid desiccant system 402, the air stream 602 can comprise outside air.) The liquid desiccant system is sized in such a way that it provides all of the outside air as was previously provided by the recirculating RTU's 401. Since the LDAC is providing dry, cool air, the space itself is much drier which will reduce the load on refrigeration equipment and freezers in the space.



FIG. 7 shows a psychrometric chart of the processes involved in the recirculating RTU and the liquid desiccant system. A conventional RTU takes in 10-25% of outside air (“OA”) and mixes that air with return air from the building (“RA”). The resulting mixed air (“MA”) point is determined by the amount of outside and return air that is combined. The cooling coil 506 subsequently takes the mixed air (“MA”) and cools it to the saturation line where water vapor condenses out and ultimately supplies air to the space at low temperature but near saturation level (“COIL”). This air needs to be heated by the building somehow, which on hot sunny days can be naturally done, but on cloudy days or mid temperature days may not occur unless an additional reheat system is employed. In supermarkets, grocery stores and the like, the refrigeration cases and freezers can provide an additional cooling effect, indicated by the arrow (“FR”) from the return air position (“RA”). As can be seen in the figure, the additional sensible cooling provided by the freezers and refrigerators and a lack of reheat, result in a space that is too cold and too humid, with relative humidity exceeding 70%. Furthermore, water sprayers in vegetable sections and short cycling of the RTU's make this situation even worse.


The liquid desiccant air conditioning system of FIG. 6 however, also takes in outside air (“OA”) and produces cooler, dry air (“DA”) to the space. The additional cooling by the remaining RTUs and freezers and refrigerators (“RTU”) results in a much smaller increase in relative humidity which can be avoided by simply not operating the RTU's unless necessary.



FIG. 8 illustrates an embodiment of a liquid desiccant air conditioning system (LDAC) 402 that is able to provide cool, dry air to a space from 100% outside air. Several of the components in the system of FIG. 8 have been identified in FIG. 6. The conditioner modules 603 (of which there are 4 in this example), contain the membrane plate structures as were shown in FIGS. 1-3. Similarly the regenerator modules 606 (of which there are also 4 in this example) have similar construction to the conditioner modules. Outside air 605 is entering the conditioner section through louvers 802. The outside air is then transported through optional internal ducts 806, downward through the conditioner modules 603 and then through the tub modules 803 to exit the system as supply air 607. The return air from the building (not shown) receives some additional outside air 805 through louvers 807. This air is then transported through regenerator modules 606 and regenerator duct modules 812 and eventually exhausted out of the system (not shown). A power interface module 801 and an integral chiller/heat pump system 609 provide electrical facilities and hot and cold water for the regenerator and conditioner modules respectively. As shown in the figure, the system has 4 conditioner and 4 regenerator modules, mounted 2 at a time on tub supports 803. The size of the modules was chosen such that they are able to fit through standard roof access hatches. As can be seen from the figure, it would be very easy to add additional tub modules 803 and membrane conditioner or regenerator modules 603 and 606. The right side of the system of FIG. 10 is terminated by removable end plate 808 for the conditioner tub modules, removable end plate 810 for the conditioner duct 806, and removable end plate 809 for the regenerator duct. Cold water supply and cold water return and hot water supply and hot water return are shown as item 811 in the figure. The louver 807 is mounted to the last tub module and is easily removed and mounted on a different tub module. Also shown is one of the desiccant pumps 813 which will be discussed in more detail under FIG. 9A and FIG. 12. The whole system is mounted on a modular support frame 804.



FIG. 9A illustrates the conditioner side of the system of FIG. 8. As mentioned before, outside air 605 enters the system through louvers 802. Fan 901 brings the air through ducts 806. Conditioner membrane modules 603 cool and dehumidify the air stream which is transported through tubs 803 into the supply air stream 607. End plates 808 and 810 terminate the system. Water lines for cold water supply and return 811 bring cold water to the individual conditioner modules 603. For clarity only one of the water lines 904 is shown, the other modules 603 receive cooling water in a similar fashion. The desiccant pump 813 receives liquid desiccant from the tub modules 803. The pump distributes the liquid desiccant to the conditioner modules 603 through supply lines 905. For clarity the desiccant supply lines for two of the conditioner modules are shown in the figure and the remainder has been omitted. As can be seen in the figure, the desiccant drains out of the conditioner modules back into the tub modules 803.



