1. Field of the Invention
The present invention relates generally to medical devices and methods for their use. More particularly, the present invention relates to methods and devices for treating benign prostatic hyperplasia by applying low frequency vibration to prostatic tissue.
Benign prostatic hyperplasia (BPH), the most common benign neoplasm in males, is a chronic condition that increases in both incidence and prevalence with age. It is associated with progressive lower urinary tract symptoms and affects nearly three out of four men by the seventh decade of life. Benign prostatic hyperplasia is characterized pathologically by a cellular proliferation of the epithelial and stromal elements within the prostate gland P (
BPH may be treated with drugs, surgically, or with newly developed minimally invasive techniques. Of particular interest to the present invention, the surgical techniques typically involve resection of tissue in a procedure referred to as transurethral resection of the prostate (TURP). In TURP procedures, a resection blade or tool is introduced through the urethra and employed to resect or core tissue through the urethral wall. While often effective, the procedure is painful, has a relatively long recovery, and frequently has side effects such as incontinence and impotence. More recently, less invasive procedures have been developed. In one, referred to as transurethral microwave thermotherapy (TUMT), a microwave antenna is introduced through the urethra and directs microwave energy to heat the prostate to destroy tissue. The heat, however, presents a substantial risk of injury to the urethral wall, even when measures are taken to provide cooling. A second new procedure, referred to as transurethral needle ablation (TUNA), relies on transurethral introduction of a catheter and advancement of a radiofrequency needle into the prostate. While theoretically exposing the urethral wall to less heat, there is still a risk of injury to the urethra, although fewer side effects are observed. Nonetheless, the recovery time for the injured tissue can still be considerable and the use of the radiofrequency energy presents certain risks to the patient.
For these reasons, it would be desirable to provide improved methods and systems for treating benign prostatic hyperplasia (BPH). Such methods and systems should minimize the risks and side effects associated with BPH treatment and preferably have a shortened recovery time. In particular, the risk of incontinence and impotence should be greatly reduced and preferably eliminated entirely. It would be still further desirable if the methods and systems did not rely on necrosing tissue, thus avoiding the inflammatory and other responses initiated by tissue necrosis. The methods and systems should be reliable, low cost, and effective. At least some of these objectives will be met by the inventions described below.
2. Description of the Background Art
U.S. Pat. No. 5,380,273 describes a low frequency vibrating catheter used to disrupt clot in the vasculature. Patents describing transurethral prostate treatments include U.S. Pat. Nos. 4,813,429; 4,967,765; 5,330,518; 5,419,763; 5,454,782; 5,496,271; 6,123,083; 6,389,313; 6,517,534; 6,746,465; and 7,261,710.
The present invention provides methods and apparatus for treating benign prostatic hyperplasia (BPH) which overcome at least some of the shortcomings of prior treatment modalities as discussed above. In particular, the methods and devices of the present invention can achieve a size reduction in a prostate with minimum trauma and relatively short recovery times. The present invention relies on applying low frequency mechanical vibration to the prostate using a vibrating treatment element positioned within the urethra. The element is vibrated at a frequency in the range from 20 Hz to 200 Hz, preferably from 30 Hz to 100 Hz, and more preferably from 30 Hz to 60 Hz. The vibration is preferably in a lateral direction, but may also include axial, rotational, and more complex vibrational patterns. The extent of lateral displacement imparted against the inner wall of the urethra may vary, typically being in the range from 2 mm to 5 mm, preferably from 1 mm to 2 mm. The vibration is usually achieved by mechanically energizing a treatment element disposed within the urethra, such as rotating an eccentric weight coupled to the treating element, rotating an asymmetric drive shaft coupled to the treating element, or the like. The mechanical motion may be achieved using a motor disposed on a device located in situ within the urethra or alternatively using a drive shaft disposed axially within a device introduced into the urethra. The motor may be electric, hydraulic, fluidic, or have any one of a variety of other configurations. Alternatively, the mechanical vibration could be achieved using a piezoelectric source mechanically configured to reduce the frequency of vibration. Other driving elements include bi-metallic elements driven by an alternating current, spring elements driven by an oscillating tension member, and the like.
While the vibrating elements could be introduced in a variety of ways, they will typically be incorporated on or in a catheter or other device having a shaft configured for insertion into the male urethra from the external opening. The length of the catheter or other advancement shaft will typically be in the range from 10 cm to 60 cm, usually from 20 cm to 40 cm, while the diameter will usually be in the range from 1 mm to 10 mm, usually from 3 mm to 6 mm.
