This invention generally relates to secure client-server systems. More particularly, the invention relates to managing security domains in enterprise security systems.
Although smart cards are often compared to hard drives, they are “secured drives with a brain”—they store and process information. Smart cards are storage devices with the core mechanics to facilitate communication with a reader or coupler. They have file system configurations and the ability to be partitioned into public and private spaces that can be made available or locked. They also have segregated areas for protected information, such as certificates, e-purses, and entire operating systems. In addition to traditional data storage states, such as read-only and read/write, some vendors are working with sub-states best described as “add only” and “update only.”
The physical characteristics of smart cards are governed by international standards. For example, the size of a card is covered by ISO-7810. ISO-7816 and subsequent standards cover manufacturing parameters, physical and electrical characteristics, location of the contact points, communication protocols, data storage, and more. Data layout and format, however, can vary from vendor to vendor.
Smart cards are a way to increase security especially for enterprise systems. Enterprise system often contain valuable information such as financial data, personnel records, strategies, etc., that may be critical for the entity administrating the enterprise system. Moreover, smart cards may offer a method to control access to data within the enterprise systems. Accordingly, the reasons to use smart card are plentiful.
However, there are drawbacks and disadvantages to smart cards. Typically, smart cards require sophisticated enterprise security systems to support the management of their security information. For example, in order to enroll a smart card, numerous tasks, such as generating keys and obtaining certificates, must be performed. Typically, a certificate authority is used to issue certificates that authenticate the identity of the smart card. In turn, the certificate authority may need to communicate with several other components, such as a directory server, key generator, etc. However, these communications can be difficult to secure and are generally configured manually by an administrator. This can be a complex and difficult task.
Therefore, there is a need to provide methods and systems for a security service, such as certificate authority, that is capable of automatically discovering the topology and status of its domain in which services can share the same security policies. In addition, it may also be desirable to provide methods and systems for automating the configuration of components that communicate with a certificate authority.
In accordance with one feature invention, a security domain manager shares the same security policies with members of its domain. A first module is configured to provide a digital certificate and a second module is configured to provide a registry of security domains to which a certificate authority belongs.
In accordance with another feature of the invention, a method for distributing a certificate revocation list by a security domain is provided. In particular, destinations for the certificate revocation list are retrieved from a security domain in the certificate authority. The certificate revocation list is then distributed to the destinations from the security domain.
Additional features of the present invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention.
The accompanying drawings, which are incorporated in and constitute apart of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention. In the figures:
Embodiments of the present invention provide identity management security domains that may be used in an enterprise security system. A security domain provides a centralized registry of services and trust policies provided by the enterprise security system. For example, certificate authorities and other services, such as key archives, and the like, in the enterprise security system may register information about themselves in the security domain. Authorized users can then discover the location of these services. In some embodiments, the security domain may provide an interface that indicates a network-based or trust-based topology between services of the enterprise security system. The security domain may also serve as a distribution point for security policies. A security policy may comprise information that indicates, for example, a set of trusted root certificate authorities, certificate templates, certificate revocation lists, and the locations of the services in the enterprise security system.
Reference will now be made in detail to exemplary embodiments of the invention, which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. For simplicity and illustrative purposes, the principles of the present invention are described by referring mainly to exemplary embodiments thereof. However, one of ordinary skill in the art would readily recognize that the same principles are equally applicable to, and can be implemented in, all types of secure distributed environments and that any such variations do not depart from the true spirit and scope of the present invention. Moreover, in the following detailed description, references are made to the accompanying figures, which illustrate specific embodiments. Electrical, mechanical, logical and structural changes may be made to the embodiments without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense and the scope of the present invention is defined by the appended claims and their equivalents.
Embodiments of the present invention generally relate to an enterprise security (ES) system executing on a server with a security client executing on a user desktop (erg., Windows, Linux, Mac). The security client may be configured to interface with the ES system and provide an interface to manage a smart card, communicate with ES system, act as a proxy for application program data units (APDUs) sent between the ES system and the smart card, and display user interfaces (UIs) as the ES system directs (for example, prompting user for credentials and/or PIN, displaying smart card status, etc.).
The ES system may include a token management system (TMS, or a security server). The TMS may comprise a security client and security servers, such as a certificate authority, token key service, and data recovery manager. Thus, the TMS may be configured to act as the registration authority and to direct the entire enrollment process. The TPS may also be configured as the only entity in the ES system to construct the APDUs, which are the message format understood by the smart card. The TMS may interface with a token processing system (TPS) to a token key service (TKS) module, a data recovery manager (DRM) module and a certificate authority (CA) module through a firewall.
