The present invention generally relates to wireless communication systems. More specifically, the present invention relates to methods and systems for performing channel estimation in OFDM (Orthogonal Frequency Division Multiplexing) based block transmission systems.
In block transmission systems, typically, a base station transmits a preamble symbol in addition to the data symbols. A preamble symbol is, generally, an introductory symbol that may not carry data but is provided to enable the receiver to perform certain tasks such as synchronization, channel estimation, estimation of base station signal strengths etc. The preamble symbol has a higher density of pilot symbols than the rest of the symbols. The preamble symbol does not contain any data.
Further, the data can be transmitted to a mobile station from either a single base station or from a plurality of base stations. For example, in 802.16e, a base station can transmit data packets that are destined specifically for the mobile station on a unicast zone. On the other hand, data packets that are broadcast/multicast by a plurality of base stations can be received by more than one mobile station on a Multicast and Broadcast Service (MBS) zone.
Wireless channels are characterized by multi-path. The transmitted signal undergoes phenomenon like reflection and scattering from various obstacles. This results in multi-path. Consequently, the mobile station may receive the signals with different delays. Also, signals transmitted by the plurality of base stations may not always take a line-of-sight path in reaching the mobile station. The multi-path nature of the channel in the time domain manifests as a frequency selective channel in the frequency domain.
The combined channel of the plurality of base stations differs from a single channel between a base station and a mobile station. The combined channel has a larger delay spread than the single channel. This results in highly frequency selective channels. The large delay spread hurts the channel estimation of the combined channel.
Some of the existing channel estimation methods employ interpolation techniques such as sinc or Fast Fourier Transform (FFT) based interpolation. In such methods, the delay spread of the channel that can be estimated well is limited.
There is therefore a need for methods and systems for channel estimation such that a delay spread of a channel that can be estimated well is increased and the channel estimation performance is improved.
An embodiment provides methods and systems for performing channel estimation in a wireless communication system. The method comprises receiving a plurality of signal frames from a plurality of base stations in the wireless communication system. Each of the plurality of signal frames comprises a first zone and a second zone. In an embodiment, the plurality of base stations transmits a different signal on the first zone, and signals that are exactly identical in nature on the second zone. In another embodiment, at least a group of base stations from the plurality of base stations transmit signals that are identical in nature on the second zone.
The method, further, comprises determining two or more first delay profiles corresponding to two or more base stations of the plurality of base stations. The two or more base stations can belong to an active set of base stations or a candidate set of base stations corresponding to the mobile station. The two or more first delay profiles are determined using the first zones of the two or more base stations. The two or more first delay profiles can be a power delay profile or a tap delay profile. Furthermore, the method comprises using the two or more first delay profiles to detect one or more aliased taps in the time domain channel response of the second zone.
Another embodiment provides a method of performing channel estimation in a wireless communication system, where a signal frame is received from a base station. The signal frame comprises at least the first zone. Further, the first zone comprises a preamble symbol and a data part of the first zone. The method comprises determining a third delay profile corresponding to the preamble symbol and obtaining a fourth delay profile corresponding to the data part of the first zone. The fourth delay profile is, then, analyzed in conjunction with the third delay profile to detect one or more aliased taps in the time domain channel response of the data part of the first zone. Further, the time domain channel response corresponding to the data part of the first zone is corrected by either nulling the one or more aliased taps or by rectifying the one or more aliased taps using a module offset technique.
Further, an embodiment provides a system for performing channel estimation in a wireless communication system. The system is adapted to function at least in a first zone and a second zone. The system comprises a first transceiver, a memory and a first processor. The first transceiver can be configured for the reception of the plurality of signal frames from the plurality of base stations in the wireless communication system. The first processor can be operatively coupled to the memory and the first transceiver. Moreover, the first processor can be configured for determining the two or more first delay profiles using the first zone. Furthermore, the two or more first delay profiles can be used by extending the configuration of the first processor to detect one or more aliased taps in a time domain channel response of the second zone.
An embodiment also provides a system that is adapted to function at least in the first zone. The system uses a preamble symbol of a signal frame to detect one or more aliased taps in the time domain channel response of a data part of the first zone.