The vibrating elements will usually be mounted at or near a balloon which helps transfer vibrational energy from the vibrating element into tissue surrounding the balloon (when inflated). Most commonly, the vibrating element(s) will be on the shaft within the interior of the balloon. In that case, the energy will be transferred through the balloon inflation medium (e.g., saline) into the prostatic tissue. In other embodiments, the vibrating element will be positioned in or on the shaft with a balloon asymmetrically positioned on the shaft to push a surface of the shaft directly against the urethral wall. In still other configurations, the vibrating element may be positioned on an outer surface of a balloon or other expandable structure so that expansion of the structure will engage the vibrating element directly against the urethral wall.
The treatment devices of the present invention may further comprise an anchoring element for stabilizing and positioning the device within the urethra during the treatment. For example, an inflatable balloon or other expandable anchor may be provided on the shaft which carries the vibrating treatment element. Typically, the anchor will be disposed distally of the treating element so that it may be deployed within the bladder to stabilize and position the vibrating treatment element within the prostate. In addition to balloons, the anchor could comprise a mallecot structure, a deflectable distal end, or other conventional expansible element which may be expanded within the bladder and pulled back against the bladder wall to position the shaft of the device.
Further optionally, the treatment devices may include an injector or other means for delivering a therapeutic substance into the prostate as part of the treatment protocol. Typically, the injector will comprise at least one needle which is laterally advanceable from the device shaft. While, in the illustrated embodiments below, the needle is shown to be disposed distally of the vibrating treatment element, it could also be disposed proximally. The delivery of a therapeutic agent may occur before vibrational treatment, concurrently with vibrational treatment, or subsequent to vibrational treatment. Moreover, it would be possible to move the treating device before or after treatment in order to position or reposition the injector to deliver the substance to different locations. Exemplary therapeutic and analgesic substances which may be delivered include lidocaine, alpha blockers, smooth muscle cell contracting stimulants, and the like.
The catheter or other treatment device may optionally be coated with a hydrophilic, hydrophobic, and/or antibiotic material to facilitate insertion of the device through the urethra and/or minimize injury to the urethra. Other substances which may be used to coat the device include anti-inflammatory drugs.
Although the precise mechanism of action in the treatments of the present application is not known, it is presently believed that the low frequency vibration induces apoptosis or “programmed cell death” within the smooth muscle cells (SMC's) which are present within the prostate and largely responsible for hyperplasia. As apoptosis results in less inflammation and trauma, a volumetric reduction in the prostate may be achieved with fewer side effects than are associated with radiofrequency ablation, surgical or minimally invasive excisions, and the like.
As shown in
Referring now to
The treatment device 10 further includes a handle 18 attached to the proximal end 16 of the shaft 12. The handle will typically include a thumb switch or other trigger 20 which permits the user to turn on and off the vibration. Alternatively, a foot switch (not shown) could be used. Optionally, handle 18 may be connected to an external unit 22 (shown in broken line) by a cable or other cord 24 to provide energy, drug delivery, control functions, or the like.
A balloon 26 is positioned near the distal end 14 of the shaft 12, and typically one or more radioopaque markers 28 will be provided adjacent to and/or within the balloon to facilitate fluoroscopic imaging. As shown in
In
An alternative vibrating element structure is illustrated in
The treatment devices of the present invention may be combined with other features to enhance their utility and effectiveness. For example, as shown in
As shown in
Referring now to
While the above is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used. Therefore, the above description should not be taken as limiting the scope of the invention which is defined by the appended claims.
The present application claims the benefit of prior provisional application No. 60/871,897, filed on Dec. 26, 2006, the full disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4813429 | Eshel et al. | Mar 1989 | A |
4967765 | Turner et al. | Nov 1990 | A |
5243997 | Uflacker et al. | Sep 1993 | A |
5330518 | Neilson et al. | Jul 1994 | A |
5380273 | Dubrul et al. | Jan 1995 | A |
5419763 | Hildebrand | May 1995 | A |
5454782 | Perkins | Oct 1995 | A |
5496271 | Burton et al. | Mar 1996 | A |
5836951 | Rosenbluth et al. | Nov 1998 | A |
6123083 | McGrath et al. | Sep 2000 | A |
6322583 | Tu et al. | Nov 2001 | B1 |
6389313 | Marchitto et al. | May 2002 | B1 |
6433464 | Jones | Aug 2002 | B2 |
6508782 | Evans et al. | Jan 2003 | B1 |
6517534 | McGovern et al. | Feb 2003 | B1 |
6746465 | Diederich et al. | Jun 2004 | B2 |
7261710 | Elmouelhi et al. | Aug 2007 | B2 |
20020003385 | Jones | Jan 2002 | A1 |
20030073902 | Hauschild et al. | Apr 2003 | A1 |
20050197627 | Huang et al. | Sep 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20080154160 A1 | Jun 2008 | US |
Number | Date | Country | |
---|---|---|---|
60871897 | Dec 2006 | US |