In various embodiments, smart cards (more generally tokens) may be configured to store an applet (a small application) and three keys. The three keys may be derived from a master key held by the manufacturer and the card identification number. The derivation of the keys may be implemented by applying a pre-defined function(s) to the master key and the card identification number. One of the keys may be a key encryption key, KEK. The security client may detect the presence of an inserted token in an associated card reader and inform TPS of the token.
The TPS may begin an initialization process that may include the TPS determining whether the applet on the token is outdated and whether the master key has changed since the three keys stored on the token were generated. If any of these conditions are true, the TPS may perform a “key update” in the event of the outdated master key and an “applet upgrade” in the event of outdated applet. As part of the update, the TPS may deliver new keys (derived within the TMS system from the new master key) and/or an updated applet to the token to be stored/injected therein.
The TPS may also determine that the token may need to be initialized with server-side generated keys and key archival for those generated keys. More specifically, the TPS may be configured to provide tools that allow a system administrator to set policies to manage users. For example, the system administrator may set a policy where a group of users may have their tokens be enrolled with server-side key generation and key archival of those generated keys.
Accordingly, the security client may transmit a serial number, card unique identification, or card identification (CID) to the TPS of the TMS. The TPS may be configured to forward the CID of the token to the TKS module. The TKS module may be configured to derive a series of keys based on the server master key and the CID. One of the derived keys is the key encryption key, KEK, which is configured to encrypt other secret keys. The TKS module is also configured to generate a key transport session key, KTSK. The TKS module may encrypt the key transport session key, KTSK, with the key encryption key, KEK, i.e., wrap, to arrive at a first encrypted or wrapped key transport session key, KEK(KTSK).
The TKS module may be initially configured to hold a public key of the DRM module, which for the sake of convenience and will be referred as the server transport key, STK. The TKS module may include an encrypted secure database where the server transport key, STK, is stored. The TKS module may wrap the key transport session key, KTSK, with the server transport key, STK, to arrive at a second wrapped key transport session key, STK(KTSK). The TKS module may forward the first wrapped key transport session key, KEK(KTSK) and the second wrapped transport session key STK(KTSK) to the TPS.
The TPS may be configured to forward the second wrapped server transport key, STK(KTSK) and the server-side key generation request to the DRM module while temporarily holding the first wrapped key transport session key, KEK(KTSK). The DRM module may be configured to generate an asymmetric key pair, i.e., a subject public and a subject private (SPuK/SPrivK, respectively) key pair, where the subject may represent a user, device, or other entity such as organization, association, etc.
The DRM module may retrieve a storage key, SK, which may be a permanent private storage key owned by the DRM module and generate a storage session key, SSK. The DRM module may encrypt or wrap the subject private key, SPrivK, with the storage session key, SSK, to arrive at a wrapped storage private key, SSK(SPrivK). The DRM module may also encrypt the storage session key, SSK, with the storage key, SK, to arrive at a wrapped storage session key, SK(SSK). The wrapped storage private key, SSK(SPrivK) and the storage session key, SSK, may then be archived or escrowed by the DRM module. The archived keys (SSK(SPrivK) and SK(SSK)) may be used for later recovery in the event of a lost or destroyed token.
The DRM module may then decrypt, i.e., unwrap, the second wrapped transport session key, STK(KTSK), with the complementary key of the server transport key, STK, stored in the DRM module to retrieve the key transport session key, KTSK. The DRM module may then wrap the subject private key, SPrivK, with the key transport session key as a wrapped private key, KTSK(SPrivK) and forward the wrapped private key, KTSK(SPrivK) and the subject public key, SPuK, to the TPS.
The TPS may forward the wrapped private key, KTSK(SPrivK) and the first wrapped key transport session key, KEK(KTSK), to the security client to write into the token. The forwarded wrapped keys (KEK(KTSK) and KTSK(SPrivK)) are received at the token to be injected therein. For the sake of completeness, the token may execute an applet that can retrieve the key encryption key, KEK, which the manufacturer had derived and stored or the TMS has updated and stored. Accordingly, the applet may unwrap the first wrapped key transport session key, KEK(KTSK) to retrieve the key transport session key, KTSK. The applet then uses the key transport session key to unwrapped the wrapped private key, KTSK(SPrivK) to retrieve the subject private key, SPrivK.
The TPS may be further configured to send a certificate enrollment request with the information regarding the subject public key, SPuK, to the CA module for certificates for the token. The TPS may subsequently forward received certificates from the CA module to the token. Subsequently, the certificates are written into the token.
