This disclosure relates to method and system for intraocular lens (IOL) image quality, and more particularly to measurement of asymmetrical features.
Ophthalmic lenses, such as spectacles, contact lenses and intraocular lenses, may be configured to provide both spherical and cylindrical power. An intraocular lens (IOL) is a lens implanted in the eye used to treat cataracts or myopia. IOLs may b e used for restoring visual performance after a cataract surgery or other ophthalmic procedure in which the natural crystalline lens is replaced with or supplemented by implantation of an IOL. A variety of different types of IOLs are currently available, including monofocal and multifocal IOLs, phakic IOLs and piggyback IOLs (i.e. IOLs implanted in an eye already having an IOL).
Toric lenses typically have at least one surface that can be described by an asymmetric toric shape having two different primary curvature values in two orthogonal axes, wherein the toric lens is characterized by a “low power meridian” with a constant power equal to the base spherical power and an orthogonal “high power meridian” with a constant power equal to the base spherical power plus the cylinder power of the lens. Intraocular lenses, which are used to replace or supplement the natural lens of an eye, may also be configured to have a cylinder power for reducing or correcting the astigmatic effect of the cornea or eye.
One significant issue is the cost and/or time needed to develop and evaluate new IOL designs. Current methods and systems for measuring IOL image quality includes modular transfer function (MTF) measurement using an MTF bench for measuring the optical transfer function by its module and phase of an IOL. The MTF is the modulation or contrast of the image formed by the system or IOL for various spatial frequencies or various size targets. Frequently, black and white bars with 100% contrast are used as the targets. As the size of the target decreases, the system's ability to maintain high contrast decreases.
Such an MTF bench is typically used to measure the image quality with symmetrical features. That is, the modular transfer function is radially symmetrical. For an asymmetrical image quality like a toric lens, the MTF bench measures the X and Y meridians of the lens individually by forcing the image being evaluated be aligned with an X or Y meridian.
This may not be convenient and accurate enough to reflect the true image quality, especially in asymmetrical lenses, such as an IOL that may provide such as a highly asymmetric IOL or freeform design like the toric IOL with extended tolerance of astigmatic effects.
Therefore measuring the image quality by the current system design is not enough to capture the best image quality of the system (such an eye). Therefore, a method and system that can measure the meridian dependent image quality is needed to objectively and fully evaluate the image quality of asymmetrical IOLs including asymmetrical toric IOLs like extended tolerance astigmatism (“ETA”) IOLs. Examples of such ETA IOLs are described in U.S. Patent Application No. 63/312,321 (filed Mar. 23, 2016); 63/312,338 (filed Mar. 23, 2016); and 62/363,428 (filed Jul. 18, 2016), which are each hereby incorporated by reference for all purposes as if fully set forth herein.
Accordingly, the present invention is directed to a method and system for measuring image quality by spatially varying MTF test that obviates one or more of the problems due to limitations and disadvantages of the related art.
An advantage of the present invention is to provide a method for evaluating performance of an intraocular lens, comprising: providing an image capture device, such as a charge coupled device (CCD), CMOS, film/light recording material, or any camera, in an initial start position with respect to an ophthalmic device such as an intraocular lens (IOL), toric intraocular lens or the like being measured; capturing a first image; changing a relative angular position of the CCD with respect to the IOL; capturing second image; and determining a measure of intraocular lens performance based upon the captured images. Another aspect of the present invention provides a method for evaluating performance of an intraocular lens, comprising: providing a charge coupled device (CCD) in an initial start position with respect to an intraocular lens (IOL) being measured, wherein the initial start position includes an initial angular position and an initial z-axis position; capturing a first image; repeatedly changing the relative angular position of the CCD with respect to the IOL and capturing images until the relative angular position of the CCD with respect to the IOL reaches a predetermined angular stop position; changing a relative z-axis position of the IOL with respect to the CCD and resetting the relative angular position of the CCD with respect to the IOL to the initial angular start position; repeatedly changing the relative angular position of the CCD with respect to the IOL and capturing images until the relative angular position of the CCD with respect to the IOL reaches the predetermined angular stop position; repeatedly changing the relative z-axis position of the IOL with respect to the CCD and capturing images until the relative z-axis position of the IOL with respect to the CCD reaches a predetermined z-axis stop position; and determining a measure of intraocular lens performance based upon the captured images.
The details of one or more embodiments of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the disclosure will be apparent from the description and drawings, and from the claims.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the invention as claimed.
The accompanying figures, which are incorporated herein and form part of the specification, illustrate methods and systems for measuring image quality. Together with the description, the figures further serve to explain the principles of the methods and systems for measuring image quality described herein and thereby enable a person skilled in the pertinent art to make and use the methods and systems for measuring asymmetrical image quality.
Reference will now be made in detail to embodiments of the an improved system and method for measuring meridian-dependent image quality with reference to the accompanying figures, in which like reference numerals indicate like elements.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Because the functions of such a toric IOL usually works with a matching null lens to mimic an asymmetric eye model, an MTF bench that measures by alignment with an X or Y meridian will not accurately measure the asymmetric features. Like MTF that asymmetrical image quality is not only dependent on the best focus (defocus term), but also on the meridians or symmetry like the astigmatism of the optics under test.
For example, a regular toric IOL is designed to correct the astigmatic effect caused by the corneal astigmatism or cylindrical power with matching exactly the cylinder axis. If the cylindrical power axis were mismatched by 1 degree, there would b e about 3% reduction of the effectiveness of correction. If there were a 10 degrees misalignment, there would be about 35% reduction of such effectiveness of correction. The residual meridian power can be expressed as:
OC=2*SIN(Alpha)*C/2*0.7*COS[2*(theta+90+Alpha)/2]
Where C is the astigmatic power at the IOL plane to be corrected at meridian theta and the Alpha is the misalignment of the cylindrical power axis.
For an example using a ZCT600 toric IOL for correcting a corneal astigmatic power of about 4.2D with 0 degree cylindrical axis, the residual cylinder for −10, 0, and 10 degrees misalignment is shown as in
Referring to
A solution according to principles of the present invention measures the modular transfer function through-focus and meridian (Through-Focus and Meridian Response) to evaluate image quality in the lens. Measuring the MTF through focus gives the best focus position and measuring the MRF through meridian gives the optimal meridian angle that reflects the best image quality, here the MTF values.