FIG. 9B shows—similarly to FIG. 9A—the main components of the regenerator side of the system of FIG. 8. Return air 602 from the building is directed through the tub modules 803 and through the regenerator modules 606. The regenerator ducts 812 conduct the air streams back through fan 902 and louver 903 where the hot, humid air 604 is exhausted. Since in buildings the amount of available return air can be less than the amount of air that is supplied to the building (supply air 607 is larger than return air 602) and additional outside air stream 805 can be mixed in through louver 807. This helps to ensure that the system has adequate air supply for the regenerator modules. Similar to the conditioner side, desiccant pump 908 provides liquid desiccant to the regenerator modules 606 through supply lines 907. Hot water 906 is also supplied to the regenerator modules. For clarity only some of the water and desiccant lines have been shown.


It is also possible to reverse the direction of the chiller 609 in a winter operating mode so that the conditioner 603 receives hot heat transfer fluid and the regenerator 606 receives cold heat transfer fluid. In this mode the conditioner will desorb water vapor and humidify and heat the supply air stream 607 and the regenerator will absorb heat and water vapor from the return air stream 602 from the space. In effect the system will recover heat and moisture from the return air stream 602 in this mode.



FIG. 10 show the system of FIG. 8 with an additional section 1001 comprising 4 conditioner and 4 regenerator modules have been inserted in the system of FIG. 8. The chiller 1002 as well as the fans and water pumps (not shown) now need to be sized to accommodate for the increase in air flow and cooling load of the system. It will be apparent that one can continue to increase the air flow and cooling capacity of the system by continuing to add membrane models and other components, at least until the air flow capacity of the ducts and tubs is exceeded.



FIG. 11 shows a schematic diagram of an alternate embodiment of the linkable system of FIG. 6. The chiller section 609 from FIG. 6 and FIG. 8 has now been omitted in favor of an indirect evaporative cooling section 1111. The supply air 607 is partially diverted (typically between 0 and 30%) as air stream 1105 into duct 1101 and louver 1102 to enter tub 1103. The air stream now moves upward through membrane modules 1106. But unlike the conditioner modules and regenerator modules, these evaporator membrane modules have water rather than desiccant behind their membranes. Since the air stream 1105 is very dry, a large cooling effect can be obtained in the membrane modules 1106 by evaporating the water behind the membranes. This in turn results in the heat transfer fluid 1109 becoming substantially cooled. This cold heat transfer fluid 1109 can then be used to remove heat from the original membrane modules 603. The warmer heat transfer fluid 1110 is circulating back to the indirect evaporative cooling section 1111 from the conditioner modules 603. Since the evaporator modules 1106 evaporate water, there needs to be a constant supply of water 1113. This water can be clean drinking water, in which case the membranes on the evaporator modules 1106 are not absolutely necessary. In that case also, the remaining water can be drained 1115 from the membrane modules 1106 into the tub 1103 and removed from the tub by pump 1112 to be re-used at the top of the evaporative modules 1106. Attention has to be paid to ensure that like a conventional cooling tower, there is no buildup of scale and other contaminants. There are several methods common in the industry that can be employed to deal with scale issues, for example blow-down systems or ultrasonic precipitation.


However, the use of membrane in evaporator modules 1106 also enables the use of seawater or waste water: the membranes will contain any salt particles or other contamination. In this case, the intent is to evaporate only a portion (typically around 50% or less) of the water supplied by supply 1113. The concentrated remaining water is then drained through line 1114 and disposed of in an appropriate drainage system. The pump 1112 can now be omitted and no scaling or blow-down system is required. However membrane fouling may become an issue and can be dealt with using flushing and a proper pre-filtration system. The exhaust air stream 1108 leaving the evaporator modules 1106 is warm and near saturation and is pulled through the system by fan 1107. It should be clear from the figure that when one adds additional conditioner modules 603 there should also be additional evaporator modules 1106. This can be easily accomplished by removing cover 1104 and adding an additional section 1111. Fan 1107 would also have to be sized larger and moved to the added section.


