This disclosure relates to operating a fleet of pumps for hydraulic fracturing and, in particular, to systems and methods for operating a directly driven turbine fracturing pump system for hydraulic fracturing application.
Traditional Diesel fracturing pumping fleets have a large footprint and often need additional auxiliary equipment to achieve the horsepower required for hydraulic fracturing.
The layout as indicated in
Accordingly, Applicant has recognized that a need exists for more efficient ways of managing power requirement for a hydraulic fracturing fleet while minimizing equipment layout foot print. The present disclosure addresses these and other related and unrelated problems in the art.
According to one embodiment of the disclosure, a method of operating a plurality of pump units associated with a high-pressure, high-power hydraulic fracturing assembly is provided. Each of the pump units may include a turbine engine, a driveshaft, a gearbox connected to the turbine engine and driveshaft for driving the driveshaft, and a pump connected to the driveshaft. The method may include receiving a demand hydraulic horse power (HHP) signal for operation of the hydraulic fracturing assembly. Based at least in part on the demand HHP signal, the method may include operating all available pump units of the plurality of pump units at a first output power to achieve the demand HHP. The method may include receiving a loss of power signal for at least one pump unit of the plurality of pump units during operation of the plurality of pump units, and after receiving the loss of power signal, designating the at least one pump unit as a reduced power pump unit (RPPU) and the remaining pump units as operating pump units (OPU). The method may further include operating at least one of the OPUs at a second output power to meet the demand HHP signal for operation of the hydraulic fracturing assembly. The first output power may be in the range of approximately 70% to 100% of a maximum continuous power (MCP) level of the plurality of pump units, the second output power may be greater than the first output power and may be in the range of approximately 70% of the MCP level to approximately a maximum intermittent power (MIP) level of the plurality of pump units.
According to another embodiment of the disclosure, a system is disclosed to control operation of a plurality of pump units associated with a hydraulic fracturing assembly. Each of the pump units may include a turbine engine connected to a gearbox for driving a driveshaft, and a pump connected to the drive shaft. The system includes a controller in communication with the plurality of pump units. The controller may include one or more processors and memory having computer-readable instructions stored therein and may be operable by the processor to receive a demand hydraulic horse power (HHP) signal for the hydraulic fracturing assembly. Based at least in part on the demand HHP signal, the controller may operate all available pump units of the plurality of pump units at a first output power to achieve the demand HHP, and may receive a loss of power signal from at least one pump unit of the plurality of pump units. After receiving the loss of power signal, the controller may designate the at least one pump unit as a reduced power pump unit (RPPU), and designate the remaining pump units as operating pump units (OPU). The controller may further operate one or more of the OPUs at a second output power to meet the demand HHP signal of the hydraulic fracturing system. The first output power may be in the range of approximately 70% to 100% of a maximum continuous power (MCP) level of the plurality of pump units. The second output power may be greater than the first output power and may be in the range of approximately 70% of MCP level to approximately a maximum intermittent power (MIP) level of the plurality of pump units.
Those skilled in the art will appreciate the benefits of various additional embodiments reading the following detailed description of the embodiments with reference to the below-listed drawing figures. It is within the scope of the present disclosure that the above-discussed aspects be provided both individually and in various combinations.
According to common practice, the various features of the drawings discussed below are not necessarily drawn to scale. Dimensions of various features and elements in the drawings may be expanded or reduced to more clearly illustrate the embodiments of the disclosure.
Corresponding parts are designated by corresponding reference numbers throughout the drawings.
Generally, this disclosure is directed to methods and systems for controlling a fleet of DDT pumping units 11 (
In an embodiment, the gas turbine engine 25 may be a dual shaft, dual fuel turbine with a rated shaft horsepower (SHP) of 5100 at standard conditions, or other suitable gas turbine. The gearbox 27 may be a reduction helical gearbox that has a constant running power rating of 5500 SHP and intermittent power output of 5850 SHP, or other suitable gearbox. The driveshaft 31 may be a 390 Series, GWB Model 390.80 driveshaft available from Dana Corporation, or other suitable driveshaft. In one example, the pump 33 may be a high-pressure, high-power, reciprocating positive displacement pump rated at 5000 HP, but the pump may be rated to an elevated horsepower above the gas turbine engine 25, e.g., 7000 HP, or may be otherwise sized without departing from the disclosure.