According to principles of the present invention, the image capture device or CCD used to measure IOL performance can be rotated to evaluate the IOL at predetermined CAM angles such that the various meridian responses can be measured, whereas conventional measurements are conducted only at a single meridian (or CCD position), typically 0 degrees. Such comparison is illustrated in
As it can be seen that for any given CAM value, the measured 3D MTF value accurately reflects the optimal image quality of the toric IOL under test, although the best MTF values was not captured alone X or Y orientation. In addition, the measured TFMR also, if validated, can give the residual astigmatic and sphere equivalent powers simultaneously. If the Null lens is free of any power or non-existed, the measured would be the astigmatism power and spherical equivalent powers of the IOL.
Rotating the CCD as described above does not provide information as to the best focal plane of the IOL. Thus, additional focal plane information should be determined. That is, focal plane can be varied and tested by moving the location of the CCD with respect to the lens such that the lens is measured in both CAM and meridian response.
In an embodiment of the present system and method, an initial start focal plane position of the IOL is determined and an end focal plane position is determined. An initial CCD rotation angle is determined and an end CCD rotation angle is determined. The CCD and the IOL are placed in proper relative position. Measurements are taken at the initial rotation angle and initial focal plane position of the CCD. After initial measurement, the rotation angle or the focal plane position are incremented and additional measurements taken. The rotation angle may be incremented by rotating the physical CCD, rotating a stage hosting the CCD, or rotating the IOL or a stage or holder hosting the IOL to change the relative angular position of the CCD with respect to the IOL. According the principles of the present embodiment, the relative rotation angle is incremented by 1 degree, but may be incremented at 0.5 degrees or as the resolution of the CCD will allow. The focal plane position may be incremented by moving the physical CCD or a stage hosting the CCD, or moving the IOL or the stage or holder hosting the IOL to change the relative focal plane depth of the IOL with respect to the CCD. According the principles of the present embodiment, the relative focal plane position is incremented by 0.02 mm (20 microns), but may be incremented at 0.01 mm (10 microns) or as the resolution of the CCD will allow. That is, the following is measured or tracked: 1) movement of the CCD in Z; 2) rotation of IOL or detector (CCD); 3) rotation of the sample window; 4) rotation of patterned/featured object/etc.
A method and system for rotating the CCD using a rotational stage over 180 degrees in 1 degree increments/resolution is illustrated in the flow chart of
Alternatively, as illustrated in
For another example, for an irregular or asymmetrical powered toric IOL, as shown in
As it can be seen that the TFMR is obvious reflects the optimal image quality more in full of the irregular IOL.
The methods and system for measuring asymmetrical image quality is helpful measuring lens designs that can operate over a range of misalignments (e.g., +/−10 degrees of misalignment) as compared to conventional toric IOLs, which would work up to only +/−3 degrees. That is, aspects and embodiments described herein address the issue that prior art measurement devices cannot effectively measure performance of lens designs that operate over a range of misalignment, because prior art measurement devices do not take into account misalignment and point of focus of such an “ETA” lens, e.g. a lens with extended band operation (e.g., can work up to +/−10 degree of rotational error whereas current lens will not work if there is a +/−3 degree offset, for example). In addition, it can be appreciated the disclosed system and methods can be used to measure any type of lens, and is not limited to those that operate over a range of misalignments.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the present invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application claims priority to and is a divisional of U.S. patent application Ser. No. 15/927,518, filed on Mar. 21, 2018, which claims the benefit of U.S. Provisional Patent Application No. 62/475,778, filed Mar. 23, 2017, all of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2077092 | Broder | Apr 1937 | A |
3305294 | Alvarez | Feb 1967 | A |
3367734 | Karl et al. | Feb 1968 | A |
3735685 | Plummer | May 1973 | A |