It is also possible to reverse the air stream 1105 while at the same time providing hot heat transfer fluid to the conditioner blocks 603. In this winter heating mode, the conditioner will desorb water vapor into the air stream 1105 and the conditioners 603 will combine to supply warm, moist air to the space 607.



FIG. 12 illustrates a detail cross section of the membrane module support tub 803 and part of the desiccant distribution system connected to it. The tub 803 is constructed as a hollow shell structure with walls 1205 and 1206. The inner area 1201 functions as a liquid desiccant storage tank. This is beneficial since it eliminates the need for a separate tank and since the volume is located directly below the membrane modules, syphoning of desiccant into the tank structure is enhanced. Furthermore the tank structure allows for stratification of the desiccant wherein the higher concentration of desiccant can be found near the bottom of the tub and the lower concentration can be found near the top. The inner bottom 1202 of the tub 803 is slowed in such a way that any leaks from the membrane modules above will drain into a single corner where a detector or sensor can be located to indicate that a leak has occurred. Furthermore bottom has a lip 1208 constructed in such a way that the air stream cannot transport any droplets that may fall from the membrane modules. The membrane modules physically sit on the support plate 1203 which has designed in rail features 1209 to allow for a tight air seal between the membrane modules and the tub structure. Since the tub 803 contains the desiccant for the system, pump 908 pulls desiccant from the lower port on the tub, pumps it to the top of the membrane module 603 wherefrom it drains by gravity back through drain 1204 into the top port of the tub. A secondary port 1207 allows for dilute desiccant to be removed and pumped to the regenerator modules which are set up in a similar fashion except that the regenerator pumps from the top port to the top of membrane modules 606 and removes concentrated desiccant from the bottom port back to the conditioner. The air duct 1210 can also be seen in the figure.


Having thus described several illustrative embodiments, it is to be appreciated that various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to form a part of this disclosure, and are intended to be within the spirit and scope of this disclosure. While some examples presented herein involve specific combinations of functions or structural elements, it should be understood that those functions and elements may be combined in other ways according to the present disclosure to accomplish the same or different objectives. In particular, acts, elements, and features discussed in connection with one embodiment are not intended to be excluded from similar or other roles in other embodiments. Additionally, elements and components described herein may be further divided into additional components or joined together to form fewer components for performing the same functions. Accordingly, the foregoing description and attached drawings are by way of example only, and are not intended to be limiting.