In one embodiment, for example, the desired HHP of the fluid pumping system 400 may be 41,000 HHP and the fluid pumping system 400 having ten pump units 302a thru 302j that deliver the 41,000 HHP by each operating at an operating power below a Maximum Continuous Power (MCP) rating of each the pump unit. The Maximum Continuous Power (MCP) level of the pump corresponds to the maximum power at which the individual pump units 302a thru 302j may sustain continuous operation without any performance or reliability penalties. In one example, the ten pump units 302a thru 302j may operate at approximately 80% MCP to deliver the 41,000 HHP required for the fluid pumping system 400. The Maximum Intermittent Power (MIP) level of a pump unit 302a thru 302j is an elevated operating output level that the pump unit may operate intermittently throughout its operating life without excessive damage to the pump unit. The operation of a pump unit 302a thru 302j at or above the MIP power level may incur penalties associated with pump unit life cycle estimates and other warranties. The MIP power level for a DDT pump unit 302a thru 302j may be attained by over-firing the turbine engine 25 associated with the pump unit 302a thru 302j or by other means of operation. The MIP power level of the pump units 302a thru 302j is typically an amount above the MCP level and may typically range from 101% of rated MCP to 110% of rated MCP. In an embodiment of the disclosure, the MIP level may be set at 107% of rated power. In other embodiments, the MIP level may be greater than 110% of rated MCP without departing from the disclosure.
As shown in
The controller 330 may be communicatively coupled to send signals and receive operational data from the hydraulic fracturing pump units 302a thru 302j via a communication interface 320, which may be any of one or more communication networks such as, for example, an Ethernet interface, a universal serial bus (USB) interface, or a wireless interface, or any other suitable interface. In certain embodiments, the controller 330 may be coupled to the pump units 302a thru 302j by way of a hard wire or cable, such as, for example, an interface cable. The controller 330 may include a computer system having one or more processors that may execute computer-executable instructions to receive and analyze data from various data sources, such as the pump units 302a thru 302j, and may include the RTU 340. The controller 330 may further provide inputs, gather transfer function outputs, and transmit instructions from any number of operators and/or personnel. The controller 330 may perform control actions as well as provide inputs to the RTU 340. In other embodiments, the controller 330 may determine control actions to be performed based on data received from one or more data sources, for example, from the pump units 302a thru 302j. In other instances, the controller 330 may be an independent entity communicatively coupled to the RTU 340.
During operation of the fluid pumping system 300, the controller 330 will monitor the operation of the pumping units 302a thru 302j including the power utilization and overall maintenance health of each pumping unit. The controller 330 may receive a signal for loss of power from one or more pumping units 302a thru 302j (Step 606). The loss of power signal may occur if one or more of the pump units 302a thru 302j loses power such that the detected output power of a respective pump is below the first output power. Further, the loss of power signal may occur if a respective pump unit 302a thru 302j is completely shut down and experiences a loss of power for any reason (e.g., loss of fuel to turbine 25). Further, one or more of the pump units 302a thru 302j may be voluntary taken out of service for routine service/maintenance issues including routine maintenance inspection or for other reasons. Upon receiving the loss of power signal, the controller 330 may designate one or more of the pump units 302a thru 302j as a Reduced Power Pump Unit (RPPU) (Step 608) and designate the remaining pump units as Operating Pump Units (OPUs) (Step 610). In one embodiment, the controller 330 will calculate a second output power at which the OPUs must operate to maintain the needed HHP of the fluid pumping system 400 based on the reduced operating power of the RPPU(s) (Step 612). In one embodiment, the second output power is greater than the first output power and may be in the range of approximately 70% of the MCP level to approximately the MIP level for the pumping units. The controller 330 will revise the operating parameters of the OPUs to operate at the calculated second output power to maintain the HHP of the fluid pumping system 400 (Step 614). The controller 330 continues to monitor the operation of the OPUs to maintain sufficient output of the fluid pumping units 302a thru 302j to meet the demand HHP for the system 400.
