Methods and systems for managing a patient move

Abstract
This disclosure describes systems and methods for managing a move of a patient being monitored or treated by a medical system, such as a medical ventilator. The disclosure describes a novel approach for preventing a patient from being moved from a first location to second different location that is connected to a monitoring and/or treatment system, before all of the necessary hoses have been disconnected from the patient. Further, the disclosure describes a novel approach of ensuring that all of the necessary hoses are reconnected to a patient being monitored or treated by a monitoring and/or treatment system after being moved from the first location to the second different location.
Description
INTRODUCTION

Medical ventilator systems have long been used to provide supplemental oxygen/ventilatory support to patients. These ventilators typically comprise a source of pressurized air and oxygen which is fluidly connected to the patient through a conduit. Ventilators are adapted to improve safety and patient comfort. For example, some ventilators have been adapted to monitor the patient to ensure that the patient is being properly ventilated. As ventilators advance by integrating and/or connecting to other devices, the number of hoses and cables attached to the ventilators also increases.


Managing a Patient Move

This disclosure describes systems and methods for managing a move of a patient being monitored or treated by a medical system, such as a medical ventilator. The disclosure describes a novel approach for preventing a patient that is connected to a monitoring and/or treatment system from being moved from a first location to second different location, before all of the necessary hoses have been disconnected from the patient. Further, the disclosure describes a novel approach of ensuring that all of the necessary hoses are reconnected to a patient being monitored or treated by a monitoring and/or treatment system after being moved from the first location to the second different location.


In part, this disclosure describes a method for managing a move of a patient connected to a medical ventilator system. The method including:


receiving a movement notice of an intended patient move from a first location to a second location, wherein the first location and the second location are not the same;


determining a disconnection status of each necessary hose based on the notice; and


issuing a movement notification based on the determined disconnection statuses.


Yet another aspect of this disclosure describes a medical ventilator system including a pressure generating system, a plurality of sensors operatively coupled to at least one of the pressure generating system, the patient, and the ventilator breathing circuit, an operator interface, a movement module, a status module, a notification module, and a display module. The pressure generating system is adapted to control a flow of gas from a gas supply to a patient via a ventilator breathing circuit. The plurality of sensors monitors a plurality of parameters to generate sensor output. The operator interface receives operator input. The movement module determines an intended patient move from a first location to a second location based on at least one of the sensor output and operator input. The first location and the second location are not the same. The status module in response to the determined intended patient move determines a disconnection status of each necessary hose based on at least one of the sensor output and the operator input. The notification module determines a movement notification based the disconnection statuses from the status module. The display module displays the movement notification.


The disclosure further describes a computer-readable medium having computer-executable instructions for performing a method for managing a move of a patient connected to a medical ventilator system. The method includes:


repeatedly receiving a movement notice of an intended patient move from a first location to a second location, wherein the first location and the second location are not the same;


repeatedly determining a disconnection status of each necessary hose based on the notice; and


repeatedly issuing a movement notification based on the determined disconnection statuses.


These and various other features as well as advantages which characterize the systems and methods described herein will be apparent from a reading of the following detailed description and a review of the associated drawings. Additional features are set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the technology. The benefits and features of the technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the disclosure and the claims.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawing figures, which form a part of this application, are illustrative of embodiments, systems, and methods described below and are not meant to limit the scope of the disclosure in any manner, which scope shall be based on the claims appended hereto.



FIG. 1 illustrates an embodiment of a ventilator system connected to a human patient.



FIG. 2 illustrates an embodiment of a method for managing the move of a patient connected a medical system.



FIG. 3 illustrates an embodiment of a movement notification.



FIG. 4 illustrates an embodiment of a movement notification.



FIG. 5 illustrates an embodiment of a movement notification.



FIG. 6 illustrates an embodiment of a movement notification.



FIG. 7 illustrates an embodiment of a reconnection notification.





DETAILED DESCRIPTION

Although the techniques introduced above and discussed in detail below may be implemented for a variety of medical devices, the present disclosure will discuss the implementation of these techniques in the context of a medical ventilator for use in providing ventilation support to a human patient. The reader will understand that the technology described also applies to other medical systems or devices that have multiple patient connections, such as vital signs monitoring devices, intra-aortic balloon pumps, pulse oximeters, infusion pumps, and etc. Additionally, these medical systems or devices could also be adapted for non-human patients and patient transport systems.


Over the years, the number of hoses and cable connected from medical systems, such as ventilators, to a patient has increased. While “cables” and “hoses” have different definitions, these terms are utilized interchangeably herein as a component that connects to a patient with each term being inclusive of the other. In order to move a patient, some or all of the hoses and cables connected from the medical system or device to the patient have to be disconnected from the patient. Accordingly, there may be a number of hoses and cables to disconnect from the patient before a patient can be moved away from the medical system. Because of the large number of hoses that need to be disconnected, a clinician could easily forget to disconnect one or more of the hoses before moving the patient and could potentially endanger the patient. For example, the movement could cause a patient to become extubated. Additionally, the operator or clinician after moving a patient may forget to reconnect a necessary hose or tube, which could also endanger the patient.


The present disclosure describes systems and methods for managing the move a patient to prevent the move of a patient without the disconnection of all the necessary hoses. In some embodiments, the systems and methods described herein issue a movement notification to inform the operator if the patient is ready for movement. In further embodiments, the systems and method the systems and methods described herein issue a reconnection notification to inform the operator that all of the necessary hoses have been reconnected to the patient after the patient has been move from one location to another location.



FIG. 1 is a diagram illustrating an embodiment of an exemplary ventilator 100 connected to a human patient 150. Ventilator 100 includes a pneumatic gas delivery system 102 (also referred to as a pressure generating system 102 or pneumatic system 102) for circulating breathing gases to and from patient 150 via the ventilation tubing system 130, which couples the patient 150 to the pneumatic system 102 via an invasive (e.g., endotracheal tube, as shown) or a non-invasive (e.g., nasal mask) patient interface 180.


Ventilation tubing system 130 (or patient circuit 130 or breathing circuit 130) may be a two-limb (shown) or a one-limb circuit for carrying gases to and from the patient 150. In a two-limb embodiment, a fitting, typically referred to as a “wye-fitting” 170, may be provided to couple a patient interface 180 (as shown, an endotracheal tube) to an inspiratory limb 132 and an expiratory limb 134 of the ventilation tubing system 130.


Pneumatic system 102 may be configured in a variety of ways. In the present example, pneumatic system 102 includes an expiratory module 108 coupled with the expiratory limb 134 and an inspiratory module 104 coupled with the inspiratory limb 132. Compressor 106 or other source(s) of pressurized gases (e.g., air, oxygen, and/or helium) is coupled with inspiratory module 104 and the expiratory module 108 to provide a gas source for ventilatory support via inspiratory limb 132.


The inspiratory module 104 is configured to deliver gases to the patient 150 according to prescribed ventilatory settings. The expiratory module 108 is configured to release gases from the patient's lungs according to prescribed ventilatory settings. Specifically, expiratory module 108 is associated with and/or controls an expiratory valve for releasing gases from the patient 150.


The ventilator 100 may also include one or more sensors 107 communicatively coupled to ventilator 100 and/or patient 150. The sensors 107 may be located in the pneumatic system 102, ventilation tubing system 130, and/or on the patient 150. The embodiment of FIG. 1 illustrates a sensor 107 in pneumatic system 102, in the patient interface 180, and attached to the patient 150.


Sensors 107 may communicate with various components of ventilator 100, e.g., pneumatic system 102, other sensors 107, processor 116, movement module 115, status module 117, notification module 118 and/or any other suitable components and/or modules. In one embodiment, sensors 107 generate output and send this output to pneumatic system 102, other sensors 107, processor 116, movement module 115, status module 117, notification module 118 and/or any other suitable components and/or modules. Sensors 107 may employ any suitable sensory or derivative technique for monitoring one or more parameters associated with the patient 150 and the ventilation of a patient 150. Sensors 107 may detect changes in patient parameters indicative of patient triggering, for example. Sensors 107 may be placed in any suitable location, e.g., within the ventilatory circuitry or other devices communicatively coupled to the ventilator 100. Further, sensors 107 may be placed in any suitable internal location, such as, within the ventilatory circuitry or within components or modules of ventilator 100. For example, FIG. 1 illustrates a pressure sensor 107a, an endotracheal tube pressure sensor connection 107b, an oximeter sensor 107c, and a sensor 107d, which may be any one of the following sensors: a proximity tag 107d, a motion sensor 107d, or a RFID tag 107d. In some embodiments, a sensor 107 may be wireless as illustrated by sensor 107d in FIG. 1. Further, sensors 107 may detect where a hose or tube is connected to a patient 150 and/or a ventilator 100. In some examples, sensors 107 may be affixed to the ventilatory tubing or may be embedded in the tubing itself. In other embodiments, sensors 107 may detect patient and/or ventilator movement. For example, the ventilator 100 may be electronically coupled to a motion sensor 107d, a proximity tag 107d, RFID tag 107d and/or any other sensor 107 suitable for determining movement of the patient 150 and/or ventilator 100. Any sensory device useful for monitoring changes in measurable parameters during ventilatory treatment, patient location, or the connection status of a hose or cable may be employed in accordance with embodiments described herein.


As should be appreciated, with reference to the Equation of Motion, ventilatory parameters are highly interrelated and, according to embodiments, may be either directly or indirectly monitored. That is, parameters may be directly monitored by one or more sensors 107, as described above, or may be indirectly monitored or estimated/calculated using a model, such as a model derived from the Equation of Motion

(e.g., Target Airway Pressure(t)=Ep∫Qpdt+QpRp−Patient Effort(t)).


The pneumatic system 102 may include a variety of other components, including an oximeter 105, mixing modules, valves, tubing, accumulators, filters, etc. Controller 110 is operatively coupled with pneumatic system 102, signal measurement and acquisition systems, and an operator interface 120 that may enable an operator to interact with the ventilator 100 (e.g., change ventilator settings, select operational modes, view monitored parameters, etc.).