As shown in
The server 105 may interact with the clients over the local network 115. The local network 115 may be a local area network implementing an established network protocol such as Ethernet, token ring, FDDI, etc. The local network 115 provides a communication channel for the server 105 and clients 110 to exchange data and commands.
The clients 110 may be computing machine or platform (machine) configured to execute secure and open applications through the multi-user operating system. The clients 110 may be implemented with personal computers, workstations, thin clients, thick clients, or other similar computing platform. The clients 110 may use operating systems such as Linux, Windows, Macintosh or other available operating system.
Each client 110 may be configured to interface with a security device 125. The security device 125 may be configured to act as a gatekeeper to the client 110. More particularly, a user may use a security token, such as a smart card, to access the respective client 110. Each client 110 may have a security client 130 executing to monitor the security device 125.
The security client 130 may be configured to manage the token. More specifically, the security client 130 may enroll the token, recovery keys for the token or reset a personal identification number for the token. The security client 130 may also be configured to interface with the token management system 120 and act as a proxy for application program data units (APDUs) between the token management system 120 and the token. The security client 130 may be further configured to display user interfaces as the token processing system 120 directs, i.e., prompting the user for credentials and/or PIN, displaying token status.
In some embodiments, the token management 120 may initiate token enrollment. The security client 130 may detect the presence of the inserted security token and notifies the token management system 120. The token management 120 may prompt the security client 130 to display a user interface querying the user to begin the enrollment process. The security client 130 may forward a card identification (CID) of the token. The CID uniquely identifies the token and is set during the manufacture of the token.
The token management system 120 comprises of several modules, as depicted in
As shown in
The TPS 205 may be configured to act as a registration authority. The TPS 205 may direct the enrollment process. The TPS 205 may be configured to act a gateway between security clients 130 and tokens and the modules of the token management system 120.
In some embodiments, the TPS 205 provides a configurable profile-based scheme to handle enrollment requests by using a profile database. This database may be stored locally on the TPS 205 or may reside on another machine, such as a dedicated server which is then remotely coupled to the TPS 205. Such a scheme may be desirable where the TPS 205 is coupled to multiple sets of CAs, KRAs, and TKSs, and the like. For example, each enrollment request from client 110 may comprise a list of parameters, such as an ATR, a CUID, a key version, an applet version, and profile identifier. The TPS 205 may then match these parameters to one or more of its profiles. The TPS 205 may select a profile based on the matches of the profile to the parameters provided in the enrollment request. The profile then indicates various aspects of enrollment, such as the number of keys to generate on the token, the token label, and the connection information between the applicable CA, DRM, and TKS to be used for managing the client 110.
For example, upon receiving an enrollment request from one of clients 110, the TPS 205 will typically establish a secure communication channel with client 110. To do that, the TPS 205 may connect to the TKS 210, which as has the master key for the client 110 that was used to create the keys on the token. Accordingly, the TPS 205 may query its profile database and determine which TKS to route the enrollment request. In addition, the TPS 205 may use its profile database to determine which CA to request a certificate and which DRM to use for key escrow. Of course other aspects of operations may be indicated in the profile framework used by the TPS 205.
The TKS module 210 may be configured to maintain master keys for the tokens. The TKS module 210 may also store symmetric keys associated with the token. These keys may be derived from a single master key combined with smart card serial number or identification number, i.e., the CID. The manufacturer of the smart card may store these symmetric keys onto the token. The manufacturer may also forward the single master key to the administrator of the token management system 120, who installs the key into the TKS module 210. For server side key generation requests, the manufacturer installed symmetric keys are replaced with the server generated keys which are derived the server master key. The TKS module 210 may also be configured to hold a public key of the DRM module 215 as a server transport key, STK, in an encrypted secure database.
The DRM module 215 may be configured to maintain a database of encrypted subjects private keys, which can be recovered on demand by an appropriate process. The DRM module 215 may also be configured to generate a subject public key (SPuK) and a subject private key (SPrivK), where the subject may represent a user, device, or other entity such as organization, association, etc. The DRM module 215 may be further configured to retrieve a storage key, SK. The storage key, SK, may be a private permanent storage key owned by the DRM module 215. The DRM module 215 may generate a storage session key, SSK, to encrypt the subject private key, SPrivK, with the storage session key, SSK, to arrive at a wrapped private key, SSK(SPrivK) and encrypt the storage session key, SSK, with the storage key, SK, to arrive at a wrapped storage session key, SK(SSK). These wrapped keys, SSK(SPrivK) and SK(SSK) are archived or escrowed for later recovery.