Claims
  • 1. A method for increasing energy efficiency of an air conditioning system for a building, said air conditioning system comprising a plurality of existing air conditioning units mounted on a rooftop of the building, the method comprising: (a) removing some, but not all, of the plurality of air conditioning units from the rooftop;(b) installing a liquid desiccant air-conditioning unit on the rooftop in place of each removed air conditioning unit, said liquid desiccant air-conditioning unit being switchable between operating in a warm weather operation mode and in a cold weather operation mode, each liquid desiccant air-conditioning unit comprising:a conditioner configured to expose a ventilation air stream entering the building from outside the building to a liquid desiccant such that the liquid desiccant dehumidifies the ventilation air stream in the warm weather operation mode and humidifies the ventilation air stream in the cold weather operation mode; anda regenerator connected to the conditioner and configured to expose an air stream to the liquid desiccant such that the liquid desiccant humidifies the air stream in the warm weather operation mode and dehumidifies the air stream in the cold weather operation mode; and(c) completely transferring a ventilation air stream treatment load from the one or more air conditioning units remaining on the rooftop to each liquid desiccant air-conditioning unit by reconfiguring the one or more air conditioning units remaining on the rooftop such that any intake of a ventilation air stream for the building in said one or more air conditioning units is eliminated by removing power to a damper motor of the one or more air-conditioning units remaining on the rooftop or removing a lever from a damper mechanism of the one or more air-conditioning units remaining on the rooftop.
  • 2. The method of claim 1, wherein the conditioner includes a plurality of structures arranged in a vertical orientation, each structure having at least one surface across which the liquid desiccant can flow, wherein the ventilation air stream flows between the structures, and wherein the regenerator includes a plurality of structures arranged in a vertical orientation, each structure having at least one surface across which the liquid desiccant can flow, wherein a return air stream flows between the structures.
  • 3. The method of claim 2, wherein each of the plurality of structures in the regenerator and conditioner includes an internal passage through which a heat transfer fluid can flow for transfer of heat between the heat transfer fluid and the liquid desiccant or the ventilation air stream or the return air stream.
  • 4. The method of claim 3, wherein each of the plurality of structures in the regenerator and conditioner includes a sheet of material positioned proximate to the outer surface of each structure between the liquid desiccant and an air stream, said sheet of material permitting transfer of water vapor between the liquid desiccant and the ventilation air stream or the return air stream.
  • 5. The method of claim 4, wherein the sheet of material comprises a membrane.
  • 6. The method of claim 2, wherein said plurality of structures in the regenerator and conditioner comprise a plurality of plate assemblies arranged in a vertical orientation and spaced apart to permit flow of the air stream between adjacent plate assemblies.
  • 7. The method of claim 1, wherein the ventilation air stream entering the building flows in a vertical direction through the conditioner and the air stream flowing in the regenerator flows in a vertical direction.
  • 8. The method of claim 1, wherein the ventilation air stream entering the building flows in a generally horizontal direction through the conditioner and the air stream flowing in the regenerator flows in a generally horizontal direction.
  • 9. The method of claim 1, wherein each liquid desiccant air-conditioning unit further comprises a heat pump for pumping heat from the conditioner to the regenerator in the warm weather operation mode and pumping heat from the regenerator to the conditioner in the cold weather operation mode.
  • 10. The method of claim 9, wherein the heat pump pumps heat from the liquid desiccant flowing in the conditioner to the liquid desiccant flowing in the regenerator in the warm weather operation mode, and wherein the heat pump pumps heat from the liquid desiccant flowing in the regenerator to the liquid desiccant flowing in the conditioner in the cold weather operation mode.
  • 11. The method of claim 9, wherein the heat pump pumps heat from a heat transfer fluid flowing in the conditioner to a heat transfer fluid flowing in the regenerator in the warm weather operation mode, and wherein the heat pump pumps heat from the heat transfer fluid flowing in the regenerator to the heat transfer fluid flowing in the conditioner in the cold weather operation mode.
  • 12. The method of claim 1, wherein each liquid desiccant air-conditioning unit further comprises a heat exchanger connected between the conditioner and the regenerator for transferring heat from the liquid desiccant flowing from one of the regenerator and the conditioner to the liquid desiccant flowing from the other of the regenerator and conditioner.
  • 13. The method of claim 1, wherein every one out of three to one out of five of the removed air conditioning units is replaced by a liquid desiccant air-conditioning unit.
  • 14. The method of claim 1, wherein reconfiguring the one or more air conditioning units comprises recirculating a return air stream from the building through a coil of an evaporator of each of said one or more air conditioning units, and increasing the operating temperature of the evaporator.
  • 15. The method of claim 1, reconfiguring the one or more air conditioning units remaining on the rooftop comprises closing a damper therein to reduce or eliminate intake of a ventilation air stream.
  • 16. The method of claim 1, wherein step (c) further comprises changing an evaporator temperature setting of the one or more air conditioning units remaining on the rooftop to a higher temperature setting.
  • 17. The method of claim 16, wherein the higher temperature setting increases the evaporator temperature such that substantially no condensation forms on the evaporator.
  • 18. The method of claim 16, wherein the higher temperature setting is 50-60° F.
CROSS REFERENCE TO RELATED APPLICATION

This application claims priority from U.S. Provisional Patent Application No. 61/782,579 filed on Mar. 14, 2013 entitled METHODS AND SYSTEMS FOR LIQUID DESICCANT AIR CONDITIONING SYSTEM RETROFIT, which is hereby incorporated by reference.

