The present invention generally relates to methods and systems for managing air traffic. More particularly, aspects of this invention include methods and systems for negotiating and processing air traffic trajectory modification requests received from multiple aircraft, and methods and systems for scheduling air traffic arriving at airports.
Trajectory Based Operations (TBO) is a key component of both the US Next Generation Air Transport System (NextGen) and Europe's Single European Sky ATM Research (SESAR). There is a significant amount of effort underway in both programs to advance this concept. Aircraft trajectory synchronization and trajectory negotiation are key capabilities in existing TBO concepts, and provide the framework to improve the efficiency of airspace operations. Trajectory synchronization and negotiation implemented in TBO also enable airspace users (including flight operators (airlines), flight dispatchers, flight deck personnel, Unmanned Aerial Systems, and military users) to regularly fly trajectories close to their preferred (user-preferred) trajectories, enabling business objectives, including fuel and time savings, wind-optimal routing, and direction to go around weather cells, to be incorporated into TBO concepts. As such, there is a desire to generate technologies that support trajectory synchronization and negotiation, which in turn are able to facilitate and accelerate the adoption of TBO.
As used herein, the trajectory of an aircraft is a time-ordered sequence of three-dimensional positions an aircraft follows from takeoff to landing, and can be described mathematically by a time-ordered set of trajectory vectors. In contrast, the flight plan of an aircraft will be referred to as documents that are filed by a pilot or a flight dispatcher with the local civil aviation authority prior to departure, and include such information as departure and arrival points, estimated time en route, and other general information that can be used by air traffic control (ATC) to provide tracking and routing services. Included in the concept of flight trajectory is that there is a trajectory path having a centerline, and position and time uncertainties surrounding this centerline. Trajectory synchronization may be defined as a process of resolving discrepancies between different representations of an aircraft's trajectory, such that any remaining differences are operationally insignificant. What constitutes an operationally insignificant difference depends on the intended use of the trajectory. Relatively larger differences may be acceptable for strategic demand estimates, whereas the differences must be much smaller for use in tactical separation management. An overarching goal of TBO is to reduce the uncertainty associated with the prediction of an aircraft's future location through use of an accurate four-dimensional trajectory (4DT) in space (latitude, longitude, altitude) and time. The use of precise 4DTs has the ability to dramatically reduce the uncertainty of an aircraft's future flight path in terms of the ability to predict the aircraft's future spatial position (latitude, longitude, and altitude) relative to time, including the ability to predict arrival times at a geographic location (referred to as metering fix, metering fix, arrival fix, or cornerpost) for a group of aircraft that are approaching their arrival airport. Such a capability represents a significant change from the present “clearance-based control” approach (which depends on observations of an aircraft's current state) to a trajectory-based control approach, with the goal of allowing an aircraft to fly along a user-preferred trajectory. Thus, a critical enabler for TBO is the availability of an accurate, planned trajectory (or possibly multiple trajectories), providing ATC with valuable information to allow more effective use of airspace.
Generally, trajectory negotiation is a process by which information is exchanged to balance the user preferences with safety, capacity and business objectives and constraints of operators or Air Navigation Service Providers (ANSPs). Although trajectory negotiation is a key component of existing TBO concepts, there are many different viewpoints on what trajectory negotiation is and involves. Depending on the time-frame and the desired outcome of the negotiation, different actors will be involved in the negotiation, and different information will be exchanged. Generally, the concept of trajectory negotiation has been described as an aircraft operator's desire to negotiate an optimal or preferred trajectory, balanced with the desire to ensure safe separation of aircraft and optimal sequencing of those aircraft during departure and arrival, while providing a framework of equity. Trajectory negotiation concepts also allow for airspace users to submit trajectory preferences to resolve conflicts, including proposed modifications to an aircraft's 4D trajectory (lateral route, altitude and speed).
In view of the above, TBO concepts require the generation, negotiation, communication, and management of 4DTs from individual aircraft and aggregate flows representing the trajectories of multiple aircraft within a given airspace. Trajectory management of multiple aircraft can be most reliably achieved through automated assistance to negotiate pilot trajectory change requests with properly equipped aircraft operators, allowing for the negotiation of four-dimensional trajectories between the pilot/operator of an aircraft and the ANSP. Trajectory negotiation has been described as having four phases: pre-negotiation, negotiation, agreement, and execution. See, for example, Joint Planning and Development Office, October, 2008, NextGen Avionics Roadmap, Version 1. In pre-negotiation, the user-preferred trajectories of all relevant aircraft are known or inferred by an air traffic management (ATM) system. Any conflicts between these user-preferred trajectories or with airspace constraints leads to the negotiation phase. In this phase, modifications to one or more user-preferred trajectories may be negotiated between the flight operator and the ANSP to make best of use of the airspace from the ANSP perspective while minimizing the deviation from the operator's objectives for that flight. The agreement phase results in a negotiated 4DT for the aircraft, at least a portion of which is cleared by the ANSP. In the execution phase, the aircraft flies the agreed and cleared 4DT, and the ANSP monitors adherence to this 4DT. Failure of an aircraft to adhere to the negotiated trajectory, or changes in circumstances (for example, an emergency situation or pop-up flight) can result in reinitiation of the negotiation phase. For use in the negotiation and agreement phases, several air-ground communication protocols and avionics performance standards exist or are under development, for example, controller pilot data link communication (CPDLC) and automatic dependant surveillance-contract (ADSC) technologies.
