Methods and systems for making well-fined glass using submerged combustion

Information

  • Patent Grant
  • 9676644
  • Patent Number
    9,676,644
  • Date Filed
    Monday, November 23, 2015
    9 years ago
  • Date Issued
    Tuesday, June 13, 2017
    7 years ago
Abstract
Methods and systems produce a molten mass of foamed glass in a submerged combustion melter (SCM). Routing foamed glass to a fining chamber defined by a flow channel fluidly connected to and downstream of the SCM. The flow channel floor and sidewalls have sufficient glass-contact refractory to accommodate expansion of the foamed glass as fining occurs during transit through the fining chamber. The foamed glass is separated into an upper glass foam phase and a lower molten glass phase as the foamed glass flows toward an end of the flow channel distal from the SCM. The molten glass is then routed through a transition section fluidly connected to the distal end of the flow channel. The transition section inlet end construction has at least one molten glass inlet aperture, such that the inlet aperture(s) are positioned lower than the phase boundary between the upper and lower phases.
Description
BACKGROUND OF THE INVENTION

Background of the Invention


The present disclosure relates generally to the field of submerged combustion melters and methods of use thereof to produce molten glass, and more specifically to methods and systems for making well-fined molten glass, and glass products therefrom, using one or more submerged combustion melters.


Background Art


A submerged combustion melter (SCM) may be employed to melt glass batch and/or waste glass materials to produce molten glass by passing oxygen, oxygen-enriched mixtures, or air along with a liquid, gaseous and/or particulate fuel (some of which may be in the glass-forming materials), directly into a molten pool of glass, usually through burners submerged in a glass melt pool. The introduction of high flow rates of products of combustion of the oxidant and fuel into the molten glass, and the expansion of the gases cause rapid melting of the glass batch and much turbulence and foaming.


Molten glass produced from an SCM is generally a homogeneous mixture of molten glass and fine bubbles. The bubbles may occupy up to 40 percent or more of the volume of molten glass produced with fine bubbles distributed throughout the molten mass of glass. For glass forming operations requiring well-fined (essentially void free) molten glass, a very large number of bubbles must be removed from the molten glass. The typical procedure for removing the bubbles is to allow a long enough residence time in one or more apparatus downstream of the SCM for the bubbles to rise to the surface and burst. Clearing bubbles from the molten glass is referred to as “fining” within the glass industry. Experience with SCMs has shown that the fining process can be very slow due to the bubbles collecting at the molten glass surface forming a layer of stable foam thereon. Formation of this foam layer in downstream fining chambers retards the fining mechanism as well as the heat penetration into the glass from fining chamber heating systems, such as combustion burners firing above the glass and/or electrical joule heating below the glass.


Use of skimmers within the foam layer has been used to hold back some of the upper foam layers allowing the lower, less foamy layers to pass through to later sections of channels downstream of the SCM. These efforts have been somewhat effective but may require multiple skimmers to obtain a foam free glass layer and surface. In addition, the skimmers are prone to failure during operation making them no longer useful in holding back the upper foam layers and can fall into and partially block the channel impeding some or all of the glass flow to downstream apparatus such as forming stations. It is also conventional to use a submerged throat positioned between a melter and a downstream channel, or between first and second sections of a melter; however, these throats are used primarily to serve as a demarcation between an upstream melting region and a downstream fining region. In effect, there is no attempt to separate any bubbles from the molten mass using conventional throats.


At least for these reasons, it would be an advance in the glass manufacturing art using submerged combustion melters if the foamy upper glass layer or layers, and the glass foam layer floating thereon, could be removed or separated from the fined glass without using multiple skimmers, thereby allowing formation of well-fined molten glass, and glass products using the well-fined molten glass.


SUMMARY

In accordance with the present disclosure, systems and methods are described for and/or glass foam produced during submerged combustion melting of glass-forming materials in equipment downstream of a submerged combustion melter.


A first aspect of the disclosure is a method comprising:


melting glass-forming materials to produce a turbulent molten mass of foamed glass in a submerged combustion melter (SCM), the SCM comprising a roof, a floor, a sidewall structure connecting the roof and floor, and an outlet for the molten mass of foamed glass in the floor and/or the sidewall structure;


routing the molten mass of foamed glass through the SCM outlet to a fining chamber defined by a first flow channel fluidly connected to and downstream of the SCM, the first flow channel comprising at least a floor and a sidewall structure, the first flow channel having glass-contact refractory lining the floor and at least a portion of the flow channel sidewall structure to a height sufficient to accommodate expansion of the molten mass of foamed glass as fining occurs during transit through the fining chamber;


separating the molten mass of foamed glass into an upper phase consisting essentially of glass foam and a lower phase consisting essentially of molten glass as the molten mass of foamed glass flows toward an end of the first flow channel distal from the SCM; and


routing the molten glass through a passage defined by a transition section fluidly connected to the distal end of the first flow channel, the transition section comprising a floor and a cover, the floor and cover connected by a sidewall structure, and comprising an inlet end structure and an outlet end structure, the inlet end structure comprising at least one molten glass inlet aperture and the outlet end structure comprising at least one molten glass outlet aperture, wherein all of the inlet apertures are positioned lower than a phase boundary between the upper and lower phases in the first flow channel.


A second aspect of the disclosure is a method comprising:


melting glass-forming materials to produce a turbulent molten mass of foamed glass in a submerged combustion melter (SCM), the SCM comprising a roof, a floor, a sidewall structure connecting the roof and floor, and an outlet for the molten mass of foamed glass in the floor and/or sidewall structure;


routing the molten mass of foamed glass through the SCM outlet to a fining chamber defined by a first flow channel fluidly connected to and downstream of the SCM, the first flow channel comprising at least a floor and a sidewall structure, the first flow channel having glass-contact refractory lining the floor and at least a portion of the first flow channel sidewall structure to a height sufficient to accommodate expansion of the molten mass of foamed glass as fining occurs during transit through the fining chamber;


separating the molten mass of foamed glass into an upper phase consisting essentially of glass foam and a lower phase consisting essentially of molten glass as the molten mass of foamed glass flows toward an end of the first flow channel distal from the SCM;


routing the molten glass through a passage defined by a transition section fluidly connected to the distal end of the first flow channel, the transition section comprising a floor and a cover, the floor and cover connected by a sidewall structure, and comprising an inlet end wall and an outlet end wall, the inlet end wall comprising at least one molten glass inlet aperture and the outlet end wall comprising at least one molten glass outlet aperture, wherein 100 percent of the inlet aperture is lower than the floor of the first flow channel; and


routing the phase consisting essentially of molten glass through the outlet aperture of the end wall of the transition section to a temperature homogenizing chamber defined by a second flow channel fluidly connected to the outlet end wall of the transition section, the second flow channel comprising a geometry sufficient to form a temperature homogenized, well-fined molten glass.


A third aspect of the disclosure is a system comprising:


a submerged combustion melter (SCM) configured to form a turbulent molten mass of foamed glass by melting glass-forming materials therein, the SCM comprising a roof, a floor, a sidewall structure connecting the roof and floor, and a foamed glass outlet in the floor and/or the sidewall structure;


a first flow channel defining a fining chamber fluidly connected to and downstream of the SCM, the first flow channel comprising at least a floor and a sidewall structure, the first flow channel comprising glass-contact refractory at least lining the floor and at least a portion of the first flow channel sidewall structure to a height sufficient to accommodate expansion of the molten mass of foamed glass as fining occurs during transit of the molten mass of foamed glass through the fining chamber, the fining separating the molten mass of foamed glass into an upper phase consisting essentially of glass foam and a lower phase consisting essentially of molten glass as the molten mass of foamed glass flows toward an end of the first flow channel distal from the SCM; and


a transition section defining a passage fluidly connected to the distal end of the first flow channel, the transition section comprising a floor and a cover, the floor and cover connected by a sidewall structure, and comprising an inlet end structure and an outlet end structure, the inlet end structure comprising at least one molten glass inlet aperture and the outlet end structure comprising at least one molten glass outlet aperture, wherein all of the inlet apertures are positioned lower than a phase boundary between the upper and lower phases in the first flow channel.


A fourth aspect of the disclosure is a system comprising:


a submerged combustion melter (SCM) configured to form a turbulent molten mass of foamed glass by melting glass-forming materials therein, the SCM comprising a roof, a floor, a sidewall structure connecting the roof and floor, and a foamed glass outlet in the floor and/or the sidewall structure;


a first flow channel defining a fining chamber fluidly connected to and downstream of the SCM, the first flow channel comprising at least a floor and a sidewall structure, the first flow channel comprising glass-contact refractory at least lining the floor and at least a portion of the first flow channel sidewall structure to a height sufficient to accommodate expansion of the molten mass of foamed glass as fining occurs during transit of the molten mass of foamed glass through the fining chamber, the fining separating the molten mass of foamed glass into an upper phase consisting essentially of glass foam and a lower phase consisting essentially of molten glass as the molten mass of foamed glass flows toward an end of the first flow channel distal from the SCM;


a transition section defining a passage fluidly connected to the distal end of the first flow channel, the transition section comprising a floor and a cover, the floor and cover connected by a sidewall structure, and comprising an inlet end wall and an outlet end wall, the inlet end wall comprising at least one molten glass inlet aperture and the outlet end wall comprising at least one molten glass outlet aperture, wherein 100 percent of the inlet aperture is lower than the floor of the first flow channel; and


a second flow channel fluidly connected to the outlet end wall of the transition section and defining a temperature homogenizing chamber comprising a geometry sufficient to form a temperature homogenized well-fined molten glass using the phase consisting essentially of molten glass.


Systems and methods of this disclosure will become more apparent upon review of the brief description of the drawings, the detailed description of the disclosure, and the claims that follow.





BRIEF DESCRIPTION OF THE DRAWINGS

The manner in which the objectives of the disclosure and other desirable characteristics can be obtained is explained in the following description and attached drawings in which:



FIG. 1 is a schematic side elevation view, partially in cross-section, of one non-limiting system embodiment in accordance with the present disclosure;



FIG. 2 is a schematic perspective view of a portion of the system embodiment of FIG. 1;



FIG. 3 is a schematic side elevation view, partially in cross-section, of a portion of another system embodiment in accordance with the present disclosure;



FIG. 4 is a schematic perspective view of the portion of the system embodiment of FIG. 3;



FIGS. 5 and 6 are schematic perspective views of two alternative embodiments of transition sections in accordance with the present disclosure;



FIGS. 5A is a cross-sectional view of the transition section schematically illustrated in FIG. 5, and FIG. 5B is a more detailed view of the inlet end of the transition section of FIG. 5;



FIG. 7 is a longitudinal cross-sectional view of a portion of another system embodiment in accordance with the present disclosure;



FIG. 8 is a plan view of a portion of another system embodiment in accordance with the present disclosure; and



FIGS. 9 and 10 are logic diagrams of two methods in accordance with the present disclosure.





It is to be noted, however, that the appended drawings of FIGS. 1-8 may not be to scale and illustrate only typical embodiments of this disclosure, and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.


DETAILED DESCRIPTION

In the following description, numerous details are set forth to provide an understanding of the disclosed systems and methods. However, it will be understood by those skilled in the art that the systems and methods covered by the claims may be practiced without these details and that numerous variations or modifications from the specifically described embodiments may be possible and are deemed within the claims. All U.S. published patent applications and U.S. Patents referenced herein are hereby explicitly incorporated herein by reference. In the event definitions of terms in the referenced patents and applications conflict with how those terms are defined in the present application, the definitions for those terms that are provided in the present application shall be deemed controlling.


