The subject matter disclosed herein relates generally to gas turbine engines and more specifically to sump pressurization systems for gas turbine engines.
Shaft bearings, such as for example ball bearings or roll bearings, are continuously fed with oil for lubrication and cooling purposes. Bearing assemblies are housed within sumps that are combined with a supply duct and an oil supply pump that supplies lubricating oil under pressure to the bearing assembly. A scavenge pump is further provided, that removes lubrication oil from the sump. The scavenge pump causes the return oil to pass through a heat exchanger prior to returning the oil to a tank or a reservoir. The bearing assembly sumps also include seal assemblies that facilitate minimizing oil leakage from the sumps along the rotor shaft.
U.S. Pat. No. 6,470,666 discloses methods and systems for preventing lubrication oil leakages from bearing assemblies in gas turbine engines. The systems disclosed therein include a sump oil cavity encasing a bearing assembly and in fluid communication with a lubrication oil supply for delivering pressurized oil to the bearing assembly and a scavenge pump for removing oil from this sump oil cavity. The sump oil cavity comprises sealing members for sealing a shaft passage preventing oil leakage along the rotating shaft from the interior towards the exterior of the sump oil cavity. The sump oil cavity is encased in a sump pressurization cavity surrounding the sump oil cavity and provided with further sealing arrangements preventing air from entering the sump pressurization cavity. The sump pressurization cavity is in fluid communication with a source of compressed air, arranged on board of the gas turbine engine. The pressure inside the sump pressurization cavity prevents oil leakages from the sump oil cavity towards the external sump pressurization cavity. The air pressure in the sump pressurization cavity also prevents hot external air from penetrating in the sump oil cavity. The air pressure in the sump pressurization cavity is maintained by a component driven by the gas turbine engine.
Typically, compressed air is delivered by the air compressor of the gas generator of the gas turbine itself. During engine low power and idle operations the pressure in the sump pressurization cavity may result insufficient to prevent oil leakages from the sump oil cavity. When the gas turbine operating conditions are such that the pressure in the sump pressurization cavity cannot be maintained at a sufficient level, the operating pressure in the sump oil cavity is reduced in comparison to the operating pressure of the sump pressurization cavity, using a venting system which is connected to a suction line for removing air from the sump oil cavity. This prevents oil leakages through the sealing arrangement of the sump oil cavity towards the sump pressurization chamber.
By reducing the operating pressure in the sump oil cavity, oil leakages are efficiently prevented. However, hot air present in the gas turbine engine area surrounding the bearing assembly can penetrate through the sump pressurization cavity and therefrom in the sump oil cavity leading to lubrication oil cooking due to the high temperature of such air.
There is therefore a need for improvements in bearing systems including an oil sump arrangement, specifically aimed at enhancing the operating conditions thereof when installed in hot areas of a rotating machine, such as a gas turbine.
According to the subject matter disclosed herein, a method of operating a gas turbine engine is provided, wherein an external (i.e. off board of the gas turbine engine) compressed air source is activated to provide sufficient compressed air to a sump pressurization cavity encasing a sump oil cavity housing a turbine bearing. The external compressed air source supplies sufficiently compressed air in case of insufficient pressure from the on-engine source of compressed air under certain operating conditions of the gas turbine engine. For example, the external, i.e. off-board compressed air source is activated when the gas turbine engine is running under low-power operating conditions or idle.
More specifically, according to some embodiments, a method for operating a gas turbine engine to facilitate reducing leakage of lubrication oil and oil cooking is provided, to be used in a gas turbine engine comprising at least one bearing assembly arranged in a sump oil cavity and a sump pressurization cavity at least partly encasing the sump oil cavity and in fluid communication therewith. The method comprises the steps of: supplying sump pressurization air to the sump pressurization cavity from the gas turbine engine, for example from one of the compressors of the gas turbine or from another on-board pressurized-air source, to maintain in the sump pressurization cavity an operating pressure higher than a pressure in the sump oil cavity and higher than the pressure around the sump pressurization cavity; and when air pressure from the gas turbine engine (i.e. from the on-board pressurized-air source) is insufficient to maintain the operating pressure in the sump pressurization cavity, supplying supplemental sump pressurization air to the sump pressurization cavity from at least one auxiliary pressurized-air source, i.e. an off-board source.