Related to concepts of air traffic management are various types of Arrival Managers (AMAN) known in the art, nonlimiting examples of which include systems known as Traffic Management Advisor (TMA) and En-Route Decent Advisor (EDA), which are part of the National Aeronautics and Space Administration's (NASA) Center-TRACON Automation System (CTAS) currently under development. TMA is discussed in H. N. Swenson et al., “Design and Operational Evaluation of the Traffic Management Advisor at the Fort Worth Air Route Traffic Control Center,” 1st USA/Europe Air Traffic Management Research & Development Seminar, Saclay, France (Jun. 17-19, 1997), and EDA is discussed in R. A. Coppenbarger et al., “Design and Development of the En Route Descent Advisor (EDA) for Conflict-Free Arrival Metering,” Proceedings of the AIAA Guidance, Navigation, and Control Conference (2004). The primary goal of TMA is to schedule arrivals by assigning to each aircraft a scheduled time-of-arrival (STA) at metering fixes. TMA computes the delay needed as the difference between the STA and the estimated time-of-arrival (ETA). The primary goal of EDA is to compute advisories for air traffic controllers (ATCo) to help deliver aircraft to an arrival-metering fix in conformance with STAs, while preventing separation conflicts with other aircraft along the arrival trajectory. EDA primarily makes use of speed adjustments and then, if necessary, adds lateral distance to absorb more delay via path stretches. EDA also incorporates conflict detection and conflict resolution through simultaneous adjustments to both cruise and decent speeds. However, user preferences are not incorporated into the EDA concept.
Several significant gaps remain in implementing TBO, due in part to the lack of validation activities and benefits assessments. In response, the General Electric Company and the Lockheed Martin Corporation have created a Joint Strategic Research Initiative (JSRI), which aims to generate technologies that accelerate adoption of TBO in the Air Traffic Management (ATM) realm. Efforts of the JSRI have included the use of GE's Flight Management System (FMS) and aircraft expertise, Lockheed Martin's ATC domain expertise, including the En Route Automation Modernization (ERAM) and the Common Automated Radar Terminal System (Common ARTS), to explore and evaluate trajectory negotiation and synchronization concepts. Ground automation systems typically provide a four-dimensional trajectory model capable of predicting the paths of aircraft in time and space, providing information that is required for planning and performing critical air traffic control and traffic flow management functions, such as scheduling, conflict prediction, separation management and conformance monitoring. On board an aircraft, the FMS can use a trajectory for closed-loop guidance by way of the automatic flight control system (AFCS) of the aircraft. Many modern FMSs are also capable of meeting a required time-of-arrival (RTA), which may be assigned to an aircraft by ground systems.
Notwithstanding the above technological capabilities, questions remain related to the trajectory negotiation process, including the manner in which parameters and constraints are exchanged that affect the 4D trajectories of a group of aircraft in a given air space, and how to arrive at negotiated trajectories that are as close to user-preferred trajectories (in terms of business objectives) as possible while fully honoring all ATC objectives (safe separation, traffic flow, etc.).
The present invention provides a method and system suitable for negotiating air traffic comprising multiple aircraft that are within an airspace surrounding an airport and scheduled to arrive at a point, such as a runway of the airport or at an intermediate metering fix.
According to a first aspect of the invention, the method includes using an air traffic control (ATC) system to monitor the altitude, speed and lateral route of each aircraft of the multiple aircraft as the aircraft enters the airspace, generating with the ATC system a scheduled time-of-arrival (STA) for each of the multiple aircraft at least one metering fix point associated with the airport, storing the STA for each aircraft, receiving or inferring data with the ATC system for at least a first of the multiple aircraft wherein the data comprise a minimum fuel-cost speed and predicted trajectory parameters of the first aircraft and the predicted trajectory parameters comprise predicted altitude, speed and lateral route of the first aircraft based on current values of the existing trajectory parameters of the first aircraft modified by any unintentional modifications thereto, receiving or generating auxiliary data for the first aircraft using the predicted trajectory parameters of the first aircraft wherein the auxiliary data comprise an earliest estimated time-of-arrival (ETAmin) and a latest estimated time-of-arrival (ETAmax) for the first aircraft at the metering fix point, performing a computation with the ATC system to determine if the STA of the first aircraft is in or outside an ETA range bounded by the ETAmin and the ETAmax thereof, transmitting to the first aircraft instructions to ensure that the first aircraft will arrive at the metering fix point at the STA or the ETAmin of the first aircraft, and updating the STA for each aircraft stored in the queue.
Another aspect of the invention is a system adapted to carry out the method described above.