4010496 | Neefe | Mar 1977 | A |
4056311 | Winthrop | Nov 1977 | A |
4077071 | Freeman | Mar 1978 | A |
4093361 | Erickson et al. | Jun 1978 | A |
4134160 | Bayers | Jan 1979 | A |
4162122 | Cohen | Jul 1979 | A |
4174543 | Kelman | Nov 1979 | A |
4210391 | Cohen et al. | Jul 1980 | A |
4249272 | Poler | Feb 1981 | A |
4254509 | Tennant | Mar 1981 | A |
4254510 | Tennant | Mar 1981 | A |
4316293 | Bayers | Feb 1982 | A |
4319564 | Karickhoff | Mar 1982 | A |
4338005 | Cohen | Jul 1982 | A |
4340283 | Cohen | Jul 1982 | A |
4370760 | Kelman | Feb 1983 | A |
4377873 | Reichert, Jr. | Mar 1983 | A |
4402579 | Poler | Sep 1983 | A |
4403353 | Tennant | Sep 1983 | A |
4404694 | Kelman | Sep 1983 | A |
4409691 | Levy | Oct 1983 | A |
4424597 | Schlegel | Jan 1984 | A |
4437733 | Takahashi et al. | Mar 1984 | A |
4446581 | Blake | May 1984 | A |
4480340 | Shepard | Nov 1984 | A |
4500382 | Foster | Feb 1985 | A |
4504982 | Burk | Mar 1985 | A |
4551864 | Akhavi | Nov 1985 | A |
4556998 | Siepser | Dec 1985 | A |
4560383 | Leiske | Dec 1985 | A |
4605409 | Kelman | Aug 1986 | A |
4605411 | Fedorov et al. | Aug 1986 | A |
4629460 | Dyer | Dec 1986 | A |
4629462 | Feaster | Dec 1986 | A |
4637697 | Freeman | Jan 1987 | A |
4642112 | Freeman | Feb 1987 | A |
4655565 | Freeman | Apr 1987 | A |
4665913 | L'Esperance, Jr. | May 1987 | A |
4669466 | L'Esperance | Jun 1987 | A |
4673406 | Schlegel | Jun 1987 | A |
4676791 | Lemaster et al. | Jun 1987 | A |
4676792 | Praeger | Jun 1987 | A |
4681102 | Bartell | Jul 1987 | A |
4687484 | Kaplan | Aug 1987 | A |
4687485 | Lim et al. | Aug 1987 | A |
RE32525 | Pannu | Oct 1987 | E |
4725277 | Bissonette | Feb 1988 | A |
4732148 | L'Esperance, Jr. | Mar 1988 | A |
4734095 | Siepser | Mar 1988 | A |
4764930 | Bille et al. | Aug 1988 | A |
4770172 | L'Esperance, Jr. | Sep 1988 | A |
4773414 | L'Esperance, Jr. | Sep 1988 | A |
4778462 | Grendahl | Oct 1988 | A |
4781717 | Grendahl | Nov 1988 | A |
4787903 | Grendahl | Nov 1988 | A |
4787904 | Severin et al. | Nov 1988 | A |
4795462 | Grendahl | Jan 1989 | A |
4798608 | Grendahl | Jan 1989 | A |
4798609 | Grendahl | Jan 1989 | A |
4828558 | Kelman | May 1989 | A |
4834748 | McDonald | May 1989 | A |
4863261 | Flammer | Sep 1989 | A |
4863539 | Lee et al. | Sep 1989 | A |
4898461 | Portney | Feb 1990 | A |
4932970 | Portney | Jun 1990 | A |
4995714 | Cohen | Feb 1991 | A |
4995715 | Cohen | Feb 1991 | A |
4997442 | Barrett | Mar 1991 | A |
5016977 | Baude et al. | May 1991 | A |
5019097 | Knight et al. | May 1991 | A |
5042938 | Shimozono | Aug 1991 | A |
5047052 | Dubroff | Sep 1991 | A |
5054905 | Cohen | Oct 1991 | A |
5056908 | Cohen | Oct 1991 | A |
5066301 | Wiley | Nov 1991 | A |
5071432 | Baikoff | Dec 1991 | A |
5078742 | Dahan | Jan 1992 | A |
5089023 | Swanson | Feb 1992 | A |
5096285 | Silberman | Mar 1992 | A |
5108388 | Trokel et al. | Apr 1992 | A |
5114220 | Baude et al. | May 1992 | A |
5117306 | Cohen | May 1992 | A |
5120120 | Cohen | Jun 1992 | A |
5121979 | Cohen | Jun 1992 | A |
5121980 | Cohen | Jun 1992 | A |
5133749 | Nordan | Jul 1992 | A |
5144483 | Cohen | Sep 1992 | A |
5147395 | Willis | Sep 1992 | A |
5147397 | Christ et al. | Sep 1992 | A |
5163934 | Munnerlyn | Nov 1992 | A |
5173723 | Volk et al. | Dec 1992 | A |
5184405 | Cress | Feb 1993 | A |
5191187 | Kajikawa | Mar 1993 | A |
5197981 | Southard | Mar 1993 | A |
5201763 | Brady et al. | Apr 1993 | A |
5203790 | McDonald | Apr 1993 | A |
5207668 | L'Esperance, Jr. | May 1993 | A |
5217491 | Vanderbilt | Jun 1993 | A |
5219343 | L'Esperance, Jr. | Jun 1993 | A |
5225858 | Portney | Jul 1993 | A |
5229797 | Futhey et al. | Jul 1993 | A |
5258025 | Fedorov et al. | Nov 1993 | A |
5278592 | Marie et al. | Jan 1994 | A |
5379110 | Matsui et al. | Jan 1995 | A |
5408281 | Zhang | Apr 1995 | A |
5433745 | Graham et al. | Jul 1995 | A |
5476513 | Brady et al. | Dec 1995 | A |
5479220 | Komatsu et al. | Dec 1995 | A |
5567365 | Weinschenk, III et al. | Oct 1996 | A |
5571177 | Deacon et al. | Nov 1996 | A |
5620720 | Glick et al. | Apr 1997 | A |
5628796 | Suzuki | May 1997 | A |
5646791 | Glockler | Jul 1997 | A |
5652638 | Roffman et al. | Jul 1997 | A |
5652640 | Schneider et al. | Jul 1997 | A |
5691800 | Iki et al. | Nov 1997 | A |
5699142 | Lee et al. | Dec 1997 | A |
5716403 | Tran et al. | Feb 1998 | A |
5748282 | Freeman | May 1998 | A |
5760871 | Kosoburd et al. | Jun 1998 | A |
5796462 | Roffman et al. | Aug 1998 | A |
5801807 | Satake et al. | Sep 1998 | A |
5928282 | Nigam | Jul 1999 | A |
5968094 | Werblin et al. | Oct 1999 | A |
5993438 | Juhasz et al. | Nov 1999 | A |
6015435 | Valunin et al. | Jan 2000 | A |
6051024 | Cumming | Apr 2000 | A |