In one embodiment, the operator interface 120 of the ventilator 100 includes a display module 122 communicatively coupled to ventilator 100. Display module 122 may provide various input screens, for receiving clinician input, and various display screens, for presenting useful information to the clinician. In one embodiment, the display module 122 is configured to include a graphical user interface (GUI). The GUI may be an interactive display, e.g., a touch-sensitive screen or otherwise, and may provide various windows and elements for receiving input and interface command operations. Alternatively, other suitable means of communication with the ventilator 100 may be provided, for instance by a wheel, keyboard, mouse, or other suitable interactive device. Thus, operator interface 120 may accept commands and input through display module 122 and/or or another communication device.


Display module 122 may also provide useful information in the form of various ventilatory data regarding ventilator parameters, patient location, connection status of necessary hoses 131, and/or the physical condition of a patient 150. The useful information may be derived by the ventilator 100, based on data collected by a processor 116, and the useful information may be displayed to the clinician in the form of graphs, wave representations, lists, check lists, pie graphs, text, or other suitable forms of graphic display. For example, patient data may be displayed on the GUI and/or display module 122. In some embodiments, the display module 122 may be remote display module. Additionally or alternatively, useful information and/or ventilator parameters may be communicated to and displayed on an additional remote display module and/or on a remote monitoring system coupled via any suitable means to the ventilator 100, such as a tablet or PC. The remote display module or remote monitoring system are not physically attached to the pneumatic system 102 of the ventilator 100 and may be in the same room or over a mile away from the patient 150 or the pneumatic system 102 of the ventilator 100. In some embodiments, the display module 122 and/or remote monitoring display system displays a movement notification, a confirmation notification, and/or a reconnection notification.


Controller 110 may include memory 112, one or more processors 116, storage 114, and/or other components of the type commonly found in command and control computing devices. Controller 110 may further include a movement module 115, status module 117, and/or a notification module 118 as illustrated in FIG. 1. In alternative embodiments, a movement module 115, status module 117, and/or a notification module 118 may be located in other components of the ventilator 100, such as the pressure generating system 102 (also known as the pneumatic system 102).


The memory 112 includes non-transitory, computer-readable storage media that stores software that is executed by the processor 116 and which controls the operation of the ventilator 100. In an embodiment, the memory 112 includes one or more solid-state storage devices such as flash memory chips. In an alternative embodiment, the memory 112 may be mass storage connected to the processor 116 through a mass storage controller (not shown) and a communications bus (not shown). Although the description of computer-readable media contained herein refers to a solid-state storage, it should be appreciated by those skilled in the art that computer-readable storage media can be any available media that can be accessed by the processor 116. That is, computer-readable storage media includes non-transitory, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. For example, computer-readable storage media includes RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.


The movement module 115 determines an intended patient move from a first location to a second different location based on sensor output and/or operator input. In some embodiments, the movement module 115 determines an intended patient move based on operator input. For example, the operator may select or input into the ventilator 100 that the patient 150 is going to be moved, such as by selecting or pushing a transport button. In some embodiments, the ventilator 100 determines an intended patient move based on sensor output. For example, the ventilator 100 may be connected to a motion sensor 107d, a proximity tag 107d, a RFID tag 107d and/or any other sensor 107 suitable for determining movement of the patient 150 and/or ventilator 100. In some embodiments, the ventilator 100 determines an intended patient move based on a camera directed at the patient. In other embodiments, the ventilator 100 determines an intended patient move based on sensor output and operator input. For example, the ventilator 100 may detect that the patient 150 is being moved based on sensor output, but not determine an intended patient movement until the detected patient movement is confirmed by operator input.


In some embodiments, the ventilator 100 includes a proximity tag 107d as part of proximity system utilized by the ventilator 100. In this embodiment, the proximity tag 107d is attached to a patient 150 or located on a device or mechanism in close proximity or attached to the patient 150, such as the hospitable bed, oximeter sensor 107c, or endotracheal tube 180. In this embodiment, when the proximity tag 107d is located at a predetermined distance from the ventilator 100, the movement module 115 either sends instructions to issue a confirmation notification or determines an intended patient movement. The confirmation notification notifies the operator that the patient 150 is a predetermined distance from the ventilator 100 and requests operator input to confirm or deny an intended patient movement. A notification as used herein may be any suitable system or method for notifying an operator, such as a visual, audio, and/or other sensory notification (e.g., vibration). For example, the notification may be displayed on the screen, alarm, and/or vibrate in order to notify the operator. Accordingly, a notification may be a visual notification, audio notification, and/or a vibrational notification. In some embodiments, the confirmation notification is a displayed transport button that may be selected or pushed by the operator.


In some embodiments, the ventilator 100 includes a motion sensor 107d. In this embodiment, the motion sensor 107d is attached to a patient 150 or located on a device or mechanism in close proximity or attached to the patient 150, such as the hospitable bed, the ventilator 100, or endotracheal tube. In this embodiment, when the motion sensor 107d detects a predetermined amount of movement, the movement module 115 either sends instructions to issue a confirmation notification or determines an intended patient movement. The confirmation notification notifies the operator that motion was detected and requests operator input to confirm or deny an intended patient movement.


In some embodiments, the ventilator 100 includes a RFID tag 107d as part of an RFID system utilized by the ventilator 100. In this embodiment, the RFID tag 107d is attached to a patient 150 or located on a device or mechanism in close proximity or attached to the patient 150, such as the hospitable bed, or endotracheal tube. In this embodiment, when the RFID tag 107d is located at a predetermined distance from the ventilator 100 or can no longer be detected by the ventilator 100 because the RFID tag 107d is out of signal range, the movement module 115 either sends instructions to issue a confirmation notification or determines an intended patient movement. The confirmation notification notifies the operator that the patient 150 is a predetermined distance from the ventilator 100 and requests operator input to confirm or deny an intended patient movement.


If the operator confirms the intended movement, the movement module 115 determines an intended patient movement. In some embodiments, the operator confirms an intended movement by selecting or pushing a transport button. If the operator denies the intended movement, the movement module 115 does not determine an intended patient movement. If the movement module 115 determines an intended patient move from a first location to a second different location, the movement module 115 sends instructions to the status module 117 to perform a disconnection status check. If the movement module 115 does not determine an intended patient move, then the movement module 115 continues to monitor for an intended patient move and does not send any instructions to the status module 117.


The status module 117 determines a disconnection status of each necessary hose 131 or other patient connection based on sensor output and/or operator input. Accordingly, the status module 117 also determines a connection status of each necessary hose 131 based on sensor output and/or operator input since a hose can only be either connected or disconnected. The status module 117 begins checking or monitoring the disconnection statuses of the necessary hoses 131 after the status module 117 receives instructions from the movement module 115. The necessary hose 131 is any ventilator hose 131 that needs to be or should be disconnected from the patient 150 and/or ventilator 100 in order to move the patient 150. In some embodiments, the ventilator 100 determines the necessary hoses 131. The ventilator 100 may determine the necessary hoses 131 based on sensor output or based on a predetermined list programmed into the ventilator 100. In other embodiments, the necessary hoses 131 are selected or input by the operator. For example, FIG. 1 illustrates three different necessary hoses 131, a ventilation tubing circuit 131a, a flow sensor hose 131b, and an oximeter cable 131c. As illustrated in FIG. 1, the ventilation tubing circuit 131a and the oximeter cable 131c are connected, while the flow sensor hose 131b is disconnected.


The ventilator 100 may determine if a necessary hose 131 is disconnected or connected by monitoring sensor output. In some embodiments, the hose 131 may contain a connection sensor that solely determines if a hose 131 is connected or disconnected from a patient 150. In some embodiments, the ventilator 100 determines hose connection status by monitoring the presence or absence of output of a sensor. For example, the ventilator 100 may determine that a capnometer sensor is attached to a patient 150 if the ventilator 100 is receiving a CO2 output from the capnometer sensor and may determine that a capnometer sensor is disconnected from the patient 150 if the ventilator 100 is not receiving a CO2 output from the capnometer sensor. Table 1 below provides a list of sensor outputs that the ventilator 100 may utilize to determine connection statuses of necessary hoses 131. In some embodiments, more than one sensor output may be utilized or different sensor output may be utilized depending on the ventilator components and sensor to determine the connection status of a necessary hose 131.









TABLE 1







Ventilator Determined Connection Status Based on Sensor Output









Device
Connected
Disconnected





Capnometer sensor
Presence of CO2 signal
Loss of CO2 signal


Capnometer sensor
Presence of circuit pressure
Loss of circuit pressure


Endotracheal tube
Presence of ET cuff pressure
Loss of ET cuff pressure signal


(ET) cuff pressure
signal


Proximal flow sensor
Presence of flow signal
Loss of flow signal


Proximal flow sensor
Presence of pressure signals
Loss of pressure signals from



from proximal flow sensor
proximal flow sensor


Catheter
Presence of Edi signal
Loss of Edi signal


Carinal pressure
Presence of Carinal pressure
Loss of Carinal pressure signal



signal


ECG Leads
Presence of ECG signal
Loss of ECG signal


ECG Leads
Presence of respiratory rate
Loss of respiratory rate signal



signal from ECG leads
from ECG leads


Esophageal balloon
Presence of Esophageal
Loss of Esophageal balloon


pressure
balloon pressure signal
pressure signal


Pulse Oximeter
Presence of oximeter signal
Loss of oximeter signal from



from bedside device
bedside device


Pulmonary Artery
Presence of PA signal
Loss of PA signal


(PA) Catheter


Intra-cranial pressure
Presence of ICP signal
Loss of ICP signal


(ICP) monitor


Intra-aortic Balloon
Start IABP device (pump on)
Discontinuance IABP device


Pump (IABP)

(pump off)


Infusion pump
Start of IV fluid flow (pump
Discontinuance of IV fluid flow



on)
(pump off)









In some embodiments, the ventilator 100 may determine if a necessary hose 131 is disconnected or connected by monitoring operator input. The operator can select or input the disconnection of each hose 131 as the operator disconnects the hose 131. The status module 117 may send instructions to the display module 122 to display a disconnection check list to provide the operator with a list of all the necessary hoses 131 that need to be disconnected. In some embodiments, the disconnection check list may be interactive and mark each necessary hose 131 as a hose 131 is disconnected based on operator input.