According to yet another aspect of the invention, the system includes means for monitoring of the altitude, speed and lateral route of each aircraft of the multiple aircraft as the aircraft enters the airspace, means for generating a scheduled time-of-arrival (STA) for each of the multiple aircraft at least one metering fix point associated with the airport, means for storing the STA for each aircraft in a queue, means for receiving or inferring data for at least a first of the multiple aircraft wherein the data comprising a minimum fuel-cost speed and predicted trajectory parameters of the first aircraft and the predicted trajectory parameters comprise predicted altitude, speed and lateral route of the first aircraft based on current values of the existing trajectory parameters of the first aircraft modified by any unintentional modifications thereto, means for receiving or generating auxiliary data for the first aircraft using the predicted trajectory parameters of the first aircraft wherein the auxiliary data comprising an earliest estimated time-of-arrival (ETAmin) and a latest estimated time-of-arrival (ETAmax) for the first aircraft at the metering fix point, means for performing a computation to determine if the STA of the first aircraft is in or outside an ETA range bounded by the ETAmin and the ETAmax thereof, transmitting to the first aircraft instructions to ensure that the first aircraft will arrive at the metering fix point at the STA or the ETAmin of the first aircraft, and means for updating the STA for each aircraft stored in the queue, wherein the monitoring means, the STA-generating means, the data receiving or inferring means, and the computation performing means are components of an ATC system that is not located on any of the multiple aircraft.
A technical effect of the invention is that the schedule management method and system can be employed to enable an ATC system to facilitate one or more aircraft flying in a given airspace to achieve system-preferred time targets and/or schedules which significantly reduce operational costs such as fuel burn, flight time, missed passenger connections, etc. As such, the schedule management method and system can facilitate an improvement in ATC operations in an environment with different types of aircraft performance capabilities (Mixed Equipage). By providing more optimum solutions to aircraft with better capabilities, this schedule management method and system encourages aircraft operators to consider the installation of advanced flight management systems (AFMS) that support air-ground negotiations.
Other aspects and advantages of this invention will be better appreciated from the following detailed description.
The following discusses various aspects of air traffic management within the scope of this invention. A first of these aspects is referred to as preference management, which involves trajectory negotiations between ground-based air traffic control (ATC) systems and aircraft that allow for modifications in aircraft four-dimensional trajectories (4DTs) to meet business and safety objectives. As used herein, “ATC system” will refer to anyone or any apparatus responsible for monitoring and managing air traffic in a given airspace, including air traffic controllers (ATCo) and the automation they use, and “aircraft” will be used to encompass not only the aircraft itself but also anyone or anything responsible for the planning and altering of the 4D trajectory of the aircraft, including but not limited to flight dispatchers, flight operators (airlines), and flight deck personnel. Hardware and other apparatuses employed by the ATC system are ground-based in order to distinguish the ATC system from hardware on board the aircraft. A second aspect of this invention is referred to as schedule management, involving communications between ATC systems and aircraft to determine trajectory modifications needed to meet an arrival schedule of aircraft within an airspace surrounding an airport. Schedule management also incorporates trajectory negotiations between ATC systems and aircraft so that system preferred time schedules may be met without violating flight safety restrictions while preferably minimizing airspace users' costs. As used herein, a trajectory negotiation will refer to a process, potentially iterative, between an ATC system and an aircraft to arrive at a set of trajectory changes that are acceptable for the aircraft and do not pose conflicts with other aircraft in a given airspace, including the ability to meet operators business objectives while maintaining ANSP safety and schedule needs.
According to the first aspect of the invention, preference management methods and systems are provided to facilitate one or more aircraft flying in a given airspace to achieve user-preferred four-dimensional (altitude, latitude, longitude, time) trajectories (4DT) during flight so that safety objectives can be met and business costs relevant to the aircraft operator can be minimized. Preference management entails trajectory negotiations, which may be initiated by a trajectory modification request from an aircraft, including requests for changes in altitude, lateral route (latitude and longitude), and speed. A nonlimiting example is when an aircraft transmits a trajectory modification request that will enable the aircraft to pass a slower aircraft ahead. Preferences management provides the capability to process International Civil Aviation Organization (ICAO) compliant amendments through the ability to analyze and grant trajectory modification requests. It should also be noted that observations on the ground can initiate a trajectory negotiation, for example, if the paths of a given set of aircraft are in conflict and must be modified for conflict-free flight.
The ATC system may either choose to manually consider the trajectory modification request (ATCo & Interface), though a preferred aspect of the invention is to delegate the request processing to automation, as represented in
On the other hand, if the trajectory modification request poses a conflict, the ATC system may place the trajectory modification request in a computer memory data queue for future consideration (“Queue Process”), and then process the next trajectory modification request that had been submitted by a different aircraft. The queuing process involves periodically processing the queue to identify those queued requests that can be granted, for example, because circumstances that had previously resulted in a conflict no longer exist. The aircraft that transmitted the granted requests can then be notified that their requests have been granted, and the granted requests can be cleared from the queue. As will be discussed below in reference to
In addition to utilizing the queue, the ATC system may identify and perform a conflict probe on an alternate trajectory modification request and, if appropriate, propose the alternate trajectory modification to the aircraft if conflict-free. The alternate trajectory modification may be based on information provided from the aircraft relative to the impact (positive or negative) on the flight operator's business objectives of various trajectory changes, such as a lateral distance change, a cruise altitude increase or decrease, or a speed change. This allows an alternative trajectory that may be more preferable than the currently cleared trajectory to be assigned, even if the original (most optimal) request cannot be granted. The aircraft may accept or reject the alternative trajectory modification. If the alternative trajectory modification is rejected by the aircraft, its original trajectory modification request is returned to the queue for subsequent processing. If the alternative trajectory modification is accepted by the aircraft, its original trajectory modification request can be purged from the queue.