6126283 | Wen et al. | Oct 2000 | A |
6126286 | Portney | Oct 2000 | A |
6129759 | Chambers | Oct 2000 | A |
6142625 | Sawano et al. | Nov 2000 | A |
6179870 | Sourdille et al. | Jan 2001 | B1 |
6210005 | Portney | Apr 2001 | B1 |
6235055 | Chu | May 2001 | B1 |
6241356 | Von et al. | Jun 2001 | B1 |
6261321 | Kellan | Jul 2001 | B1 |
6319282 | Nishi | Nov 2001 | B1 |
6338559 | Williams et al. | Jan 2002 | B1 |
6419697 | Kelman | Jul 2002 | B1 |
6457826 | Lett | Oct 2002 | B1 |
6460997 | Frey et al. | Oct 2002 | B1 |
6464355 | Gil | Oct 2002 | B1 |
6474814 | Griffin | Nov 2002 | B1 |
6488708 | Sarfarazi | Dec 2002 | B2 |
6491721 | Freeman et al. | Dec 2002 | B2 |
6497483 | Frey et al. | Dec 2002 | B2 |
6527389 | Portney | Mar 2003 | B2 |
6533416 | Fermigier et al. | Mar 2003 | B1 |
6536899 | Fiala | Mar 2003 | B1 |
6537317 | Steinert et al. | Mar 2003 | B1 |
6547822 | Lang | Apr 2003 | B1 |
6550917 | Neal et al. | Apr 2003 | B1 |
6554859 | Lang et al. | Apr 2003 | B1 |
6557992 | Dwyer et al. | May 2003 | B1 |
6575572 | Lai et al. | Jun 2003 | B2 |
6598606 | Terwee et al. | Jul 2003 | B2 |
6609793 | Norrby et al. | Aug 2003 | B2 |
6705729 | Piers et al. | Mar 2004 | B2 |
6786603 | Altmann | Sep 2004 | B2 |
6802605 | Cox et al. | Oct 2004 | B2 |
6808262 | Chapoy et al. | Oct 2004 | B2 |
6817714 | Altmann | Nov 2004 | B2 |
6830332 | Piers et al. | Dec 2004 | B2 |
6846326 | Zadno-Azizi et al. | Jan 2005 | B2 |
6851803 | Wooley et al. | Feb 2005 | B2 |
6899425 | Roffman et al. | May 2005 | B2 |
6923539 | Simpson et al. | Aug 2005 | B2 |
6923540 | Ye et al. | Aug 2005 | B2 |
6986578 | Jones | Jan 2006 | B2 |
7036931 | Lindacher et al. | May 2006 | B2 |
7048760 | Cumming | May 2006 | B2 |
7061693 | Zalevsky | Jun 2006 | B2 |
7073906 | Portney | Jul 2006 | B1 |
7137702 | Piers et al. | Nov 2006 | B2 |
7156516 | Morris et al. | Jan 2007 | B2 |
7188949 | Bandhauer et al. | Mar 2007 | B2 |
7281797 | Yamaguchi et al. | Oct 2007 | B2 |
7287852 | Fiala | Oct 2007 | B2 |
7293873 | Dai et al. | Nov 2007 | B2 |
7296893 | Dai | Nov 2007 | B2 |
7339539 | Joannopoulos et al. | Mar 2008 | B2 |
7350916 | Hong et al. | Apr 2008 | B2 |
7365917 | Zalevsky | Apr 2008 | B2 |
7377640 | Piers et al. | May 2008 | B2 |
7425068 | Koest | Sep 2008 | B2 |
7441894 | Zhang et al. | Oct 2008 | B2 |
7455404 | Bandhauer et al. | Nov 2008 | B2 |
7455407 | Neal et al. | Nov 2008 | B2 |
7475986 | Dai et al. | Jan 2009 | B2 |
7547102 | Dai | Jun 2009 | B2 |
7615073 | Deacon et al. | Nov 2009 | B2 |
7616330 | Neal et al. | Nov 2009 | B2 |
7659971 | Warden et al. | Feb 2010 | B2 |
7726813 | Dai | Jun 2010 | B2 |
7784946 | Leblanc | Aug 2010 | B2 |
7794497 | Brady et al. | Sep 2010 | B2 |
7857451 | Thibos et al. | Dec 2010 | B2 |
7871162 | Weeber | Jan 2011 | B2 |
7911211 | Crain et al. | Mar 2011 | B2 |
7931371 | Dai | Apr 2011 | B2 |
7931374 | Dai et al. | Apr 2011 | B2 |
7938538 | Lu et al. | May 2011 | B2 |
7944553 | Simpson et al. | May 2011 | B1 |
7969585 | Neal et al. | Jun 2011 | B2 |
8123357 | Dai et al. | Feb 2012 | B2 |
8382281 | Weeber | Feb 2013 | B2 |
8480228 | Weeber | Jul 2013 | B2 |
8596787 | Dai | Dec 2013 | B2 |
8657445 | Olsen | Feb 2014 | B2 |
8696119 | Van et al. | Apr 2014 | B2 |
8740382 | Liu et al. | Jun 2014 | B1 |
8746882 | Canovas et al. | Jun 2014 | B2 |
8764822 | Harris et al. | Jul 2014 | B2 |
8862447 | Weeber | Oct 2014 | B2 |
9211061 | Kasthurirangan et al. | Dec 2015 | B2 |
9241627 | Steinmueller | Jan 2016 | B2 |
9393108 | Canovas et al. | Jul 2016 | B2 |
9491431 | Zhou | Nov 2016 | B2 |
9700201 | Bex et al. | Jul 2017 | B2 |
20010051825 | Peterson | Dec 2001 | A1 |
20020118337 | Perrott et al. | Aug 2002 | A1 |
20020173846 | Blake et al. | Nov 2002 | A1 |
20020196408 | Bhalakia et al. | Dec 2002 | A1 |
20020196412 | Abitbol | Dec 2002 | A1 |
20030033013 | Callahan et al. | Feb 2003 | A1 |
20030053025 | Turner et al. | Mar 2003 | A1 |
20030076478 | Cox | Apr 2003 | A1 |
20030163122 | Sumiya | Aug 2003 | A1 |
20030171808 | Phillips | Sep 2003 | A1 |
20030189690 | Mihashi et al. | Oct 2003 | A1 |
20040021825 | Richardson | Feb 2004 | A1 |
20040054358 | Cox et al. | Mar 2004 | A1 |
20040068317 | Knight | Apr 2004 | A1 |
20040085515 | Roffman et al. | May 2004 | A1 |
20040106992 | Lang et al. | Jun 2004 | A1 |
20040111153 | Woods et al. | Jun 2004 | A1 |
20040156014 | Piers et al. | Aug 2004 | A1 |
20040167622 | Sunalp et al. | Aug 2004 | A1 |
20040183997 | Suzuki | Sep 2004 | A1 |
20040260275 | Liang et al. | Dec 2004 | A1 |
20050024647 | Montgomery | Feb 2005 | A1 |
20050096226 | Stock et al. | May 2005 | A1 |
20050122474 | Koretz | Jun 2005 | A1 |
20050125056 | Deacon et al. | Jun 2005 | A1 |