In other embodiments, the ventilator 100 determines the disconnection statutes based on sensor output and operator input. For example, the ventilator 100 may detect that a necessary hose 131 is disconnected based on sensor output, but may not determine a disconnection until the detected disconnection is confirmed by operator input.


The status module 117 continues to check or update the disconnection statuses of the necessary hoses 131 until the status module 117 receives instructions to stop determining the connection statuses of the necessary hoses 131 from operator input and/or from the notification module 118.


The status module 117 sends the determined disconnection statuses of the necessary hoses 131 to the notification module 118. The notification module 118 determines a movement notification based on the disconnection statuses. The notification module 118 sends instruction to other ventilator components to issue the determined or generated movement notification. In some embodiments, the notification module 118 sends the instructions to the display module 122 for displaying the movement notification. In other embodiments, the notification module 118 sends instructions to the processor 116 or pneumatic system 102 for issuing the movement notifications. The notification module 118 may send the instruction to any suitable component or components of the ventilator 100 for issuing the movement notification.


The movement notification notifies the operator about whether the patient 150 is ready or not ready to be moved from a first location to a second different location based on the disconnection statuses received from the status module 117. For example, the patient may be being moved from one hospital room to another room, from one hospital wing to another wing, or even from a hospital to another location, such as the patient home. The movement notification is any suitable system or method for notifying an operator that the patient 150 either ready or not ready to be moved, such as a visual, audio, and/or other sensory notification (e.g., vibration).


If the notification module 118 determines that any of the necessary hoses 131 are still connected based on the received disconnection statuses, then the notification module 118 determines that the patient 150 is not ready to be moved. If the patient 150 is not ready to be moved, then the notification module 118 generates a movement notification that informs the operator that the patient 150 is not ready to be moved. If the notification module 118 determines that all of the necessary hoses 131 have been disconnected, the notification module 118 determines that the patient 150 is ready to be moved from first location to a different second location. If the patient 150 is ready to be moved, then the notification module 118 generates a movement notification that informs the operator that the patient 150 is ready to be moved.


In some embodiments, the movement notification is displayed. FIGS. 3-6 illustrate different embodiments of screen shots of a movement notification 300, 400, 500, 600 and 700. The displayed movement notification will indicate if the patient 150 is ready to be moved or if the patient 150 is not ready to be moved as illustrated in FIGS. 3-6. In some embodiments, the display notification may list each of the necessary hoses 131 and the disconnection status of each of the necessary hoses 131 as illustrated in FIGS. 5 and 6. The disconnection status may be marked with icons, symbols, colors, animation, and/or any other suitable method for showing that a necessary hose 131 is connected or disconnected. In some embodiments, the notification module 118 continuously updates the movement notification based on the received disconnection status from the status module 117 until each of the necessary hoses 131 has been disconnected and/or until operator input is received that ends the movement notification. In further embodiments, the movement notification may be displayed on a graphical user interface and be interactive with the operator as illustrated in FIGS. 5 and 6. In this embodiment, the operator may be able to select a listed necessary hose 131 and change the connection status of the selected necessary hose 131 to connected and/or disconnected.


In other embodiments, the displayed movement notification lists only the necessary hoses 131 that are disconnected as illustrated in FIG. 3. In this embodiment, the notification module 118 removes necessary hoses 131 from the movement notification as they become connected based on the disconnection statuses received from status module 117. Accordingly, in this embodiment, if the patient 150 is ready to be moved, then no necessary hoses 131 are listed on the movement notification.


As discussed above, operator input may end the display of the movement notification by the notification module 118. If the operator selects to end the movement notification, the notification module 118 stops sending instruction to the ventilator components for issuing the movement notification. Further, if the operator selects to end the movement notification, the statuses module stops checking or monitoring the connection statuses of the necessary hoses 131. Alternatively, the movement notification may end after the issuance of or after a set amount of time from the issuance of a movement notification that informs the operator that the patient 150 is ready to be moved.


In some embodiments, after the end of a movement notification, the movement module 115 may further determine that the patient 150 has been moved from the first location to the different second location based on operator input and/or generated sensor output. For example, the operator may select or input into the ventilator 100 that the patient 150 has been moved, such as by selecting or pushing a reconnection button. In some embodiments, the ventilator 100 determines the second location based on sensor output. For example, the ventilator 100 may be connected to a motion sensor 107d, a proximity tag 107d, RFID tag 107d and/or any other sensor 107 suitable for determining movement of the patient 150 and/or ventilator 100. In other embodiments, the ventilator 100 determines an intended patient move based on sensor output and operator input. For example, the ventilator 100 may detect that the patient 150 has moved to the second location based on sensor output, but not determine that the patient 150 has moved until the detected second location is confirmed by operator input.


In some embodiments, the sensors may be able to detect that a patient 150 has moved to a second location because the spot of the second location has been input into the ventilator 100. For example, an RFID sensor in the second location may detect the presence of the RFID tag associated with the patient 107d. In another example, a second proximity tag 107d may be utilized in the second location, therefore, when the ventilator 100 is in range of the second proximity tag 107d, the ventilator 100 knows that the patient 150 has been moved to a second location.


If the ventilator 100 detects that the patient 150 is in the second location, the movement module 115 either sends instructions to issue a check notification or determines an intended patient movement. The check notification notifies the operator that the patient 150 is in the second location and requests operator input to confirm or deny that the patient 150 is in the second location.


If the operator confirms the second location, the movement module 115 determines that the patient 150 is in the second location. In some embodiments, the operator confirms the second location by selecting or pushing a reconnection button. If the operator denies the second location, the movement module 115 does not determine that the patient 150 is in the second location. If the movement module 115 determines that the patient 150 has moved from the first location to the second different location, the movement module 115 sends instructions to the status module 117 to perform a connection status check. If the movement module 115 does not determine that the patient 150 has moved to the second location, then the movement module 115 continues to monitor for the second location and does not send any instructions to the status module 117.


As discussed above, the status module 117 determines a connection status of each necessary hose 131 based on sensor output and/or operator input. Again, the status module 117 begins checking or monitoring the connection statuses of the necessary hoses 131 after the status module 117 receives instructions from the movement module 115. Again, the status module 117 continues to check or update the connection statuses of the necessary hoses 131 until the status module 117 receives instructions to stop determining the connection statuses of the necessary hoses 131 from operator input and/or from the notification module 118. The status module 117 sends the determined connection statuses of the necessary hoses 131 to the notification module 118.


The notification module 118 determines a reconnection notification based on the connection statuses. The reconnection notification notifies the operator about whether the or not all of the necessary hoses 131 have been reconnected to the patient 150 based on the connection statuses received from the status module 117. The reconnection notification is any suitable system or method for notifying an operator that the patient 150 is either properly connected to ventilator 100 for ventilation or not properly connected to the ventilator 100 for ventilation, such as a visual, audio, and/or other sensory notification (e.g., vibration).


The notification module 118 sends instructions to other ventilator 100 components to issue the determined or generated reconnection notification. In some embodiments, the notification module 118 sends the instructions to the display module 122 for displaying the reconnection notification. In other embodiments, the notification module 118 sends instructions to the processor 116 or pneumatic system 102 for issuing the reconnection notification. The notification module 118 may send the instruction to any suitable component or components of the ventilator 100 for issuing the reconnection notification.


If the notification module 118 determines that any of the necessary hoses 131 are not connected to the patient 150 based on the received disconnection statuses, then the notification module 118 determines that the patient 150 is not properly connected to the ventilator 100. If the patient 150 is not properly connected, then the notification module 118 generates a reconnection notification that informs the operator that the patient 150 is not properly connected to the ventilator 100 or that at least one necessary hose 131 still needs to be connected. If the patient 150 is properly connected, then the notification module 118 generates a reconnection notification that informs the operator that the patient 150 is not properly connected to the ventilator 100 or that all of the necessary hoses 131 are connected to the patient 150.


In some embodiments, the reconnection notification is displayed. FIG. 7 illustrates an embodiment of a screen shot of a reconnection notification 700. The displayed reconnection notification will indicate if the all of the necessary hoses 131 have been reconnected to the patient 150 or not. In some embodiments, the displayed reconnection notification may list each of the necessary hoses 131 and the disconnection status of each of the necessary hoses 131. The disconnection status may be marked with icons, symbols, colors, animation, and/or any other suitable method for showing that a necessary hose 131 is connected or disconnected. In some embodiments, the notification module 118 continuously updates the displayed reconnection notification based on the received disconnection status from the status module 117 until each of the necessary hoses 131 has been connected and/or until operator input is received that ends the reconnection notification. In further embodiments, the reconnection notification may be displayed on a graphical user interface and be interactive with the operator. In this embodiment, the operator may be able to select a listed necessary hose 131 and change the connection status of the selected necessary hose 131 to connected and/or disconnected.


In other embodiments, the displayed reconnection notification lists only the necessary hoses 131 that are disconnected as illustrated in FIG. 7. In this embodiment, the notification module 118 removes necessary hoses 131 from the displayed reconnection notification as they become connected based on the disconnection statuses received from status module 117. Accordingly, in this embodiment, if the all of the necessary hoses 131 are connected to the patient 150, then no necessary hoses 131 are listed on the displayed reconnection notification.


