1. Field of the Invention
Embodiments of the present invention relate to optimized power systems that utilize geothermal heat sources.
More specifically, embodiments of the present invention relate to optimized binary power systems called organic Rankine cycles (ORCs) utilizing a flow of geothermal fluid as a heat source.
2. Description of the Related Art
Typical geothermal fluids or geofluids are highly mineralized, which limits the minimum temperature to which the geofluids may be cooled to provide heat for a geothermal power system. If it is cooled further than this limit, the minerals in the geofluids will deposit on heat exchange apparatus surfaces or other surfaces in contact with the geofluids, fouling them and interfering with the operation of the power system.
At the same time, the greater the degree of utilization of the heat source stream (i.e., the closer the final temperature of the heat source stream is to the minimum temperature limit imposed by the geofluids mineralization) the higher the output of the system.
However, all actual power systems in current operation do not work so as to make maximum allowable utilization of their heat sources. This is because the temperature of the cooling medium (air or water) varies over the course of each day, as well as by season and in response to the weather. Thus, the working fluid enters and exits the system's feed pump with different temperatures, depending on the coolant temperature.
All of the heat available from a given heat source may be conceptually divided into two portions; the heat used for the vaporization of the working fluid and the heat used for the pre-heating of the working fluid from the temperature at the point just after the feed pump up to the boiling temperature of the working fluid.
In real-world operation, the systems must operate so that, even on the coldest day (corresponding to the coldest possible temperature of the cooling medium), the exit temperature of the heat source always remains above the limit imposed by issues of mineralization.
Therefore, in real-world operations of a power system, the parameters are chosen so that the final temperature of the heat source stream will be measurably higher than the limit imposed by mineralization in all cases, where the temperature of the cooling medium is higher than the coldest it can be. As a result, in an actual installation, most of the time the heat source is not fully utilized.
Thus, there is a need in the art for optimized systems utilizing geothermal fluids (geofluids) as a heat source.
Embodiments of the present invention provide methods for optimizing the operation of geothermal power systems so that the utilization of the heat source is maximized at all possible coolant temperatures. In certain embodiments, the methods based on binary power systems or so called organic Rankine cycles (ORCs).
Embodiments of the present invention provide apparatuses for optimizing the operation of geothermal power systems so that the utilization of the heat source is maximized at all possible coolant temperatures. In certain embodiments, the apparatuses are binary power systems or so call organic Rankine cycles (ORCs).
The invention can be better understood with reference to the following detailed description together with the appended illustrative drawings in which like elements are numbered the same:
The term “substantially” means that the value of the value or property that the term modifies is within about 10% of the related value or property. In other embodiments, the term means that the value or property is withing 5% of the related value or property. In other embodiments, the term means that the value or property is withing 2.5% of the related value or property. In other embodiments, the term means that the value or property is withing 1% of the related value or property.
The inventor has found that a pressures optimized thermodynamic cycle, in particular, a pressure optimized Rankine cycle may be implemented, where the methods and apparatuses establishing the cycle continuously monitors and adjusts a boiling pressure and flow rate of the working fluid stream entering the vaporization subsystem based on a final temperature of a heat source stream and the initial temperature of a coolant stream. In order to attain this optimum set of parameters for the power systems of this invention, it is necessary to vary the boiling pressure and the flow rate of the working fluid, based on the coolant temperature. However, the work done by the feed pump is such that, for any given difference in pressure between the stream at a location before and after the feed pump, there is one specific and invariable flow rate of the working fluid through the system. At the same time, the flow rate required for the optimal operation of the power systems of this invention at a given pressure is not the same as the actual flow rate that that given pressure inevitably corresponds to. Thus, in order to achieve the optimal operation of the power systems of this invention, it is necessary to have the capability to change the pressure and flow rate separately and independent of each other.