Generally speaking an on board or on-engine pressurized-air source can be any source of compressed air, which delivers an air pressure, which can be dependent upon the operating conditions of the gas turbine engine. Thus, under some operating conditions of the gas turbine engine the pressure of the air delivered by the on-engine source can be insufficient to properly pressurize the sump pressurization cavity. This condition can be detected, e.g. by a pressure transducer system. A signal provided by the pressure transducer system can be used to trigger delivery of pressurized air from the off-board source. In general terms, the off-board source can provide a delivery pressure which is independent or partly independent upon the operating condition of the gas turbine engine. The off-engine or off-board source of pressurized air can include a blower, e.g. a positive displacement blower. In other embodiments a line of compressed air can be provided. Both a blower and a line of pressurized air can be provided in combination in some embodiments. The air blower, if present, can be driven by an electric motor. According to embodiments of the present invention, the rotation speed of the motor and of the blower can be controllable, to provide the correct air pressure in the sump pressurization cavity.
Further features and embodiments of the method according to the subject matter disclosed herein are set forth in the attached claims.
According to a further aspect, the subject matter disclosed herein relates to a sump pressurization system for a gas turbine engine, comprising a sump oil cavity housing a bearing assembly and a sump pressurization cavity at least partly encasing the sump oil cavity and in flow communication therewith. The system further comprises a supplemental pressurized-air delivery line for flow connection between the sump pressurization cavity and at least one auxiliary pressurized-air source, i.e. an off-board source of pressurized air. Moreover, a pressurized-air line is provided, for flow connection between the sump pressurization cavity and an on-board source of pressurized air, i.e. as source arranged on the gas turbine engine. The auxiliary pressurized-air source can be an off-engine source, capable of delivering air at a pressure which is at least partly, in an embodiment independent of the operating conditions of the gas turbine engine, while the on-board source (e.g. the compressor of the gas generator of the gas turbine engine) is at least partly dependent upon the operating conditions of the gas turbine engine. A valve arrangement is provided, for connecting the sump pressurization cavity selectively: with the pressurized-air line in fluid communication with the on-board pressurized air source, or with the supplemental pressurized-air delivery line in fluid communication with the off-board source of pressurized air.
Further embodiments and features of the system are set forth in the enclosed claims.
Features and embodiments are disclosed here below and are further set forth in the appended claims, which form an integral part of the present description. The above brief description sets forth features of the various embodiments of the present invention in order that the detailed description that follows may be better understood and in order that the present contributions to the art may be better appreciated. There are, of course, other features of the invention that will be described hereinafter and which will be set forth in the appended claims. In this respect, before explaining several embodiments of the invention in details, it is understood that the various embodiments of the invention are not limited in their application to the details of the construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
As such, those skilled in the art will appreciate that the conception, upon which the disclosure is based, may readily be utilized as a basis for designing other structures, methods, and/or systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
A more complete appreciation of the disclosed embodiments of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The following detailed description of the exemplary embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. Additionally, the drawings are not necessarily drawn to scale. Also, the following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims.
Reference throughout the specification to “one embodiment” or “an embodiment” or “some embodiments” means that the particular feature, structure or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed. Thus, the appearance of the phrase “in one embodiment” or “in an embodiment” or “in some embodiments” in various places throughout the specification is not necessarily referring to the same embodiment(s).
Further, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
An example of such a gas turbine engine is commercially available from by General Electric Company of Evendale, Ohio under the designation LM6000. A further gas turbine engine wherein the subject matter disclosed herein can be incorporated is an LM2500 or LM2500+ gas turbine engine, both commercially available from General Electric Company, Cincinnati Ohio, USA.
The gas turbine engine comprises a plurality of bearing assemblies some of which are schematically illustrated in
According to some embodiments, the bearing assembly 28 is housed within a sump oil cavity 33. The interior of the sump oil cavity 33 can be in fluid communication through oil supply ducts 35 with a lubrication oil tank, schematically shown at 36. Pressurized oil is delivered to the bearing assembly 28 through the oil supply ducts 35, for example by means of a pump 34 in fluid communication with the lubrication oil tank 36. In some embodiments an oil removal duct 37 ending in the interior of the sump oil cavity 33 is in fluid communication with a scavenge pump schematically shown at 39. The oil removed from the sump oil cavity 33 through the scavenge pump 39 can be delivered through a filter 40 and for example also through a heat exchanger 42 and returned to the lubrication oil tank 36.
Lubrication oil supplied through the oil supply ducts 35 lubricates the bearings 28A, 28B, 28C of the bearing assembly 28, removes heat therefrom, and is then returned through the oil removal duct 37 and the scavenge pump 39 to the lubrication oil tank 36 after having been filtered in filter 40 and cooled in heat exchanger 42.