As discussed above, operator input may end the display of the reconnection notification by the notification module 118. If the operator selects to end the reconnection notification, the notification module 118 stops sending instructions to the ventilator components for issuing the reconnection notification. Further, if the operator selects to end the reconnection notification, the status module 117 stops checking or monitoring the connection statuses of the necessary hoses 131. Alternatively, the reconnection notification may end after issuance of or after a set amount of time from the issuance of a reconnection notification that informs the operator that the all of the necessary hoses 131 have been connected to the patent.


As discussed above, ventilators or medical systems often require numerous hoses to be connected to a patient making it easy for a clinician to forget to disconnect a necessary hose prior to a patient move from a first location to a second location. Accordingly, FIG. 2 illustrates an embodiment of a method 200 for managing a move of a patient connected to a medical system, such as a medical ventilator. More specifically, method 200 ensures that all necessary hoses connected to a patient are disconnected before a patient is moved from a first location to a different second location. Further, in some embodiments, after a patient is moved to the different second location, method 200 also ensures that all of the necessary hoses are reconnected to the patient.


As illustrated, method 200 includes a receiving operation 202. The ventilator or medical system during the receiving operation 202 receives a movement notice. The received movement notice is notice of an intended patient movement from a first location to a second different location. The received movement notice of an intended patient move is based on operator input and/or generated sensor output. For example, the operator may select or input into the medical system that the patient is going to be moved, such as by selecting or pushing a transport button. In some embodiments, the medical system determines an intended patient move based on sensor output. For example, the medical system may be connected to a motion sensor, a proximity tag, RFID tag and/or any other systems or methods suitable for determining movement of the patient and/or medical system. In other embodiments, the medical system determines an intended patient move based on sensor output and operator input. For example, the medical system may detect that the patient is being moved based on sensor output, but not determine an intended patient movement until the detected patient movement is confirmed by operator input.


For example, the medical system during the receiving operation 202 may issue a confirmation notification that notifies the operator that motion was detected and request operator input to confirm or deny an intended patient movement. If the operator confirms the intended movement, the medical system during receiving operation 202 receives a movement notice. In some embodiments, the operator confirms an intended movement by selecting or pushing a transport button. If the operator denies the intended movement, the medical system during the receiving operation 202 does not receive a movement notice.


Further, method 200 includes a determining operation 204. The ventilator or medical system during the determining operation 204 determines the disconnection status of each necessary hose after the movement notice is received. The medical system during the determining operation 204 determines the disconnection status of each of the necessary hoses based on operator input and/or generated sensor output. Accordingly, the medical system during the determining operation 204 also determines a connection status of each necessary hose based on sensor output and/or operator input because a necessary hose can either be connected or disconnected.


The medical system during the determining operation 204 may determine if a necessary hose is disconnected or connected by monitoring sensor output. In some embodiments, the hose may contain a connection sensor that solely determines if a hose is connected or disconnected from a patient. In some embodiments, the medical system during the determining operation 204 determines hose connection status by monitoring the presence or absence of output of a sensor. For example, the medical system may determine that a capnometer sensor is attached to a patient if the medical system is receiving a CO2 output from the capnometer sensor and may determine that a capnometer sensor is disconnected from the patient if the medical system is not receiving a CO2 output from the capnometer sensor. Table 1 above provides a list of sensor outputs that the medical system may utilize to determine connection statuses of necessary hoses. In some embodiments, more than one sensor output may be utilized or different sensor output may be utilized depending on the medical system components and sensor to determine the connection status of a necessary hose.


In some embodiments, the medical system during the determining operation 204 may determine if a necessary hose is disconnected or connected by monitoring operator input. The operator can select or input the disconnection of each hose as the operator disconnects the hose.


In other embodiments, the medical system during the determining operation 204 determines the disconnection statutes based on sensor output and operator input. For example, the medical system may detect that a necessary hose is disconnected based on sensor output, but may not determine a disconnection until the detected disconnection is confirmed by operator input. In some embodiments, the medical system during the determining operation 204 continues to check or update the disconnection statuses of the necessary hoses until the medical system receives instructions to stop determining the disconnection statuses of the necessary hoses from operator input. In other embodiments, the medical system during the determining operation 204 continues to check or update the disconnection statuses of the necessary hoses until movement notification that informs the operator that it is safe to move the patient from a first location to a second location issues.


Method 200 also includes an issuing operation 206. The ventilator or medical system during issuing operation 206 issues a movement notification based on the determined disconnection status for each necessary hose. The medical system during issuing operation 206 determines a movement notification based on the disconnection statuses and issues the generated movement notification. The movement notification notifies the operator about whether the patient is ready or not ready to be moved from a first location to a second different location. The movement notification is any suitable system or method for notifying an operator that the patient either ready or not ready to be moved, such as a visual, audio, and/or other sensory notification (e.g., vibration). In some embodiments, the medical system during issuing operation 206 displays the movement notification.


If the medical system during issuing operation 206 determines that any of the necessary hoses are still connected based on the received disconnection statuses, then the medical system determines that the patient is not ready to be moved even if the operator has indicated that that such disconnections have been performed. If the patient is not ready to be moved, then the medical system during issuing operation 206 generates a movement notification that informs the operator that the patient is not ready to be moved. Thus, the medical system confirms the operator's inputs of disconnection statuses before indicating that the patient is ready to be moved. If the medical system during issuing operation 206 determines that all of the necessary hoses have been disconnected, the medical system determines that the patient is ready to be moved from first location to a different second location. If the patient is ready to be moved, then the medical system during issuing operation 206 generates a movement notification that informs the operator that the patient is ready to be moved.


In some embodiments, the medical system during issuing operation 206 displays the movement notification. FIGS. 3-6 illustrate embodiments of screen shots of a displayed movement notification 300, 400, 500, 600 and 700. The displayed movement notification will indicate if the patient is ready to be moved or if the patient is not ready to be moved as illustrated in FIGS. 3-6. The display of the movement notification is discussed above in further detail.


As discussed above, operator input may end the display of the movement notification by the medical system during issuing operation 206. If the operator selects to end the movement notification, the medical system during issuing operation 206 stops issuing the movement notification. Further, if the operator selects to end the movement notification, the medical system during the determining operation 204 stops checking or monitoring the disconnection statuses of the necessary hoses. Alternatively, the movement notification may end after the issuance of a movement notification or after a set amount of time after the issuance of the movement notification that informs the operator that the patient is ready to be moved.


In some embodiments, after the ending of the issuing operation 206, method 200 further includes a reconnection receiving operation 208, a connection determining operation 210, and a reconnection notification operation 212. The medical system or medical system during the reconnection receiving operation 208 receives a reconnection notice of an intended reconnection of the patient to the medical system or medical system. The medical system during the reconnection receiving operation 208 receives a reconnection notice based on operator input and/or generated sensor output. For example, the operator may select or input into the medical system that the patient has been moved, such as by selecting or pushing a reconnection button. In some embodiments, the medical system determines an intended patient move based on sensor output. For example, the medical system may be connected to a motion sensor, a proximity tag, RFID tag and/or any other system or method suitable for determining movement of the patient and/or medical system. In other embodiments, the medical system determines an intended patient move based on sensor output and operator input. For example, the medical system may detect that the patient has moved to the second location based on sensor output, but not determine that the patient has moved until the detected second location is confirmed by operator input.


In some embodiments, the sensors may be able to detect that a patient has moved to a second location because the spot of the second location has been input into the medical system. For example, the RFID tag may be able to determine hospital location based on other RFID tags or markers within the hospital. For example, a second proximity tag may be utilized in the second location, therefore, when the medical system is in range of the second proximity tag, the medical system knows that the patient has been moved to a second location.


If the medical system detects that the patient is in the second location, the medical system during the reconnection receiving operation 208 issues a check notification or receives a reconnection notice. The check notification notifies the operator that the patient is in the second location and requests operator input to confirm or deny that the patient is in the second location.


If the operator confirms the second location, the medical system during the reconnection receiving operation 208 receives a reconnection notice. In some embodiments, the operator confirms the second location by selecting or pushing a reconnection button. If the operator denies the second location, the medical system during the reconnection receiving operation 208 does not receive a reconnection notice. If the medical system during the reconnection receiving operation 208 does not receive a reconnection notice, then the medical system during the reconnection receiving operation 208 continues to monitor for the reconnection notice.


The ventilator or medical system during the connection determining operation 210 determines the connection status of each necessary hose based on the reconnection notice. As discussed above, the medical system determines a connection status of each necessary hose based on sensor output and/or operator input. Again, the medical system continues to check or update the connection statuses of the necessary hoses until the reconnection notification operation 212 ends.


The ventilator or medical system during the reconnection notification operation 212 issues a reconnection notification based on the determined connection statuses. The reconnection notification notifies the operator about whether the or not all of the necessary hoses have been reconnected to the patient based on the determined disconnection statuses by the connection determining operation 210. The reconnection notification is any suitable system or method for notifying an operator that the patient is either properly connected to medical system or not properly connected to the medial system, such as a visual, audio, and/or other sensory notification (e.g., vibration).


If the medical system during the reconnection notification operation 212 determines that any of the necessary hoses are not connected to the patient based on the received disconnection statuses, then the medical system determines that the patient is not properly connected to the medical system. If the patient is not properly connected, then the medical system issues a reconnection notification that informs the operator that the patient is not properly connected to the medical system or that at least one necessary hose still needs to be connected. If the patient is properly connected, then the medical system generates a reconnection notification that informs the operator that the patient is not properly connected to the medical system or that all of the necessary hoses are connected to the patient.


In some embodiments, the reconnection notification is displayed. FIG. 7 illustrates an embodiment of a screen shot of a reconnection notification 700. The displayed reconnection notification will indicate if the all of the necessary hoses have been reconnected to the patient or not. In some embodiments, the displayed reconnection notification may list each of the necessary hoses and the connection status of each of the necessary hoses. The disconnection status may be marked with icons, symbols, colors, animation, and/or any other suitable method for showing that a necessary hose is connected or disconnected. In some embodiments, the medical system during the reconnection notification operation 212 continuously updates the displayed reconnection notification based on the determined disconnection statuses until each of the necessary hoses has been connected and/or until operator input is received that ends the reconnection notification. In further embodiments, the reconnection notification may be displayed on a graphical user interface and be interactive with the operator. In this embodiment, the operator may be able to select a listed necessary hose and change the connection status of the selected necessary hose to connected and/or disconnected.