The working fluids used in the systems of this invention are either single-component fluids or multi-component fluids. The multi-component fluids comprise at least one lower boiling point component and at least one higher boiling point component. Suitable multi-components fluids include, without limitation, ammonia-water mixtures, mixtures of two or more hydrocarbons, mixtures of two or more freon, mixtures of hydrocarbons and freons, or mixtures thereof. In general, the fluid may comprise mixtures of any number of compounds with favorable thermodynamic characteristics and solubility. In certain embodiments, the multi-component fluid comprises a mixture of water and ammonia.
It should be recognized by an ordinary artisan that at those points in the systems of this invention were a stream is split into two or more sub-streams, dividing valves that affect such stream splitting are well known in the art and may be manually adjustable or dynamically adjustable so that the splitting achieves the desired stream flow rates and system efficiencies. Similarly, when stream are combined, combining valve that affect combining are also well known in the art and may be manually adjustable or dynamically adjustable so that the splitting achieves the desired stream flow rates and system efficiencies.
Referring now to
The condensation subsystem 102 condenses a spent working fluid stream S106 to form a condensed working fluid stream S101. In certain embodiments, the stream S101 is fully condensed. The stream S101 enters the flow control subsystem 104 to produce a flow and pressure controlled stream S103. The flow controlled stream S103 is then forwarded to vaporization and boiler subsystem 106, where the flow controlled stream S103 is vaporized or fully vaporized or fully vaporized and superheated to form a vaporized stream or a fully vaporized stream or a fully vaporized and superheated stream S105. The stream S105 is then forwarded to the energy conversion subsystem 108, where a portion of its thermal energy is converted to mechanical and/or electrical energy, a usable form of energy to produce a spent stream S106.
Referring now to
The system 200 operates as follows. A condensed stream S201 having parameters (e.g., pressure, flow rate, temperature, compositions, etc.) as at a point 1 exits the first heat exchange unit HE1. The stream S201 is combined by the mixing valve MV with a pressure adjusted recirculation stream S210 having parameters as at a point 10 forming a feed pump input stream S202 having parameters at as a point 2. A pressure of the feed pump input stream S202 is the same as a pressure of the stream S201 having the parameters as the point 1.
The feed pump input stream S202 is then pumped to a higher pressure in the feed pump P1 to form a pressurized feed pump input stream S207 having parameters as at a point 7. The pressurized feed pump input stream S207 is then forwarded to the control valve CV, where a pressure of the stream S207 is reduced to a desired pressure forming a pressure adjusted stream S203 having parameters as a point 3. The desired pressure of the stream S203 is an optimal pressure for the specific boundary conditions at which the power system 200 operates at any given moment and is set by the DPU/APU, which controls the control valve CV as explained more fully below.
If the entire flow of the stream S207 exiting the pump P1 were to pass through the control valve CV, then a flow rate of the stream S203 having the parameters as at the point 3 would be higher than needed for optimal performance. Thus, the stream S207 is divided by the dividing valve DV into two substreams, a flow rate adjusted stream S208 having parameters as at a point 8 and a diverted or recirculation stream S209 having parameters as at a point 9. The flow rate adjusted stream S208 is then forwarded to the control valve CV to form the stream S203.
The stream S209 is then sent through a bypass valve BV, where its pressure is reduced to a pressure equal to a pressure of the working fluid stream S201 having the parameters as at the point 1 forming the stream S210 having the parameters as at the point 10. The stream S210 is then combined by the mixing valve MV with the stream S201, thereby recirculating the excess working fluid flow of stream S207 through the pump P1 in the form of the combined stream S202.
As a result, a pressure and a flow rate of the pressures adjusted working fluid stream S203 entering a vaporization or boiler subsystem 206 of the system 200 are kept at values that correspond to optimal operation of the system 200.
The optimal pressure of the stream S203 having the parameters at the point 3 is established by the control valve CV. The operation of the control valve CV is controlled by the DPU/APU based on measuring an initial coolant temperature of a cooling media stream S250 having parameters as at a point 50. The initial temperature is measured by a first temperature sensor t1, the response of which is forwarded to the DPU/APU, which in turn uses the initial coolant temperature to control the control valve CV.