A more complete appreciation of the present invention is provided by reference to the following detailed description when considered in conjunction with the accompanying drawings in which reference symbols indicate the same or similar components, wherein
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
While embodiments may be described in many different forms, some of which are shown in the figures and described herein in detail, it is understood that the present disclosure is to be considered as an example of the principles of the present invention and not intended to limit the invention to the specific embodiments shown and described. Further, the terms and words used herein are not to be considered limiting, but rather merely descriptive. It will also be appreciated that for simplicity and clarity of illustration, common and well-understood elements that are useful or necessary in a commercially feasible embodiment may not be depicted in order to facilitate a less obstructed view of these various embodiments. Also, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements are exaggerated relative to each other. Further, where considered appropriate, reference numerals have been repeated among the figures to indicate corresponding elements.
In this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
It will be appreciated that embodiments of the present invention described herein may be comprised of one or more conventional processors and unique stored program instructions that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of methods and systems for performing channel estimation in a wireless communication system described herein. The non-processor circuits may include, but are not limited to, a radio receiver, a radio transmitter, signal drivers, clock circuits, power source circuits, and user input devices. As such, these functions may be interpreted as steps of a method to perform channel estimation in a wireless communication system. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used. Thus, methods and means for these functions have been described herein. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.
In accordance with various embodiments, methods and systems for performing channel estimation in a wireless communication system are provided. In one embodiment, the wireless communication system can be a block transmission system. Some of the examples of block transmission systems are Orthogonal Frequency-Division Multiplexing (OFDM) systems, Multi-Carrier Code Division Multiple Access (MC-CDMA) system, Orthogonal Frequency Division Multiple Access (OFDMA) system, Discrete Multi-Tone (DMT) system and the like. The IEEE 802.16d and the IEEE 802.16e wireless Metropolitan Area Network (MAN) standards, which use OFDM-like technology, are also examples of block transmission systems.
Referring to
An active set of base stations is a set of the base stations, say M base stations, with the strongest signal strength among all base stations. In other words, if we order the base stations in decreasing order of signal strength, the first M of them constitute the active set. These base stations are actively tracked by the mobile station for various purposes and hence this information is typically available for example from an active set tracking block or function.
Plurality of base stations 115-n can be in communication with mobile station 105 and can transmit a plurality of data bursts to mobile station 105. The plurality of data bursts can be transmitted to mobile station 105 using a first zone or a second zone or both. For example, mobile station 105 may request to download an audio application from base station 115-1 through wireless communication system 110. Base station 115-1, on receiving the request from mobile station 105, may transmit data bursts pertaining to the audio application to mobile station 105 through wireless communication system 110 on the first zone. For example, in 802.16e, the data bursts can be transmitted to mobile station 105 in a unicast transmission mode if the data bursts are destined specifically for mobile station 105.
In an embodiment, contrary to the first zone, the second zone carries identical information from plurality of base stations 115-n to one or more mobile stations. In another embodiment, for instance during a soft handoff, a group of base stations from the plurality of base stations transmits signals that are identical in nature on the second zone. Specifically, the same information is transmitted to one or more mobile stations in the wireless communication system. For instance, in an embodiment, wireless communication system 110 may comprise a video server (not shown). The video server may serve as a platform for networked TV channels that can send packets of audio/visual data on the second zone, to plurality of base stations 115-n. Plurality of base stations 115-n may then forward the packets in the second zone to one or more mobile stations in wireless communication system 110. Consequently, each of the one or more mobile stations may receive the same audio/visual data bursts transmitted by the video server on the second zone. A similar example of transmission in the second zone is the broadcast or multicast transmission in 802.16e where same data bursts are sent over the second zone to one or more mobile stations. Another example is where a group of base stations send the same data bursts over the second zone during a soft hand-off process with a mobile station. In this case the data bursts may be destined for a single mobile station.
Turning now to
In an embodiment, mobile station 105 can receive a signal frame comprising both first zone 205 and second zone 210. In this embodiment, mobile station 105 can perform channel estimation for a combined channel corresponding to at least some of the plurality of base stations 115-n in the second zone 210, using first zone 205 in conjunction with second zone 210. A method of this embodiment is described in detail in conjunction with
In another embodiment, mobile station 105 can receive data destined for it in the first zone from a base station, say base station 115-1. In this embodiment, mobile station 105 can perform channel estimation for a channel between base station 115-1 and mobile station 105 using preamble symbol 215 in conjunction with a data part of first zone 205. A method of this embodiment is described in detail in conjunction with
Those skilled in the art will realize that first zone 205 and second zone 210 are merely a group of symbol(s). The group of symbols need not be consecutive or in the order shown in
Turning now to
For example, mobile station 105 can be subscribed to a gaming service provided by a game server in wireless communication system 110. The game server may need to send periodic updates to a plurality of mobile stations that are subscribed to the gaming service. For this purpose, the updates are sent to plurality of base stations 115-n. Plurality of base station 115-n can then route all data packets pertaining to the updates to mobile station 105 on the second zone. In another instance, mobile station 105 can send a download request to the game server for downloading a gaming application. In response to the download request, the gaming server can route the data packets pertaining to the gaming application to base station 115-3. The base station 115-3 can then forward these data packets to mobile station 105 on the first zone.