In an alternative embodiment of the method of operation, it may be desired to operate some of the OPUs at different operating powers. In this instance, after designating the OPUs at step 610, the controller 330 will calculate a second output power for a first group of OPUs and calculate a third output power for a second group of OPUs (step 616). In one embodiment, both the second output power and the third output power is greater than the first output power, but one or both of the second output power and the third output power may be equal to or below the first output power without departing from the disclosure. Both the second output power and the third output power may be in the range of approximately 70% of the MCP level to approximately the MIP level for the pumping units. The controller 330 operates the first group of OPUs at the second output power (step 618) and operates the second group of OPUs at the third output power (620) to maintain the sufficient output of the fluid pumping units 302a thru 302j to meet the demand HHP for the fluid pumping system 400.
The controller 330 will monitor the time that any of the pump units 302a thru 302j are operated at a second output power or third output power that exceeds the MCP level or approaches or exceeds the MIP level. Operators will be notified when operation of the system 400 at these elevated levels of output power exceed parameters that necessitate a shutdown of the system to avoid failure of the pumping units 302a thru 302j. Care should be taken to remedy the situation that caused the loss of power signal so that all the pumping units 302a thru 302j may be returned to their normal output power to maintain the desired HHP of the system 400.
In one embodiment, the loss of power signal received by the controller 330 at step 606 may indicate a reduction in the output power of one or more RPPUs and the controller will continue the operation of the detected RPPUs (step 622) at a reduced power level below the first output power. Further, the loss of power signal received by the controller 330 may indicate a complete loss of power of one or more of the RPPUs 302a thru 302j. If a complete loss of power of one or more of the pumping units 302a thru 302j is detected, the second output power and/or third output power would be higher to accommodate for the total loss of power of one or more of the pumping units. In one embodiment, the controller 330 calculates the second output power and/or third output power for the OPUs 302a-302j in the form of a flow adjustment needed for the OPUs. The second output power and/or third output power of the OPUs 302a-302j may require operation of the OPUs at or above MIP level for a short period of time (e.g., 30 minutes) while the issues that triggered the loss of power signal (step 606) is corrected.
In one embodiment, during the loss of one or more pump units 302a-302j, the controller 330 may be able to meet the demand HHP by operating all of the OPUs at a second output power of 100% MCP level. In other embodiments, the controller 330 would be able to meet the demand HHP only by operating all of the OPUs 302a-302j at a second output power at the MIP level (e.g., 107% of MCP level). In other embodiments, the controller 330 would be able to meet the demand HHP by operating the first group of OPUs 302a-302j at a second output power at the MIP level and operating the second group of OPUs at a third output power at the MCP level.
By way of an example, for the ten pump unit system 400 shown in
The memory 725 may be used to store program instructions, such as instructions for the execution of the method 600 described above or other suitable variations. The instructions are loadable and executable by the processor 705 as well as to store data generated during the execution of these programs. Depending on the configuration and type of the controller 330, the memory 725 may be volatile (such as random access memory (RAM)) and/or non-volatile (such as read-only memory (ROM), flash memory, etc.). In some embodiments, the memory devices may include additional removable storage 730 and/or non-removable storage 735 including, but not limited to, magnetic storage, optical disks, and/or tape storage. The disk drives and their associated computer-readable media may provide non-volatile storage of computer-readable instructions, data structures, program modules, and other data for the devices. In some implementations, the memory 725 includes multiple different types of memory, such as static random access memory (SRAM), dynamic random access memory (DRAM), or ROM.
The memory 725, the removable storage 730, and the non-removable storage 735 are all examples of computer-readable storage media. For example, computer-readable storage media may include volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Additional types of computer storage media that may be present include, but are not limited to, programmable random access memory (PRAM), SRAM, DRAM, RAM, ROM, electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disc read-only memory (CD-ROM), digital versatile discs (DVD) or other optical storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or any other medium which may be used to store the desired information and which may be accessed by the devices. Combinations of any of the above should also be included within the scope of computer-readable media.