The optimal flow rate of stream S203 is independently established by the operation of the bypass valve BV, the operation of which is controlled the DPU/APU based on measuring a final heat source temperature of a spent heat source stream S242 having parameters as at a point 42 exiting the vaporization subsystem 202. The final temperature of the spent heat source stream S242 is measured by the second temperature sensor t2, the response therefrom is forwarded to the DPU/APU, which in turn uses the final temperature of the spent heat source stream S242 to control the flow rate and pressure of the pressure adjusted recirculation stream S210.
The control valve CV is controlled by the operational computer subsystem DPU/APU that measures the cooling media stream initial temperature of the stream S250 having the parameters as at the point 50, which is used to set the pressure and flow rate of the flow rate adjusted stream S203 exiting of the control valve CV. The bypass valve BV may be operated and controlled in the same manner by the operational computer subsystem DPU/APU taking a measurement of the final temperature of the spent heat source stream S142, which is used to set the flow rate of the recirculation stream S209 forwarded to the bypass valve BV. Alternately, since the temperature of the spent heat source stream S242 needs to be constant (being limited by issues of mineralization), the bypass valve BV may be made to be a thermo-regulating valve, which is set to keep the temperature of the spent heat source stream S242 within a required range and thus controls the flow rate through the bypass valve BV. (Any other method of control that attains the same results will serve equally well.)
The flow rate adjusted stream S203 is then forwarded into the vaporization subsystem 206. The stream S203 first enters the second heat exchange unit HE2, where the stream S203 is heated in counterflow with a cooled heat source stream S241 having parameters as at a point 41 to form a heated or a partially vaporized stream S204 having parameters as at a point 4 and a spend heat source stream S242 having parameters as at a point 42. The stream S204 is then forwarded into the third heat exchange system HE3, where the stream S204 is vaporized and/or superheated in counterflow with a heat source stream S240 having parameters as at a point 40 to form a vaporized or superheated stream S205 having parameters as at a point 5 and the cooled heat source stream S241.
The vaporized or superheated stream S205 is then forwarded to the heat conversion subsystem 208. The stream S205 enters the turbine T forming a spent stream S206 having parameters as at a point 6 and a portion of the heat in the stream S205 is extracted and converted to a usable form of energy such as mechanical and/or electrical.
The spent stream S206 is then forwarded to the condenser subsystem 202. The stream S206 enters the condenser HE1, where the stream S206 is condensed in counterflow with a coolant stream S250 having parameters as at a point 50 to form the condensed stream S201 and a spent coolant stream S251 having parameters as at a point 51.
Referring now to
Calculations show that over the course of an average year of operation of an ORC geothermal power system of the prior art convert approximately 90% to 95% of the total available heat potential is utilized, while using the present inventions, either variant, will allow an increase in the heat utilization to about 99% of the total available heat potential, increasing output by approximately 3% to 6% on a sustained and permanent yearly basis.
All references cited herein are incorporated by reference. Although the invention has been disclosed with reference to its preferred embodiments, from reading this description those of skill in the art may appreciate changes and modification that may be made which do not depart from the scope and spirit of the invention as described above and claimed hereafter.
Number | Name | Date | Kind |
---|---|---|---|
3413809 | Bredtschneider et al. | Dec 1968 | A |
3636706 | Minto | Jan 1972 | A |
4267458 | Uram et al. | May 1981 | A |
4471620 | Binstock et al. | Sep 1984 | A |
4489562 | Snyder et al. | Dec 1984 | A |
4561254 | Martens et al. | Dec 1985 | A |
7458218 | Kalina | Dec 2008 | B2 |
7685821 | Kalina | Mar 2010 | B2 |
8613196 | Kalina | Dec 2013 | B2 |