As explained briefly in the Background, bubbles may occupy up to 40 percent or more of the volume of the turbulent molten glass produced by an SCM, with fine bubbles distributed throughout the molten mass of glass. For glass forming operations requiring well-fined (essentially void free) molten glass, a very large number of bubbles must be removed from the molten glass. Experience with SCMs has shown that the fining process can be very slow due to the bubbles collecting at the molten glass surface forming a layer of stable foam thereon. Formation of this foam layer in downstream fining chambers retards the fining mechanism as well as the heat penetration into the glass from fining chamber heating systems, such as combustion burners firing above the glass and/or electrical joule heating below the glass. Use of skimmers within the foam layer to hold back some of the upper foam layers allowing the lower, less foamy layers to pass through to later sections of channels downstream of the SCM has been somewhat successful but suffers from several drawbacks.


It has been discovered that the use of a specially designed transition section in combination with a specially constructed fining chamber between the SCM and the transition section may fully accomplish separating fined glass from the foamy glass and/or glass foam floating thereon in a simple, effective way. The transition section may be fluidly connected to a second flow channel downstream of the transition section, the second flow channel defining a temperature conditioning or homogenization chamber for forming a well-fined, temperature homogenized molten glass. The transition section additionally is less likely to fail than a skimmer since it may have a robust construction and may be engineered for longevity in operation.


In accordance with methods and systems of the present disclosure, molten foamed glass leaving the SCM is routed to a refractory or refractory-lined flow channel of sufficient designed length and having sufficiently high glass contact refractory walls to accommodate the volume expansion that occurs during initial fining as the molten mass moves away from the SCM. The “high sidewalls” constructed of glass-contact refractory in the flow channel accommodate the glass foam surface rise resulting from the bubbles within the molten foamed glass rising to the surface creating the fined, essentially void-free glass in the lower layers. The length of the refractory or refractory-lined flow channel is such that a boundary layer is able to develop between the top-most foamy glass layers and the lower, essentially molten glass layers, as discussed herein.


Methods and systems of the present disclosure further include a refractory or precious metal-lined transition section fluidly connected to the distal end of the refractory or refractory-lined flow channel. In certain embodiments, at least 75 percent, in certain embodiments at least 90 percent, and in yet other embodiments 100 percent of the inlet to the transition section is positioned below a phase boundary between an upper phase consisting essentially of glass foam, and a lower phase consisting essentially of well-fined molten glass. In certain embodiments 100 percent of the inlet to the transition section is positioned relative to the refractory or refractory-lined flow channel so that only the lower, well-fined molten glass formed in the flow channel passes into and through the transition section, and further into one or more downstream temperature conditioning (sometimes referred to as a temperature homogenizing) flow channels. In certain embodiments the cover of the transition section (or the portion contacting molten glass) may be comprised of glass corrosion resistant material. In certain embodiments, the height of a roof of the refractory or refractory-lined flow channel is higher above the roof of the transition section compared to the height of the roof of the downstream temperature conditioning channel above the roof of the transition section, allowing a thick layer if foam to build up ahead of the transition section, and possibly be reduced or destroyed by impingement burners or other techniques, such as water spray, dripping water, and the like. In certain embodiments, the roof of the refractory or refractory-lined flow channel may slant upwards in the flow direction at an angle to horizontal, allowing entrapped bubbles to move upward and out of the molten glass stream flowing therein. In certain other embodiments, the roof of the transition section may slope upward in similar fashion.


The length, width, height, and depth dimensions of the passage defined by the transition section may vary widely, and may be designed to control glass temperature conditioning to help cool or heat the molten glass to close to the forming temperature, providing an additional temperature control of the glass delivery process. The width and depth may be constant or variable from the inlet end to the outlet end of the transition section.


In certain embodiments, the transition section outlet end structure may be configured so that the molten glass is allowed to well up into one or more downstream temperature conditioning channels, and further on to one or more glass forming stations or processes.


In certain embodiments the transition section may comprise one or more drains allowing removal of molten glass from the transition section, particularly in those embodiments where the transition section floor is positioned below the floor of structures upstream and downstream of the transition section.


In certain embodiments the transition section may include one or more Joule heating elements to maintain the molten glass in the liquid, molten state during times of low or no flow through the passage through the transition section, adding robustness to the methods and systems of the present disclosure to many planned and unplanned process conditions.


Various terms are used throughout this disclosure. “Submerged” as used herein means that combustion gases emanate from a combustion burner exit that is under the level of the molten glass, and “non-submerged” means that combustion gases do not emanate from combustion burner exits under the level of molten glass, whether in the SCM or downstream apparatus. Both submerged and non-submerged burners may be roof-mounted, floor-mounted, wall-mounted, or any combination thereof (for example, two floor mounted burners and one wall mounted burner). “SC” as used herein means “submerged combustion” unless otherwise specifically noted, and “SCM” means submerged combustion melter unless otherwise specifically noted.


The terms “foam” and “foamy” include froths, spume, suds, heads, fluffs, fizzes, lathers, effervesces, layer and the like. The term “bubble” means a thin, shaped, gas-filled film of molten glass. The shape may be spherical, hemispherical, rectangular, polyhedral, ovoid, and the like. The gas or “bubble atmosphere” in the gas-filled SC bubbles may comprise oxygen or other oxidants, nitrogen, combustion products (including but not limited to, carbon dioxide, carbon monoxide, NOx, SOx, H2S, and water), reaction products of glass-forming ingredients (for example, but not limited to, sand (primarily SiO2), clay, limestone (primarily CaCO3), burnt dolomitic lime, borax and boric acid, and the like. Bubbles may include solids particles, for example soot particles, either in the film, the gas inside the film, or both. The term “glass foam” means foam where the liquid film comprises molten glass. “Glass level” means the distance measured from the bottom of a downstream apparatus to the upper liquid level of the molten glass, and “foam level” means the distance measured from the top of the atmosphere above the foam layer to the upper surface of the foam layer. “Foam height” (equivalent to foam thickness) is the distance measured between the glass level and foam level.


As used herein the term “combustion” means deflagration-type combustion unless other types of combustion are specifically noted, such as detonation-type combustion. Deflagration is sub-sonic combustion that usually propagates through thermal conductivity; hot burning material heats the next layer of cold material and ignites it. Detonation is supersonic and primarily propagates through shock. As used herein the terms “combustion gases” and “combustion products” means substantially gaseous mixtures of combusted fuel, any excess oxidant, and combustion products, such as oxides of carbon (such as carbon monoxide, carbon dioxide), oxides of nitrogen, oxides of sulfur, and water, whether from deflagration, detonation, or combination thereof. Combustion products may include liquids and solids, for example soot and unburned or non-combusted fuels.


“Oxidant” as used herein includes air and gases having the same molar concentrations of oxygen and nitrogen as air (synthetic air), oxygen-enriched air (air having oxygen concentration greater than 21 mole percent), and “pure” oxygen, such as industrial grade oxygen, food grade oxygen, and cryogenic oxygen. Oxygen-enriched air may have 50 mole percent or more oxygen, and in certain embodiments may be 90 mole percent or more oxygen.


The term “fuel”, according to this disclosure, means a combustible composition comprising a major portion of, for example, methane, natural gas, liquefied natural gas, propane, hydrogen, steam-reformed natural gas, atomized hydrocarbon oil, combustible powders and other flowable solids (for example coal powders, carbon black, soot, and the like), and the like. Fuels useful in the disclosure may comprise minor amounts of non-fuels therein, including oxidants, for purposes such as premixing the fuel with the oxidant, or atomizing liquid or particulate fuels. As used herein the term “fuel” includes gaseous fuels, liquid fuels, flowable solids, such as powdered carbon or particulate material, waste materials, slurries, and mixtures or other combinations thereof.


The sources of oxidant and fuel may be one or more conduits, pipelines, storage facility, cylinders; or, in embodiments where the oxidant is air, ambient air. Oxygen-enriched oxidants may be supplied from a pipeline, cylinder, storage facility, cryogenic air separation unit, membrane permeation separator, or adsorption unit such as a vacuum swing adsorption unit.


The term “flow channel” means a container, channel or conduit defined at least by a floor and a wall structure extending upwards from the floor to form a space in which molten glass may be present, whether flowing or not. In certain embodiments flow channels may include a roof and a wall structure connecting the floor and roof. The flow channels may have any operable cross-sectional shape (for example, but not limited to, rectangular, oval, circular, trapezoidal, hexagonal, and the like) and any flow path shape (for example, but not limited to, straight, zigzag, curved, and combinations thereof). Certain systems and methods comprise a first flow channel defining a fining chamber, and a second flow channel defining a conditioning channel. The phrase “the second flow channel comprising a geometry sufficient to form a temperature homogenized, well-fined molten glass” means that the second flow channel has length, width, and depth dimensions sufficient to provide the residence time adequate to form temperature homogenized, well-fined molten glass. The dimensions may be constant or changing from inlet to outlet of the second flow channel; generally, the depth is not so great as to require agitation of the melt to achieve temperature homogenization, although some agitation may be desired in certain embodiments. The length may also depend on the Reynolds number of the molten glass exiting the transition section. Higher Reynolds numbers may require longer second flow channels to achieve the desired temperature homogenization. As used herein the term “well-fined” means that in certain embodiments the molten glass has less than 15 bubbles per cm3, or in some embodiments less than 2 bubbles per cm3, or has a density within 95 percent of the density of the glass being produced with no bubbles, or in certain embodiments has a density within 99 percent of the density of the glass being produced with no bubbles.


SCMs, flow channels, transition sections and associated structures, as well as conduits used in burners and devices for delivery of compositions useful in systems and methods of the present disclosure may be comprised of metal, ceramic, ceramic-lined metal, or combination thereof. Suitable metals include stainless steels, for example, but not limited to, 306 and 316 steel, as well as titanium alloys, aluminum alloys, and the like. Suitable materials and thickness for the glass-contact refractory are discussed herein below. In any particular system and method, the flow channel geometry, transition section geometry, and associated structural features may be influenced by the type of glass being produced and degree of foaming.


Certain submerged and non-submerged combustion burners, certain components in and/or protruding through one or more of the floor, roof, and sidewall structure configured to heat or maintaining temperature of the foamed glass, in the SCM or otherwise, may be fluid-cooled, and in the case of burners may include first and second (or more) concentric conduits. In the case of burners, the first conduit may be fluidly connected at one end to a source of fuel, the second conduit may be fluidly connected to a source of oxidant, and a third substantially concentric conduit may connect to a source of cooling fluid.


Certain systems of this disclosure may comprise one or more non-submerged burners. Suitable non-submerged combustion burners may comprise a fuel inlet conduit having an exit nozzle, the conduit and nozzle inserted into a cavity of a ceramic burner block, the ceramic burner block in turn inserted into either the roof or the wall structure, or both the roof and wall structure of the downstream apparatus.


In certain systems, one or more burners may be adjustable with respect to direction of flow of the combustion products. Adjustment may be via automatic, semi-automatic, or manual control. Certain system embodiments may comprise a burner mount that mounts the burner in the wall structure, roof, or floor of the downstream apparatus comprising a refractory or refractory-lined ball joint or ball turret. Other burner mounts may comprise rails mounted in slots in the wall or roof. In yet other embodiments the burners may be mounted outside of the downstream apparatus, on supports that allow adjustment of the combustion products flow direction. Useable supports include those comprising ball joints, cradles, rails, and the like.


In certain systems and methods of the present disclosure, the flow channel may comprising a series of sections, and may comprise one or more impingement (high momentum) burners, such as described in assignee's U.S. Pat. Nos. 9,021,838 and 8,707,739. Certain systems and methods of the present disclosure may utilize measurement and control schemes such as described in assignee's U.S. Pat. No. 9,096,453, and/or feed batch densification systems and methods as described in assignee's co-pending application U.S. Ser. No. 13/540,704, filed Jul. 3, 2012. Certain systems and methods of the present disclosure may utilize one or more retractable devices for delivery of treating compositions such as disclosed in assignee's U.S. Pat. No. 8,973,405. Certain systems and methods of the present disclosure may utilize one or more nozzles for delivery of treating compositions such as disclosed in assignee's U.S. Pat. No. 9,492,831, and/or may utilize one or more foam destruction devices as described in assignee's U.S. Pat. No. 9,096,452.