A high-level system software architecture and communications thereof can be carried out on a computer processing apparatus for implementing the preference management method described above. Flow charts of a preferred management module are described in
The queue process is particularly important in the typical situation in which multiple aircraft occupy the airspace monitored by an ATC system, and two or more of the aircraft desire modifications to their trajectories in order to achieve certain objectives. In existing practice, these preference requests would be either minimally considered or likely denied without further consideration due to the information overload that air traffic controllers typically experience.
Let Ti and Pi be, respectively, the current trajectory and the preferred trajectory for a given aircraft Ai, which is one of n aircraft in an airspace monitored by an ATC system. The ideal goal is to potentially achieve a conflict-free trajectory portfolio {P1, P2, . . . , Pn}, where all Pi's of aircraft requesting trajectory modifications have replaced the Ti's of those aircraft following a conflict probe that does not detect any conflicts. However, this may not be feasible in practice due to potential conflicts, in which case the goal is to identify a portfolio that grants the maximum number of conflict-free preferences and, for example, strive to meet certain business objectives or minimize operational costs (for example, fuel usage) among the aircraft (An). Such a process may entail considering trajectory portfolios where one or more Ti's in the set are selectively replaced with the Pi's and tested for conflicts. This selective replacement and testing process is a combinatorial problem, and for n trajectory modification requests there are 2n options. Even with a very modest queue size of five flights, there are thirty-two possibilities, which cannot be readily evaluated manually by the ATCo.
In view of the above, the objective is to employ an approach to dynamically handle multiple trajectory modification requests, so that the queue is periodically processed in an optimal manner under operational restrictions, with each periodic process performing a conflict assessment on the queued trajectory modification requests to determine which if any of the requests still pose conflicts with the 4D trajectories of other aircraft within the airspace. During such periodic processing, more recent requests can be given higher priority to maximize the total time that aircrafts fly according to their preferences. With these capabilities, the preferences management module represented in
From the foregoing, it should be appreciated the queue process module (
A first heuristic solution views the above selective replacement and test process as a binary combinatorial assignment problem. The assignment {P1, P2, . . . Pn} is first conflict-probed, and if the result is a conflict-free trajectory portfolio, then the entire portfolio is cleared via communications with the aircraft. However, if a conflict is detected, an n-bit truth table can be constructed to explore the options with n-k bits active, where k is an integer greater than or equal to 1 but less than n. As an example, each option in the truth table corresponds to a trajectory portfolio {P1, P2, . . . Tm, . . . Pn}, where trajectory modification requests (Pn) for all but one aircraft (request Tm for aircraft Am) are tentatively granted. Within the alternate trajectory portfolios, the trajectory modification request(s) that is/are not tentatively granted is/are different for each portfolio. Each of these alternate trajectory portfolios is conflict-probed, and those portfolios that result in a conflict are eliminated. If a single portfolio exists that is conflict-free, the trajectory modification requests associated with that portfolio are granted and cleared via communications with the aircraft that transmitted the granted requests. In the case where multiple portfolios are determined to be conflict-free, a cost computation can be performed that compares relative operational costs associated with granting each of the conflict-free portfolios, including the additional benefits associated with granting more recent requests, so that the portfolio with the lowest cost can be selected. The relative operational costs can take into account fuel-related and/or time-related costs. The trajectory modification requests associated with the selected portfolio are then granted and cleared via communications with the aircraft that transmitted the granted requests, and the granted modification requests can be purged from the queue. On the other hand, if no conflict-free trajectory portfolios are identified with n−1 preferences active, the process can be repeated with n−2 preferences active. This process can be repeated with n−3, n−4, and so on until all the possible trajectory portfolios have been explored. The worst-case situation is that all 2n trajectory portfolios result in a conflict. The worst-case computational complexity for this heuristic is also exponential.
Another heuristic solution is to consider alternate preferences for one or more of the aircraft according to some consideration sequence. When a flight's preference (trajectory modification requests, Pi) is considered, all other flight trajectories are held at their current or tentatively accepted state. A tentatively accepted state corresponds to a modified trajectory that has been temporarily cleared but which has not been communicated to the aircraft as a cleared modification. For each flight, its modification preference is considered, and it is checked if accepting that preference would ensure a conflict-free flight. If a conflict is detected, that preference is discarded from consideration, and the next flight's modification preference is considered and a similar conflict probe is performed. This process can be continued until the modification preference of each flight in the portfolio has been considered in trial planning. Next, each flight whose modification preference was discarded earlier is considered in sequence until no further conflict-free acceptances are possible. This iterative process can be repeated until no further modification preferences can be accepted. At this point, a final conflict probe is performed and the set of tentative modifications are granted and cleared via communications with the aircraft. In the situation that a given aircraft can provide more than one modification request, and its first preferred modification request results in a conflict, its other preferences may be considered in sequence.