In the exemplary embodiment of
The sump pressurization cavity 45 comprises further sealing members 47, 49 through which the shaft 24 extends and which prevent or reduce air leakage from the sump pressurization cavity 45 towards the exterior. Second shaft passageways 48, 50 are surrounded by the sealing members 47, 49, the shaft 24 extending through the second shaft passageways. The air pressure in the sump pressurization cavity 45 prevents or limit lubrication oil leakages through the sealing members 41 and 43. The air pressure further prevents hot air penetration through the sealing members 47 and 49 into the sump pressurization cavity 45 and consequently into the sump oil cavity 33.
During normal engine operation, air is ingested by the low pressure compressor 12, compressed at a first pressure by the compressor, delivered to the high pressure compressor 14 and further compressed at a final pressure. The compressed air flows in the combustor 16, where the compressed air flow is mixed with fuel and the mixture is ignited to generate combustion gas at high temperature and high pressure. The combustion gas is sequentially expanded in the high pressure turbine 18 and in the low pressure turbine 20 respectively. Power generated by the high pressure turbine 18 is used to drive the high pressure compressor 14. Power generated by the low pressure turbine 20 is partly used to drive the low pressure compressor 12 and partly available on the shaft 20 for driving the load (not shown).
Lubrication oil is circulated in the bearing assemblies 25-29. Pressurized air taken from an on-engine source of compressed air is delivered to the sump pressurization cavity 45 of at least one of the bearing assemblies, to prevent oil leakages and penetration of air towards the sump oil cavity. In some exemplary embodiments, the on-engine source of compressed air can comprise the low pressure compressor 12 or the high pressure compressor 14. More generally, an on-engine source of compressed air is any source of compressed air which is part of the gas engine motor and which is driven thereby, so that the delivery pressure of the on-engine source of compressed air is dependent upon the operating conditions of the gas turbine engine 10.
In some operating conditions, for example during engine low power and idle operations, the pressure of the air delivered to the sump pressurization cavity 45 through a duct 51 (
To prevent this situation for occurring, in some embodiments a sump pressurization system is provided, in combination with the on-engine source of compressed air.
According to some embodiments, the sump pressurization system, globally labeled 60, comprises a fluid connection 61, 63 between the on-engine source 14 of compressed air and the bearing sumps 32. The fluid connection 61, 63 extends outside the gas turbine engine 10 for the purposes which will become apparent from the following description.
Along the fluid connection 61 an engine side automatic isolation valve 65 is provided, in combination with a first check valve 67. Reference numbers 65A and 65B schematically designate a first position sensor and a second position sensor detecting the fully-opened and fully-closed position of the automatic isolation valve 65. In further embodiments, not shown, only one or the other of the valves 65, 67 can be provided. A position transducer instead of two position sensors can also be used.
A pressure detection system 69 detects the air pressure delivered to the sump pressurization cavity 45. In some embodiments the pressure detection system 69 can be comprised of a first pressure transducer 69A and a second pressure transducer 69B in parallel, forming a redundant configuration. In other embodiments more than two pressure transducers can be provided. In simpler embodiments, where less stringent safety conditions apply, a single pressure transducer can suffice.
In the exemplary embodiment of
A pressurized air delivery duct 77 connects the blower 71 to the fluid connection 63. Along the pressurized delivery line 77 a blower side automatic isolation valve 78 can be provided. A check valve 79 can be arranged in series with the automatic isolation valve 78. In other embodiments, not shown, only one or the other of the valves 78, 79 can be provided. A manual valve 80 can further be arranged in series with valves 79 and 78. In some embodiments a first position sensor 78A and a second position sensor 78B can be associated with the automatic isolation valve 78, to detect a fully-closed position and a fully-opened position of the valve 78, respectively. The two position sensors can be replaced by a position transducer.
According to some embodiments, a further manual valve 81 can be provided upstream of the blower 71 and a pressure safety valve 83 can be provided downstream of the blower 71.
A further compressed air supply, globally shown at 85, can be connected through a line 86 to fluid connection 63 between the pressure source 14 and the bearing sumps 32. The compressed air supply 85 can be for example a compressed air service line of a plant where the gas turbine engine 10 is installed.
In some embodiments, an automatic isolation/pressure control valve 87 is arranged between the compressed air supply 85 and the fluid connection 61, 63. A check valve 88 and/or a manual valve 89 can further be arranged in series with the automatic isolation valve 87. A position sensor 87 can be provided to detect the fully-closed position of the automatic isolation/pressure control valve 87. In some embodiments a position transducer sensor can be associated with the automatic isolation/pressure control valve 78, to detect the actual position. Finally, a pressure safety valve 90 can be connected to the line 86. In some embodiments one of the valves 88 and 87 can be omitted.