Certain systems and methods of this disclosure may be controlled by one or more controllers. For example, determination of molten foamed glass density gradient may be used to control one or more burners in the downstream apparatus and/or melter, level in a melter, feed rate to a melter, discharge rate of molten foamed glass from a melter, and other parameters. Burner (flame) temperature may be controlled by monitoring one or more parameters selected from velocity of the fuel, velocity of the primary oxidant, mass and/or volume flow rate of the fuel, mass and/or volume flow rate of the primary oxidant, energy content of the fuel, temperature of the fuel as it enters the burner, temperature of the primary oxidant as it enters the burner, temperature of the effluent, pressure of the primary oxidant entering the burner, humidity of the oxidant, burner geometry, combustion ratio, and combinations thereof. Certain systems and methods of this disclosure may also use determined density gradient of molten foamed glass in the downstream apparatus to control feed rate of batch or other feed materials, such as glass batch, cullet, mat or wound roving and treatment compositions, to a melter; mass of feed to a melter, and the like. Exemplary systems and methods of the disclosure may comprise a controller which receives one or more input parameters selected from temperature of melt in a melter, density gradient in the downstream apparatus, composition of bubbles and/or foam, height of foam layer, glass level, foam level, and combinations thereof, and may employ a control algorithm to control combustion temperature, flow rate and/or composition of compositions to control foam decay rate and/or glass foam bubble size, and other output parameters based on one or more of these input parameters.


Specific non-limiting system and method embodiments in accordance with the present disclosure will now be presented in conjunction with the attached drawing figures. The same numerals are used for the same or similar features in the various figures. In the views illustrated in the drawing figures, it will be understood in the case of FIGS. 1-8 that the figures are schematic in nature, and certain conventional features may not be illustrated in all embodiments in order to illustrate more clearly the key features of each embodiment. The geometry of the flow channels is illustrated generally the same in the various embodiments, but that of course is not necessary.



FIG. 1 is a schematic side elevation view, partially in cross-section, of one non-limiting system embodiment 100 in accordance with the present disclosure, and FIG. 2 is a schematic perspective view of a portion of system embodiment 100 of FIG. 1. The primary components of system embodiment 100 are an SCM 2, a first flow channel 30, a transition section 40, a second flow channel 50, and a glass delivery channel 60. SCM 2 includes a floor 4, a roof 6, and a sidewall structure 8 connecting floor 4 and roof 6. A first portion of sidewall structure 8 and roof 6 define a space 9 containing a turbulent molten mass of foamed glass 22 having a plurality of entrained bubbles 21, and a generally turbulent surface 20 created by flow of combustion products emanating from one or more submerged burners 16a, 16b, protruding through respective apertures 14a, 14b in SCM floor 4. Burners 16a, 16b may be sourced by oxidant “O” and fuel “F” as indicated in FIG. 1, controlled by one or more control valves “CV”, all of which are not pointed out for sake of brevity. The curved arrows indicate general motion of molten glass in SCM 2. SCM 2 may further include a batch feeder 12 for feeding batch materials 18 through one or more feed apertures in SCM sidewall structure 8 (batch may also, or alternatively be fed through roof 6.) Other materials may be fed to SCM 2, as long as there is a significant portion of glass-forming materials or recycled glass. SCM 2 further includes one or more molten glass outlets 24, embodiment 100 illustrated as having outlet 24 in sidewall structure 8, but this is not necessary. SCM 2 further includes a stack 10.


Still referring to FIG. 1 and FIG. 2 as well, system embodiment 100 includes a first flow channel 30 fluidly connected to SCM 2. First flow channel 30 includes at least a floor 34 and a sidewall structure 38, and in embodiment 100 a roof 36 connected by sidewall structure 38 to flow channel floor 34. Roof 36 may not be present in all embodiments. First flow channel 30 defines a fining chamber 32 having a length configured so that as the mass of molten foamed glass 22 passes through SCM outlet 24 and traverses through fining chamber 32, the mass of molten foamy glass tends to separate into an upper phase 35 consisting essentially of glass foam, and a lower phase 37 consisting essentially of molten glass, and form a boundary 39 between upper phase 35 and lower phase 37. Because of the formation of upper foamy phase 35, first flow channel 30 in certain embodiments includes a higher than normal height “H” of glass-contact refractory 31, which may also be thicker than normal, say up to 3 inches (7.6 cm) or more thick, depending on the refractory corrosion rate, which depends largely on the glass composition being processed and temperatures.


Referring again to FIG. 1, transition section 40 of embodiment 100 includes a transition section floor 44, a roof or cover 46, an inlet end structure 48, and an outlet end structure 49, all defining a passage 42 through transition structure 40 for molten glass 45. As may be seen in the schematic of FIG. 1, molten glass in lower phase 37 is allowed to flow into transition section 40, through passage 42, but glass foam in upper phase 35 above boundary 39 is not. Inlet end structure 48 may include one or more apertures 41, and outlet end structure 49 may include one or more outlet apertures 43. In embodiment 100, inlet end structure 48 includes one slot aperture 41 and outlet end structure 49 includes one slot aperture 43. The shape of apertures 41, 43 are not especially important, although in certain embodiments they may have more advantageous configurations, as discussed further herein, however their position is critical. In embodiment 100, the entirety (100 percent) of inlet aperture or slot 41 is below boundary 39 between upper glass foam phase 35 and lower molten glass phase 37. As mentioned earlier, in certain embodiments it is not necessary that 100 percent of inlet aperture 41 be below boundary 39. Curved arrows indicate the general flow pattern of molten glass 45 through transition section 40. Glass foam in upper phase 35 is held back. Another important feature of transition section 40 is provision of a high temperature, corrosion-resistant, erosion-resistant lining 53; while not absolutely necessary, most embodiments of transition section 40 will comprise such a lining on at least some of the surfaces exposed to molten glass for system longevity. For example, certain embodiments may only have this lining on upper inside surfaces of the transition section, where the wear rate maybe the highest. High temperature materials for lining 53 may be platinum group metals or alloys thereof, such as platinum, rhodium, or platinum/rhodium alloy. Molybdenum and alloys thereof with other metals may also be used, as long as they meet temperature requirements.


Still referring to FIG. 1 and also FIG. 2, outlet end structure 49 of transition section 40 is fluidly connected to a second refractory or refractory-lined flow channel 50 having a floor 54, a roof 56, and a sidewall structure 58 including an outlet end aperture 59 through which molten glass 55 flows to a glass delivery channel 60. It is not necessary that second flow channel 50 have a lining of glass-contact refractory, but in order to increase run time of the system, such construction may be present in certain embodiments. Second flow channel 50 has a length sufficient to define a temperature conditioning or homogenizing chamber 52, in which molten glass 45 entering chamber 52 is conditioned into a molten glass of consistent temperature, 55, for downstream glass delivery channel 60 and further downstream glass forming operations.



FIG. 2 illustrates schematically certain optional features of systems within this disclosure, for example, provision of one or more electrical Joule heating elements 47, one or more cooling fluid source and return conduits, 62, 63 respectively, one or more controllable drain conduits 57 for transition section 40, and one or more apertures 80 in roof 36 of first flow channel 30 for various functions. One example may be provision of a vent 82, or a burner for directing foam away from transition section 40. Both high- and low-momentum burners have been described in other patent applications assigned to the assignee of the present application, and are further mentioned herein. FIG. 2 also illustrates that in embodiment 100, first flow channel roof 36 has a height h1 above the cover 46 of transition section 40, and second flow channel roof 56 has a height h2 above cover 46 of transition section 40, wherein h1>h2, allowing for a thick layer of foam to build up in first flow channel 30. The height h1 may be 1.2, or 1.5, or 2.0, or 3.0 times the height h2, or more.



FIGS. 3 and 4 illustrate schematically system embodiment 200. Embodiment 200 differs from embodiment 100 primarily in the configuration of transition section 40. Transition section 40 in embodiment 200 also has a floor 44, roof or cover 46, inlet end structure 48 and outlet end structure 49, however in embodiment 200, roof or cover 46 and inlet end structure 48 are configured so that all of inlet aperture 41 is completely below floor 34 of first flow channel 30. Inlet end structure 48 further includes a top section 64, and a frontal section 65, which together with sidewalls 66 (only one being visible in FIG. 4) and floor 44 form a portion of flow passage 42 in this embodiment. Frontal section 65 is not illustrated in FIG. 4 for clarity. Similarly, a front end wall 57 of second flow channel 50 and a rearward section 69, along with floor 44 and sidewalls 66 form the exit end structure 49 in this embodiment. Corrosion-resistant, erosion-resistant lining 53 is also present and viewable in FIG. 3. Lining 53 in the various embodiments disclosed herein and like embodiments may have a thickness so as to provide a long run time for the systems of the disclosure. The thickness would not be more than necessary, but is technically limited only by the desired dimensions of the flow path of molten glass and footprint of the transition section. Lining 53 may in some embodiments be 0.5 inch (1.25 cm) thick or more if cost were no impediment, but typically may range from about 0.02 to about 0.1 inch (about 0.05 cm to about 0.25 cm). FIG. 4 also illustrates schematically one possible position of glass-contact refractory 31, viewable through a cutout portion 70. Glass-contact refractory 31 has a height “H”, which would not be higher than necessary, and is dependent upon many factors, including the type (composition) of glass being processed. The height “H” may in fact be the entire height of the sidewall of first flow section 30. Also as viewable through cutouts 67 and 68, molten glass 45 flows though second flow channel 50, eventually forming temperature-conditioned molten glass 55 before being discharged into glass delivery channel 60.



FIGS. 5 and 6 are schematic perspective views of two alternative embodiments of transition sections in accordance with the present disclosure. Embodiment 300 includes a pair of generally vertical oval or oblong-shaped inlet apertures 72, 74 in an inlet wall 27, and a generally horizontal oval or oblong-shaped outlet aperture 43 in an outlet wall 29. FIG. 5A is a cross-sectional view of transition section embodiment 300 schematically illustrated in FIG.5, illustrating schematically precious metal lining 53, and FIG. 5B is a more detailed view of the inlet end of transition section embodiment 300, illustrating position of precious metal lining 53 in apertures 72, 74. In embodiment 400, illustrated schematically in FIG. 6, inlet aperture 76 is a generally oval or oblong-shaped opening in inlet wall 27, as is outlet end aperture 43 in outlet wall 29.



FIG. 7 is a longitudinal cross-sectional view of a portion of another system embodiment 500 in accordance with the present disclosure. Embodiment 500 emphasizes that certain embodiments may include shaped, streamlined inlet and outlet end structures 48, 49. In embodiment 500, inlet end structure 48 includes a bottom that may be angled at an angle “α” to horizontal, while outlet end structure 49 includes a bottom portion that may be angled at an angle “β” to horizontal. Angles “α” and “β” may independently range from about 15 to about 90 degrees, or from about 25 to about 75 degrees, or from about 35 to about 55 degrees. These angles may also allow streamlining of the precious metal lining 53, as indicated at 53A, 53B, 53C, and 53D, and therefore the flow of molten glass 45. 29. Embodiment 500 also illustrates that first flow channel roof 36 may slant upward in the flow direction at an angle “γ” to horizontal, and that transition section cover 46 may slant upward in the flow direction at an angle “θ” to horizontal. Angles “γ” and “θ” may be the same or different, and each may independently range from about 5 to about 60 degrees, or from about 15 to about 55 degrees, or from about 35 to about 55 degrees.