In other embodiments, the displayed reconnection notification lists only the necessary hoses that are disconnected as illustrated in FIG. 7. In this embodiment, the medical system during the reconnection notification operation 212 removes necessary hoses from the displayed reconnection notification as they become connected based on the determined connection statuses. Accordingly, in this embodiment, if the all of the necessary hoses are connected to the patient, then no necessary hoses are listed on the displayed reconnection notification.


As discussed above, operator input may end the reconnection notification operation 212. If the operator selects to end the reconnection notification operation 212, the medical system stops issuing the reconnection notification. Further, if the operator selects to end the reconnection notification, the medical system ends the connection determining operation 210. Alternatively, the reconnection notification operation 212 may end after the issuance of a reconnection notification or after a set amount of time after the issuance of reconnection notification that informs the operator that the all of the necessary hoses have been connected to the patent.


In one embodiment, method 200 is performed by the medical ventilator system illustrated in FIG. 1 and described above. In an alternative embodiment, a computer-readable medium having computer-executable instructions for performing methods for managing the move of a patient connected to a medical system are disclosed. These methods include repeatedly performing the steps illustrated in FIG. 2 and as described in the description of FIG. 2 above. In some embodiments, the medical system is a medical ventilator.


In another embodiment, the medical system includes: means for performing each of the operations illustrated in FIG. 2 and as described above in the description of FIG. 2. In one embodiment, the means for a medical ventilator system are illustrated in FIG. 1 and described in the above description of FIG. 1. However, the means described above for FIG. 1 and illustrated in FIG. 1 are but one example only and are not meant to be limiting.


Those skilled in the art will recognize that the methods and systems of the present disclosure may be implemented in many manners and as such are not to be limited by the foregoing exemplary embodiments and examples. In other words, functional elements being performed by a single or multiple components, in various combinations of hardware and software or firmware, and individual functions, can be distributed among software applications at either the client or server level or both. In this regard, any number of the features of the different embodiments described herein may be combined into single or multiple embodiments, and alternate embodiments having fewer than or more than all of the features herein described are possible. Functionality may also be, in whole or in part, distributed among multiple components, in manners now known or to become known. Thus, myriad software/hardware/firmware combinations are possible in achieving the functions, features, interfaces and preferences described herein. Moreover, the scope of the present disclosure covers conventionally known manners for carrying out the described features and functions and interfaces, and those variations and modifications that may be made to the hardware or software or firmware components described herein as would be understood by those skilled in the art now and hereafter.


Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the disclosure and as defined in the claims. While various embodiments have been described for purposes of this disclosure, various changes and modifications may be made which are well within the scope of the present disclosure. Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the disclosure and as defined in the claims.