The operation of the sump pressurization system 60 described so far will now be explained in greater detail, reference being made to
In
If the pressure of the air delivered through the fluid connection 61, 63 by the on-engine pressure source 14 of the gas turbine engine 10 become insufficient to properly pressurize the sump pressurization cavity 45 of the bearing sumps, either one or the other of the compressed air auxiliary sources 71, 85 will become operative. Drop in the air pressure delivered to the sump pressurization cavity 45 is detected by the pressure transducer system 69.
If the pressure transducer system 69 detects a drop of the air pressure below a threshold, the following operations are performed. The engine side automatic isolation valve 65 is closed and the blower side automatic isolation valve 78 is opened. The blower 71 is started and the automatic isolation/pressure control valve 87 remains closed. Pressurized air will thus be delivered by the blower 71 to the bearing sumps 32 through fluid connection 63 as show by arrows f2 in
Closing the valve 65 prevents pressurized air from the blower 71 to enter the gas turbine engine 10. In this operating condition, shown in
The pressure transducer system 69 continuously detects the pressure of the air delivered towards the sump pressurization cavity 45. If such pressure drops beyond a threshold value, which is required to achieve the effect of preventing oil leakage and hot air penetration, for example due to malfunctioning of the blower 71, the sump pressurization system 60 is switched to the mode of operation shown in
In this embodiment therefore the compressed air supply 85 provides a safety auxiliary source to be used in case of failure of the blower 71.
According to a further embodiment, schematically shown in
When the pressure transducer system 69 detects a drop in the pressure of the air delivered to the bearing sumps, the engine automatic isolation valve 65 is closed and the automatic isolation valve 87 is opened to allow compressed air from the compressed air supply 85 to flow (arrow f4) towards the bearing sumps through line 63.
While the disclosed embodiments of the subject matter described herein have been shown in the drawings and fully described above with particularity and detail in connection with several exemplary embodiments, it will be apparent to those of ordinary skill in the art that many modifications, changes, and omissions are possible without materially departing from the novel teachings, the principles and concepts set forth herein, and advantages of the subject matter recited in the appended claims. Hence, the proper scope of the disclosed innovations should be determined only by the broadest interpretation of the appended claims so as to encompass all such modifications, changes, and omissions. In addition, the order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments.
Number | Date | Country | Kind |
---|---|---|---|
13461525 | Apr 2013 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/057118 | 4/9/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/166978 | 10/16/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4497172 | Smith | Feb 1985 | A |
5997611 | Doong | Dec 1999 | A |
6035484 | Jones | Mar 2000 | A |
6345954 | Al-Himyary | Feb 2002 | B1 |
6470666 | Przytulski | Oct 2002 | B1 |
7287384 | Fish et al. | Oct 2007 | B2 |
7836675 | Corattiyil | Nov 2010 | B2 |
9279341 | Durocher | Mar 2016 | B2 |
20030097872 | Granitz et al. | May 2003 | A1 |
20040211726 | Baig | Oct 2004 | A1 |
20090317260 | Mirsky et al. | Dec 2009 | A1 |
20100263391 | Tetu | Oct 2010 | A1 |
20120315137 | Alvarez | Dec 2012 | A1 |
20120328418 | Yang | Dec 2012 | A1 |
20130319798 | Sheridan | Dec 2013 | A1 |
20140026608 | Manzo | Jan 2014 | A1 |
20140150430 | Helbig | Jun 2014 | A1 |
20140377082 | Lilie | Dec 2014 | A1 |
20150308445 | Spagnoletti | Oct 2015 | A1 |
20150369128 | Parnin | Dec 2015 | A1 |
20160305284 | Mastro | Oct 2016 | A1 |
20170114662 | Mastro | Apr 2017 | A1 |
20170175874 | Schwarz | Jun 2017 | A1 |
Number | Date | Country |
---|---|---|
1421594 | Jun 2003 | CN |
155438 | Jul 2005 | EP |
2111607 | Jul 1983 | GB |
2 117 794 | Aug 1998 | RU |
2 136 931 | Sep 1999 | RU |
2 470 206 | Dec 2012 | RU |
Entry |
---|
International Search Report and Written Opinion dated Sep. 8, 2014 which was issued in connection with PCT Patent Application No. PCT/EP14/057118 which was filed on Apr. 9, 2014. |
European Search Report and Written Opinion dated Nov. 21, 2013 which was issued in connection with EP Patent Application No. 13461525.1 which was filed on Apr. 10, 2013. |
Unofficial English Translation of Chinese Office Action and Search report issued in connection with corresponding CN Application No. 201480020516.0 dated Mar. 24, 2016. |
Office Action and Search Report issued in connection with corresponding RU Application No. 2015141379 dated Jan. 9, 2018. |
Number | Date | Country | |
---|---|---|---|
20160084111 A1 | Mar 2016 | US |