FIG. 8 is a plan view of a portion of another system embodiment 600 in accordance with the present disclosure, emphasizing that first flow channel 30 may actually be comprised of one or more flow channels, for example sub-channels 30A, 30B as illustrated. Similarly, transition section 40 may be comprised of one or more transition sub-sections, for example a first widening sub-section 40A, fluidly connected to a sub-section 40B of constant width, which in turn is fluidly connected to a narrowing width sub-section 40C. The various sub-sections 40A, 40B, and 40C may have respective covers 46A, 46B, and 46C. It should be noted that, although not illustrated, the various sub-sections 40A, 40B, and 40C need not have the same depth.



FIGS. 9 and 10 are logic diagrams of two methods in accordance with the present disclosure. Method embodiment 700 comprises melting glass-forming materials to produce a turbulent molten mass of foamed glass in an SCM, the SCM comprising a roof, a floor, a sidewall structure connecting the roof and floor, and an outlet for the molten mass of foamed glass in the floor and/or the sidewall structure (box 702). Method embodiment 700 further comprises routing the molten mass of foamed glass through the SCM outlet to a fining chamber defined by a first flow channel fluidly connected to and downstream of the SCM, the first flow channel comprising at least a floor and a sidewall structure, the first flow channel having glass-contact refractory lining the floor and at least a portion of the flow channel sidewall structure to a height sufficient to accommodate expansion of the molten mass of foamed glass as fining occurs during transit through the fining chamber (box 704). Method embodiment 700 further comprises separating the molten mass of foamed glass into an upper phase consisting essentially of glass foam and a lower phase consisting essentially of molten glass as the molten mass of foamed glass flows toward an end of the first flow channel distal from the SCM (box 706). Method embodiment 700 further comprises routing the molten glass through a passage defined by a transition section fluidly connected to the distal end of the first flow channel, the transition section comprising a floor and a cover, the floor and cover connected by a sidewall structure, and comprising an inlet end structure and an outlet end structure, the inlet end structure comprising at least one molten glass inlet aperture and the outlet end structure comprising at least one molten glass outlet aperture, wherein all of the inlet apertures are positioned lower than a phase boundary between the upper and lower phases in the first flow channel (box 708).


Method embodiment 800 comprises melting glass-forming materials to produce a turbulent molten mass of foamed glass in an SCM, the SCM comprising a roof, a floor, a sidewall structure connecting the roof and floor, and an outlet for the molten mass of foamed glass in the floor and/or sidewall structure (box 802). Method embodiment 800 further comprises routing the molten mass of foamed glass through the SCM outlet to a fining chamber defined by a first flow channel fluidly connected to and downstream of the SCM, the first flow channel comprising at least a floor and a sidewall structure, the first flow channel having glass-contact refractory lining the floor and at least a portion of the first flow channel sidewall structure to a height sufficient to accommodate expansion of the molten mass of foamed glass as fining occurs during transit through the fining chamber (box 804). Method embodiment 800 further comprises separating the molten mass of foamed glass into an upper phase consisting essentially of glass foam and a lower phase consisting essentially of molten glass as the molten mass of foamed glass flows toward an end of the first flow channel distal from the SCM (box 806). Method embodiment 800 further comprises routing the molten glass through a passage defined by a transition section fluidly connected to the distal end of the first flow channel, the transition section comprising a floor and a cover, the floor and cover connected by a sidewall structure, and comprising an inlet end wall and an outlet end wall, the inlet end wall comprising at least one molten glass inlet aperture and the outlet end wall comprising at least one molten glass outlet aperture, wherein 100 percent of the inlet aperture is lower than the floor of the first flow channel (box 808). Method embodiment 800 further comprises routing the phase consisting essentially of molten glass through the outlet aperture of the end wall of the transition section to a temperature homogenizing chamber defined by a second flow channel fluidly connected to the outlet end wall of the transition section, and forming a temperature homogenized molten glass (box 810).


In certain embodiments, as will be understood, the shape of the roof or cover, floor, and sidewall structure of various components described herein, as well as the location of the level or height of molten foamed or unfoamed glass, the amount of entrained bubbles, and amount of bubbles in foam layers, size of first and second flow channels and transition sections may vary widely.


In certain embodiments one or more SC burners may be oxy/fuel burners combusting fuel “F” with an oxygen-enriched oxidant “O”. Turbulence created by SC burners in molten foamed glass 22 is indicated schematically in FIG. 1 by curved flow lines, single-headed arrows, and rolling surface 20. The exits of SC burners 16 may be flush with SCM floor 4, or may protrude slightly into SCM 2. SC burners 16a, 16b may have one or more companion burners spaced transversely therefrom (not shown). SC burners may be placed randomly or non-randomly to protrude through floor 4 and/or sidewall structure 8. SCM 2 may receive numerous feeds through one or more inlet ports, and batch feeders maybe provided. Other feeds are possible, such as glass mat waste, wound roving, waste materials, and the like, such as disclosed in assignee's U.S. Pat. No. 8,650,914. Oxidant, fuels, and other fluids may be supplied from one or more supply tanks or containers which are fluidly and mechanically connected to the SCM or flow channels or transition section via one or more conduits, which may or may not include flow control valves. One or more of the conduits may be flexible metal hoses, but they may also be solid metal, ceramic, or ceramic-lined metal conduits. Any or all of the conduits may include a flow control valve, which may be adjusted to shut off flow through a particular conduit. Those of skill in this art will readily understand the need for, and be able to construct suitable fuel supply conduits and oxidant supply conduits, as well as respective flow control valves, threaded fittings, quick connect/disconnect fittings, hose fittings, and the like.


In systems and methods employing glass batch as feed, such as embodiment 100 of FIGS. 1 and 2, one or more hoppers 12 containing one or more particles or particulate matter 18 may be provided. One or more hoppers may route particles through the SCM roof, through an SCM sidewall, or through both, through various apertures. While it is contemplated that particulate will flow merely by gravity from the hoppers, and the hoppers need not have a pressure above the solids level, certain embodiments may include a pressurized headspace above the solids in the hoppers. In embodiments, the teachings of assignee's co-pending U.S. application Ser. No. 13/540,704, filed Jul. 3, 2012, describing various screw-feeder embodiments, and teaching of feed material compaction may be useful. One or more of the hoppers may include shakers or other apparatus common in industry to dislodge overly compacted solids and keep the particles flowing. Furthermore, each hopper will have a valve other apparatus to stop or adjust flow of particulate matter into the downstream apparatus. These details are not illustrated for sake of brevity.


Certain systems and methods of the present disclosure may be combined with strategies for foam de-stabilization. For example, adding nitrogen as a treating composition to the molten mass of glass and bubbles in the first flow channel 30 may tend to make bubbles in upper glass foam phase 35 less stable when there is the presence of a high moisture atmosphere in the first flow channel. A high moisture atmosphere may exist for example when one or more high momentum burners (whether oxy/fuel or not) are used as impingement burners in the first flow channel to impinge on upper glass foam phase 35. The use of one or more high momentum impingement burners (whether oxy/fuel or not) in a flow channel is described in assignee's U.S. Pat. No. 8,707,739.


The glass delivery channel 60 may include, or lead well-fined molten glass 55 to, one or more glass forming or production systems, for example bushings when producing glass fiber. The flow channels may be rectangular as illustrated in the various figures, or may be a shape such as a generally U-shaped or V-shaped channel or trough of refractory material supported by a metallic superstructure.


The flow rate of the molten glass through the first and second flow channels and transition section there between will depend on many factors, including the geometry and size of the SCM and downstream apparatus, temperature of the melt, viscosity of the melt, and like parameters, but in general the flow rate of molten glass may range from about 0.5 lb./min to about 5000 lbs./min or more (about 0.23 kg/min to about 2300 kg/min or more), or from about 10 lbs./min to about 500 lbs./min (from about 4.5 kg/min to about 227 kg/min), or from about 100 lbs./min to 300 lbs./min (from about 45 kg/min to about 136 kg/min).


Certain embodiments may use low momentum burners for heat and/or foam de-stabilization in flow channels 30 and/or 50, and/or transition section 40. Low momentum burners useful in systems and methods of this disclosure may include some of the features of those disclosed in assignee's U.S. Pat. No. 9,021,838. For low momentum burners using natural gas as fuel, the burners may have a fuel firing rate ranging from about 0.4 to about 40 scfh (from about 11 L/hr. to about 1,120 L/hr.); an oxygen firing rate ranging from about 0.6 to about 100 scfh (from about 17 L/hr. to about 2,840 L/hr.); a combustion ratio ranging from about 1.5 to about 2.5; nozzle velocity ratio (ratio of velocity of fuel to oxygen at the fuel nozzle tip) ranging from about 0.5 to about 2.5; a fuel velocity ranging from about 6 ft./second to about 40 ft./second (about 2 meters/second to about 12 meters/second) and an oxidant velocity ranging from about 6 ft./second to about 40 ft./second (about 2 meters/second to about 12 meters/second).


SCMs may be fed a variety of feed materials. In SCMs processing glass batch, the initial raw material may include any material suitable for forming molten glass such as, for example, limestone, glass, sand, soda ash, feldspar and mixtures thereof. A glass composition for producing glass fibers known as “E-glass” typically includes 52-56% SiO2, 12-16% Al2O3, 0-0.8% Fe2O3, 16-25% CaO, 0-6% MgO, 0-10% B2O3, 0-2% Na2O+K2O, 0- 1.5% TiO2 and 0-1% F2. Other glass compositions may be used, such as those described in assignee's U.S. Publication Nos. 2007/0220922 and 2008/0276652. The initial raw material to provide these glass compositions can be calculated in known manner from the desired concentrations of glass components, molar masses of glass components, chemical formulas of batch components, and the molar masses of the batch components. Typical E-glass batches include those reproduced in Table 1, borrowed from U.S. Publication No. 2007/0220922. Notice that during glass melting, carbon dioxide (from lime) and water (borax) evaporate. The initial raw material can be provided in any form such as, for example, relatively small particles.









TABLE 1







Typical E-glass batches
























Ca





Quartz








Silicate &



Ca

and




Limestone
Quick-
Ca
Volcanic
Volcanic
Quartz-
Quartz-
Limestone
Silicate
Quartz-
Clay
Ca Silicate/


Raw material
(Baseline)
lime
Silicate
Glass
Glass
free #1
free #2
Slag
Slag
free #3
Free
Feldspar





Quartz (flint)
31.3% 
35.9% 
15.2% 
22.6%
8.5%
  0%
0%
22.3%
5.7%
  0%
  0%
19.9% 


Kaolin Clay
28.1% 
32.3% 
32.0% 
23.0%
28.2% 
26.4%
0%
22.7%
26.0% 
26.0%
  0%
  0%


BD Lime
3.4%
4.3%
3.9%
 3.3%
3.8%
 3.7%
4.3%  
 2.8%
3.1%
 3.1%
4.3%
4.4%


Borax
4.7%
5.2%
5.2%
  0%
1.5%
  0%
0%
  0%
  0%
  0%
1.1%
1.1%


Boric Acid
3.2%
3.9%
3.6%
 7.3%
6.9%
 8.2%
8.6%  
 7.3%
8.2%
 8.2%
7.7%
7.8%


Salt Cake
0.2%
0.2%
0.2%
 0.2%
0.2%
 0.2%
0.2%  
 0.2%
0.2%
 0.2%
0.2%
0.2%


Limestone
29.1% 
  0%
  0%
28.7%
  0%
  0%
0%
27.9%
  0%
  0%
  0%
  0%


Quicklime
  0%
18.3% 
  0%
  0%
  0%
  0%
0%
  0%
  0%
  0%
  0%
  0%


Calcium
  0%
  0%
39.9% 
  0%
39.1% 
39.0%
27.6%  
  0%
37.9% 
37.9%
26.5% 
26.6% 


Silicate


Volcanic
  0%
  0%
  0%
14.9%
11.8% 
17.0%
4.2%  
14.7%
16.8% 
16.8%
  0%
  0%


Glass


Diatomaceous





 5.5%
17.4%  
  0%
  0%
 5.7%
20.0% 
  0%


Earth (DE)


Plagioclase





  0%
38.3%  
  0%
  0%
  0%
40.1% 
40.1% 


Feldspar


Slag





  0%
0%
 2.0%
2.0%
 2.0%
  0%
  0%


Total
100% 
100% 
100% 
 100%
100% 
 100%
100% 
 100%
100% 
 100%
100% 
100% 


Volume of
1668
0
0
1647
0
0
0
1624
0
0
0
0


CO2@ 1400 C.