US Referenced Citations (220)
Number Name Date Kind
1791086 Sperr Feb 1931 A
2221787 Downs et al. Nov 1940 A
2235322 Martin Mar 1941 A
2433741 Crawford Dec 1947 A
2988171 Arnold et al. Jun 1961 A
3718181 Reilly et al. Feb 1973 A
4100331 Fletcher et al. Jul 1978 A
4176523 Rousseau Dec 1979 A
4205529 Ko Jun 1980 A
4209368 Coker et al. Jun 1980 A
4222244 Meckler Sep 1980 A
4235221 Murphy Nov 1980 A
4239507 Benoit et al. Dec 1980 A
4259849 Griffiths Apr 1981 A
4324947 Dumbeck Apr 1982 A
4399862 Hile Aug 1983 A
4429545 Steinberg Feb 1984 A
4435339 Kragh Mar 1984 A
4444992 Cox, III Apr 1984 A
4583996 Sakata et al. Apr 1986 A
4607132 Jarnagin Aug 1986 A
4612019 Langhorst Sep 1986 A
4649899 Moore Mar 1987 A
4691530 Meckler Sep 1987 A
4703629 Moore Nov 1987 A
4766952 Onodera Aug 1988 A
4786301 Rhodes Nov 1988 A
4832115 Albers et al. May 1989 A
4872578 Fuerschbach et al. Oct 1989 A
4882907 Brown, II Nov 1989 A
4887438 Meckler Dec 1989 A
4900448 Bonne et al. Feb 1990 A
4910971 McNab Mar 1990 A
4939906 Spatz et al. Jul 1990 A
4941324 Peterson et al. Jul 1990 A
4955205 Wilkinson Sep 1990 A
4976313 Dahlgren et al. Dec 1990 A
4979965 Sannholm Dec 1990 A
4984434 Peterson et al. Jan 1991 A
4987750 Meckler Jan 1991 A
5005371 Yonezawa et al. Apr 1991 A
5181387 Meckler Jan 1993 A
5182921 Yan Feb 1993 A
5186903 Cornwell Feb 1993 A
5191771 Meckler Mar 1993 A
5221520 Cornwell Jun 1993 A
5351497 Lowenstein Oct 1994 A
5375429 Tokizaki et al. Dec 1994 A
5462113 Wand Oct 1995 A
5471852 Meckler Dec 1995 A
5528905 Scarlatti Jun 1996 A
5534186 Walker et al. Jul 1996 A
5582026 Barto, Sr. Dec 1996 A
5595690 Filburn et al. Jan 1997 A
5605628 Davidson et al. Feb 1997 A
5638900 Lowenstein et al. Jun 1997 A
5641337 Arrowsmith et al. Jun 1997 A
5661983 Groten et al. Sep 1997 A
5685152 Sterling Nov 1997 A
5685485 Mock et al. Nov 1997 A
5797272 James Aug 1998 A
5832993 Ohata et al. Nov 1998 A
5860284 Goland et al. Jan 1999 A
5860285 Tulpule Jan 1999 A
5928808 Eshraghi Jul 1999 A
5933702 Goswami Aug 1999 A
6018954 Assaf Feb 2000 A
6083387 LeBlanc et al. Jul 2000 A
6103969 Bussey Aug 2000 A
6156102 Conrad et al. Dec 2000 A
6171374 Barton et al. Jan 2001 B1
6216483 Potnis et al. Apr 2001 B1
6244062 Prado Jun 2001 B1
6247604 Taskis et al. Jun 2001 B1
6266975 Assaf Jul 2001 B1
6417423 Koper et al. Jul 2002 B1
6442951 Maeda et al. Sep 2002 B1
6463750 Assaf Oct 2002 B2
6487872 Forkosh et al. Dec 2002 B1
6488900 Call et al. Dec 2002 B1
6497107 Maisotsenko et al. Dec 2002 B2
6497749 Kesten et al. Dec 2002 B2
6502807 Assaf et al. Jan 2003 B1
6514321 Lehto et al. Feb 2003 B1
6539731 Kesten et al. Apr 2003 B2
6546746 Forkosh et al. Apr 2003 B2
6557365 Dinnage et al. May 2003 B2
6660069 Sato et al. Dec 2003 B2
6684649 Thompson Feb 2004 B1
6739142 Korin May 2004 B2
6745826 Lowenstein et al. Jun 2004 B2
6766817 da Silva Jul 2004 B2
6854278 Maisotsenko et al. Feb 2005 B2
6854279 Digiovanni et al. Feb 2005 B1
6918404 Dias da Silva et al. Jul 2005 B2
6938434 Fair Sep 2005 B1
6976365 Forkosh et al. Dec 2005 B2
6986428 Hester et al. Jan 2006 B2