In general, CA module 220 is configured to issue and sign certificates. The CA module 220 may distribute and install certificates using well known Web protocols, such as HTTP and HTTPS. The CA module 220 may use the well-known standard RSA digital signatures. For example, the CA module 220 may be configured to generate certificates, such as X.509 certificates, in response to received subject public key information and certificate enrollment requests.
However, a security domain (SD) module 225 may also support customizable security policy templates that can be adapted for various certificate management policies and support automated online authentication checks against existing databases in token management system 120. In addition, the SD module 225 may support cross certification with other systems, and thus, support the creation and cross signing of another SD module in another system (not shown). The SD module 225 may also distribute certificates and certificate revocation lists (CRLs) to databases. As part of its services, the SD module 225 will typically be in communication with the other components of token management services 120 and other entities, such as a database.
The SD module 225 serves as a centralized registry of services that may be utilized by the CA module 220. For example, the CA module 220, the DRM module 215, and the TKS module 210 may register themselves with the SD module 225 to join the security domain. The SD module 225 may also issue corresponding certificates for these components so that the CA module 220 can authenticate itself to the other components that it attempts to securely communicate with. In some embodiments, these modules may include software that automates their registration with the SD module 225. For example, the registration by these components may be performed upon startup or installation and at periodic intervals thereafter. Of course, this registration may be manually initiated by an administrator or some other authorized party.
In general, a security domain may be any group of entities that share a common set of policies and have some form of trust relationship. Based on the registration, the SD module 225 may then provide a topology or list that indicates the topology of the security domain, such as the locations of components. For example, an administrator or some other authorized party may utilize a browser like application to access the SD module 225 and display the stored topology information and trust relationship between entities that belong in the security domain.
The SD module 225 may also serve as a distribution point for security policies. A security policy may comprise any information that indicates, for example, a set of trusted root certificate authorities, certificate templates, certificate revocation lists, and the locations of the services in the enterprise security system. Of note, the security policies may be arranged in various ways. For example, different security policies may share a peer-to-peer relationship or a parent-child relationship. Of course, other forms of relationships between security policies may be implemented by the SD module 225.
Accordingly, the SD module 225 provides a platform to automatically manage the security domains of token management system 120. Conventionally, an administrator of the token management system 120 would be required to manually configure the CA module 220 for secure communications with the other components of the token management system 120. However, with the use of the SD module 225, the CA module 220 may automatically discover the topology of the applicable security domain and commence communications with the other components. One skilled in the art will recognize that the security policy database may provide its information in a variety of forms that are LDAP-compliant or based on extensible markup language (XML).
In various embodiments, the TPS 205 may receive an enrollment request with a CID from the security client 130. The TPS 205 may forward the CID of the token 130 from the enrollment request to the TKS module 210. The TKS module 210 may be configured to derive a key encryption key, KEK, that is used in encrypting other secret keys intended for the specific token within the token management system 120. More particularly, the TKS module 120 may be configured to apply a pre-defined function is used to derive the key encryption key, KEK, based on the CID from the token 130. The TKS module 210 may also generate a key transport session key, KTSK. The TKS module 210 may encrypt the key transport session key (KTSK) with the key encryption key (KEK) to arrive at a first encrypted or wrapped key transport session key, KEK(KTSK).
The TKS module 210 may retrieve a server transport key, STK, where the server transport key may be a public key issued by the DRM module 215. The TKS module 210 may wrap the key transport session key, KTSK, with a server transport key, STK, to arrive at a second wrapped key transport session key, STK(KTSK). The TKS module 210 may forward the first wrapped key transport session key, KEK(KTSK) and the second wrapped key transport session key STK(KTSK) to the TPS 205.
The TPS 205 may be configured to forward the second wrapped key transport session key, STK(KTSK) and the server-side key generation request to the DRM module 215 while temporarily holding the first wrapped key transport session key, KEK(KTSK). The DRM module 215 may be configured to generate an asymmetric key pair, i.e., a subject public and a private (SPuK/SPrivK) key pair in response to receiving a server-side key generation request, where the subject may represent a user, device or other entity such as an organization, association, etc.
The DRM module 215 may also be configured to retrieve a storage key, SK, which is a permanent private storage key owned by the DRM module 215 and to generate a storage session key, SSK. The DRM module 215 may then wrap the subject private key, SPrivK with the storage session key, SSK, i.e., STK(SPrivK) and wrap the storage session key, SSK, with the storage key, SK, i.e., SK(SSK). The DRM module 215 may then archive or escrow these wrapped keys for later recovery in the event of a lost or destroyed token.