Controller 330 may also include one or more communication connections 710 that may allow a control device (not shown) to communicate with devices or equipment capable of communicating with the controller 330. The controller 330 may also include a computer system (not shown). Connections may also be established via various data communication channels or ports, such as USB or COM ports to receive cables connecting the controller 330 to various other devices on a network. In one embodiment, the controller 330 may include Ethernet drivers that enable the controller 130 to communicate with other devices on the network. According to various embodiments, communication connections 710 may be established via a wired and/or wireless connection on the network.
The controller 330 may also include one or more input devices 715, such as a keyboard, mouse, pen, voice input device, gesture input device, and/or touch input device, or any other suitable input device. It may further include one or more output devices 720, such as a display, printer, and/or speakers, or any other suitable output device. In other embodiments, however, computer-readable communication media may include computer-readable instructions, program modules, or other data transmitted within a data signal, such as a carrier wave, or other transmission.
In one embodiment, the memory 725 may include, but is not limited to, an operating system (OS) 726 and one or more application programs or services for implementing the features and aspects disclosed herein. Such applications or services may include a Remote Terminal Unit 340, 740 for executing certain systems and methods for operating a fleet of pumps in a hydraulic fracturing application. The Remote Terminal Unit 340, 740 may reside in the memory 725 or may be independent of the controller 330, as represented in
As desired, embodiments of the disclosure may include a controller 330 with more or fewer components than are illustrated in
In some embodiments, the sizing of downstream equipment (e.g., pump unit discharge piping, manifold, etc.) should be increased compared to that sizing of the standard power output downstream equipment of the pump units to take advantage at operating at the elevated output power of the pump unit during short term use. The pump unit power rating should be increased to allow for the maximum intermittent power of the engine. Further, the size and torque rating of the driveshaft and if applicable torsional vibration dampeners and flywheels also be considered when designing the power train.
Examples of such configurations in a dual shaft, dual fuel turbine engine with a rated shaft horse power of 5100 at standard ISO conditions is used in conjunction with a reduction Helical Gearbox that has a constant running power rating of 5500 SHP & an intermittent power output of 5850 SHP. The engine, gearbox assembly, and the drive shaft should be sized and selected to be able to meet the power and torque requirements at not only the constant running rating of the pump units but also the intermittent/increased loads. In one example, a 390.80 GWB driveshaft may be selected. The drive train may include torsional vibration dampeners as well as single mass fly wheels and their installation in the drive train is dependent on the results from careful torsional vibration analysis. The pump unit may be rated to an elevated horsepower above that of the engine. Common pumps on the market are rated at 7000HP with the next lowest pump being rated to 5000HP respectively. The sizing, selection, and assembly of such a drive train would allow reliable operation of the turbine engine above the 100% rated HP value with the resulting hydraulic horse power (HHP) produced being dependent on environmental and other conditions.
References are made to block diagrams of systems, methods, apparatuses, and computer program products according to example embodiments. It will be understood that at least some of the blocks of the block diagrams, and combinations of blocks in the block diagrams, may be implemented at least partially by computer program instructions. These computer program instructions may be loaded onto a general purpose computer, special purpose computer, special purpose hardware-based computer, or other programmable data processing apparatus to produce a machine, such that the instructions which execute on the computer or other programmable data processing apparatus create means for implementing the functionality of at least some of the blocks of the block diagrams, or combinations of blocks in the block diagrams discussed.
These computer program instructions may also be stored in a non-transitory computer-readable memory that may direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including instruction means that implement the function specified in the block or blocks. The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operational steps to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions that execute on the computer or other programmable apparatus provide task, acts, actions, or operations for implementing the functions specified in the block or blocks.