SCMs may also be fed by one or more roll stands, which in turn supports one or more rolls of glass mat, as described in assignee's U.S. Pat. No. 8,650,914 incorporated herein by reference. In certain embodiments powered nip rolls may include cutting knives or other cutting components to cut or chop the mat (or roving, in those embodiments processing roving) into smaller length pieces prior to entering the SCM. Also provided in certain embodiments may be a glass batch feeder. Glass batch feeders are well-known in this art and require no further explanation.


Flow channels, transition sections and SCMs may include refractory fluid-cooled panels. Liquid-cooled panels may be used, having one or more conduits or tubing therein, supplied with liquid through one conduit, with another conduit discharging warmed liquid, routing heat transferred from inside the melter to the liquid away from the melter. Liquid-cooled panels may also include a thin refractory liner, which minimizes heat losses from the melter, but allows formation of a thin frozen glass shell to form on the surfaces and prevent any refractory wear and associated glass contamination. Other useful cooled panels include air-cooled panels, comprising a conduit that has a first, small diameter section, and a large diameter section. Warmed air transverses the conduits such that the conduit having the larger diameter accommodates expansion of the air as it is warmed. Air-cooled panels are described more fully in U.S. Pat. No. 6,244,197. In certain embodiments, the refractory fluid cooled-panels may be cooled by a heat transfer fluid selected from the group consisting of gaseous, liquid, or combinations of gaseous and liquid compositions that functions or is capable of being modified to function as a heat transfer fluid. Gaseous heat transfer fluids may be selected from air, including ambient air and treated air (for air treated to remove moisture), inert inorganic gases, such as nitrogen, argon, and helium, inert organic gases such as fluoro-, chloro- and chlorofluorocarbons, including perfluorinated versions, such as tetrafluoromethane, and hexafluoroethane, and tetrafluoroethylene, and the like, and mixtures of inert gases with small portions of non-inert gases, such as hydrogen. Heat transfer liquids may be selected from inert liquids that may be organic, inorganic, or some combination thereof, for example, salt solutions, glycol solutions, oils and the like. Other possible heat transfer fluids include steam (if cooler than the item to be cooled), carbon dioxide, or mixtures thereof with nitrogen. Heat transfer fluids may be compositions comprising both gas and liquid phases, such as the higher chlorofluorocarbons.


Certain embodiments may comprise a method control scheme for one or more flow channels, transition section, and/or SCM. For example, as explained in the '970 application, a master method controller may be configured to provide any number of control logics, including feedback control, feed-forward control, cascade control, and the like. The disclosure is not limited to a single master method controller, as any combination of controllers could be used. The term “control”, used as a transitive verb, means to verify or regulate by comparing with a standard or desired value. Control may be closed loop, feedback, feed-forward, cascade, model predictive, adaptive, heuristic and combinations thereof. The term “controller” means a device at least capable of accepting input from sensors and meters in real time or near-real time, and sending commands directly to one or more control elements, and/or to local devices associated with control elements able to accept commands. A controller may also be capable of accepting input from human operators; accessing databases, such as relational databases; sending data to and accessing data in databases, data warehouses or data marts; and sending information to and accepting input from a display device readable by a human. A controller may also interface with or have integrated therewith one or more software application modules, and may supervise interaction between databases and one or more software application modules. The controller may utilize Model Predictive Control (MPC) or other advanced multivariable control methods used in multiple input/multiple output (MIMO) systems. As mentioned previously, the methods of assignee's U.S. Pat. No. 8,973,400, using the vibrations and oscillations of the SCM itself, may prove useful predictive control inputs.


Glass-contact refractory lining for the first flow channel (and other equipment if desired) may be 3 inches, 4 inches, 5 inches or more (8 cm, 10 cm, or 13 cm or more) in thickness, however, greater thickness may entail more expense without resultant greater benefit. The refractory lining may be one or more layers. Glass-contact refractory used in flow channels described herein may be fused cast materials based on AZS (alumina-zirconia-silica), α/β alumina, zirconium oxide, chromium oxide, chrome corundum, so-called “dense chrome”, and the like. One “dense chrome” material is available from Saint Gobain under the trade name SEFPRO, such as C1215 and C1221. Other useable “dense chrome” materials are available from the North American Refractories Co., Cleveland, Ohio (U.S.A.) under the trade designations SERV 50 and SERV 95. Other suitable materials for components that require resistance to high temperatures are fused zirconia (ZrO2), fused cast AZS (alumina-zirconia-silica), rebonded AZS, or fused cast alumina (Al2O3). The choice of a particular material is dictated among other parameters by the geometry of the flow channel or other equipment and the type of glass being produced.


To ascertain the local and bulk distribution (size and/or location) of bubbles within the molten glass, and therefore the local and bulk glass density and/or glass foam density, methods and systems as described in assignee's U.S. Pat. No. 9,115,017 may be employed, comprising an electromagnetic (EM) sensor comprising one or more EM sources and one or more EM detectors. When the terms “EM sensor” and “sensor” are used, they will be understood to mean a device having at least one EM source and at least one EM detector. In certain embodiments the EM source may be referred to as a nuclear source. The electromagnetism may be referred to as radiation, and may be in wave, particle and wave/particle formats. The EM source or sources and EM detector or detectors may provide feedback on the density gradient of the molten glass in a vessel. Based on the path the EM wave must travel, the glass density gradient within the path, the amount of radiation detected by the EM detector is a function of both the glass level as well as the range of densities of the molten foamed glass in the path of the radiation. If both the EM source and the EM detector are stationary, then measuring the glass level can provide an indication regarding how much of a change in detection could be due to a change in effective glass level, and how much is due to a change in glass density. Cobalt-60 and caesium-137 are the most suitable gamma radiation sources for radiation processing because of the relatively high energy of their gamma rays and fairly long half-life (5.27 years for cobalt-60 and 30.1 years for caesium-137). If used, the EM source may be sized appropriately depending upon the expected attenuation between the EM source and the EM detector due to distance, vessel wall thickness, vessel wall density, width of the molten foamed glass pool or stream being analyzed, molten foamed glass density, and EM detector size being utilized. Provided this information, a vendor supplying the EM source and EM detector should be able to size the EM source appropriately without undue experimentation.


Those having ordinary skill in this art will appreciate that there are many possible variations of the systems and methods described herein, and will be able to devise alternatives and improvements to those described herein that are nevertheless considered to be within the claims.