7066586 da Silva et al. Jun 2006 B2
RE39288 Assaf Sep 2006 E
7143597 Hyland et al. Dec 2006 B2
7191821 Gronwall et al. Mar 2007 B2
7197887 Maisotsenko et al. Apr 2007 B2
7269966 Lowenstein et al. Sep 2007 B2
7279215 Hester et al. Oct 2007 B2
7306650 Slayzak et al. Dec 2007 B2
7337615 Reidy Mar 2008 B2
7430878 Assaf Oct 2008 B2
7758671 Kesten et al. Jul 2010 B2
7938888 Assaf May 2011 B2
8337590 Herencia et al. Dec 2012 B2
8353175 Wohlert Jan 2013 B2
8496732 Culp et al. Jul 2013 B2
8500960 Ehrenberg et al. Aug 2013 B2
8623210 Manabe et al. Jan 2014 B2
8641806 Claridge et al. Feb 2014 B2
8648209 Lastella Feb 2014 B1
8695363 Tang et al. Apr 2014 B2
8696805 Chang et al. Apr 2014 B2
8769971 Kozubal et al. Jul 2014 B2
8790454 Lee et al. Jul 2014 B2
8800308 Vandermeulen et al. Aug 2014 B2
8876943 Gottlieb et al. Nov 2014 B2
8881806 Xie et al. Nov 2014 B2
8968945 Fasold et al. Mar 2015 B2
20010015500 Shimanuki et al. Aug 2001 A1
20020023740 Lowenstein et al. Feb 2002 A1
20020026797 Sundhar Mar 2002 A1
20020098395 Shimanuki et al. Jul 2002 A1
20020104439 Komkova et al. Aug 2002 A1
20020139245 Kesten et al. Oct 2002 A1
20020139320 Shimanuki et al. Oct 2002 A1
20020148602 Nakamura Oct 2002 A1
20030000230 Kopko Jan 2003 A1
20030029185 Kopko Feb 2003 A1
20030033821 Maisotsenko et al. Feb 2003 A1
20030051498 Sanford Mar 2003 A1
20030106680 Serpico et al. Jun 2003 A1
20030121271 Dinnage et al. Jul 2003 A1
20030230092 Lowenstein et al. Dec 2003 A1
20040040697 Pierre et al. Mar 2004 A1
20040061245 Maisotsenko et al. Apr 2004 A1
20040109798 Chopard et al. Jun 2004 A1
20040118125 Potnis et al. Jun 2004 A1
20040134212 Lee et al. Jul 2004 A1
20040168462 Assaf Sep 2004 A1
20040194944 Hendricks et al. Oct 2004 A1
20040211207 Forkosh Oct 2004 A1
20040231512 Slayzak et al. Nov 2004 A1
20050106021 Bunker et al. May 2005 A1
20050109052 Albers et al. May 2005 A1
20050133082 Konold Jun 2005 A1
20050210907 Gillan et al. Sep 2005 A1
20050218535 Maisotsenko et al. Oct 2005 A1
20050257551 Landry Nov 2005 A1
20060042295 Assaf Mar 2006 A1
20060156750 Lowenstein et al. Jul 2006 A1
20060278089 Theilow Dec 2006 A1
20070169916 Wand et al. Jul 2007 A1
20070175234 Pruitt Aug 2007 A1
20070234743 Assaf Oct 2007 A1
20080127965 Burton Jun 2008 A1
20080156471 Han et al. Jul 2008 A1
20080196758 McGuire Aug 2008 A1
20080203866 Chamberlain Aug 2008 A1
20080302357 DeNault Dec 2008 A1
20080314567 Noren Dec 2008 A1
20090000732 Jacobine et al. Jan 2009 A1
20090056919 Hoffman et al. Mar 2009 A1
20090095162 Hargis et al. Apr 2009 A1
20090173096 Wohlert Jul 2009 A1
20090200022 Bravo et al. Aug 2009 A1
20090238685 Santa Ana Sep 2009 A1
20100000247 Bhatti et al. Jan 2010 A1
20100018322 Neitzke et al. Jan 2010 A1
20100051083 Boyk Mar 2010 A1
20100084120 Yin et al. Apr 2010 A1
20100170776 Ehrenberg et al. Jul 2010 A1
20100319370 Kozubal Dec 2010 A1
20110100618 Carlson May 2011 A1
20110101117 Miyauchi May 2011 A1
20110126885 Kokotov et al. Jun 2011 A1
20120052785 Nagamatsu et al. Mar 2012 A1
20120114527 Hoglund et al. May 2012 A1