Yet another combinatorial approach to queue processing uses the node packing problem over a conflict graph, what will be defined herein as an optimal guided combinatorial search. Formally, a conflict graph is a graph G=(V,E) such that an edge exists between any two nodes that form a conflict (i.e., two events that cannot occur together). Let T denote some time window that is decided upon by the ATCo. A conflict graph is formed as follows. Let A denote all aircraft that appear in the given airspace within T. Also let A′⊂A denote the aircraft that have a previously denied request in the queue. Let V=V1∪V2 partition all nodes as follows. Every aircraft aεA will have a node in V1 that represents the original trajectory. Every aircraft a′εA′ will have a node in V2 that represents the requested trajectory for that aircraft. All nodes in V1 alone are conflict-free as they represent the original trajectories. Therefore, all flights represented in V2 must be conflict probed with both (a) all nodes in V1 and (b) all other nodes in V2. For every conflict that exists between v′εV2 and v″εV1 ∪V2, draw an edge between v′ and v″. The result is a conflict graph. As an edge represent a conflict within T, then no more than one node can be “chosen” for every edge. This is precisely the set of constraints that define the node packing problem.
The graph will consist of two sets of nodes: aircraft corresponding with original trajectories and aircraft corresponding with requested trajectories. Let k′ denote the node in the graph that represents the trajectory request for aircraft kε{1, 2, . . . , 5}. Edges are constructed between every pairwise conflict. For a given weight vector w the maximum-weight node packing problem would be solved.
Two algorithms have been implemented for solving the max-weight node packing problem. One can define which algorithm to use when calling the queue processing algorithm. One of the algorithms is LP-Heuristic: the MWNPP is solved, let
From the above, it should be evident that the queuing process greatly facilitates the ability of the ATC system to accommodate trajectory modification requests from multiple aircraft in a given airspace. In so doing, utilization of the queuing process within the preference management method enables aircraft to achieve preferred cruise altitudes and/or trajectories during flight so that business costs associated with the aircraft can be reduced and possibly minimized while ensuring safe separation between all flights in the airspace.
In
In
In
In
From the above, it should be evident that preference management can be employed to enable an ATC system to facilitate one or more aircraft flying in a given airspace to achieve user-preferred 4D (altitude, latitude, longitude and time) trajectories (4DTs) during flight, so that operational costs associated with the aircraft (for example, fuel burn, flight time, missed passenger connections, etc.) may be reduced or minimized while ensuring safe separation between all flights in the airspace. Preference management further allows ATC systems to support national airspace-wide fuel savings and reduce delays.
In addition to trajectory modification requests from aircraft, trajectory negotiations can also be initiated as a result of observations on the ground that the paths and/or speeds of one or more aircraft must be modified so that they may meet their scheduled times-of-arrival (STAB). The negotiation framework to address this event type is the aforementioned schedule management method of this invention, which can be implemented as a module used in combination with the preference management module described above. In any event, the schedule management framework provides a method and system by which one or more aircraft flying in a given airspace can more readily achieve system preferred time targets such that business costs relevant to the aircraft operator are minimized and system delay costs are minimized without violating flight safety restrictions. As with the preference management method and system discussed in reference to
As represented in
With further reference to
To generate maneuver advisories capable of accurately delivering the aircraft to the metering fix according to the STA, the DA requires current predicted four-dimensional trajectory (4DT) as well as auxiliary data relating to the operation and state of the aircraft. Such auxiliary data may include one or more of the following: preferred time-of-arrival (TOA), earliest estimated time-of-arrival (ETAMin), latest estimated time-of-arrival (ETAMax), current planned speeds (where speeds could be a calibrated airspeed (CAS) and/or Mach number for one or more flight phases (climb, cruise, or descent)), preferred speeds (which may be minimum fuel-cost speeds), minimum and maximum possible speeds, and alternate proposed 4DTs for minimum fuel speeds along the current lateral route and current cruise altitude. Aircraft with appropriate equipment (such as FMS and Data Communication (DataComm)) are capable of providing this auxiliary data directly to the ATC system. In particular, many advanced FMS are able to accurately compute this data, which can be exchanged with the ATC system using CPDLC, ADS-C, or another data communications mechanism between the aircraft and ATC system, or another digital exchange from the flight dispatcher.
In practice, it is likely that many aircraft will be unable to provide some or all of this auxiliary data because the aircraft are not properly equipped or, for business-related reasons, flight operators have imposed restraints as to what information can be shared by the aircraft. Under such circumstances, some or all of this information will need to be computed or inferred by the ATC system. Because fuel-optimal speeds and in particular the predicted 4DT are dependent on aircraft performance characteristics to which the ATC system does not have access (such as aircraft mass, engine rating, and engine life), auxiliary data provided by appropriately equipped aircraft are expected to be more accurate than auxiliary data generated by the ATC system. Therefore, certain steps need to be taken to enable the ATC system to more accurately infer data relating to aircraft performance characteristics that will assist the ATC system in predicting certain auxiliary data, including fuel-optimal speeds, predicted 4DT, and factors that influence them when this data is not provided from the aircraft itself. As explained below, the aircraft performance parameters of interest will be derived in part from aircraft state data and trajectory intent information typically included with the auxiliary data provided by the aircraft via a communication datalink. Optionally or in addition, surveillance information can also be used to improve the inference process. The inferred parameters are then used to model the behavior of the aircraft by the ATC system, specifically for trajectory prediction purposes, trial planning, and estimating operational costs associated with different trial plans or trajectory maneuvers.