Claims
  • 1. A method comprising: melting glass-forming materials to produce a turbulent molten mass of foamed glass in a submerged combustion melter (SCM), the SCM comprising a roof, a floor, a sidewall structure connecting the roof and floor, and an outlet for the molten mass of foamed glass in the floor and/or the sidewall structure;routing the molten mass of foamed glass through the SCM outlet to a fining chamber defined by a first flow channel fluidly connected to and downstream of the SCM, the first flow channel comprising at least a floor, a sidewall structure, and a roof that slants upward in the flow direction at an angle “γ” to horizontal, the first flow channel having glass-contact refractory lining the floor and at least a portion of the flow channel sidewall structure to a height sufficient to accommodate expansion of the molten mass of foamed glass as fining occurs during transit through the fining chamber;separating the molten mass of foamed glass into an upper phase consisting essentially of glass foam and a lower phase consisting essentially of molten glass as the molten mass of foamed glass flows toward an end of the first flow channel distal from the SCM; androuting the lower phase consisting essentially of molten glass through a passage defined by a transition section fluidly connected to the distal end of the first flow channel, the transition section comprising a floor and a cover, the floor and cover connected by a sidewall structure, and comprising an inlet end structure and an outlet end structure, the inlet end structure comprising at least one molten glass inlet aperture and the outlet end structure comprising at least one molten glass outlet aperture, wherein all of the inlet apertures are positioned lower than a phase boundary between the upper and lower phases in the first flow channel.
  • 2. The method of claim 1 comprising routing the phase consisting essentially of molten glass through the at least one outlet aperture of the outlet end structure of the transition section to a temperature homogenizing chamber defined by a second flow channel fluidly connected to the outlet end structure of the transition section, and forming a temperature homogenized molten glass.
  • 3. The method of claim 2 comprising feeding at least a portion of the temperature homogenized molten glass to one or more glass forming stations.
  • 4. The method of claim 3 comprising wherein the glass forming stations are selected from the group consisting of fiber forming spinnerets, fiberization stations, and non-glass fiber product forming stations.
  • 5. The method of claim 1 wherein the step of routing the lower phase consisting essentially of molten glass through the transition section comprises flowing the lower phase consisting essentially of molten glass through the at least one inlet aperture, wherein 100 percent of the inlet aperture is lower than the floor of the first flow channel.
  • 6. The method of claim 1 comprising heating the lower phase consisting essentially of molten glass in the transition section to maintain the lower phase consisting essentially of molten glass in the molten state.
  • 7. The method of claim 1 comprising cooling the lower phase consisting essentially of molten glass as it passes through the transition section to a temperature just above a desired glass product forming temperature.
  • 8. A method comprising: melting glass-forming materials to produce a turbulent molten mass of foamed glass in a submerged combustion melter (SCM), the SCM comprising a roof, a floor, a sidewall structure connecting the roof and floor, and an outlet for the molten mass of foamed glass in the floor and/or sidewall structure;routing the molten mass of foamed glass through the SCM outlet to a fining chamber defined by a first flow channel fluidly connected to and downstream of the SCM, the first flow channel comprising at least a floor, a sidewall structure, and a roof that slants upward in the flow direction at an angle “γ” to horizontal, the first flow channel having glass-contact refractory lining the floor and at least a portion of the first flow channel sidewall structure to a height sufficient to accommodate expansion of the molten mass of foamed glass as fining occurs during transit through the fining chamber;separating the molten mass of foamed glass into an upper phase consisting essentially of glass foam and a lower phase consisting essentially of molten glass as the molten mass of foamed glass flows toward an end of the first flow channel distal from the SCM;routing the lower phase consisting essentially of molten glass through a passage defined by a transition section fluidly connected to the distal end of the first flow channel, the transition section comprising a floor and a cover, the floor and cover connected by a sidewall structure, and comprising an inlet end wall and an outlet end wall, the inlet end wall comprising at least one molten glass inlet aperture and the outlet end wall comprising at least one molten glass outlet aperture, wherein 100 percent of the inlet aperture is lower than the floor of the first flow channel; androuting the phase consisting essentially of molten glass through the outlet aperture of the end wall of the transition section to a temperature homogenizing chamber defined by a second flow channel fluidly connected to the outlet end wall of the transition section, the second flow channel comprising a geometry sufficient to form a temperature homogenized, well-fined molten glass.
  • 9. The method of claim 8 comprising adjusting temperature of the lower phase consisting essentially of molten glass as it passes through the passage.
  • 10. The method of claim 9 comprising feeding at least a portion of the temperature homogenized, well-fined molten glass to one or more glass forming stations.
  • 11. The method of claim 10 comprising wherein the glass forming stations are selected from the group consisting of fiber forming spinnerets, fiberization stations, and non-glass fiber product forming stations.
  • 12. The method of claim 8 comprising heating the lower phase consisting essentially of molten glass in the transition section to maintain the lower phase consisting essentially of molten glass in the molten state.
  • 13. The method of claim 8 comprising cooling the lower phase consisting essentially of molten glass as it passes through the transition section to a temperature just above a desired glass product forming temperature.
  • 14. A method comprising: melting glass-forming materials to produce a turbulent molten mass of foamed glass in a submerged combustion melter (SCM), the SCM comprising a roof, a floor, a sidewall structure connecting the roof and floor, and an outlet for the molten mass of foamed glass in the floor and/or the sidewall structure;routing the molten mass of foamed glass through the SCM outlet to a fining chamber defined by a first flow channel fluidly connected to and downstream of the SCM, the first flow channel comprising at least a floor, a sidewall structure, the first flow channel having glass-contact refractory lining the floor and at least a portion of the flow channel sidewall structure to a height sufficient to accommodate expansion of the molten mass of foamed glass as fining occurs during transit through the fining chamber;separating the molten mass of foamed glass into an upper phase consisting essentially of glass foam and a lower phase consisting essentially of molten glass as the molten mass of foamed glass flows toward an end of the first flow channel distal from the SCM;routing the lower phase consisting essentially of molten glass through a passage defined by a transition section fluidly connected to the distal end of the first flow channel, the transition section comprising a floor and a cover, the floor and cover connected by a sidewall structure, and comprising an inlet end structure and an outlet end structure, the inlet end structure comprising at least one molten glass inlet aperture and the outlet end structure comprising at least one molten glass outlet aperture, wherein all of the inlet apertures are positioned lower than a phase boundary between the upper and lower phases in the first flow channel;routing the phase consisting essentially of molten glass through the at least one outlet aperture of the outlet end structure of the transition section to a temperature homogenizing chamber defined by a second flow channel fluidly connected to the outlet end structure of the transition section, and forming a temperature homogenized molten glass; andallowing the lower phase consisting essentially of molten glass to well up through the outlet end structure at an angle wherein the transition section cover slants upward in the flow direction at an angle “θ” to horizontal into an inlet end of the second flow channel, and the temperature homogenized molten glass is formed while flowing the molten glass from the inlet end of the second flow channel to an outlet end of the second flow channel, where the outlet end of the second flow channel is distal from the transition section.
  • 15. A method comprising: melting glass-forming materials to produce a turbulent molten mass of foamed glass in a submerged combustion melter (SCM), the SCM comprising a roof, a floor, a sidewall structure connecting the roof and floor, and an outlet for the molten mass of foamed glass in the floor and/or the sidewall structure;routing the molten mass of foamed glass through the SCM outlet to a fining chamber defined by a first flow channel fluidly connected to and downstream of the SCM, the first flow channel comprising at least a floor and a sidewall structure, the first flow channel having glass-contact refractory lining the floor and at least a portion of the flow channel sidewall structure to a height sufficient to accommodate expansion of the molten mass of foamed glass as fining occurs during transit through the fining chamber;separating the molten mass of foamed glass into an upper phase consisting essentially of glass foam and a lower phase consisting essentially of molten glass as the molten mass of foamed glass flows toward an end of the first flow channel distal from the SCM;routing the lower phase consisting essentially of molten glass through a passage defined by a transition section fluidly connected to the distal end of the first flow channel, the transition section comprising a floor and a cover, the floor and cover connected by a sidewall structure, and comprising an inlet end structure and an outlet end structure, the inlet end structure comprising at least one molten glass inlet aperture and the outlet end structure comprising at least one molten glass outlet aperture, wherein all of the inlet apertures are positioned lower than a phase boundary between the upper and lower phases in the first flow channel; andcontrollably flowing at least some of the phase consisting essentially of molten glass by gravity through at least one aperture in the floor of the transition section upon a planned or unplanned condition.
  • 16. A method comprising: melting glass-forming materials to produce a turbulent molten mass of foamed glass in a submerged combustion melter (SCM), the SCM comprising a roof, a floor, a sidewall structure connecting the roof and floor, and an outlet for the molten mass of foamed glass in the floor and/or sidewall structure;routing the molten mass of foamed glass through the SCM outlet to a fining chamber defined by a first flow channel fluidly connected to and downstream of the SCM, the first flow channel comprising at least a floor and a sidewall structure, the first flow channel having glass-contact refractory lining the floor and at least a portion of the first flow channel sidewall structure to a height sufficient to accommodate expansion of the molten mass of foamed glass as fining occurs during transit through the fining chamber;separating the molten mass of foamed glass into an upper phase consisting essentially of glass foam and a lower phase consisting essentially of molten glass as the molten mass of foamed glass flows toward an end of the first flow channel distal from the SCM;routing the lower phase consisting essentially of molten glass through a passage defined by a transition section fluidly connected to the distal end of the first flow channel, the transition section comprising a floor and a cover, the floor and cover connected by a sidewall structure, and comprising an inlet end wall and an outlet end wall, the inlet end wall comprising at least one molten glass inlet aperture and the outlet end wall comprising at least one molten glass outlet aperture, wherein 100 percent of the inlet aperture is lower than the floor of the first flow channel;routing the phase consisting essentially of molten glass through the outlet aperture of the end wall of the transition section to a temperature homogenizing chamber defined by a second flow channel fluidly connected to the outlet end wall of the transition section, the second flow channel comprising a geometry sufficient to form a temperature homogenized, well-fined molten glass; andallowing the lower phase consisting essentially of molten glass to well up through the outlet end structure at an angle wherein the transition section cover slants upward in the flow direction at an angle “θ” to horizontal into an inlet end of the second flow channel, and the temperature homogenized molten glass is formed while flowing the molten glass from the inlet end of the second flow channel to an outlet end of the second flow channel, where the outlet end of the second flow channel is distal from the transition section.
  • 17. A method comprising: melting glass-forming materials to produce a turbulent molten mass of foamed glass in a submerged combustion melter (SCM), the SCM comprising a roof, a floor, a sidewall structure connecting the roof and floor, and an outlet for the molten mass of foamed glass in the floor and/or sidewall structure;routing the molten mass of foamed glass through the SCM outlet to a fining chamber defined by a first flow channel fluidly connected to and downstream of the SCM, the first flow channel comprising at least a floor and a sidewall structure, the first flow channel having glass-contact refractory lining the floor and at least a portion of the first flow channel sidewall structure to a height sufficient to accommodate expansion of the molten mass of foamed glass as fining occurs during transit through the fining chamber;separating the molten mass of foamed glass into an upper phase consisting essentially of glass foam and a lower phase consisting essentially of molten glass as the molten mass of foamed glass flows toward an end of the first flow channel distal from the SCM;routing the lower phase consisting essentially of molten glass through a passage defined by a transition section fluidly connected to the distal end of the first flow channel, the transition section comprising a floor and a cover, the floor and cover connected by a sidewall structure, and comprising an inlet end wall and an outlet end wall, the inlet end wall comprising at least one molten glass inlet aperture and the outlet end wall comprising at least one molten glass outlet aperture, wherein 100 percent of the inlet aperture is lower than the floor of the first flow channel;routing the phase consisting essentially of molten glass through the outlet aperture of the end wall of the transition section to a temperature homogenizing chamber defined by a second flow channel fluidly connected to the outlet end wall of the transition section, the second flow channel comprising a geometry sufficient to form a temperature homogenized, well-fined molten glass; andcontrollably flowing at least some of the phase consisting essentially of molten glass by gravity through at least one aperture in the floor of the transition section upon a planned or unplanned condition.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a division of U.S. Ser. No. 13/689,318 filed Nov. 29, 2012, (now U.S. Pat. No. 9,227,865) the entire disclosure of which is hereby incorporated by reference herein.