20120118148 Culp et al. May 2012 A1
20120118155 Claridge et al. May 2012 A1
20120125020 Vandermeulen May 2012 A1
20120125021 Vandermeulen et al. May 2012 A1
20120125031 Vandermeulen et al. May 2012 A1
20120131937 Vandermeulen et al. May 2012 A1
20120131939 Vandermeulen et al. May 2012 A1
20120132513 Vandermeulen et al. May 2012 A1
20120152318 Kee Jun 2012 A1
20130056177 Coutu et al. Mar 2013 A1
20130101909 Fasold et al. Apr 2013 A1
20130186121 Erb et al. Jul 2013 A1
20130199220 Ma et al. Aug 2013 A1
20130227982 Forkosh Sep 2013 A1
20130255287 Forkosh Oct 2013 A1
20130340449 Kozubal et al. Dec 2013 A1
20140054004 LePoudre et al. Feb 2014 A1
20140054013 LePoudre et al. Feb 2014 A1
20140150481 Vandermeulen Jun 2014 A1
20140150656 Vandermeulen Jun 2014 A1
20140150657 Vandermeulen et al. Jun 2014 A1
20140150662 Vandermeulen et al. Jun 2014 A1
20140223947 Ranjan et al. Aug 2014 A1
20140245769 Vandermeulen et al. Sep 2014 A1
20140250935 Prochaska et al. Sep 2014 A1
20140260367 Coutu et al. Sep 2014 A1
20140260369 LePoudre Sep 2014 A1
20140260371 Vandermeulen Sep 2014 A1
20140260398 Kozubal et al. Sep 2014 A1
20140260399 Vandermeulen Sep 2014 A1
20140262125 Erb et al. Sep 2014 A1
20140262144 Erb et al. Sep 2014 A1
20140264968 Erb et al. Sep 2014 A1
20140360373 Peacos et al. Dec 2014 A1
20140366567 Vandermeulen Dec 2014 A1
20150338140 Vandermeulen Nov 2015 A1
Foreign Referenced Citations (32)
Number Date Country
202229469 May 2012 CN
1120609 Aug 2001 EP
1563229 Aug 2005 EP
1781995 May 2007 EP
2256434 Dec 2010 EP
2306100 Apr 2011 EP
02306067 Dec 1990 JP
H08-105669 Apr 1996 JP
H11-351700 Dec 1999 JP
2002206834 Jul 2002 JP
2006-263508 Oct 2006 JP
2006-529022 Dec 2006 JP
04273555 Jun 2009 JP
2009-293831 Dec 2009 JP
2010-247022 Nov 2010 JP
2011-163682 Aug 2011 JP
20040026242 Mar 2004 KR
10-0510774 Aug 2005 KR
2014-0022785 Feb 2014 KR
9922180 May 1999 WO
0011426 Mar 2000 WO
0055546 Sep 2000 WO
WO-02066901 Aug 2002 WO
03004937 Jan 2003 WO
2004046618 Jun 2004 WO
2006006177 Jan 2006 WO
2008037079 Apr 2008 WO
2009094032 Jul 2009 WO
2009144880 Dec 2009 WO
2011062808 May 2011 WO
2011161547 Dec 2011 WO
2012082093 Jun 2012 WO
Non-Patent Literature Citations (23)
Entry
1—Open Absorption System for Cooling and Air Conditioning using Membrane Contactors—Annual Report 2005, Publication No. Publication 260097, Project: 101310—Open Absorption System for Cooling and Air Conditioning using Membrane Contactors, Date of publication: Jan. 31, 2006, Author: Manuel Conde-Petit, Robert Weber, Contractor: M. Conde Engineering.
2—Open Absorption System for Cooling and Air Conditioning using Membrane Contactors—Annual, Report 2006, Publication No. Publication 260098, Project: 101310—Open Absorption System for Cooling and Air Conditioning using Membrane Contactors, Date of publication: Nov. 14, 2006, Author: Manuel Conde-Petit, Robert Weber, Contractor: M. Conde Engineering.