In order to predict the trajectory of an aircraft, the ATC system must rely on a performance model of the aircraft that can be used to generate the current planned 4DT of the aircraft and/or various “what if” 4DTs representing unintentional changes in the flight plan for the aircraft. Such ground-based trajectory predictions are largely physics-based and utilize a model of the aircraft's performance, which includes various parameters and possibly associated uncertainties. Some parameters that are considered to be general to the type of aircraft under consideration may be obtained from manufacturers' specifications or from commercially available performance data. Other specific parameters that tend to be more variable may also be known, for example, they may be included in the filed flight plan or provided directly by the aircraft operator. However, other parameters are not provided directly and must be inferred by the ATC system from information obtained from the aircraft, and optionally, from surveillance information. The manner in which these parameters can be inferred is discussed below.
Aircraft performance parameters such as engine thrust, aerodynamic drag, fuel flow, etc., are commonly used for trajectory prediction. Furthermore, these parameters are the primary influences on the vertical (altitude) profile and speed of an aircraft. Thus, performance parameter inference has the greatest relevance to the vertical portion of the 4DT of an aircraft. However, the aircraft thrust, drag, and fuel flow characteristics can vary significantly based on the age of the aircraft and time since maintenance, which the ATC system will not likely know. In some cases, airline performance information such as gross weight and cost index cannot be shared directly with ground automation because of concerns related to information that is considered strategic and proprietary to the operator.
However, it has been determined that thrust during the climb phase of an aircraft is considered to be known with a high level of certainty, with variations subject only to derated power settings. In fact, the along-route distance corresponding to the top of climb point can be expressed as a function of takeoff weight (TWO). As such, there is a direct dependency between the distance to top of climb and TOW up to a certain value of TOW. A weight range is also known from the aircraft manufacturer specifications, which may be further enhanced with knowledge originating from the filed flight plan and from applicable regulations (distance between airports, distance to alternate airport, minimum reserves, etc.). Additional inputs to the prediction model, including aircraft speeds, assumed wind speeds, and roll angles can be derived from lateral profile information and used to predict a vertical profile for the aircraft.
In view of the above, knowledge of an aircraft's predicted trajectory during takeoff and climb can be used to infer the takeoff weight (mass) of the aircraft. If an estimate of the aircraft's fuel flow is available, this can be used to predict the weight of the aircraft during its subsequent operation, including its approach to a metering fix. Subsequent measurements of the aircraft state (such as speeds and rate of climb or descent) relative to the predicted trajectory can be used to refine the estimate of the fuel flow and predicted weight. The weight of the aircraft can then be used to infer auxiliary data, such as the minimum fuel-cost speed and predicted trajectory parameters of the aircraft, since they are known to depend on the mass of the aircraft. As an example, the weight of the aircraft is inferred by correlating the takeoff weight of the aircraft to the distance to the top of climb that occurred during takeoff. A plurality of generation steps can then be used to predict a vertical profile of the aircraft during and following takeoff. Each generation step comprises comparing the predicted altitude of the aircraft obtained from one of the generation steps with a current altitude of the aircraft reported by the aircraft. The difference between the current and predicted altitudes is then used to generate a subsequent predicted altitude of the first aircraft.
As depicted by the block diagram of
The schedule management module has an initial and final scheduling horizon. The initial scheduling horizon is a spatial horizon, which is the position at which each aircraft enters the given airspace, for example, the airspace within about 200 nautical miles (370.4 km) of the arrival airport. The ATM manager monitors the positions of aircraft, and is triggered once an aircraft enters the initial scheduling horizon. The final scheduling horizon, referred to as the STA freeze horizon, is defined by a specific time-to-arriving metering fix. The STA freeze horizon may be defined as an aircraft's metering fix ETA of less than or equal to twenty minutes in the future. Once an aircraft has penetrated the STA freeze horizon, its STA remains unchanged, the DA is triggered, and any meet-time maneuver is uplinked to the aircraft to carry out the plan devised by the schedule manager.
The Scheduler obtains information from the ground and potentially equipped aircraft which are capable of providing trajectory information. This creates a predicted aircraft trajectory and contains dynamically evolving aircraft state information (for example, 4D position, ground speed, course, and altitude rate). The Scheduler generates a schedule plan for the DA, which collects information from both air (aircraft) and ground, and provides information to both the air and ground. This process may also use the inferred data described previously if data cannot be provided directly from the aircraft itself.
As previously noted, the schedule algorithm implemented in the Scheduler may be, for example, a dynamic first-come first-served algorithm based on the order of estimated times of arrival at the scheduled metering fix or it could give preference to better equipped aircraft which can provide more accurate trajectory information and meet the STA using airborne TOAC algorithms. When the Scheduler is initialized, the algorithm constructs an empty queue for each managed metering fix. When an aircraft enters the initial scheduling horizon, this aircraft is pushed into the corresponding scheduling queue and the algorithm updates the STA for each aircraft in the queue if needed. When an aircraft is in the scheduling queue and its ETA is changed, the same process will be performed to the whole scheduling queue. When an aircraft is in the scheduling queue and it penetrates the freeze horizon, its STA will remain unchanged in the queue until it leaves the queue.