One or more components of the systems and one or more elements of the methods described herein may be implemented through an application program running on an operating system of a computer. They also may be practiced with other computer system configurations, including hand-held devices, multiprocessor systems, microprocessor based or programmable consumer electronics, mini-computers, mainframe computers, and the like.
Application programs that are components of the systems and methods described herein may include routines, programs, components, data structures, and so forth that implement certain abstract data types and perform certain tasks or actions. In a distributed computing environment, the application program (in whole or in part) may be located in local memory or in other storage. In addition, or alternatively, the application program (in whole or in part) may be located in remote memory or in storage to allow for circumstances where tasks may be performed by remote processing devices linked through a communications network.
This application is a continuation of U.S. Non-Provisional application Ser. No. 17/389,536, filed Jul. 30, 2021, titled “METHODS AND SYSTEMS FOR OPERATING A FLEET OF PUMPS,” which is a continuation of U.S. Non-Provisional application Ser. No. 17/387,477, filed Jul. 28, 2021, titled “METHODS AND SYSTEMS FOR OPERATING A FLEET OF PUMPS,” which is a continuation of U.S. Non-Provisional application Ser. No. 17/118,790, filed Dec. 11, 2020, titled “METHODS AND SYSTEMS FOR OPERATING A FLEET OF PUMPS,” which is a continuation of U.S. Non-Provisional application Ser. No. 17/022,972, filed Sep. 16, 2020, titled “METHODS AND SYSTEMS FOR OPERATING A FLEET OF PUMPS,” now U.S. Pat. No. 10,907,459, issued Feb. 2, 2021, which is continuation of U.S. Non-Provisional application Ser. No. 16/946,082, filed Jun. 5, 2020, titled “METHODS AND SYSTEMS FOR OPERATING A FLEET OF PUMPS,” now U.S. Pat. No. 10,815,764, issued Oct. 27, 2020, which claims the benefit of and priority to U.S. Provisional Application No. 62/899,951, filed Sep. 13, 2019, titled “METHODS AND SYSTEMS FOR OPERATING A FLEET OF PUMPS,” the entire disclosures of which are incorporated herein by reference.
Although only a few exemplary embodiments have been described in detail herein, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the embodiments of the present disclosure. Accordingly, all such modifications are intended to be included within the scope of the embodiments of the present disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures.
This application is a continuation of U.S. Non-Provisional application Ser. No. 17/389,536, filed Jul. 30, 2021, titled “METHODS AND SYSTEMS FOR OPERATING A FLEET OF PUMPS,” which is a continuation of U.S. Non-Provisional application Ser. No. 17/387,477, filed Jul. 28, 2021, titled “METHODS AND SYSTEMS FOR OPERATING A FLEET OF PUMPS,” which is a continuation of U.S. Non-Provisional application Ser. No. 17/118,790, filed Dec. 11, 2020, titled “METHODS AND SYSTEMS FOR OPERATING A FLEET OF PUMPS,” which is a continuation of U.S. Non-Provisional application Ser. No. 17/022,972, filed Sep. 16, 2020, titled “METHODS AND SYSTEMS FOR OPERATING A FLEET OF PUMPS,” now U.S. Pat. No. 10,907,459, issued Feb. 2, 2021, which is continuation of U.S. Non-Provisional application Ser. No. 16/946,082, filed Jun. 5, 2020, titled “METHODS AND SYSTEMS FOR OPERATING A FLEET OF PUMPS,” now U.S. Pat. No. 10,815,764, issued Oct. 27, 2020, which claims the benefit of and priority to U.S. Provisional Application No. 62/899,951, filed Sep. 13, 2019, titled “METHODS AND SYSTEMS FOR OPERATING A FLEET OF PUMPS,” the entire disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62899951 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17389536 | Jul 2021 | US |
Child | 18104351 | US | |
Parent | 17387477 | Jul 2021 | US |
Child | 17389536 | US | |
Parent | 17118790 | Dec 2020 | US |
Child | 17387477 | US | |
Parent | 17022972 | Sep 2020 | US |
Child | 17118790 | US | |
Parent | 16946082 | Jun 2020 | US |
Child | 17022972 | US |