US Referenced Citations (433)
Number Name Date Kind
1579353 Good Apr 1926 A
1636151 Schofield Jul 1927 A
1679295 Dodge Jul 1928 A
1706857 Mathe Mar 1929 A
1716433 Ellis Jun 1929 A
1875474 McKinley Sep 1932 A
1883023 Slick Oct 1932 A
1937321 Howard Nov 1933 A
1944855 Wadman Jan 1934 A
1989103 McKelvey et al. Jan 1935 A
2042560 Stewart Jun 1936 A
2064546 Kutchka Dec 1936 A
2174533 See et al. Oct 1939 A
2118479 McCaskey Jan 1940 A
2269459 Kleist Jan 1942 A
2432942 See et al. Dec 1947 A
2455907 Slayter Jan 1948 A
2658094 Nonken Nov 1953 A
2677003 Arbeit et al. Apr 1954 A
2679749 Poole Jun 1954 A
2691689 Arbeit et al. Oct 1954 A
2718096 Henry et al. Sep 1955 A
2773545 Petersen Dec 1956 A
2781756 Kobe Feb 1957 A
2867972 Holderreed et al. Jan 1959 A
2878644 Fenn Mar 1959 A
2890166 Heinze Jun 1959 A
2902029 Hill Sep 1959 A
2981250 Stewart Apr 1961 A
3020165 Davis Feb 1962 A
3056283 Tiede Oct 1962 A
3073683 Switzer et al. Jan 1963 A
3084392 Labino Apr 1963 A
3088812 Bitterlich et al. May 1963 A
3104947 Switzer et al. Sep 1963 A
3129087 Hagy Apr 1964 A
3160578 Saxton et al. Dec 1964 A
3165452 Williams Jan 1965 A
3170781 Keefer Feb 1965 A
3174820 See et al. Mar 1965 A
3215189 Bauer Nov 1965 A
3224855 Plumat Dec 1965 A
3226220 Plumat Dec 1965 A
3237929 Plumat et al. Mar 1966 A
3239325 Roberson et al. Mar 1966 A
3241548 See et al. Mar 1966 A
3245769 Eck et al. Apr 1966 A
3248205 Dolf et al. Apr 1966 A
3248206 Apple et al. Apr 1966 A
3260587 Dolf et al. Jul 1966 A
3268313 Burgman et al. Aug 1966 A
3285834 Guerrieri et al. Nov 1966 A
3294512 Penberthy Dec 1966 A
3325298 Brown Jun 1967 A
3375095 Poole Mar 1968 A
3380463 Trethewey Apr 1968 A
3385686 Plumat et al. May 1968 A
3402025 Garrett et al. Sep 1968 A
3407805 Bougard Oct 1968 A
3407862 Mustian, Jr. Oct 1968 A
3420510 Griem Jan 1969 A
3421873 Burgman et al. Jan 1969 A
3421876 Schmidt Jan 1969 A
3432399 Schutt Mar 1969 A
3442633 Perry May 1969 A
3445214 Oremesher May 1969 A
3498779 Hathaway Mar 1970 A
3510393 Burgman et al. May 1970 A
3519412 Olink Jul 1970 A
3525674 Barnebey Aug 1970 A
3533770 Adler et al. Oct 1970 A
3547611 Williams Dec 1970 A
3563683 Hess Feb 1971 A
3573016 Rees Mar 1971 A
3592151 Webber Jul 1971 A
3592623 Shepherd Jul 1971 A
3600149 Chen et al. Aug 1971 A
3606825 Johnson Sep 1971 A
3617234 Hawkins et al. Nov 1971 A
3627504 Johnson et al. Dec 1971 A
3632335 Worner Jan 1972 A
3692017 Glachant et al. Sep 1972 A
3717139 Guillet et al. Feb 1973 A
3738792 Feng Jun 1973 A
3741656 Shapiro Jun 1973 A
3741742 Jennings Jun 1973 A
3746527 Knavish et al. Jul 1973 A
3747588 Malmin Jul 1973 A
3754879 Phaneuf Aug 1973 A
3756800 Phaneuf Sep 1973 A
3763915 Perry et al. Oct 1973 A
3764287 Brocious Oct 1973 A
3771988 Starr Nov 1973 A
3788832 Nesbitt Jan 1974 A
3818893 Kataoka et al. Jun 1974 A
3835909 Douglas et al. Sep 1974 A
3840002 Douglas et al. Oct 1974 A
3856496 Nesbitt et al. Dec 1974 A
3885945 Rees et al. May 1975 A
3907585 Francel et al. Sep 1975 A
3913560 Lazarre et al. Oct 1975 A
3929445 Zippe Dec 1975 A
3936290 Cerutti et al. Feb 1976 A
3951635 Rough Apr 1976 A
3976464 Wardlaw Aug 1976 A
4001001 Knavish et al. Jan 1977 A
4004903 Daman et al. Jan 1977 A
4028083 Patznick et al. Jun 1977 A
4083711 Jensen Apr 1978 A
4101304 Marchand Jul 1978 A
4110098 Mattmuller Aug 1978 A
4153438 Stream May 1979 A
4185982 Schwenninger Jan 1980 A
4203761 Rose May 1980 A
4205966 Horikawa Jun 1980 A
4208201 Rueck Jun 1980 A
4226564 Takahashi et al. Oct 1980 A
4238226 Sanzenbacher et al. Dec 1980 A
4249927 Fakuzaki et al. Feb 1981 A
4270740 Sanzenbacher et al. Jun 1981 A
4282023 Hammel et al. Aug 1981 A
4303435 Sleighter Dec 1981 A
4309204 Brooks Jan 1982 A
4316734 Spinosa et al. Feb 1982 A
4323718 Buhring et al. Apr 1982 A
4349376 Dunn et al. Sep 1982 A
4360373 Pecoraro Nov 1982 A
4397692 Ramge et al. Aug 1983 A
4398925 Trinh et al. Aug 1983 A
4405351 Sheinkop Sep 1983 A
4406683 Demarest Sep 1983 A
4413882 Bailey et al. Nov 1983 A
4424071 Steitz et al. Jan 1984 A
4432780 Propster et al. Feb 1984 A
4455762 Saeman Jun 1984 A
4461576 King Jul 1984 A
4488537 Laurent Dec 1984 A
4508970 Ackerman Apr 1985 A
4539034 Hanneken Sep 1985 A
4542106 Sproull Sep 1985 A
4545800 Won et al. Oct 1985 A
4549896 Streicher et al. Oct 1985 A
4599100 Demarest Jul 1986 A
4622007 Gitman Nov 1986 A
4626199 Bounini Dec 1986 A
4632687 Kunkle et al. Dec 1986 A
4634461 Demarest, Jr. et al. Jan 1987 A
4657586 Masterson et al. Apr 1987 A
4718931 Boettner Jan 1988 A
4723708 Berger et al. Feb 1988 A
4735642 Jensen et al. Apr 1988 A
4738938 Kunkle et al. Apr 1988 A
4758259 Jensen Jul 1988 A
4794860 Welton Jan 1989 A
4798616 Knavish et al. Jan 1989 A
4812372 Kithany Mar 1989 A
4814387 Donat Mar 1989 A
4816056 Tsai et al. Mar 1989 A
4818265 Krumwiede et al. Apr 1989 A
4877436 Sheinkop Oct 1989 A
4877449 Khinkis Oct 1989 A
4878829 Anderson Nov 1989 A
4882736 Pieper Nov 1989 A
4886539 Gerutti et al. Dec 1989 A
4900337 Zortea et al. Feb 1990 A
4919700 Pecoraro et al. Apr 1990 A
4927886 Backderf et al. May 1990 A
4932035 Pieper Jun 1990 A
4953376 Merlone Sep 1990 A
4963731 King Oct 1990 A
4969942 Schwenninger et al. Nov 1990 A
4973346 Kobayashi et al. Nov 1990 A
5011086 Sonnleitner Apr 1991 A
5032230 Shepherd Jul 1991 A
5052874 Johanson Oct 1991 A
5062789 Gitman Nov 1991 A
5097802 Clawson Mar 1992 A
5168109 Backderf et al. Dec 1992 A
5169424 Grinnen et al. Dec 1992 A
5194747 Culpepper et al. Mar 1993 A
5199866 Joshi et al. Apr 1993 A
5204082 Schendel Apr 1993 A
5299929 Yap Apr 1994 A
5360171 Yap Nov 1994 A
5374595 Dumbaugh et al. Dec 1994 A
5405082 Brown et al. Apr 1995 A
5412882 Zippe et al. May 1995 A
5449286 Snyder et al. Sep 1995 A
5473885 Hunter, Jr. et al. Dec 1995 A
5483548 Coble Jan 1996 A
5490775 Joshi et al. Feb 1996 A
5522721 Drogue et al. Jun 1996 A
5545031 Joshi et al. Aug 1996 A
5575637 Slavejkov et al. Nov 1996 A
5586999 Kobayashi Dec 1996 A
5595703 Swaelens et al. Jan 1997 A
5606965 Panz et al. Mar 1997 A
5613994 Muniz et al. Mar 1997 A
5615668 Panz et al. Apr 1997 A
5636623 Panz et al. Jun 1997 A
5672827 Jursich Sep 1997 A
5713668 Lunghofer et al. Feb 1998 A
5718741 Hull et al. Feb 1998 A
5724901 Guy et al. Mar 1998 A
5736476 Warzke et al. Apr 1998 A
5743723 Iatrides et al. Apr 1998 A
5765964 Calcote et al. Jun 1998 A
5814121 Travis Sep 1998 A
5829962 Drasek et al. Nov 1998 A
5833447 Bodelin et al. Nov 1998 A
5849058 Takeshita et al. Dec 1998 A
5863195 Feldermann Jan 1999 A
5887978 Lunghofer et al. Mar 1999 A
5944507 Feldermann Aug 1999 A
5944864 Hull et al. Aug 1999 A
5954498 Joshi et al. Sep 1999 A
5975886 Phillippe Nov 1999 A
5979191 Jian Nov 1999 A
5984667 Phillippe et al. Nov 1999 A
5993203 Koppang Nov 1999 A
6029910 Joshi et al. Feb 2000 A
6036480 Hughes et al. Mar 2000 A
6039787 Edlinger Mar 2000 A
6044667 Chenoweth Apr 2000 A
6045353 VonDrasek et al. Apr 2000 A
6068468 Phillippe et al. May 2000 A
6071116 Phillippe et al. Jun 2000 A
6074197 Phillippe Jun 2000 A
6077072 Marin et al. Jun 2000 A
6085551 Pieper et al. Jul 2000 A
6109062 Richards Aug 2000 A
6113389 Joshi et al. Sep 2000 A
6116896 Joshi et al. Sep 2000 A
6120889 Turner et al. Sep 2000 A
6123542 Joshi et al. Sep 2000 A
6126438 Joshi et al. Oct 2000 A
6154481 Sorg et al. Nov 2000 A
6156285 Adams et al. Dec 2000 A
6171100 Joshi et al. Jan 2001 B1
6178777 Chenoweth Jan 2001 B1
6183848 Turner et al. Feb 2001 B1
6210151 Joshi et al. Apr 2001 B1
6210703 Novich Apr 2001 B1
6237369 LeBlanc et al. May 2001 B1
6241514 Joshi et al. Jun 2001 B1
6244197 Coble Jun 2001 B1
6244857 VonDrasek et al. Jun 2001 B1
6247315 Marin et al. Jun 2001 B1
6250136 Igreja Jun 2001 B1
6250916 Phillippe et al. Jun 2001 B1
6274164 Novich Aug 2001 B1
6276924 Joshi et al. Aug 2001 B1
6276928 Joshi et al. Aug 2001 B1
6293277 Panz et al. Sep 2001 B1
6314760 Chenoweth Nov 2001 B1
6314896 Marin et al. Nov 2001 B1
6332339 Kawaguchi et al. Dec 2001 B1
6338337 Panz et al. Jan 2002 B1
6339610 Hoyer et al. Jan 2002 B1
6344747 Lunghofer et al. Feb 2002 B1
6357264 Richards Mar 2002 B1
6386271 Kawamoto et al. May 2002 B1
6418755 Chenoweth Jul 2002 B2
6422041 Simpson et al. Jul 2002 B1
6454562 Joshi et al. Sep 2002 B1
6460376 Jeanvoine et al. Oct 2002 B1
6536238 Kawaguchi et al. Mar 2003 B2
6536651 Ezumi et al. Mar 2003 B2
6558606 Kulkarni et al. May 2003 B1
6578779 Dion Jun 2003 B2
6660106 Babel et al. Dec 2003 B1
6694791 Johnson et al. Feb 2004 B1
6701617 Li et al. Mar 2004 B2
6701751 Arechaga et al. Mar 2004 B2
6705118 Simpson et al. Mar 2004 B2
6708527 Ibarlucea et al. Mar 2004 B1
6711942 Getman et al. Mar 2004 B2
6715319 Barrow et al. Apr 2004 B2
6722161 LeBlanc Apr 2004 B2
6736129 Sjith May 2004 B1
6739152 Jeanvoine et al. May 2004 B2
6796147 Borysowicz et al. Sep 2004 B2
6797351 Kulkarni et al. Sep 2004 B2
6854290 Hayes et al. Feb 2005 B2
6857999 Jeanvoine Feb 2005 B2
6883349 Jeanvoine Apr 2005 B1
6918256 Gutmark et al. Jul 2005 B2
7027467 Baev et al. Apr 2006 B2
7116888 Aitken et al. Oct 2006 B1
7134300 Hayes et al. Nov 2006 B2
7168395 Engdahl Jan 2007 B2
7175423 Pisano et al. Feb 2007 B1
7231788 Karetta et al. Jun 2007 B2
7273583 Rue et al. Sep 2007 B2
7330634 Aitken et al. Feb 2008 B2
7383698 Ichinose et al. Jun 2008 B2
7392668 Adams et al. Jul 2008 B2
7428827 Maugendre et al. Sep 2008 B2
7441686 Odajima et al. Oct 2008 B2
7448231 Jeanvoine et al. Nov 2008 B2
7454925 DeAngelis et al. Nov 2008 B2
7509819 Baker et al. Mar 2009 B2
7565819 Jeanvoine et al. Jul 2009 B2
7578988 Jacques et al. Aug 2009 B2
7581948 Borders et al. Sep 2009 B2
7622677 Barberree et al. Nov 2009 B2
7624595 Jeanvoine et al. Dec 2009 B2
7748592 Koga et al. Jul 2010 B2
7767606 McGinnis et al. Aug 2010 B2
7778290 Sacks et al. Aug 2010 B2
7781562 Crawford et al. Aug 2010 B2
7802452 Borders et al. Sep 2010 B2
7832365 Hannum et al. Nov 2010 B2
7845314 Smith Dec 2010 B2