The scheduling algorithm receives data for each aircraft in the scheduling queue, for example, ETA (minimum and maximum), aircraft weight class, aircraft identification, etc. For each scheduling queue, the STA update process can be described as follows. If there are no aircraft with their STA frozen, the aircraft is processed based on the order of its ETA at metering fix. The processed aircraft is assigned a time equal to its ETA or the earliest time that ensures the minimum time-separation required for the types of aircraft that are scheduled earlier in the queue, whichever is larger. If there are some aircraft with frozen STAs, the aircraft are sorted with frozen STAs based on their STAs, and these aircraft are treated as pre-scheduled aircraft. The aircraft with unfrozen STAs are then processed based on the order of their ETAs at metering fix. The Scheduler algorithm checks the status of each scheduling queue every loop cycle, keeping the STAs constantly updated until they are frozen.
From the above, it should be evident that the schedule management method and system can be employed to enable an ATC system to facilitate one or more aircraft flying in a given airspace to achieve system-preferred time targets and schedules which significantly reduce operating costs such as fuel burn, flight time, missed passenger connections, etc. As such, the schedule management method and system can facilitate an improvement in ATC operations in an environment with different types of aircraft performance capabilities (Mixed Equipage). By providing more optimum solutions to aircraft with better capabilities, this schedule management method and system encourages aircraft operators to consider the installation of advanced flight management systems (AFMS) that support air-ground negotiations.
While the invention has been described in terms of specific embodiments, it is apparent that other forms could be adopted by one skilled in the art. For example, the functions of components of the performance and schedule systems could be performed by different components capable of a similar (though not necessarily equivalent) function. Therefore, the scope of the invention is to be limited only by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5574647 | Liden | Nov 1996 | A |
5961568 | Farahat | Oct 1999 | A |
6148259 | Hagelauer | Nov 2000 | A |
6314362 | Erzberger et al. | Nov 2001 | B1 |
6463383 | Baiada et al. | Oct 2002 | B1 |
6604044 | Kirk | Aug 2003 | B1 |
6606553 | Zobell et al. | Aug 2003 | B2 |
6721714 | Baiada et al. | Apr 2004 | B1 |
6789011 | Baiada et al. | Sep 2004 | B2 |
6873903 | Baiada et al. | Mar 2005 | B2 |
7248949 | Love et al. | Jul 2007 | B2 |
7248963 | Baiada et al. | Jul 2007 | B2 |
7313475 | Green | Dec 2007 | B2 |
7333887 | Baiada et al. | Feb 2008 | B2 |
7457690 | Wilson et al. | Nov 2008 | B2 |
7606658 | Wise et al. | Oct 2009 | B2 |
7623957 | Bui et al. | Nov 2009 | B2 |
7788027 | Jones | Aug 2010 | B2 |
7877197 | Lewis et al. | Jan 2011 | B2 |
20030050746 | Baiada et al. | Mar 2003 | A1 |
20030139875 | Baiada et al. | Jul 2003 | A1 |
20060224318 | Wilson et al. | Oct 2006 | A1 |
20090005960 | Roberts et al. | Jan 2009 | A1 |
20090012660 | Roberts et al. | Jan 2009 | A1 |
20090037091 | Bolt, Jr. et al. | Feb 2009 | A1 |
20090125221 | Estkowski et al. | May 2009 | A1 |
20090157288 | Bailey et al. | Jun 2009 | A1 |
20090259351 | Wachenheim et al. | Oct 2009 | A1 |
20100049382 | Akalinli et al. | Feb 2010 | A1 |
20120004837 | McDonald | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
2071542 | Dec 2010 | EP |
2404468 | Feb 2005 | GB |
2009042405 | Apr 2009 | WO |
Entry |
---|
Coppenbarger et al., “Design and Development of the En Route Descent Advisor (EDA) for Conflict-Free Arrival Metering”, Aug. 2004, American Institute of Aeronautics and Astronautics, pp. 1-19. |
Eurocontrol, ADAPT2 Aircraft Data Aiming at Predicting the Trajectory, Data analysis report, Issued Dec. 2009. |
Adan E. Vela and Senay Solak; Eric Feron, Karen Feign, and William Singhose; “A Fuel Optimal and Reduced Controller Workload Optimization Model for Conflict Resolution”, Aug. 2009, 978-1-4244-4078. |
Iab Wilson, “Trajectory Negotiation in a Multi-sector Environment”, EuroControl, Bruxelles, Doc 97-70-14. |
Peter M. Moertl and Emily K. Beaton; Paul U. Lee, Vernol Battiste, and Nancy M. Smith; “An Operational Concept and Evaluation of Airline Based En Route Sequencing and Spacing”. |