At 310, two or more first delay profiles corresponding to two or more base stations from plurality of base stations 115-n are determined. Each of the two or more first delay profiles can be a power delay profile or a tap delay profile. A representation of the power of signal frames received from base stations versus the delay is referred to as the “Power Delay Profile”. Further, a tap delay profile represents the delays at which the channel has significant energy without reference to the power on the taps. The first zone is used to determine the two or more first delay profiles of two or more base stations. In an embodiment, the first zone comprises a preamble symbol, as depicted in
The first zone can further comprise a data part. The data part of the first zone can contain data packets destined for mobile station 105. Both, the preamble symbol and the data part, contain one or more pilot tones. The one or more pilot tones are generally employed as reference signals for various purposes such as channel estimation, synchronization etc.
An efficient channel estimation of a combined channel of two or more base stations can be performed by interpolating the channel estimates in the time and frequency domain using the one or more pilot tones. In order to interpolate the channel estimates of the two or more base stations using a simple sinc interpolation technique, the pilot spacing in terms of number of tones must be at least NFFT/DMax, where NFFT is total number of tones in an OFDM symbol and DMax is the maximum delay spread of the channel in terms of OFDM samples. Those skilled in the art will realize that if the pilot spacing is more, or equivalently, if the pilot density is lower, the channel estimation would have errors. Generally, the pilot density in the data part of the first zone is lower compared to the pilot density in the preamble symbol of the first zone. The preamble symbol does not carry data and therefore can have a higher pilot density. In conventional methods, if the spacing between the one or more pilot tones is K, then a delay spread of the channel that can be estimated well is limited to NFFT/K. For example, in the 802.16e standard, the pilot spacing in a preamble symbol is 3, and that of FUSC (Full Usage of Sub-Channels) is 12. Consequently, if the conventional methods are used, the delay spread of the channel that can be estimated on the preamble symbol is NFFT/3 and that on the data part is NFFT/12. Thus the delay spread of the channel that can be estimated is more for the preamble than for the FUSC zone.
In accordance with an embodiment, the preamble symbol can be used to estimate the delay spread on the data part of the first zone. Thus, an improved channel estimation corresponding to the pilot spacing of NFFT/3 can be obtained on the data part of the first zone, if the preamble symbol is used in conjunction with the data part for channel estimation.
Referring back to
Turning now to
If the two or more first delay profiles are power delay profiles, the aggregate delay profile is the sum of the two or more first delay profiles of the two or more base stations. Alternatively, if the two or more first delay profiles are a tap delay profile, the aggregate delay profile is a union of the two or more first delay profiles. In an embodiment, only the top M base stations can be considered, such that the aggregated power of the aggregate delay profile is maximum for those M base stations, but the embodiment is not so limited. In another embodiment, the first delay profiles of the first M1 (where M1<M) base stations of the M base stations can also be considered. Typically a mobile station, in this case the mobile station 105, determines the top M base stations for various purposes. This is more so in wireless communication systems such as the 802.16e.
If a delay spread of a channel is larger than NFFT/K (where K is the pilot spacing) and channel estimation is performed using Fast Fourier Transform (FFT) based interpolation technique, the phenomenon of aliasing may occur. An example of the aliasing phenomenon is illustrated in conjunction with
The aliasing of taps, where the taps beyond the index 128 are effectively aliased back within the first 128 tap window, is illustrated in conjunction with
The aliasing of taps caused in the aggregate delay profile is less than the aliasing of taps caused in the second delay profile.
Thus, subsequent to the calculation of the aggregate delay profile, the aggregate delay profile is compared with the second delay profile at 420. On comparing the aggregate delay profile with the second delay profile, one or more aliased taps in the time domain channel response of the second zone can be identified at 425. The correction of the time domain channel response of the second zone can also account for a leakage effects or a windowing effects resulting from a frequency domain to time domain conversion.