The DRM module 215 may be further configured to decrypt the second wrapped transport key, STK(KTSK), to obtain the key transport session key, KTSK with the complementary key of the of the server transport key used in the TKS module 210. The server transport key and its complementary key may be symmetric or asymmetric as long as they are shared between the DRM module 215 and the TKS module 210. The DRM module 215 may then wrap the subject private key, SPrivK, with the key transport session key, KTSK, as a wrapped private key, KTSK(SPrivK). The DRM module 215 may forward the wrapped private key, KTSK(SPrivK) and the subject public key, SPuK, to the TPS 205.
The TPS 205 may forward the wrapped private key, KTSK(SPrivK) and the first wrapped key transport session key, KEK(KTSK), to the security client 130 to write into the token. The forwarded wrapped keys (KEK(KTSK) and KTSK(SPrivK)) are received at the token to be injected therein. For the sake of completeness, the token may execute an applet that can retrieve the key encryption key. Accordingly, the applet may unwrap the first wrapped key transport session key, KEK(KTSK) to retrieve the key transport session key, KTSK. The applet then uses the key transport session key, KTSK, to unwrap the wrapped private key, KTK(SPrivK) to retrieve the subject private key, SPrivK. SPuK can either be injected or derived from SPrivK.
The TPS 205 may be further configured to send a certificate enrollment request along with information related to the subject public key, SPuK, to the CA module 220 for certificates for the token. The TPS 205 may subsequently forward received certificates from the CA module 220 to the security client 130. Subsequently, the certificates are written into the token.
As shown in
As shown in
Certain embodiments may be performed as a computer program. The computer program may exist in a variety of forms both active and inactive. For example, the computer program can exist as software program(s) comprised of program instructions in source code, object code, executable code or other formats; firmware program(s); or hardware description language (HDL) files. Any of the above can be embodied on a computer readable medium, which include storage devices and signals, in compressed or uncompressed form. Exemplary computer readable storage devices include conventional computer system RAM (random access memory), ROM (read-only memory), EPROM (erasable, programmable ROM), EEPROM (electrically erasable, programmable ROM), and magnetic or optical disks or tapes. Exemplary computer readable signals, whether modulated using a carrier or not, are signals that a computer system hosting or running the present invention can be configured to access, including signals downloaded through the Internet or other networks. Concrete examples of the foregoing include distribution of executable software program(s) of the computer program on a CD-ROM or via Internet download. In a sense, the Internet itself, as an abstract entity, is a computer readable medium. The same is true of computer networks in general.
This application is a continuation-in-part of U.S. patent application Ser. No. 11/448,157, entitled “Methods and Systems for Managing Identity Management Security Domains,” filed Jun. 7, 2006, now abandoned which is incorporated herein by reference This application is related to pending U.S. patent application Ser. No. 11/446,956, entitled “Methods and Systems For Key Escrow” filed Jun. 6, 2006 and commonly assigned, U.S. patent application Ser. No. 11/447,196, entitled “Methods And Systems For Secure Key Delivery,” filed Jun. 6, 2006 and commonly assigned, and U.S. patent application Ser. No. 11/448,179, entitled “Profile Framework for Token Processing System,” filed concurrently and commonly assigned.