7855267 Crawford et al. Dec 2010 B2
7946136 Watkinson May 2011 B2
8033254 Hannum et al. Oct 2011 B2
8279899 Kitabayashi Oct 2012 B2
8285411 Hull et al. Oct 2012 B2
8402787 Pernode et al. Mar 2013 B2
8424342 Kiefer et al. Apr 2013 B2
8487262 Damm et al. Jul 2013 B2
8650914 Charbonneau Feb 2014 B2
8707739 Huber et al. Apr 2014 B2
8707740 Huber et al. Apr 2014 B2
8769992 Huber Jul 2014 B2
8875544 Charbonneau Nov 2014 B2
8973400 Charbonneau et al. Mar 2015 B2
8973405 Charbonneau et al. Mar 2015 B2
8991215 Shock et al. Mar 2015 B2
8997525 Shock et al. Apr 2015 B2
9021838 Charbonneau et al. May 2015 B2
9032760 Charbonneau et al. May 2015 B2
9096452 Charbonneau et al. Aug 2015 B2
9096453 Charbonneau Aug 2015 B2
20010039813 Simpson et al. Nov 2001 A1
20020086077 Noller et al. Jul 2002 A1
20020124598 Borysowicz et al. Sep 2002 A1
20020134112 Barrow et al. Sep 2002 A1
20020152770 Becher et al. Oct 2002 A1
20020162358 Jeanvoine et al. Nov 2002 A1
20020166343 LeBlanc Nov 2002 A1
20030000250 Arechaga et al. Jan 2003 A1
20030015000 Hayes et al. Jan 2003 A1
20030029197 Jeanvoine et al. Feb 2003 A1
20030037571 Kobayashi et al. Feb 2003 A1
20040025569 Damm et al. Feb 2004 A1
20040099009 Linz et al. May 2004 A1
20040128098 Neuhaus et al. Jul 2004 A1
20040131988 Baker et al. Jul 2004 A1
20040168474 Jeanvoine et al. Sep 2004 A1
20040224833 Jeanvoine et al. Nov 2004 A1
20050039491 Maugendre et al. Feb 2005 A1
20050061030 Ichinose et al. Mar 2005 A1
20050083989 Leister et al. Apr 2005 A1
20050103323 Engdal May 2005 A1
20050236747 Rue et al. Oct 2005 A1
20060000239 Jeanvoine et al. Jan 2006 A1
20060101859 Tagaki et al. May 2006 A1
20060122450 Kim et al. Jun 2006 A1
20060144089 Eichholz et al. Jul 2006 A1
20060162387 Schmitt et al. Jul 2006 A1
20060174655 Kobayashi et al. Aug 2006 A1
20060177785 Varagani et al. Aug 2006 A1
20060233512 Aitken et al. Oct 2006 A1
20060257097 Aitken et al. Nov 2006 A1
20060287482 Crawford et al. Dec 2006 A1
20060293494 Crawford et al. Dec 2006 A1
20060293495 Crawford et al. Dec 2006 A1
20070051136 Watkinson Mar 2007 A1
20070106054 Crawford et al. May 2007 A1
20070122332 Jacques et al. May 2007 A1
20070130994 Boratav et al. Jun 2007 A1
20070137259 Borders et al. Jun 2007 A1
20070212546 Jeanvoine et al. Sep 2007 A1
20070220922 Bauer et al. Sep 2007 A1
20070266737 Rodek et al. Nov 2007 A1
20070278404 Spanke et al. Dec 2007 A1
20080035078 Li Feb 2008 A1
20080227615 McGinnis et al. Sep 2008 A1
20080256981 Jacques et al. Oct 2008 A1
20080276652 Bauer et al. Nov 2008 A1
20080293857 Crawford et al. Nov 2008 A1
20080302136 Bauer et al. Dec 2008 A1
20090042709 Jeanvoine et al. Feb 2009 A1
20090044568 Lewis Feb 2009 A1
20090120133 Fraley et al. May 2009 A1
20090176639 Jacques et al. Jul 2009 A1
20090220899 Spangelo et al. Sep 2009 A1
20090235695 Pierrot et al. Sep 2009 A1
20090320525 Johnson Dec 2009 A1
20100064732 Jeanvoine et al. Mar 2010 A1
20100087574 Crawford et al. Apr 2010 A1
20100089383 Cowles Apr 2010 A1
20100120979 Crawford et al. May 2010 A1
20100139325 Watkinson Jun 2010 A1
20100143601 Hawtof et al. Jun 2010 A1
20100162757 Brodie Jul 2010 A1
20100227971 Crawford et al. Sep 2010 A1
20100236323 D'Angelico et al. Sep 2010 A1
20100242543 Ritter et al. Sep 2010 A1
20100300153 Zhang et al. Dec 2010 A1
20100304314 Rouchy et al. Dec 2010 A1
20100307196 Richardson Dec 2010 A1
20100313604 Watson et al. Dec 2010 A1
20100319404 Borders et al. Dec 2010 A1
20100326137 Rouchy et al. Dec 2010 A1
20110048125 Jackson et al. Mar 2011 A1
20110054091 Crawford et al. Mar 2011 A1
20110061642 Rouchy et al. Mar 2011 A1
20110088432 Purnode et al. Apr 2011 A1
20110107670 Galley et al. May 2011 A1
20110236846 Rue et al. Sep 2011 A1
20110308280 Huber Dec 2011 A1
20120033792 Kulik et al. Feb 2012 A1
20120077135 Charbonneau Mar 2012 A1
20120104306 Kamiya et al. May 2012 A1
20120216567 Boughton et al. Aug 2012 A1
20120216568 Fisher et al. Aug 2012 A1
20120216576 Boughton et al. Aug 2012 A1
20130072371 Jansen et al. Mar 2013 A1
20130086944 Shock et al. Apr 2013 A1
20130086949 Charbonneau Apr 2013 A1
20130086950 Huber et al. Apr 2013 A1
20130086951 Charbonneau et al. Apr 2013 A1
20130086952 Charbonneau et al. Apr 2013 A1
20130123990 Kulik et al. May 2013 A1
20130279532 Ohmstede et al. Oct 2013 A1
20130283861 Mobley et al. Oct 2013 A1
20130327092 Charbonneau Dec 2013 A1
20140090422 Charbonneau et al. Apr 2014 A1
20140090423 Charbonneau et al. Apr 2014 A1
20140144185 Shock et al. May 2014 A1
Foreign Referenced Citations (34)
Number Date Country
36 29 965 Mar 1988 DE
40 00 358 Mar 1993 DE
44 24 814 Jan 1996 DE
196 19 919 Aug 1997 DE
100 29 983 Jan 2002 DE
100 29 983 Sep 2003 DE
10 2005 033330 Aug 2006 DE
0 181 248 Oct 1989 EP
1 337 789 Dec 2004 EP
1 990 321 Nov 2008 EP
2 133 315 Dec 2009 EP
2 138 465 Dec 2009 EP
1 986 966 Apr 2010 EP
1 667 934 Feb 2011 EP
2 397 446 Dec 2011 EP
2 404 880 Jan 2012 EP
2 433 911 Mar 2012 EP
2 578 548 Apr 2013 EP
2 740 860 Sep 1997 FR
191301772 Jan 1914 GB
191407633 Jan 1914 GB
164073 May 1921 GB
1449439 Sep 1976 GB
1208172 Jul 1989 IT
S58 199728 Nov 1983 JP
2000 0050572 Aug 2000 KR
100465272 Dec 2004 KR
114827 Jul 1999 RO
9855411 Dec 1998 WO
2008103291 Aug 2008 WO
2009091558 Jul 2009 WO
2010011701 Jan 2010 WO
2010045196 Apr 2010 WO
2012048790 Apr 2012 WO
Non-Patent Literature Citations (27)
Entry
“Gamma Irradiators for Radiation Processing” Booklet, International Atomic Energy Agency, Vienna, Austria.
Furman, BJ, ME 120 Experimental Methods Vibration Measurement, San Jose University Department of Mechanical and Aerospace Engineering.
Higley, BA, Glass Melter System Technologies for Vitrification of High-Sodium Content Low-Level, Radioactive, Liquid Wastes—Phase I: SBS Demonstration With Simulated Low-Level Waste—Final Test Report, Westinghouse Hanford Company.
Report for Treating Hanford LAW and WTP SW Simulants: Pilot Plant Mineralizing Flowsheet Apr. 2009, Department of Energy Environmental Management Consolidated Business Center by THOR Treatment Technologies, LLC.
Gerber, J., “Les Densimetres Industriels,” Petrole et Techniques, Association Francaise des Techniciens du Petrole, Jun. 1, 1989, pp. 26-27, No. 349, Paris, France.
Rue et al, “Submerged Combustion Melting of Glass,” International Journal of Applied Glass Science, Nov. 9, 2011, pp. 262-274, vol. 2, No. 4.
National Laboratory, US DOE contract No. DE-AC09-08SR22470, Oct. 2011.
“AccuTru Temperature Measurement,” AccuTru International Corporation, 2003.
“Glass Technologies—The Legacy of a Successful Public-Private Partnership”, 2007, U.S. Department of Energy, pp. 1-32.
“Glass Melting Technology—A Technical and Economic Assessment,” 2004, U.S. Department of Energy, pp. 1-292.
Muijsenberg, H. P. H., Neff, G., Muller, J., Chmelar, J., Bodi, R. and Matustikj, F. (2008) “An Advanced Control System to Increase Glass Quality and Glass Production Yields Based on GS ESLLI Technology”, in a Collection of Papers Presented at the 66th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, vol. 27, Issue 1 (ed W. M. Kriven), John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/9780470291306.ch3.
Rue, “Energy-Efficient Glass Melting—The Next Generation Melter”, Gas Technology Institute, Project No. 20621 Final Report (2008).
Muijsenberg, E., Eisenga, M. and Buchmayer, J. (2010) “Increase of Glass Production Efficiency and Energy Efficiency with Model-Based Predictive Control”, in 70th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, vol. 31, Issue 1 (ed C. H. Drummond), John Wiley & Sons, Inc., Hoboken, NJ, USA. doi: 10.1002/9780470769843.ch15.
Sims, Richard, “Batch charging technologies—a review”, www.glassonweb.com, Nikolaus Sorg Gmbh & Co KG (May 2011).
“Canty Process Technology” brochure, date unknown, received in Apr. 2012 at American Institute of Chemical Engineers, Spring Meeting, Houston, TX.
“Glass Melting”, Battelle PNNL MST Handbook, U.S. Department of Energy, Pacific Northwest Laboratory, retrieved from the Internet Apr. 20, 2012.
“Roll Compaction”, brochure from The Fitzpatrick Company, Elmhurst, Illinois, retrieved from the Internet Apr. 20, 2012.
“Glass Industry of the Future”, United States Department of Energy, report 02-GA50113-03, pp. 1-17, Sep. 30, 2008.
Stevenson, “Foam Engineering: Fundamentals and Applications”, Chapter 16, pp. 336-389, John Wiley & Sons (Mar. 13, 2012).
Clare et al., “Density and Surface Tension of Borate Containing Silicate Melts”, Glass Technology—European Journal of Glass Science and Technology, Part A, pp. 59-62, vol. 44, No. 2, Apr. 1, 2003.
Seward, T.P., “Modeling of Glass Making Processes for Improved Efficiency”, DE-FG07-96EE41262, Final Report, Mar. 31, 2003.
Conradt et al, Foaming behavior on glass melts, Glastechniche Berichte 60 (1987) Nr. 6, S. 189-201 Abstract Fraunhofer ISC.
Kim et al., “Foaming in Glass Melts Produced by Sodium Sulfate Decomposition under Isothermal Conditions”, Journal of the American Ceramic Society, 74(3), pp. 551-555, 1991.
Kim et al., “Foaming in Glass Melts Produced by Sodium Sulfate Decomposition under Ramp Heating Conditions”, Journal of the American Ceramic Society, 75(11), pp. 2959-2963, 1992.
Kim et al., “Effect of Furnace Atmosphere on E-glass Foaming”, Journal of Non-Crystalline Solids, 352(50/51), pp. 5287-5295, 2006.
Van Limpt et al., “Modelling the evaporation of boron species. Part 1. Alkali-free borosilicate glass melts”, Glass Technology—European Journal of Glass Science and Technology, Part A, 52(3): pp. 77-87, 2011.
Oblain, V.M. et al, “Submerged Combustion Furnace for Glass Melts,” Ceramic Engineering and Science Proceedings, Jan. 1, 1996, pp. 84-92, vol. 17—No. 2, American Ceramic Society Inc., US.
Related Publications (1)
Number Date Country
20160075585 A1 Mar 2016 US
Divisions (1)
Number Date Country
Parent 13689318 Nov 2012 US
Child 14949580 US