20050128432 | Altmann | Jun 2005 | A1 |
20050203619 | Altmann | Sep 2005 | A1 |
20050251254 | Brady et al. | Nov 2005 | A1 |
20050267575 | Nguyen et al. | Dec 2005 | A1 |
20060009816 | Fang et al. | Jan 2006 | A1 |
20060030938 | Altmann | Feb 2006 | A1 |
20060055877 | Yanari | Mar 2006 | A1 |
20060066808 | Blum et al. | Mar 2006 | A1 |
20060068453 | Altieri | Mar 2006 | A1 |
20060109421 | Ye et al. | May 2006 | A1 |
20060116763 | Simpson | Jun 2006 | A1 |
20060116764 | Simpson | Jun 2006 | A1 |
20060116765 | Blake et al. | Jun 2006 | A1 |
20060203198 | Liang | Sep 2006 | A1 |
20060238702 | Glick et al. | Oct 2006 | A1 |
20060244906 | Piers et al. | Nov 2006 | A1 |
20060244916 | Guillon | Nov 2006 | A1 |
20060274268 | Andino et al. | Dec 2006 | A1 |
20060279699 | Liang | Dec 2006 | A1 |
20060279700 | Liang | Dec 2006 | A1 |
20070052920 | Stewart et al. | Mar 2007 | A1 |
20070052927 | Noda et al. | Mar 2007 | A1 |
20070129803 | Cumming et al. | Jun 2007 | A1 |
20070171362 | Simpson et al. | Jul 2007 | A1 |
20070182924 | Hong et al. | Aug 2007 | A1 |
20070195265 | Dreher et al. | Aug 2007 | A1 |
20070268453 | Hong et al. | Nov 2007 | A1 |
20070285617 | Mills et al. | Dec 2007 | A1 |
20080018910 | Neal et al. | Jan 2008 | A1 |
20080030677 | Simpson | Feb 2008 | A1 |
20080033546 | Liang | Feb 2008 | A1 |
20080161913 | Brady et al. | Jul 2008 | A1 |
20080161914 | Brady et al. | Jul 2008 | A1 |
20080198331 | Azar et al. | Aug 2008 | A1 |
20080231809 | Haigis | Sep 2008 | A1 |
20080269642 | Deacon et al. | Oct 2008 | A1 |
20080273169 | Blum et al. | Nov 2008 | A1 |
20080291393 | Menezes | Nov 2008 | A1 |
20090000628 | Somani et al. | Jan 2009 | A1 |
20090012609 | Geraghty et al. | Jan 2009 | A1 |
20090036980 | Norrby et al. | Feb 2009 | A1 |
20090062911 | Bogaert | Mar 2009 | A1 |
20090067940 | Arai | Mar 2009 | A1 |
20090164008 | Hong et al. | Jun 2009 | A1 |
20090168019 | Tuan | Jul 2009 | A1 |
20090187242 | Weeber et al. | Jul 2009 | A1 |
20090210054 | Weeber et al. | Aug 2009 | A1 |
20090234448 | Weeber et al. | Sep 2009 | A1 |
20090268155 | Weeber | Oct 2009 | A1 |
20090275929 | Zickler | Nov 2009 | A1 |
20090279048 | Hong et al. | Nov 2009 | A1 |
20090281552 | Hiramatsu et al. | Nov 2009 | A1 |
20090292354 | Gontijo et al. | Nov 2009 | A1 |
20090295295 | Shannon et al. | Dec 2009 | A1 |
20090303465 | Clements et al. | Dec 2009 | A1 |
20090323020 | Zhao et al. | Dec 2009 | A1 |
20100016961 | Hong et al. | Jan 2010 | A1 |
20100016965 | Hong et al. | Jan 2010 | A1 |
20100082017 | Zickler et al. | Apr 2010 | A1 |
20100097569 | Weeber et al. | Apr 2010 | A1 |
20100097619 | Ge | Apr 2010 | A1 |
20100130888 | Deacon et al. | May 2010 | A1 |
20100161048 | Schaper, Jr. | Jun 2010 | A1 |
20100179793 | Chernyak et al. | Jul 2010 | A1 |
20100220185 | Vertoprakhov et al. | Sep 2010 | A1 |
20100234833 | Dai | Sep 2010 | A1 |
20100315589 | Portney | Dec 2010 | A1 |
20110080562 | Iizuka et al. | Apr 2011 | A1 |
20110149236 | Weeber | Jun 2011 | A1 |
20110166652 | Bogaert et al. | Jul 2011 | A1 |
20110205486 | Zhao | Aug 2011 | A1 |
20110211163 | Meuse et al. | Sep 2011 | A1 |
20120140166 | Zhao | Jun 2012 | A1 |
20120168605 | Milanovic | Jul 2012 | A1 |
20120238904 | Manns et al. | Sep 2012 | A1 |
20120249955 | Sarver et al. | Oct 2012 | A1 |
20120310337 | Hacker et al. | Dec 2012 | A1 |
20130050637 | Roffman et al. | Feb 2013 | A1 |
20130226294 | Van et al. | Aug 2013 | A1 |
20130307965 | Widman et al. | Nov 2013 | A1 |
20130314669 | Levin et al. | Nov 2013 | A1 |
20130345807 | Olsen et al. | Dec 2013 | A1 |
20140016088 | De et al. | Jan 2014 | A1 |
20140135919 | Gontijo et al. | May 2014 | A1 |
20140176904 | Lai | Jun 2014 | A1 |
20140268042 | Bor et al. | Sep 2014 | A1 |
20140293426 | Dobschal | Oct 2014 | A1 |
20140320805 | Wilzbach et al. | Oct 2014 | A1 |
20150062529 | Kasthurirangan et al. | Mar 2015 | A1 |
20150138350 | Videcoq | May 2015 | A1 |
20150250583 | Rosen et al. | Sep 2015 | A1 |
20150320547 | Rosen et al. | Nov 2015 | A1 |
20150359625 | Argal et al. | Dec 2015 | A1 |
20150362746 | Skudder et al. | Dec 2015 | A1 |
20150379348 | Whritenor et al. | Dec 2015 | A1 |
20160157997 | Gerlach et al. | Jun 2016 | A1 |
20160161364 | Alarcon Heredia et al. | Jun 2016 | A1 |
20160299355 | Biemold et al. | Oct 2016 | A1 |
20160335474 | Santos-Villalobos et al. | Nov 2016 | A1 |
20170189233 | Dewey et al. | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
8107675 | Jul 1981 | DE |
102005022683 | Nov 2006 | DE |
226400 | Jun 1987 | EP |
227357 | Jul 1987 | EP |
0538126 | Sep 1996 | EP |
0810427 | Dec 1997 | EP |
0926531 | Jun 1999 | EP |
957331 | Nov 1999 | EP |
1310267 | Jan 2008 | EP |
2631891 | Aug 2013 | EP |