Claims
  • 1. A medical ventilator system, comprising: a pressure generating system, the pressure generating system adapted to control a flow of gas from a gas supply to a patient via a ventilator breathing circuit;a plurality of sensors adapted to connect with at least one of the pressure generating system, the patient, and the ventilator breathing circuit, wherein the plurality of sensors monitor a plurality of parameters to generate sensor output;a movement module, the movement module determines a patient move from a first location to a second location based on at least the sensor output, wherein the first location and the second location are not the same;an operator interface for receiving confirmation of an intended patient move by an operator;a status module, the status module in response to the intended patient move determines a disconnection status of a plurality of hoses based on at least the sensor output;a notification module, the notification module determines a movement notification based on the disconnection statuses from the status module,wherein the movement notification includes a list of the disconnection status for each hose of the plurality of hoses; anda display module, the display module displays the movement notification and an indication of whether the patient is ready for movement based on the disconnection status for each hose of the plurality of hoses.
  • 2. The medical ventilator system of claim 1, wherein the operator interface and the display module are a graphical user interface.
  • 3. The medical ventilator system of claim 1, wherein the status module determines that the disconnection status for at least one of the plurality of hoses is connected, and wherein the movement notification informs the operator that the patient is not ready for movement from the first location to the second location based on the at least one of the plurality of hoses being connected.
  • 4. The medical ventilator system of claim 1, wherein the display module is a remote display module.
  • 5. The medical ventilator system of claim 1, wherein the status module determines that the disconnection status for each of the plurality of hoses is disconnected, and wherein the movement notification informs the operator that the patient is ready for movement from the first location to the second location based on each of the plurality of hoses being disconnected.
  • 6. The medical ventilator system of claim 1, wherein the movement module further determines a reconnection of the patient to the medical ventilator system after the move from the first location to the second location based on at least the sensor output and a confirmation of an intended reconnection by the operator, wherein the status module in response to the intended reconnection further determines a connection status of each of the plurality of hoses based on at least the sensor output,wherein the notification module further determines a connection notification based the connection statuses from the status module,wherein the display module displays the connection notification.
  • 7. The medical ventilator system of claim 6, wherein the connection notification includes a list of the connection status for each hose of the plurality of hoses.
  • 8. The medical ventilator system of claim 6, wherein the status module determines that the connection status for at least one of the plurality of hoses is disconnected, and wherein the movement notification informs the operator that the patient is not ready for ventilation based on the at least one of the plurality of hoses being disconnected.
  • 9. The medical ventilator system of claim 6, wherein the status module determines that the connection status for each of the plurality of hoses is connected, and wherein the movement notification informs the operator that the patient is ready for ventilation based on each of the plurality of hoses being connected.
  • 10. A medical ventilator system, comprising: a pressure generating system, the pressure generating system adapted to control a flow of gas from a gas supply to a patient via a ventilator breathing circuit;a plurality of sensors adapted to connect with at least one of the pressure generating system, the patient, and the ventilator breathing circuit, wherein the plurality of sensors monitor a plurality of parameters to generate sensor output;a movement module, the movement module determines a reconnection of the patient to the medical ventilator system by a caregiver after a move from a first location to a second location based on at least the sensor output, wherein the first location and the second location are not the same;an operator interface for receiving a confirmation of an intended reconnection by caregiver;a status module, the status module in response to the intended reconnection determines a connection status of each hose of a plurality of hoses based on at least one of the sensor output;a notification module, the notification module determines a connection notification based the connection statuses from the status module; anda display module, the display module displays the connection notification and an indication of whether the patient is ready for reconnection based on the connection status for each hose of the plurality of hoses.
  • 11. The medical ventilator system of claim 10, wherein the connection notification includes a list of the connection status for each hose of the plurality of hoses.
  • 12. The medical ventilator system of claim 11, wherein the status module determines that the connection status for at least one of the plurality of hoses is disconnected, and wherein movement module a movement notification informs the caregiver that the patient is not ready for ventilation based on the at least one of the plurality of hoses being disconnected.
  • 13. The medical ventilator system of claim 11, wherein the status module determines that the connection status for each of the plurality of hoses is connected, and wherein a movement notification informs the caregiver that the patient is ready for ventilation based on each of the plurality of hoses being connected.
  • 14. The medical ventilator system of claim 10, wherein the operator interface and the display module are a graphical user interface.
  • 15. The medical ventilator system of claim 10, wherein the display module is a remote display module.
  • 16. A medical ventilator system, comprising: a pressure generating system, the pressure generating system adapted to control a flow of gas from a gas supply to a patient via a ventilator breathing circuit;a plurality of sensors adapted to connect with at least one of the pressure generating system, the patient, and the ventilator breathing circuit, wherein the plurality of sensors monitor a plurality of parameters to generate sensor output;a movement module, the movement module determines patient move from a first location to a second location based on at least sensor output, wherein the first location and the second location are not the same;an operator interface for receiving confirmation of an intended patient move by an operator;a status module, the status module in response to the intended patient move determines that each hose of a plurality of hoses is disconnected based on the sensor output;a notification module, the notification module creates a movement notification that the patient is ready to be moved from the first location to the second location based on the status module determination; anda display module, the display module displays the movement notification.
  • 17. The medical ventilator system of claim 16, wherein the display module is a remote display module.
  • 18. The medical ventilator system of claim 16, wherein the operator interface and the display module are a graphical user interface.
  • 19. The medical ventilator system of claim 16, wherein the movement notification is at least one of a visual notification, an audio notification, and a vibrational notification.
US Referenced Citations (581)
Number Name Date Kind
4127123 Bird Nov 1978 A
4448192 Stawitcke et al. May 1984 A
4527557 DeVries et al. Jul 1985 A
4637385 Rusz Jan 1987 A
4655213 Rapoport et al. Apr 1987 A
4752089 Carter Jun 1988 A
4773411 Downs Sep 1988 A
4805612 Jensen Feb 1989 A
4805613 Bird Feb 1989 A
4821709 Jensen Apr 1989 A
4921642 LaTorraca May 1990 A
4954799 Kumar Sep 1990 A
4986268 Tehrani Jan 1991 A
5044362 Younes Sep 1991 A
5057822 Hoffman Oct 1991 A
5072737 Goulding Dec 1991 A
5107830 Younes Apr 1992 A
5148802 Sanders et al. Sep 1992 A
5150291 Cummings et al. Sep 1992 A
5161525 Kimm et al. Nov 1992 A
5165398 Bird Nov 1992 A
5237987 Anderson et al. Aug 1993 A
5239995 Estes et al. Aug 1993 A
5271389 Isaza et al. Dec 1993 A
5279549 Ranford Jan 1994 A
5299568 Forare et al. Apr 1994 A
5301921 Kumar Apr 1994 A
5307795 Whitwam et al. May 1994 A
5313937 Zdrojkowski May 1994 A
5319540 Isaza et al. Jun 1994 A
5325861 Goulding Jul 1994 A
5333606 Schneider et al. Aug 1994 A
5339807 Carter Aug 1994 A
5343857 Schneider et al. Sep 1994 A
5351522 Lura Oct 1994 A
5353788 Miles Oct 1994 A
5357946 Kee et al. Oct 1994 A
5368019 LaTorraca Nov 1994 A
5383449 Forare et al. Jan 1995 A
5385142 Brady et al. Jan 1995 A
5390666 Kimm et al. Feb 1995 A
5398676 Press et al. Mar 1995 A
5401135 Stoen et al. Mar 1995 A
5402796 Packer et al. Apr 1995 A
5407174 Kumar Apr 1995 A
5413110 Cummings et al. May 1995 A
5433193 Sanders et al. Jul 1995 A
5438980 Phillips Aug 1995 A
5443075 Holscher Aug 1995 A
5452714 Anderson et al. Sep 1995 A
5492113 Estes et al. Feb 1996 A
5507282 Younes Apr 1996 A
5513631 McWilliams May 1996 A