Number | Name | Date | Kind |
---|---|---|---|
4108367 | Hannan | Aug 1978 | A |
4849614 | Watanabe et al. | Jul 1989 | A |
4924330 | Seamons et al. | May 1990 | A |
5247163 | Ohno et al. | Sep 1993 | A |
5355414 | Hale et al. | Oct 1994 | A |
5499371 | Henninger et al. | Mar 1996 | A |
5594227 | Deo | Jan 1997 | A |
5631961 | Mills et al. | May 1997 | A |
5666415 | Kaufman | Sep 1997 | A |
5721781 | Deo et al. | Feb 1998 | A |
5745576 | Abraham et al. | Apr 1998 | A |
5745678 | Herzberg et al. | Apr 1998 | A |
5768373 | Lohstroh et al. | Jun 1998 | A |
5862310 | Crawford et al. | Jan 1999 | A |
5923884 | Peyret et al. | Jul 1999 | A |
5937066 | Gennaro et al. | Aug 1999 | A |
5943423 | Muftic | Aug 1999 | A |
5991411 | Kaufman et al. | Nov 1999 | A |
5991882 | O'Connell | Nov 1999 | A |
6005942 | Chan et al. | Dec 1999 | A |
6005945 | Whitehouse | Dec 1999 | A |
6011847 | Follendore, III | Jan 2000 | A |
6016476 | Maes et al. | Jan 2000 | A |
6044155 | Thomlinson et al. | Mar 2000 | A |
6072876 | Obata et al. | Jun 2000 | A |
6141420 | Vanstone et al. | Oct 2000 | A |
6178507 | Vanstone | Jan 2001 | B1 |
6179205 | Sloan | Jan 2001 | B1 |
6226744 | Murphy et al. | May 2001 | B1 |
6377825 | Kennedy et al. | Apr 2002 | B1 |
6490680 | Scheidt et al. | Dec 2002 | B1 |
6502108 | Day et al. | Dec 2002 | B1 |
6539093 | Asad et al. | Mar 2003 | B1 |
6636975 | Khidekel et al. | Oct 2003 | B1 |
6643701 | Aziz et al. | Nov 2003 | B1 |
6687190 | Momich et al. | Feb 2004 | B2 |
6691137 | Kishi | Feb 2004 | B1 |
6698654 | Zuppicich | Mar 2004 | B1 |
6734886 | Hagan et al. | May 2004 | B1 |
6760752 | Liu et al. | Jul 2004 | B1 |
6804687 | Sampson | Oct 2004 | B2 |
6819766 | Weidong | Nov 2004 | B1 |
6826686 | Peyravian | Nov 2004 | B1 |
6829712 | Madoukh | Dec 2004 | B1 |
6880037 | Boyer | Apr 2005 | B2 |
6880084 | Brittenham et al. | Apr 2005 | B1 |
6898605 | Constantino | May 2005 | B2 |
6898714 | Nadalin et al. | May 2005 | B1 |
6931133 | Andrews et al. | Aug 2005 | B2 |
6941326 | Kadyk et al. | Sep 2005 | B2 |
6970970 | Jung et al. | Nov 2005 | B2 |
6978933 | Yap et al. | Dec 2005 | B2 |
6986040 | Kramer et al. | Jan 2006 | B1 |
7007105 | Sullivan et al. | Feb 2006 | B1 |
7010600 | Prasad et al. | Mar 2006 | B1 |
7050589 | Kwan | May 2006 | B2 |
7051213 | Kobayashi et al. | May 2006 | B1 |
7085386 | Audebert et al. | Aug 2006 | B2 |
7114028 | Green et al. | Sep 2006 | B1 |
7156302 | Yap et al. | Jan 2007 | B2 |
7159763 | Yap et al. | Jan 2007 | B2 |
7185018 | Archbold et al. | Feb 2007 | B2 |
7251728 | Toh et al. | Jul 2007 | B2 |
7278581 | Ong | Oct 2007 | B2 |
7299364 | Noble et al. | Nov 2007 | B2 |
7302585 | Proudler et al. | Nov 2007 | B1 |
7356688 | Wang | Apr 2008 | B1 |
7374099 | de Jong | May 2008 | B2 |
7386705 | Low et al. | Jun 2008 | B2 |
7437757 | Holdsworth | Oct 2008 | B2 |
7451921 | Dowling et al. | Nov 2008 | B2 |
7475250 | Aull et al. | Jan 2009 | B2 |
7475256 | Cook | Jan 2009 | B2 |
7480384 | Peyravian et al. | Jan 2009 | B2 |
7502793 | Snible et al. | Mar 2009 | B2 |
7571321 | Appenzeller et al. | Aug 2009 | B2 |
7602910 | Johansson et al. | Oct 2009 | B2 |
7702917 | Tevosyan et al. | Apr 2010 | B2 |
7769996 | Randle et al. | Aug 2010 | B2 |
7822209 | Fu et al. | Oct 2010 | B2 |
7860243 | Zheng et al. | Dec 2010 | B2 |
20010008012 | Kausik | Jul 2001 | A1 |