3—Open Absorption System for Cooling and Air Conditioning Using Membrane Contactors—Final Report, Publication No. Publication 280139, Project: 101310—Open Absorption System for Cooling and Air Conditioning using Membrane Contactors, Date of publication: Jul. 8, 2008, Author: Viktor Dorer, Manuel Conde-Petit, Robert Weber, Contractor: M. Conde Engineering.
4—Conde-Petit, M. 2007. Liquid Desiccant-Based Air-Conditioning Systems—LDACS, Proc. of the 1st European Conference on Polygeneration—Technologies and Applications, 217-234, A. Coronas, ed., Tarragona—Spain, Oct. 16-17, Published by CREVER—Universitat Rovira I Virgili, Tarragona, Spain.
5—Conde-Petit, M. 2008. Open Absorption Systems for Air-Conditioning using Membrane Contactors,Proceedings '15. Schweizerisches Status-Seminar <<Energie- und Umweltforschung im Bauwesen>>, Sep. 11-12—ETH Zurich, Switzerland. Published by BRENET—Eggwilstr. 16a, CH-9552 Bronschhofen—Switzerland (brenet@vogel-tech.ch).
6—Third Party Observations for PCT/US2011/037936, dated Sep. 24, 2012.
Ashrae, et al., “Desiccant Dehumidification and Pressue Drying Equipment,” 2012 Ashrae Handbook—HVAC Systems and Equipment, Chapter 24, pp. 24.1-24.12.
Beccali, et al., “Energy and Economic Assessment of Desiccant Cooling,” Solar Energy, Issue 83, pp. 1828-1846, Aug. 2009.
Fimbres-Weihs, et al., “Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules,” Chemical Engineering and Processing 49 (2010) pp. 759-781.
Li, F. et al., “Novel spacers for mass transfer enhancement in membrane separations,” Journal of Membrane Science, 253 (2005), pp. 1-12.
Li, Y., et al., “CFD simulation of fluid flow through spacer-filled membrane module: selecting suitable cell types for periodic boundary conditions,” Desalination 233 (2008) pp. 351-358.
Liu, et al., “Research Progress in Liquid Desiccant Air Conditioning Devices and Systems,” Frontiers of Energy and Power Engineering in China, vol. 4, Issue 1, pp. 55-65, Feb. 2010.
Lowenstein, “A Solar Liquid-Desiccant Air Conditioner,” Solar 2003, Proceedings of the 32nd ASES Annual Conference, Austin, TX, Jul. 2003.
Mathioulakis, “Desalination by Using Alternative Energy,” Desalination, Issue 203, pp. 346-365, 2007.
Russell, et al., “Optimization of Photovolatic Thermal Collector Heat Pump Systems,” ISES International Solar Energy Conference, Atlanta, GA, vol. 3, pp. 1870-1874, May 1979.
Welty, “Liquid Desiccant Dehumidification,” Engineered Systems, May 2010, vol. 27 Issue 5, p. 34.
International Search Report and Written Opinion for PCT/2014/028124, dated Aug. 22, 2014.
“Siphon.” Encyclopedia Americana. Grolier Online, 2015. Web. Apr. 3, 2015. 1 page.
Perry “Perry's Chemical Engineers handbook” 1999 McGraw Hill p. 11-52, 11-53.
Korean Patent Application 10-2015-7025387, Office Action dated Aug. 26, 2016.
European Supplemental Search Report for EP14770288.0, dated Dec. 15, 2016.
Chinese Patent Application 201480015033.1, Office Action dated Mar. 21, 2017.
Korean Patent Application 10-2015-7025387, Office Action dated Apr. 27, 2017.
Related Publications (1)
Number Date Country
20140260371 A1 Sep 2014 US
Provisional Applications (1)
Number Date Country
61782579 Mar 2013 US