3059575 | Aug 2016 | EP |
2745711 | Sep 1997 | FR |
2433782 | Jul 2007 | GB |
2488802 | Sep 2012 | GB |
8603961 | Jul 1986 | WO |
9222264 | Dec 1992 | WO |
9303409 | Feb 1993 | WO |
9507487 | Mar 1995 | WO |
9856315 | Dec 1998 | WO |
9905499 | Feb 1999 | WO |
0019906 | Apr 2000 | WO |
0111418 | Feb 2001 | WO |
0135868 | May 2001 | WO |
0154569 | Aug 2001 | WO |
0163344 | Aug 2001 | WO |
0182839 | Nov 2001 | WO |
0185016 | Nov 2001 | WO |
0189424 | Nov 2001 | WO |
0221194 | Mar 2002 | WO |
02074210 | Sep 2002 | WO |
03009053 | Jan 2003 | WO |
04028356 | Apr 2004 | WO |
2004034129 | Apr 2004 | WO |
2004053568 | Jun 2004 | WO |
2004079637 | Sep 2004 | WO |
2004090611 | Oct 2004 | WO |
2004096014 | Nov 2004 | WO |
05019906 | Mar 2005 | WO |
2005079546 | Sep 2005 | WO |
06025726 | Mar 2006 | WO |
2006032263 | Mar 2006 | WO |
2006047698 | May 2006 | WO |
06060477 | Jun 2006 | WO |
2006060480 | Jun 2006 | WO |
2007067872 | Jun 2007 | WO |
2007092948 | Aug 2007 | WO |
2007133384 | Nov 2007 | WO |
2007142981 | Dec 2007 | WO |
2008045847 | Apr 2008 | WO |
2008083283 | Jul 2008 | WO |
2009020963 | Feb 2009 | WO |
2009029515 | Mar 2009 | WO |
2009076670 | Jun 2009 | WO |
2009105567 | Aug 2009 | WO |
2009137491 | Nov 2009 | WO |
2010009254 | Jan 2010 | WO |
2010009257 | Jan 2010 | WO |
2010028654 | Mar 2010 | WO |
2012052585 | Apr 2012 | WO |
2012074742 | Jun 2012 | WO |
2012083143 | Jun 2012 | WO |
2012085917 | Jun 2012 | WO |
2012154597 | Nov 2012 | WO |
2012166797 | Dec 2012 | WO |
2015022215 | Feb 2015 | WO |
2016032397 | Mar 2016 | WO |
2016087914 | Jun 2016 | WO |
2016123167 | Aug 2016 | WO |
Entry |
---|
Abelman H., et al. “Tolerance and Nature of Residual Refraction in Symmetric Power Space as Principal Lens Powers and Meridians Change,” Computational and Mathematical Methods in Medicine, Article ID 492383, 2014, vol. 2014, pp. 1-12. |
Abrahamsson M., et al., “Impairment of Contrast Sensitivity Function (CSF) as a Measure of Disability Glare,” Investigative Ophthalmology & Visual Science, Jul. 1986, vol. 27 (7), pp. 1131-1136. |
Alfonso J.F., et al., “Prospective Study of the Acri.LISA Bifocal Intraocular Lens,” Journal of Cataract Refractive Surgery, Nov. 2007, vol. 33 (11), pp. 1930-1935. |
Alio J.L., et al., “Phakic Anterior Chamber Lenses for the Correction of Myopia: A 7-Year Cumulative Analysis of Complications in 263 Cases,” Ophthalmology, Mar. 1999, vol. 106 (3), pp. 458-466. |
Apple D.J., et al., “Anterior Chamber Lenses Part 1: Complications and Pathology and a Review of Designs,” Journal of Cataract Refractive Surgery, Mar. 1987, vol. 13 (2), pp. 157-174. |
Apple D.J., et al., Eds., “Intraocular Lenses: Evolution, Designs, Complications and Pathology,” in: New Concepts in Intraocular Lens Implantation, Williams & Wilkins publisher, Jan. 1989, vol. 22 (36), pp. 205-221. |
Apple D.J., et al., Eds., “Intraocular Lenses: Evolution, Designs, Complications and Pathology,” in: New Concepts in Intraocular Lens Implantation, Williams & Wilkins publisher, Jan. 1989, vol. 36 (1), pp. 21-36. |
Aslam, T.M., et al., “Development of a Forced Choice Photographic Questionnaire For Photic Phenomena and Its Testing—Repeatability, Reliability and Validity,” Ophthalmologica, Nov.-Dec. 2004, vol. 218 (6), pp. 402-410. |
Baikoff G., et al., “Angle-fixated Anterior Chamber Phakic Intraocular Lens for Myopia 7 to-19 Diopters,” Journal of Refractive Surgery, May-Jun. 1998, vol. 14 (3), pp. 282-292. |
Baumeister M., et al., “Tilt and Decentration of Spherical and Aspheric Intraocular Lenses: Effect on Higher-Order Aberrations,” Journal of Cataract & Refractive Surgery, 2009, vol. 35 (6), pp. 1006-1012. |
Beer J.M., et al., “Lasers′ Spectral and Temporal Profile Can Affect Visual Glare Disability,” Aviation, Space, and Environmental Medicine, Dec. 2012, vol. 83 (12), pp. 1135-1144. |
Brainard D.H., The Psychophysics Toolbox, Spatial Vision, vol. 10, pp. 433-436. |
Brown W.L., “Revisions to Tolerances in Cylinder Axis and in Progressive Addition Lens Power in ANSI Z80.1-2005,” Optometry, 2006, vol. 77 (7), pp. 343-349. |
Calatayud A., et al., “Imaging Quality of Multifocal Intraocular Lenses: Automated Assessment Setup,” Ophthalmic and Physiological Optics, Jul. 2013, vol. 33 (4), pp. 420-426. |
Canovas C., et al., “Customized Eye Models for Determining Optimized Intraocular Lenses Power,” Biomedical Optics Express, Jun. 1, 2011, vol. 2 (6), pp. 1649-1662. |
Canovas C., et al., “Hybrid Adaptive-Optics Visual Simulator,” Optical Letters, Jan. 15, 2010, vol. 35 (2), pp. 196-198. |
Cheng X., et al., “Predicting Subjective Judgment of Best Focus with Objective Image Quality Metrics,” Journal of Vision, Apr. 2004, vol. 4 (4), pp. 310-321. |