20010036276 | Ober et al. | Nov 2001 | A1 |
20010054148 | Hoornaert et al. | Dec 2001 | A1 |
20020004816 | Vange et al. | Jan 2002 | A1 |
20020007351 | Hillegass et al. | Jan 2002 | A1 |
20020007359 | Nguyen | Jan 2002 | A1 |
20020010679 | Felsher | Jan 2002 | A1 |
20020029343 | Kurita | Mar 2002 | A1 |
20020056044 | Andersson | May 2002 | A1 |
20020059144 | Meffert et al. | May 2002 | A1 |
20020064095 | Momich et al. | May 2002 | A1 |
20020080958 | Ober et al. | Jun 2002 | A1 |
20020099727 | Kadyk et al. | Jul 2002 | A1 |
20020112156 | Gien et al. | Aug 2002 | A1 |
20020120842 | Bragstad et al. | Aug 2002 | A1 |
20020133707 | Newcombe | Sep 2002 | A1 |
20020171546 | Evans et al. | Nov 2002 | A1 |
20020184149 | Jones | Dec 2002 | A1 |
20020188848 | Buttiker | Dec 2002 | A1 |
20030005291 | Burn | Jan 2003 | A1 |
20030012386 | Kim et al. | Jan 2003 | A1 |
20030028664 | Tan et al. | Feb 2003 | A1 |
20030035548 | Kwan | Feb 2003 | A1 |
20030056099 | Asanoma et al. | Mar 2003 | A1 |
20030075610 | Ong | Apr 2003 | A1 |
20030093695 | Dutta | May 2003 | A1 |
20030115455 | Aull et al. | Jun 2003 | A1 |
20030115466 | Aull et al. | Jun 2003 | A1 |
20030115467 | Aull et al. | Jun 2003 | A1 |
20030115468 | Aull et al. | Jun 2003 | A1 |
20030167399 | Audebert et al. | Sep 2003 | A1 |
20030172034 | Schneck et al. | Sep 2003 | A1 |
20040042620 | Andrews et al. | Mar 2004 | A1 |
20040053642 | Sandberg et al. | Mar 2004 | A1 |
20040066274 | Bailey | Apr 2004 | A1 |
20040088562 | Vassilev et al. | May 2004 | A1 |
20040096055 | Williams et al. | May 2004 | A1 |
20040103324 | Band | May 2004 | A1 |
20040103325 | Priebatsch | May 2004 | A1 |
20040120525 | Miskimmin et al. | Jun 2004 | A1 |
20040144840 | Lee et al. | Jul 2004 | A1 |
20040146163 | Asokan et al. | Jul 2004 | A1 |
20040153451 | Phillips et al. | Aug 2004 | A1 |
20040162786 | Cross et al. | Aug 2004 | A1 |
20040230831 | Spelman et al. | Nov 2004 | A1 |
20050022123 | Constantino | Jan 2005 | A1 |
20050033703 | Holdsworth | Feb 2005 | A1 |
20050109841 | Ryan et al. | May 2005 | A1 |
20050114673 | Raikar et al. | May 2005 | A1 |
20050119978 | Ates | Jun 2005 | A1 |
20050123142 | Freeman et al. | Jun 2005 | A1 |
20050138386 | Le Saint | Jun 2005 | A1 |
20050138390 | Adams et al. | Jun 2005 | A1 |
20050144312 | Kadyk et al. | Jun 2005 | A1 |
20050184163 | de Jong | Aug 2005 | A1 |
20050184164 | de Jong | Aug 2005 | A1 |
20050184165 | de Jong | Aug 2005 | A1 |
20050188360 | de Jong | Aug 2005 | A1 |
20050216732 | Kipnis et al. | Sep 2005 | A1 |
20050262361 | Thibadeau | Nov 2005 | A1 |
20050279827 | Mascavage et al. | Dec 2005 | A1 |
20050289652 | Sharma et al. | Dec 2005 | A1 |
20060005028 | Labaton | Jan 2006 | A1 |
20060010325 | Liu et al. | Jan 2006 | A1 |
20060015933 | Ballinger et al. | Jan 2006 | A1 |
20060036868 | Cicchitto | Feb 2006 | A1 |
20060043164 | Dowling et al. | Mar 2006 | A1 |
20060072747 | Wood et al. | Apr 2006 | A1 |
20060073812 | Punaganti Venkata et al. | Apr 2006 | A1 |
20060075133 | Kakivaya et al. | Apr 2006 | A1 |
20060075486 | Lin et al. | Apr 2006 | A1 |
20060101111 | Bouse et al. | May 2006 | A1 |
20060101506 | Gallo et al. | May 2006 | A1 |
20060173848 | Peterson et al. | Aug 2006 | A1 |
20060174104 | Crichton et al. | Aug 2006 | A1 |
20060206932 | Chong | Sep 2006 | A1 |
20060208066 | Finn et al. | Sep 2006 | A1 |
20060226243 | Dariel | Oct 2006 | A1 |
20060291664 | Suarez et al. | Dec 2006 | A1 |
20060294583 | Cowburn et al. | Dec 2006 | A1 |
20070014416 | Rivera et al. | Jan 2007 | A1 |
20070074034 | Adams et al. | Mar 2007 | A1 |