Daniel B. Kirk, Karen C. Bowen, Winfield S. Heagy, Nicholas E. Rozen, Karen J. Viets; “Development and Assessment of Problem Resolution Capabilities for the En Route Sector Controller”; The Mitre Corporation; American Institute of Aeronautics and Astronautics, AIAA-2001-5255. |
John P. Wangermann and Robert F. Stengel; “Optimization and Coordination of Multiagent Systems Using Principled Negotiation”; Journal of Guidance, Control and Dynamics, vol. 22, No. 1, Jan.-Feb. 1999. |
Eric Mueller, Sandy Lozito; “Flight Deck Procedural Guidelines for Datalink Trajectory Negotiation”; American Institute of Aeronautics and Astronautics. |
NextGen Avionics Roadmap; Joint Planning and Development Office, Version 1.0, Oct. 24, 2008. |
Richard A. Coppenbarger, Richard Lanier, Doug Sweet and Susan Dorsky; “Design and Development of the En Route Descent Advisor (EDA) for Conflict-Free Arrival Metering”; American Institute of Aeronautics and Astronautics. |
Rich Coppenbarger; “Trajectory Negotiation & En Route Data Exchange DAG CE-6”; DAG Workshop, May 22-24, 2000. |
Joel Klooster, Sergio Torres, Daniel Earman, Mauricio-Castillo-Effen, Raj Subbu, Leonardo Kammer, David Chan, Tom Tomlinson; “Trajectory Synchronization and Negotiation in Trajectory Based Operations”. |
Steven M. Green, Dr. Tsuyoshi Goka, David H. Williams; “Enabling User Preferences Through Data Exchange”. |
Dr. Daniel B. Kirk, Winfield S. Heagy, Alvin L. McFarland, Michael J. Yablonski; “Preliminary Observations About Providing Problem Resolution Advisories to Air Traffic Controllers”; The MITRE Corporation, 2000. |
Daniel B. Kirk, “Enhanced Trial Planning and Problem Resolution Tools to Support Free Flight Operations”; Aug. 2000; Project No. 02001301-U1; MITRE Paper. |
Daniel B. Kirk, Winfield S. Heagy, and Michael J. Yablonski; “Problem Resolution Support for Free Flight Operations”; IEEE Transactions on Intelligent Transportation Systems, vol. 2, No. 2, Jun. 2001. |
Daniel B. Kirk, Karen C. Bowen, Winfield S. Heagy, Nicholas E. Rozen, Karen J. Viets; “Problem Analysis, Resolution and Ranking (PARR) Development and Assessment”; The MITRE Corporation; 4th USA/Europe Air Traffic Management R&D Seminar, Dec. 3-7, 2001. |
Paul U. Lee, Jean-Francois D'Arcy, Paul Mafera, Nancy Smith, Vernol Battiste, Walter Johnson, Joey Mercer, Everett A. Palmer, Thomas Prevot; “Trajectory Negotiation via Data Link: Evaluation of Human-in-the-loop Simulation”. |
Marcus B. Lowther, Dr. John-Paul B. Clarke, and Dr. Liling Ren; “En Route Speed Change Optimization for Spacing Continuous Descent Arrivals”; Agifors Student Paper Submission. |
Joint Planning and Development Office, Concept of Operations for the Next Generation Air Transportation System, Version 2.0, Jun. 13, 2007. |
Liling Ren and John-Paul B. Clarke; “Separation Analysis Methodology for Designing Area Navigation Arrival Procedures”; Journal of Guidance, Control, and Dynamics; vol. 30, No. 5, Sep.-Oct. 2007. |
Liling Ren and John-Paul B. Clarke; “Flight-Test Evaluation of the Tool for Analysis of Separation and Throughput”; Journal of Aircraft; vol. 45, No. 1, Jan.-Feb. 2008. |
G. J. Couluris; “Detailed Description for CE6 En route Trajectory Negotiation”; Technical Research in Advanced Air Transportation Technologies; Nov. 2000; NAS2-98005 RTO-41. |
Harry N. Swenson, Ty Hoang, Shawn Engelland, Danny Vincent, Tommy Sanders, Beverly Sanford, Karen Heere; “Design and Operational Evaluation of the Traffic Management Advisory at the Fort Worth Air Route Traffic Control Center”; 1st USA/Europe Air Traffic Management Research Development Seminar; France, Jun. 17-19, 1997. |
European Search Report and Written Opinion issued in connection with corresponding EP Application No. 12156074.2-1803 dated Nov. 8, 2013. |
Coppenbarger: “Climb trajectory prediction enhancement using airline flight-planning information”, American Institute of Aeronautics and Astronautics, pp. 1-11, 1999. |
Karr et al., “Experimental Performance of a Genetic Algorithm for Airborne Strategic Conflict Resolution”, American Institute of Aeronautics and Astronautics, pp. 1-15, Jan. 1, 2009. |
Coppenbarger et al., “Development and Testing of Automation for Efficient Arrivals in Constrained Airspace”, 27th International Congress of the Aeronautical Sciences, pp. 1-14, 2010. |
Hagen et al., “Stratway: A Modular Approach to Strategic Conflict Resolution”, pp. 1-13, Jan. 1, 2011. |
Number | Date | Country | |
---|---|---|---|
20120215435 A1 | Aug 2012 | US |