In an embodiment, upon identifying the one or more aliased taps in the time domain channel response of the second zone, the one or more aliased taps are nulled at 430. Nulling an aliased tap implies that the aliased tap is ‘zeroed’ or deleted from the time domain channel response. In an alternate embodiment, the one or more aliased taps are rectified based on a modulo offset technique at 435. Rectifying implies that the one or more aliased taps are deleted and then placed in the correct location in the time domain channel response of the second zone. This is done by shifting the one or more aliased taps by a value equal to a multiple of NFFT/K2 where K2 is the pilot density in the second zone. By doing so, a tap location index modulo NFFT/K2 remains unchanged. Further, if an aliased tap is shifted by NFFT/K2, then it is moved into a second window. If the aliased tap is shifted by 2NFFT/K2, then it is moved into a third window.
For instance, in accordance with an embodiment, the pilot spacing in the preamble symbol can be assumed to be K1 and the pilot spacing in the data of the second zone can be assumed to be K2. Thus, K1 may be assumed to be smaller than K2. Further consider the case when the delay spread of the channel is less than or equal to (2 NFFT/K2). This is known to a mobile station by observing the channel estimate obtained on the preamble. Consequently, this consists of two windows or less of the length of the channel that can be estimated with a pilot spacing of K2. In this situation any aliased taps are known to occur from the second window, since a third window does not exist. Thus all detected aliased taps are move into the second window by simply shifting them to the left by NFFT/K2. Note that their value, modulo NFFT/K2 does not change. In a different embodiment, these taps may be nulled instead of shifting.
Thus, by detecting and nulling/rectifying the aliased taps in the time domain channel response of the second zone, a better channel estimation of the combined channel of the plurality of base stations can be performed for in the second zone.
In an embodiment, when a mobile station has multiple receive antennas, the tap delay profile or the power delay profile can be obtained for all or a subgroup of transmit and receive antenna pairs together. These tap delay profiles or power delay profiles, together, can be used to correct the aliasing at the receive antennas. This may be suitable in fast fading channels. Alternatively, in another embodiment, the power delay profile or tap delay profile from only a transmit and receive antenna pair of interest may be used. This may be suitable in slow fading channels. The power delay profile or the tap delay profile can be obtained by averaging channel responses over multiple signal frames or across both the preamble symbol and a midamble symbol, if both are present.
Referring to
The correction of CIR estimate can be performed as long as the aliased taps do not overlap with the taps already existing in the first window. In reality, taps of a channel are very few in number and have significant spread between them that account for the sparse nature of the channel. Due to the sparse nature of a channel, a good performance gain can be achieved by employing the first zone in conjunction with the second zone for performing channel estimation of the combined channel of plurality of base stations 115-n. For instance, in the 802.16e example, the unicast information can be used in conjunction with broadcast or multicast information for performing channel estimation.
In reality, factors such as noise, interference and other effects contribute to the generation of low energy taps that occur around a high energy tap or elsewhere. These low energy taps can be ignored by considering only those taps that are above a certain energy threshold in determining the tap locations of interest. In the example described above, only the tap locations and not their power has been made use of from the first zone. In the 802.16e example, where unicast information is used for channel estimation during a broadcast, if the channel is known to fade slowly, and the time gap between the unicast and broadcast transmission is small, the power of the taps from the first zone can also be used for correcting the CIR estimate.
Referring now to
Turning now to
Further, a second delay profile is obtained corresponding to the data part of the first zone at 715. Those skilled in the art will appreciate that the second delay profile of
The fourth delay profile is analyzed at 720 in conjunction with the third delay profile. During the analysis of the fourth delay profile at 720, the third delay profile is compared to the fourth delay profile and one or more aliased taps are detected in the fourth delay profile. The analysis of the fourth delay profile at 720 can be performed in a similar manner to the detection of the one or more aliased taps in the time domain channel response of the second zone at 425, of
Upon detecting the one or more aliased taps, the method comprises performing, at 730, at least one of two embodiments. In one embodiment, the one or more aliased taps can be nulled from the time domain channel response of the data part as shown at 735. Nulling a tap implies that it is ‘zeroed’ or deleted from the time domain channel response. In another embodiment, the one or more aliased taps can be rectified in the time domain channel response of the data part of the first zone based on a modulo offset technique as shown at 740. Rectifying implies that the one or more aliased taps are deleted and then placed in the correct location in the time domain channel response of the data part of the first zone. This is done by shifting the one or more aliased taps by a value equal to a multiple of NFFT/K2 where K2 is the pilot density in the time domain channel response of the data part of the first zone. Note that by doing so a tap location index modulo NFFT/K2 remains unchanged. If an aliased tap is shifted by NFFT/K2, then it is moved into the second window. If an aliased tap is shifted by 2NFFT/K2, then it is moved into the third window.