5517983 Deighan et al. May 1996 A
5520071 Jones May 1996 A
5524615 Power Jun 1996 A
RE35295 Estes et al. Jul 1996 E
5531221 Power Jul 1996 A
5535738 Estes et al. Jul 1996 A
5540222 Younes Jul 1996 A
5542415 Brady Aug 1996 A
5544674 Kelly Aug 1996 A
5549106 Gruenke et al. Aug 1996 A
5551418 Estes et al. Sep 1996 A
5572993 Kurome et al. Nov 1996 A
5582163 Bonassa Dec 1996 A
5596984 O'Mahoney et al. Jan 1997 A
5598838 Servidio et al. Feb 1997 A
5630411 Holscher May 1997 A
5632269 Zdrojkowski May 1997 A
5632270 O'Mahoney et al. May 1997 A
5645048 Brodsky et al. Jul 1997 A
5660171 Kimm et al. Aug 1997 A
5664560 Merrick et al. Sep 1997 A
5664562 Bourdon Sep 1997 A
5671767 Kelly Sep 1997 A
5672041 Ringdahl et al. Sep 1997 A
5673689 Power Oct 1997 A
5692497 Schnitzer et al. Dec 1997 A
5694923 Hete et al. Dec 1997 A
5704345 Berthon-Jones Jan 1998 A
5715812 Deighan et al. Feb 1998 A
5720278 Lachmann et al. Feb 1998 A
5735267 Tobia Apr 1998 A
5743253 Castor et al. Apr 1998 A
5752506 Richardson May 1998 A
5762480 Adahan Jun 1998 A
5765558 Psaros et al. Jun 1998 A
5771884 Yarnall et al. Jun 1998 A
5782233 Niemi et al. Jul 1998 A
5791339 Winter Aug 1998 A
5794615 Estes Aug 1998 A
5794986 Gansel et al. Aug 1998 A
5803065 Zdrojkowski et al. Sep 1998 A
5813399 Isaza et al. Sep 1998 A
5823187 Estes et al. Oct 1998 A
5826575 Lall Oct 1998 A
5829441 Kidd et al. Nov 1998 A
5864938 Gansel et al. Feb 1999 A
5865168 Isaza Feb 1999 A
5868133 DeVries et al. Feb 1999 A
5878744 Pfeiffer Mar 1999 A
5881717 Isaza Mar 1999 A
5881723 Wallace et al. Mar 1999 A
5884622 Younes Mar 1999 A
5884623 Winter Mar 1999 A
5901704 Estes et al. May 1999 A
5904141 Estes et al. May 1999 A
5909731 O'Mahony et al. Jun 1999 A
5915379 Wallace et al. Jun 1999 A
5915380 Wallace et al. Jun 1999 A
5915382 Power Jun 1999 A
5918597 Jones et al. Jul 1999 A
5921238 Bourdon Jul 1999 A
5927274 Servidio et al. Jul 1999 A
5934274 Merrick et al. Aug 1999 A
5957130 Krahbichler et al. Sep 1999 A
5970975 Estes et al. Oct 1999 A
5975081 Hood et al. Nov 1999 A
6024089 Wallace et al. Feb 2000 A
6029664 Zdrojkowski et al. Feb 2000 A
6029665 Berthon-Jones Feb 2000 A
6041777 Faithfull et al. Mar 2000 A
6041780 Richard et al. Mar 2000 A
6047860 Sanders Apr 2000 A
6076523 Jones et al. Jun 2000 A
6105575 Estes et al. Aug 2000 A
6116240 Merrick et al. Sep 2000 A
6116464 Sanders Sep 2000 A
6123073 Schlawin et al. Sep 2000 A
6135105 Lampotang et al. Oct 2000 A
6135106 Dirks et al. Oct 2000 A
6142150 O'Mahony Nov 2000 A
6161539 Winter Dec 2000 A
6196222 Heinonen et al. Mar 2001 B1
6209540 Sugiura et al. Apr 2001 B1
6213119 Brydon et al. Apr 2001 B1
6220245 Takabayashi et al. Apr 2001 B1
6240919 MacDonald et al. Jun 2001 B1
6253765 Hognelid et al. Jul 2001 B1
6257234 Sun Jul 2001 B1
6269812 Wallace et al. Aug 2001 B1
6273444 Power Aug 2001 B1
6283119 Bourdon Sep 2001 B1
6302105 Wickham et al. Oct 2001 B1
6302851 Gedeon Oct 2001 B1
6305372 Servidio Oct 2001 B1
6305373 Wallace et al. Oct 2001 B1
6305374 Zdrojkowski et al. Oct 2001 B1
6321748 O'Mahoney Nov 2001 B1
6325785 Babkes et al. Dec 2001 B1
6345619 Finn Feb 2002 B1
6357438 Hansen Mar 2002 B1
6360745 Wallace et al. Mar 2002 B1
6369838 Wallace Apr 2002 B1
6371113 Tobia et al. Apr 2002 B1
6412483 Jones et al. Jul 2002 B1
6427689 Estes et al. Aug 2002 B1
6431169 do Val et al. Aug 2002 B1
6439229 Du et al. Aug 2002 B1
6467477 Frank et al. Oct 2002 B1
6467478 Merrick et al. Oct 2002 B1
6484719 Berthon-Jones Nov 2002 B1
6526970 DeVries et al. Mar 2003 B2
6532956 Hill Mar 2003 B2
6532957 Berthon-Jones Mar 2003 B2
6539940 Zdrojkowski et al. Apr 2003 B2
6546930 Emerson et al. Apr 2003 B1
6553991 Isaza Apr 2003 B1
6553992 Berthon-Jones et al. Apr 2003 B1
6557553 Borrello May 2003 B1
6557554 Sugiura May 2003 B1
6571795 Bourdon Jun 2003 B2
6575163 Berthon-Jones Jun 2003 B1
6578575 Jonson Jun 2003 B1
6581597 Sugiura Jun 2003 B2
6588422 Berthon-Jones et al. Jul 2003 B1
6595213 Bennarsten Jul 2003 B2
6609517 Estes et al. Aug 2003 B1
6612995 Leonhardt et al. Sep 2003 B2
6622726 Du Sep 2003 B1
6626175 Jafari et al. Sep 2003 B2
6629527 Estes et al. Oct 2003 B1
6629934 Mault et al. Oct 2003 B2
6631716 Robinson et al. Oct 2003 B1
6640806 Yurko Nov 2003 B2
6644310 Delache et al. Nov 2003 B1
6651657 Manigel et al. Nov 2003 B1
6668824 Isaza et al. Dec 2003 B1
6672300 Grant Jan 2004 B1
6675797 Berthon-Jones Jan 2004 B1
6675801 Wallace et al. Jan 2004 B2
6679258 Strom Jan 2004 B1
6688307 Berthon-Jones Feb 2004 B2
6708691 Hayek Mar 2004 B1
6718974 Moberg Apr 2004 B1
6725447 Gilman et al. Apr 2004 B1
6739337 Isaza May 2004 B2
6755193 Berthon-Jones et al. Jun 2004 B2
6758217 Younes Jul 2004 B1
6761167 Nadjafizadeh et al. Jul 2004 B1
6761168 Nadjafizadeh et al. Jul 2004 B1
6796305 Banner et al. Sep 2004 B1
6810876 Berthon-Jones Nov 2004 B2
6814074 Nadjafizadeh et al. Nov 2004 B1
6823866 Jafari et al. Nov 2004 B2
6837242 Younes Jan 2005 B2
6837244 Yagi et al. Jan 2005 B2
6854462 Berthon-Jones et al. Feb 2005 B2
6860858 Green et al. Mar 2005 B2
6866040 Bourdon Mar 2005 B1
6877511 DeVries et al. Apr 2005 B2
6899103 Hood et al. May 2005 B1
6910480 Berthon-Jones Jun 2005 B1
6915803 Berthon-Jones et al. Jul 2005 B2
6920878 Sinderby et al. Jul 2005 B2
6932084 Estes et al. Aug 2005 B2
6948497 Zdrojkowski et al. Sep 2005 B2
6960854 Nadjafizadeh et al. Nov 2005 B2
6976487 Melker et al. Dec 2005 B1
6997881 Green et al. Feb 2006 B2
7000610 Bennarsten et al. Feb 2006 B2
7000612 Jafari et al. Feb 2006 B2
7013892 Estes et al. Mar 2006 B2
7021310 Sinderby et al. Apr 2006 B1
7032589 Kerechanin, II et al. Apr 2006 B2
7036504 Wallace et al. May 2006 B2
7040321 Göbel May 2006 B2
7055522 Berthon-Jones Jun 2006 B2
7066173 Banner et al. Jun 2006 B2
7077131 Hansen Jul 2006 B2
RE39225 Isaza et al. Aug 2006 E
7096866 Be'eri et al. Aug 2006 B2
7100607 Zdrojkowski et al. Sep 2006 B2
7100609 Berthon-Jones et al. Sep 2006 B2
7117438 Wallace et al. Oct 2006 B2
7137389 Berthon-Jones Nov 2006 B2
7152598 Morris et al. Dec 2006 B2
7162296 Leonhardt et al. Jan 2007 B2
7210478 Banner et al. May 2007 B2
7225013 Geva et al. May 2007 B2
7246618 Habashi Jul 2007 B2
7255103 Bassin Aug 2007 B2
7267121 Ivri Sep 2007 B2
7270126 Wallace et al. Sep 2007 B2
7270128 Berthon-Jones et al. Sep 2007 B2
7296573 Estes et al. Nov 2007 B2
7305987 Schöller et al. Dec 2007 B2
7320320 Berthon-Jones Jan 2008 B2
7334578 Biondi et al. Feb 2008 B2
7367337 Berthon-Jones et al. May 2008 B2
7369757 Farbarik May 2008 B2
7370650 Nadjafizadeh et al. May 2008 B2
RE40402 Leonhardt et al. Jun 2008 E
7428902 Du et al. Sep 2008 B2
7439856 Weiner et al. Oct 2008 B2
7455717 Sprinkle Nov 2008 B2
7460959 Jafari Dec 2008 B2
7475685 Dietz et al. Jan 2009 B2
7484508 Younes Feb 2009 B2
7487773 Li Feb 2009 B2
7509957 Duquette et al. Mar 2009 B2
7516742 Stenzler et al. Apr 2009 B2
7520279 Berthon-Jones Apr 2009 B2
7533670 Freitag et al. May 2009 B1
7556038 Kirby et al. Jul 2009 B2
7588031 Truschel et al. Sep 2009 B2
7610914 Bolam et al. Nov 2009 B2
7617824 Doyle Nov 2009 B2
7621270 Morris et al. Nov 2009 B2
7621271 Brugnoli Nov 2009 B2
7644713 Berthon-Jones Jan 2010 B2
7654802 Crawford, Jr. et al. Feb 2010 B2
7672720 Heath Mar 2010 B2
7678058 Patangay et al. Mar 2010 B2
7678061 Lee et al. Mar 2010 B2
7682312 Lurie Mar 2010 B2
7690378 Turcott Apr 2010 B1
7694677 Tang Apr 2010 B2
7697990 Ujhazy et al. Apr 2010 B2
7708016 Zaiser et al. May 2010 B2
7717110 Kane et al. May 2010 B2
7717111 Schneider et al. May 2010 B2
7717113 Andrieux May 2010 B2
7722546 Madaus et al. May 2010 B2
D618356 Ross Jun 2010 S
7727160 Green et al. Jun 2010 B2
7730886 Berthon-Jones Jun 2010 B2
7751894 Freeberg Jul 2010 B1
7763097 Federspiel et al. Jul 2010 B2
7770578 Estes et al. Aug 2010 B2
7784461 Figueiredo et al. Aug 2010 B2
7793659 Breen Sep 2010 B2
7802571 Tehrani Sep 2010 B2
7810496 Estes et al. Oct 2010 B2
7810497 Pittman et al. Oct 2010 B2
7819815 Younes Oct 2010 B2
7823588 Hansen Nov 2010 B2
7849854 DeVries et al. Dec 2010 B2
7855716 McCreary et al. Dec 2010 B2
7866318 Bassin Jan 2011 B2
7874293 Gunaratnam et al. Jan 2011 B2
D632796 Ross et al. Feb 2011 S
D632797 Ross et al. Feb 2011 S
7891354 Farbarik Feb 2011 B2
7893560 Carter Feb 2011 B2
7914459 Green et al. Mar 2011 B2
D638852 Skidmore et al. May 2011 S
7934499 Berthon-Jones May 2011 B2
7984714 Hausmann et al. Jul 2011 B2
D643535 Ross et al. Aug 2011 S
7992557 Nadjafizadeh et al. Aug 2011 B2
8001967 Wallace et al. Aug 2011 B2
D645158 Sanchez et al. Sep 2011 S
8021310 Sanborn et al. Sep 2011 B2
D649157 Skidmore et al. Nov 2011 S
D652521 Ross et al. Jan 2012 S
D652936 Ross et al. Jan 2012 S
D653749 Winter et al. Feb 2012 S
8113062 Graboi et al. Feb 2012 B2
D655405 Winter et al. Mar 2012 S
D655809 Winter et al. Mar 2012 S
D656237 Sanchez et al. Mar 2012 S
8181648 Perine et al. May 2012 B2
8210173 Vandine Jul 2012 B2
8210174 Farbarik Jul 2012 B2
8240684 Ross et al. Aug 2012 B2
8267085 Jafari et al. Sep 2012 B2
8272379 Jafari et al. Sep 2012 B2
8272380 Jafari et al. Sep 2012 B2
8302600 Andrieux et al. Nov 2012 B2
8302602 Andrieux et al. Nov 2012 B2
20020013517 West et al. Jan 2002 A1
20020183979 Wildman Dec 2002 A1
20050035862 Wildman et al. Feb 2005 A1
20050039748 Andrieux Feb 2005 A1
20050139212 Bourdon Jun 2005 A1
20060155336 Heath Jul 2006 A1
20060174884 Habashi Aug 2006 A1
20060235324 Lynn Oct 2006 A1
20060249148 Younes Nov 2006 A1
20060278223 Younes Dec 2006 A1
20070000494 Banner et al. Jan 2007 A1
20070017515 Wallace et al. Jan 2007 A1
20070028921 Banner et al. Feb 2007 A1
20070044796 Zdrojkowski et al. Mar 2007 A1
20070044799 Hete et al. Mar 2007 A1
20070077200 Baker Apr 2007 A1
20070215146 Douglas et al. Sep 2007 A1
20070227537 Bemister et al. Oct 2007 A1
20070272241 Sanborn et al. Nov 2007 A1