Cilco Advertisement Brochure, Oct. 1982, 3 pages. |
Cohen A.L., “Practical Design of a Bifocal Hologram Contact Lens or Intraocular Lens,” Applied Optics, Jul. 1, 1992, vol. 31 (19), pp. 3750-3754. |
De Almeida M.S., et al., “Different Schematic Eyes and their Accuracy to the in Vivo Eye: A Quantitative Comparison Study,” Brazilian Journal of Physics, Jun. 2007, vol. 37 (2A), 10 pages. |
Diffractive Lenses for Extended Depth of Focus and Presbyopic Correction, Presentation from Wavefront Congress held on Feb. 15, 2008, Rochester, New York. |
Doskolovich L.L., et al., “Special Diffractive Lenses,” Lens and Optical Systems Design, Apr. 1992, vol. 1780, pp. 393-402. |
Einighammer H.J., “The Individual Virtual Eye”, Dissertation, 2008, 157 pages. |
Fernandez E.J., et al., “Adaptive Optics Visual Simulator,” Journal of Refractive Surgery, 2002, vol. 18 (5), pp. S634-S638. |
Gobbi P.G., et al., “Far and Near Visual Acuity with Multifocal Intraocular Lenses in an Optomechanical Eye Model with Imaging Capability,” Journal of Cataract and Refractive Surgery, 2007, vol. 33 (6), pp. 1082-1094. |
Gobbi P.G., et al., “Optomechanical Eye Model with Imaging Capabilities for Objective Evaluation of Intraocular Lenses,” Journal of Cataract and Refractive Surgery, 2006, vol. 32 (4), pp. 643-651. |
Guirao A., et al., “Corneal Wave Aberration from Videokeratography: Accuracy And Limitations of the Procedure,” Journal of the Optical Society of America, 2000, vol. 17 (6), pp. 955-965. |
Hill W., et al., “Monte Carlo Simulation of Expected Outcomes with the Acrysof Toric Intraocular Lens,” BMC Ophthalmology, Oct. 2008, vol. 8, pp. 22. |
Jaeken B., et al., “Peripheral Aberrations in the Human Eye for Different Wavelengths: Off-Axis Chromatic Aberration,” Journal of the Optical Society of America A, Sep. 2011, vol. 28 (9), pp. 1871-1879. |
Javitt J.C., et al., “Validity and Reliability of the Cataract TyPE Spec: an Instrument For Measuring Outcomes of Cataract Extraction,” American Journal of Ophthalmology, Aug. 2003, vol. 136 (2), pp. 285-290. |
Jendritza B.B., et al., “Wavefront-Guided Excimer Laser Vision Correction after Multifocal IOL Implantation,” Journal of Refractive Surgery, Mar. 2008, vol. 24 (3), pp. 274-279. |
Johnson C.A., “Psychophysical Factors that Have Been Applied to Clinical Perimetry,” Vision Research, Sep. 2013, vol. 90, pp. 25-31. |
Kim J.H., et al., “The Analysis of Predicted Capsular Bag Diameter using Modified Model of Capsule Measuring Ring in Asians,” Clinical and Experimental Ophthalmology, Apr. 2008, vol. 36 (3), pp. 238-244. |
Kim M.J., et al., “Objective Evaluation of Through-Focus Optical Performance of Presbyopia-Correcting Intraocular Lenses Using an Optical Bench System,” Journal of Cataract and Refractive Surgery, 2011, vol. 37 (7), pp. 1305-1312. |
Klein S.A., “Optimal Corneal Ablation for Eyes with Arbitrary Hartmann-Shack Aberrations,” Journal of the Optical Society of America A, 1998, vol. 15 (9), pp. 2580-2588. |
Lesmes L.A., et al., “Bayesian Adaptive Estimation of the Contrast Sensitivity Function: the Quick CSF Method,”Journal of Vision, Mar. 2010, vol. 10 (3) 17, pp. 1-21. |
Liang J., et al., “Objective Measurement Of Wave Aberrations Of The Human Eye With The Use Of A Hartmann-Shack Wave-Front Sensor,” Journal of the Optical Society of America, 1994, vol. 11 (7), pp. 1949-1957. |
Liou H.L., et al., “Anatomically Accurate, Finite Model Eye for Optical Modeling,” Journal of Optical Society of America, Aug. 1997, vol. 14 (8), pp. 1684-1695. |
Liou H.L., et al., “The Prediction of Spherical Aberration with Schematic Eyes,” Ophthalmic and Physiological Optics, Jan. 1996, vol. 16 (4), pp. 348-354. |
Marinho A., “Results are Encouraging for Phakic IOLs, but More Work is needed,” Refractive Surgery, Feb. 2000, p. 12, 15. |
Marsack J.D., et al., “Metrics of Optical Quality Derived from Wave Aberrations Predict Visual Performance,” Journal of Vision, Apr. 2004, vol. 4 (4), pp. 322-328. |
Menapace R., “The Capsular Tension Rings,” Journal of Cataract & Refractive Surgery, Dec. 10, 2008, Chap. 3, pp. 27-44. |
Mencucci R., et al., “Clinical outcomes and rotational stability of a 4-haptic toric intraocular lens in myopic eyes,” Journal of Cataract & Refractive Surgery, Sep. 2014, vol. 40 (9), pp. 1479-1487. |
Monsoriu J.A., et al., “Devil's Lenses,” Optics Express, Oct. 17, 2007, vol. 15 (21), pp. 13858-13864. |
Morlock, R., et al., “Patient-Reported Spectacle Independence Questionnaire (PRSIQ): Development and Validation,”American Journal of Ophthalmology, Jun. 2017, vol. 178, pp. 101-114. |
Navarro R., et al., “Accommodation-Dependent Model of the Human Eye with Aspherics,” Journal of the Optical Society of America, Aug. 1985, vol. 2 (8), pp. 1273-1281. |