20070112721 | Archbold et al. | May 2007 | A1 |
20070113267 | Iwanski et al. | May 2007 | A1 |
20070113271 | Pleunis | May 2007 | A1 |
20070118891 | Buer | May 2007 | A1 |
20070162967 | de Jong et al. | Jul 2007 | A1 |
20070169084 | Frank et al. | Jul 2007 | A1 |
20070189534 | Wood et al. | Aug 2007 | A1 |
20070204333 | Lear et al. | Aug 2007 | A1 |
20070230706 | Youn | Oct 2007 | A1 |
20070271601 | Pomerantz | Nov 2007 | A1 |
20070277032 | Relyea | Nov 2007 | A1 |
20070280483 | Fu | Dec 2007 | A1 |
20070282881 | Relyea | Dec 2007 | A1 |
20070283163 | Relyea | Dec 2007 | A1 |
20070283427 | Gupta et al. | Dec 2007 | A1 |
20080022086 | Ho | Jan 2008 | A1 |
20080022121 | Fu et al. | Jan 2008 | A1 |
20080022122 | Parkinson et al. | Jan 2008 | A1 |
20080022128 | Proudler et al. | Jan 2008 | A1 |
20080034216 | Law | Feb 2008 | A1 |
20080046982 | Parkinson | Feb 2008 | A1 |
20080056496 | Parkinson | Mar 2008 | A1 |
20080059790 | Parkinson | Mar 2008 | A1 |
20080059793 | Lord et al. | Mar 2008 | A1 |
20080069338 | Relyea | Mar 2008 | A1 |
20080069341 | Relyea | Mar 2008 | A1 |
20080072283 | Relyea | Mar 2008 | A1 |
20080077794 | Arnold et al. | Mar 2008 | A1 |
20080077803 | Leach et al. | Mar 2008 | A1 |
20080133514 | Relyea | Jun 2008 | A1 |
20080148047 | Appenzeller et al. | Jun 2008 | A1 |
20080189543 | Parkinson | Aug 2008 | A1 |
20080209224 | Lord | Aug 2008 | A1 |
20080209225 | Lord | Aug 2008 | A1 |
20080229401 | Magne | Sep 2008 | A1 |
20090003608 | Lee et al. | Jan 2009 | A1 |
20090133107 | Thoursie | May 2009 | A1 |
20100313027 | Taylor | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
9724831 | Jul 1997 | WO |
0048064 | Aug 2000 | WO |
2007096590 | Aug 2007 | WO |
Entry |
---|
U.S. Appl. No. 11/448,158, Nang Kon Kwan et al., filed Jun. 7, 2006. |
U.S. Appl. No. 11/446,956, Christina Fu et al., filed Jun. 6, 2006. |
U.S. Appl. No. 11/448,179, Nang Kon Kwan et al., filed Jun. 7, 2006. |
U.S. Appl. No. 11/447,196, Christina Fu et al., filed Jun. 6, 2006. |
“ATM and Credit Card Notification”, Feb. 2005 (internet archive) pp. 1-2, www.thereareplaces.com/infgdes/money.atmnotif.htm. |
“AMD Announces Specification for Open Platform Management Architecture”, Feb. 28, 2005, pp. 1-2, http://www.thefreelibrary.com/AMD+Announces+Specification+for+Open+Platform+Management+Architecture-a0129342307. |
Bellvin and Merritt, “Augmented Encrypted Key Exchange: a Password-Based Protocol Secure Against Dictionary Attacks and Password File Compromise”, Proceedings of the 1st ACM Conference on Computer and Communications Security, Nov. 1993. |
Schneier, “Applied Cryptography: Protocols, Algorithms, and Source Code in C”, 1996, John Wiley & Sons, Inc., Second Edition, pp. 455-456. |
Zuccherato, Robert, “Elliptic Curve Cryptography Support in Entrust”, May 9, 2000. |
Red Hat Certificate System, http://www.redhat.com/f/pdf/rhas/DirSecProductSheetCertificateSystem.pdf, Jun. 2005. |
PKCS#11 v2.20: Cryptographic Token Interface Standard, RSA Laboratories, Jun. 28, 2004 (see, e.g. Chapter 10, Objects) (see www.rsasecutiry.com, 407 pgs). |
Cryptographic Message Syntax, R. Housley, Request for Comments (RFC) 2630, Network Working Group, the Internet Society, Jun. 1999. |
Balfanz (Dirk ABalfanz, “Access Control for Ad-Hoc Collaboration”, Princeton University Jan. 2001). |
Schneier, Bruce. Applied Cryptography, Second Edition. 1996 John Wiley and Sons, pp. 480-481. |
Number | Date | Country | |
---|---|---|---|
20070288747 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11448157 | Jun 2006 | US |
Child | 11462606 | US |