20070284361 Nadjafizadeh et al. Dec 2007 A1
20080011301 Qian Jan 2008 A1
20080017198 Ivri Jan 2008 A1
20080041380 Wallace Feb 2008 A1
20080045813 Phuah et al. Feb 2008 A1
20080053441 Gottlib et al. Mar 2008 A1
20080053443 Estes et al. Mar 2008 A1
20080053444 Estes et al. Mar 2008 A1
20080072896 Setzer et al. Mar 2008 A1
20080072901 Habashi Mar 2008 A1
20080072902 Setzer et al. Mar 2008 A1
20080078390 Milne et al. Apr 2008 A1
20080083644 Janbakhsh et al. Apr 2008 A1
20080092894 Nicolazzi et al. Apr 2008 A1
20080097234 Nicolazzi et al. Apr 2008 A1
20080110461 Mulqueeny et al. May 2008 A1
20080142012 Farnsworth et al. Jun 2008 A1
20080163872 Negele et al. Jul 2008 A1
20080185002 Berthon-Jones et al. Aug 2008 A1
20080196720 Kollmeyer et al. Aug 2008 A1
20080202528 Carter et al. Aug 2008 A1
20080216832 Carter et al. Sep 2008 A1
20080216833 Pujol et al. Sep 2008 A1
20080234595 Ranieri et al. Sep 2008 A1
20080257349 Hedner et al. Oct 2008 A1
20080283061 Tiedje Nov 2008 A1
20080295839 Habashi Dec 2008 A1
20080302363 Kroupa Dec 2008 A1
20090020120 Schatzl et al. Jan 2009 A1
20090038616 Mulcahy et al. Feb 2009 A1
20090056719 Newman, Jr. Mar 2009 A1
20090084381 DeVries et al. Apr 2009 A1
20090095298 Gunaratnam et al. Apr 2009 A1
20090107502 Younes Apr 2009 A1
20090114224 Handzsuj et al. May 2009 A1
20090159082 Eger Jun 2009 A1
20090165795 Nadjafizadeh et al. Jul 2009 A1
20090171176 Andersohn Jul 2009 A1
20090173347 Berthon-Jones Jul 2009 A1
20090188502 Tiedje Jul 2009 A1
20090199855 Davenport Aug 2009 A1
20090205661 Stephenson et al. Aug 2009 A1
20090205663 Vandine et al. Aug 2009 A1
20090221926 Younes Sep 2009 A1
20090229611 Martin et al. Sep 2009 A1
20090241951 Jafari et al. Oct 2009 A1
20090241952 Nicolazzi et al. Oct 2009 A1
20090241953 Vandine et al. Oct 2009 A1
20090241955 Jafari et al. Oct 2009 A1
20090241956 Baker, Jr. et al. Oct 2009 A1
20090241957 Baker, Jr. Oct 2009 A1
20090241958 Baker, Jr. Oct 2009 A1
20090241962 Jafari et al. Oct 2009 A1
20090247891 Wood Oct 2009 A1
20090301486 Masic Dec 2009 A1
20090301487 Masic Dec 2009 A1
20090301490 Masic Dec 2009 A1
20090301491 Masic et al. Dec 2009 A1
20090313046 Badgett Dec 2009 A1
20100001838 Miodownik Jan 2010 A1
20100011307 Desfossez et al. Jan 2010 A1
20100024820 Bourdon Feb 2010 A1
20100051026 Graboi Mar 2010 A1
20100051029 Jafari et al. Mar 2010 A1
20100065055 Morris et al. Mar 2010 A1
20100065057 Berthon-Jones Mar 2010 A1
20100069761 Karst et al. Mar 2010 A1
20100071689 Thiessen Mar 2010 A1
20100071692 Porges Mar 2010 A1
20100071695 Thiessen Mar 2010 A1
20100071696 Jafari Mar 2010 A1
20100071697 Jafari et al. Mar 2010 A1
20100078017 Andrieux et al. Apr 2010 A1
20100078026 Andrieux et al. Apr 2010 A1
20100081119 Jafari et al. Apr 2010 A1
20100081955 Wood, Jr. et al. Apr 2010 A1
20100137380 Maybaum Jun 2010 A1
20100137723 Patangay et al. Jun 2010 A1
20100137729 Pierry et al. Jun 2010 A1
20100137730 Hatlestad Jun 2010 A1
20100139660 Adahan Jun 2010 A1
20100145201 Westbrook et al. Jun 2010 A1
20100147303 Jafari et al. Jun 2010 A1
20100152553 Ujhazy et al. Jun 2010 A1
20100152560 Turcott Jun 2010 A1
20100170512 Kuypers et al. Jul 2010 A1
20100174200 Wood et al. Jul 2010 A1
20100174207 Lee et al. Jul 2010 A1
20100180898 Schneider et al. Jul 2010 A1
20100186741 Aylsworth et al. Jul 2010 A1
20100186742 Sherman et al. Jul 2010 A1
20100186743 Kane et al. Jul 2010 A1
20100186744 Andrieux Jul 2010 A1
20100191076 Lewicke et al. Jul 2010 A1
20100191137 Brada et al. Jul 2010 A1
20100192094 Jeha et al. Jul 2010 A1
20100198086 Kuo et al. Aug 2010 A1
20100199991 Koledin Aug 2010 A1
20100210924 Parthasarathy et al. Aug 2010 A1
20100218764 Kwok et al. Sep 2010 A1
20100218765 Jafari et al. Sep 2010 A1
20100218766 Milne Sep 2010 A1
20100218767 Jafari et al. Sep 2010 A1
20100218773 Thornton Sep 2010 A1
20100222692 McCawley et al. Sep 2010 A1
20100224190 Tilley et al. Sep 2010 A1
20100228133 Averina et al. Sep 2010 A1
20100228134 Martikka et al. Sep 2010 A1
20100229863 Enk Sep 2010 A1
20100234750 Ariav et al. Sep 2010 A1
20100236553 Jafari et al. Sep 2010 A1
20100236554 Prete Sep 2010 A1
20100236555 Jafari et al. Sep 2010 A1
20100241009 Petkie Sep 2010 A1
20100242961 Mougel et al. Sep 2010 A1
20100242965 Berthon-Jones Sep 2010 A1
20100249630 Droitcour et al. Sep 2010 A1
20100249631 Aoki et al. Sep 2010 A1
20100249632 Lee et al. Sep 2010 A1
20100249633 Droitcour et al. Sep 2010 A1
20100252037 Wondka et al. Oct 2010 A1
20100252039 Cipollone et al. Oct 2010 A1
20100252040 Kapust et al. Oct 2010 A1
20100252041 Kapust et al. Oct 2010 A1
20100252042 Kapust et al. Oct 2010 A1
20100252043 Freitag Oct 2010 A1
20100256463 Greenwald et al. Oct 2010 A1
20100258116 Federspiel et al. Oct 2010 A1
20100258124 Madaus et al. Oct 2010 A1
20100258126 Ujhazy et al. Oct 2010 A1
20100258127 HK Oct 2010 A1
20100262032 Freeberg Oct 2010 A1
20100275920 Tham et al. Nov 2010 A1
20100282259 Figueiredo et al. Nov 2010 A1
20100288279 Seiver et al. Nov 2010 A1
20100288283 Campbell et al. Nov 2010 A1
20100292544 Sherman Nov 2010 A1
20100300446 Nicolazzi et al. Dec 2010 A1
20110011400 Gentner et al. Jan 2011 A1
20110017214 Tehrani Jan 2011 A1
20110023878 Thiessen Feb 2011 A1
20110023879 Vandine et al. Feb 2011 A1
20110023880 Thiessen Feb 2011 A1
20110023881 Thiessen Feb 2011 A1
20110029910 Thiessen Feb 2011 A1
20110036352 Estes et al. Feb 2011 A1
20110041849 Chen et al. Feb 2011 A1
20110041850 Vandine et al. Feb 2011 A1
20110126829 Carter et al. Jun 2011 A1
20110126832 Winter et al. Jun 2011 A1
20110126834 Winter et al. Jun 2011 A1
20110126835 Winter et al. Jun 2011 A1
20110126836 Winter et al. Jun 2011 A1
20110126837 Winter et al. Jun 2011 A1
20110128008 Carter Jun 2011 A1
20110132361 Sanchez Jun 2011 A1
20110132362 Sanchez Jun 2011 A1
20110132364 Ogilvie et al. Jun 2011 A1
20110132365 Patel et al. Jun 2011 A1
20110132366 Ogilvie et al. Jun 2011 A1
20110132367 Patel Jun 2011 A1
20110132368 Sanchez et al. Jun 2011 A1
20110132369 Sanchez Jun 2011 A1
20110132371 Sanchez et al. Jun 2011 A1
20110133936 Sanchez et al. Jun 2011 A1
20110138308 Palmer et al. Jun 2011 A1
20110138309 Skidmore et al. Jun 2011 A1
20110138311 Palmer Jun 2011 A1
20110138315 Vandine et al. Jun 2011 A1
20110138323 Skidmore et al. Jun 2011 A1
20110146681 Jafari et al. Jun 2011 A1
20110146683 Jafari et al. Jun 2011 A1
20110154241 Skidmore et al. Jun 2011 A1
20110175728 Baker, Jr. Jul 2011 A1
20110196251 Jourdain et al. Aug 2011 A1
20110209702 Vuong et al. Sep 2011 A1
20110209704 Jafari et al. Sep 2011 A1
20110209707 Terhark Sep 2011 A1
20110213215 Doyle et al. Sep 2011 A1
20110230780 Sanborn et al. Sep 2011 A1
20110249006 Wallace et al. Oct 2011 A1
20110259330 Jafari et al. Oct 2011 A1
20110259332 Sanchez et al. Oct 2011 A1
20110259333 Sanchez et al. Oct 2011 A1
20110265024 Leone et al. Oct 2011 A1
20110271960 Milne et al. Nov 2011 A1
20110273299 Milne et al. Nov 2011 A1
20120000467 Milne et al. Jan 2012 A1
20120000468 Milne et al. Jan 2012 A1
20120000469 Milne et al. Jan 2012 A1
20120000470 Milne et al. Jan 2012 A1
20120029317 Doyle et al. Feb 2012 A1
20120030611 Skidmore Feb 2012 A1
20120060841 Crawford, Jr. et al. Mar 2012 A1
20120071729 Doyle et al. Mar 2012 A1
20120090611 Graboi et al. Apr 2012 A1
20120096381 Milne et al. Apr 2012 A1
20120133519 Milne et al. May 2012 A1
20120136222 Doyle et al. May 2012 A1
20120137249 Milne et al. May 2012 A1
20120137250 Milne et al. May 2012 A1
20120167885 Masic et al. Jul 2012 A1
20120185792 Kimm et al. Jul 2012 A1
20120197578 Vig et al. Aug 2012 A1
20120197580 Vij et al. Aug 2012 A1
20120211008 Perine et al. Aug 2012 A1
20120216809 Milne et al. Aug 2012 A1
20120216810 Jafari et al. Aug 2012 A1
20120216811 Kimm et al. Aug 2012 A1
20120226444 Milne et al. Sep 2012 A1
20120247471 Masic et al. Oct 2012 A1
20120272960 Milne Nov 2012 A1
20120272961 Masic et al. Nov 2012 A1
20120272962 Doyle et al. Nov 2012 A1
20120277616 Sanborn et al. Nov 2012 A1
20120279501 Wallace et al. Nov 2012 A1
20120304995 Kauc Dec 2012 A1
20120304997 Jafari et al. Dec 2012 A1
20130000644 Thiessen Jan 2013 A1
20130006133 Doyle et al. Jan 2013 A1
20130006134 Doyle et al. Jan 2013 A1
20130008443 Thiessen Jan 2013 A1
20130025596 Jafari et al. Jan 2013 A1
20130025597 Doyle et al. Jan 2013 A1
20130032151 Adahan Feb 2013 A1
20130047989 Vandine et al. Feb 2013 A1
20130053717 Vandine et al. Feb 2013 A1
20130074844 Kimm et al. Mar 2013 A1
20130081536 Crawford, Jr. et al. Apr 2013 A1
20130199534 Steinhauer Aug 2013 A1
Foreign Referenced Citations (23)
Number Date Country
982043 Mar 2000 EP
1491227 Dec 2004 EP
858352 Jan 2005 EP
1515767 Aug 2009 EP
WO 9014852 Dec 1990 WO
WO 9214505 Sep 1992 WO
WO 9308857 May 1993 WO
WO 9715343 May 1997 WO
WO 9812965 Apr 1998 WO
WO 9951292 Oct 1999 WO
WO 9962580 Dec 1999 WO
WO 0010634 Mar 2000 WO
WO 0078380 Dec 2000 WO
WO 0100264 Jan 2001 WO
WO 0100265 Jan 2001 WO
WO 0174430 Oct 2001 WO
WO 0228460 Apr 2002 WO
WO 0232488 Apr 2002 WO
WO 03008027 Jan 2003 WO
WO 2004047621 Jun 2004 WO
WO 2005004780 Jan 2005 WO
WO 2007102866 Sep 2007 WO
WO 2007145948 Dec 2007 WO
Non-Patent Literature Citations (4)
Entry
7200 Series Ventilator, Options, and Accessories: Operator's Manual. Nellcor Puritan Bennett, Part No. 22300 A, Sep. 1990, pp. 1-196.
7200 Ventilatory System: Addendum/Errata. Nellcor Puritan Bennett, Part No. 4-023576-00, Rev. A, Apr. 1998, pp. 1-32.
800 Operator's and Technical Reference Manual. Series Ventilator System, Nellcor Puritan Bennett, Part No. 4-070088-00, Rev. L, Aug. 2010, pp. 1-476.
840 Operator's and Technical Reference Manual. Ventilator System, Nellcor Puritan Bennett, Part No. 4-075609-00, Rev. G, Oct. 2006, pp. 1-424.
Related Publications (1)
Number Date Country
20140251328 A1 Sep 2014 US