Nio Y.K., et al., “Effect of Intraocular Lens Implantation on Visual Acuity, Contrast Sensitivity, and Depth of Focus,” Journal of Cataract and Refractive Surgery, Nov. 2003, vol. 29 (11), pp. 2073-2081. |
Norrby S., et al., “Model Eyes for Evaluation of Intraocular Lenses,” Applied Optics, Sep. 7, 2007, vol. 46 (26), pp. 6595-6605. |
Olsen T., “Simple Method to Calculate the Surgically Induced Refractive Change,” Journal of Cataract & Refractive Surgery, Mar. 1993, vol. 19 (2), pp. 319-320. |
Ortiz, C., et al., “Quantification and Monitoring of Visual Disturbances for patients with cataracts using Halo v1.0 software,” Department of Optics, Laboratory of Vision Sciences and Applications, University of Granada, IWBBIO 2013, Mar. 20, 2013, XP055596332, Proceedings, 8 Pages. |
Peli E., et al., “Appearance of Images Through A Multifocal Intraocular Lens,” Journal of the Optical Society of America, 2001, vol. 18 (2), pp. 302-309. |
Piers P.A., et al., “Eye Models for the Prediction of Contrast Vision in Patients with New Intraocular Lens Designs,” Optics Letters, Apr. 1, 2004, vol. 29 (7), pp. 733-735. |
Piers P.A., et al., “Theoretical Comparison of Aberration-Correcting Customized and Aspheric Intraocular Lenses,” Journal of Refractive Surgery, Apr. 2007, vol. 23 (4), pp. 374-384. |
Praeger D.L., “Praeger Technique for the Insertion of the Copeland Radial IOL Posterior Chamber Placement,” Copeland Lens, 1982, 7 pages. |
Rosen R.,et al., “A Bayesian Method Using through Focus Visual Acuity to Predict Rates of Spectacle Wear for Pseudophakic patients,” Investigative Ophthalmology & Visual Science, Jul. 2018, vol. 59 (9), pp. 1075, ARVO Annual Meeting Abstract, Retrieved from the Internet: (URL: https://iovs.arvojournals.org/article.aspx?articleid=2693341&resultClick=1). |
Siedlecki D., et al., “Radial Gradient index Intraocular Lens: a Theoretical Model,” Journal of Modern Optics, Feb. 20-Mar. 10, 2008, vol. 55 (4-5), pp. 639-647. |
Strenn K., et al., “Capsular bag Shrinkage after Implantation of an Open-Loop Silicone Lens and a Poly(methyl methacrylate) Capsule Tension Ring,” Journal of Cataract and Refractive Surgery, Dec. 1997, vol. 23 (10), pp. 1543-1547. |
Tehrani M., et al., “Capsule Measuring Ring to Predict Capsular Bag Diameter and Follow its Course after Foldable Intraocular Lens Implantation,” Journal of Cataract Refractive Surgery, Nov. 2003, vol. 29 (11), pp. 2127-2134. |
Terwee T., et al., “Visualization of the Retinal Image in an Eye Model With Spherical and Aspheric, Diffractive, and Refractive Multifocal Intraocular Lenses,” Journal of Refractive Surgery, Mar. 2008, vol. 24 (3), pp. 223-232. |
Van Den Berg T.J., “Analysis of Intraocular Straylight, Especially in Relation to Age,” Optometry and Vision Science, Feb. 1995, vol. 72 (2), pp. 52-59. |
Van Meeteren A., “Calculations on the Optical Modulation Transfer Function of the Human Eye for White Light,” Optica Acta, May 1974, vol. 21 (5), pp. 395-412. |
Vass C., et al., “Prediction of Pseudophakic Capsular bag Diameter based on Biometric Variables,” Journal of Cataract and Refractive Surgery, Oct. 1999, vol. 25 (10), pp. 1376-1381. |
Villegas E.A., et al., “Correlation between Optical and Psychophy, Sical Parameters as a Function of Defocus,” Optometry and Vision Science, Jan. 1, 2002, vol. 79 (1), pp. 60-67. |
Vitale S., et al., “The Refractive Status and Vision Profile: A Questionnaire to Measure Vision-Related Quality of Life in Persons with Refractive Error,” Ophthalmology, Aug. 2000, vol. 107 (8), pp. 1529-1539. |
Weeber H.A., et al., “Influence of Corneal Aberrations on Dysphotopsia with Multifocal IOLs,” ARVO, 2011, Abstract. |
Weeber H.A., et al., “Influence of Corneal Aberrations on Dysphotopsia with Multifocal IOLs,” RD3115, 2011. |
Weeber H.A., et al., “Optical and Visual Performance of Patient Populations Implanted with Monofocal and Multifocal IOLs in the Presence of Defocus,” Investigative Ophthalmology & Visual Science, 2010, vol. 51, E-Abstract 5751. |
Weeber H.A., et al., “Population-based Visual Acuity in the Presence of Defocus Well Predicted By Classical Theory,” Journal of Biomedical Optics, 2010, vol. 15 (4), pp. 040509. |
Weeber H.A., et al., “Theoretical Performance of Intraocular Lenses Correcting Both Spherical and Chromatic Aberration,” Journal of Refractive Surgery, 2012, vol. 28 (1), pp. 48-52. |
Number | Date | Country | |
---|---|---|---|
20200396387 A1 | Dec 2020 | US |
Number | Date | Country | |
---|---|---|---|
62475778 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15927518 | Mar 2018 | US |
Child | 16987345 | US |