Turning now to
System 805 comprises a receiving module 810 to receive a plurality of signal frames from plurality of base stations 115-n in wireless communication system 110. Receiving module 810 receives the plurality of signal frames as a sum of the plurality of signal frames after passage through the wireless channels corresponding to the base stations Each of the plurality of signal frames can comprise a first zone and a second zone, as mentioned in conjunction with
System 805 further comprises a determining module 815 to determine two or more of first delay profiles corresponding to two or more base stations of plurality of base stations 115-n, as already described in conjunction with
Further, system 805 can comprise a detecting module 825 that uses the two or more first delay profiles of the two or more base stations to detect one or more aliased taps in a time domain channel response of the second zone. The detection of the one or more aliased taps is described in detail above. System 805 can be adapted to function in the first zone as well as in the second zone, since system 805 uses the first zone to correct a time domain channel response of the second zone. For instance, in the 802.16e example, system 805 can be adapted to function in a unicast transmission mode and in a broadcast transmission mode.
For detecting the one or more aliased taps in the time domain channel response of the second zone, detecting module 825 can comprise a calculating module 830 that calculates an aggregate delay profile, corresponding to the two or more first delay profiles. Additionally, detecting module 825 comprises an obtaining module 835 for obtaining a second delay profile corresponding to the second zone. The second delay profile can be one of a power delay profile and a tap delay profile. A comparing module 840 can, subsequently, compare the aggregate delay profile with the second delay profile to detect the one or more aliased taps in the time domain channel response of the second zone. In an embodiment, system 805 can further comprise a nulling module 845 for performing a nulling operation on the one or more aliased taps in the time domain channel response of the second zone. As mentioned earlier, nulling an aliased tap implies that the aliased tap is ‘zeroed’ or deleted from the time domain channel response. In an alternate embodiment, system 805 can comprise a rectifying module 850 for performing a rectifying operations on the one or more aliased taps based on a modulo offset technique. Rectifying implies that the one or more aliased taps are deleted and then placed in the correct location in the time domain channel response of the second zone. This is done by shifting the one or more aliased taps by a value equal to a multiple of NFFT/K2 where K2 is the pilot density in the second zone. By doing so, a tap location index modulo NFFT/K2 remains unchanged. Further, if an aliased tap is shifted by NFFT/K2, then it is moved into a second window. If the aliased tap is shifted by 2NFFT/K2, then it is moved into a third window.
A determining module 915 can be configured to determine a first delay profile corresponding to the preamble symbol. As mentioned in
System 905 can further comprise an analyzing module 930 to analyze the fourth delay profile in conjunction with the third delay profile. A detecting module 935 can detect one or more aliased taps in the time domain channel response of the data part of the first zone based on the analysis of the fourth delay profile in conjunction with the third delay profile. The detection of the one or more aliased taps is described in detail in conjunction with
The various embodiments described above provide methods and systems to perform computationally efficient channel estimation in a wireless communication system. In some embodiments, the tap locations may be corrected by taking into account the leakage and windowing effects resulting from frequency to time domain conversion of the channel response that can enhance channel estimation. The sparse nature of the wireless channels contributes to minimal overlapping of taps, due to which high performance gain is achieved while performing channel estimation. Further, an embodiment described above uses the first zone in conjunction with the second zone for performing channel estimation. Moreover, when a signal frame comprises only the first zone, a preamble symbol is used for performing channel estimation in the data part of the first zone. A channel estimate can be obtained by the usage of the preamble symbol, based on the assumption that the pilot spacing in the preamble symbol is smaller than the pilot spacing in the data part of the first zone or the second zone.
Number | Name | Date | Kind |
---|---|---|---|
20050243860 | Chen et al. | Nov 2005 | A1 |
20060013325 | Agrawal et al. | Jan 2006 | A1 |
20060245349 | Vrcelj et al. | Nov 2006 | A1 |
20070249380 | Stewart et al. | Oct 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080175140 A1 | Jul 2008 | US |