This application claims priority to Japanese patent application serial number 2014-053540, filed Mar. 17, 2014, the contents of which are incorporated herein by reference in their entirety for all purposes.
Not Applicable.
Embodiments of the present disclosure relate to methods and systems for processing films in packaging machines.
Packaging machines for forming packages from a film continuously unwound from a film roll are known. In some occasions, for example, in the case that the film of the film roll being used (hereinafter called “old film roll”) has been used up, the film of the old film roll may be connected to a film of a new film roll by way of a film connecting device, so that the old film roll can be exchange with the new film roll. In order to minimize troublesome operations by the operator, it is desirable to automate the operation for exchanging the old film roll with the new film roll. To this end, Japanese Laid-Open Patent Publication No. 2000-264509 has proposed a connecting device that utilizes a robot.
However, in the above publication, the robot operates only for transferring a film roll between a pallet and the connecting device. The robot is not fully used for the connecting operation.
Therefore, there has been a need in the art for methods and systems for processing films in packaging machines, which can take advantage of use of a robot.
In one aspect according to the present disclosure, a film processing method may be provided for automatically connecting a film of a first film roll and a film of a second film roll to be exchanged with the first film roll in a packaging machine. According to the film processing method, a film of the first film roll may be held at a holding position by a holding device, while the first film roll is supported by a robot, and the film is unwound from the first film roll and extends to a former in a tensioned state. In this state, a cutting device may be operated for automatically cutting the film of the first film roll at a cutting position on an upstream side of the holding position with respect to a feeding direction toward the former while the film is held by the holding device. After that, the robot may be operated for moving the first film roll having the film automatically cut to a storage section, so that the first film roll is stored at a storage section. The storage section may be located within a movable range of the robot and may store the second film roll. The robot may be operated for taking out the second film roll from the storage section, rotatably supporting the second film roll, and moving the second film roll to a connecting position where a film leading end of a film of the second film roll overlaps with a film terminal end of the film of the first film roll remained on a downstream side of the cut position and held by the holding device. The film terminal end of the first film roll and the film leading end of the second film roll may be connected by a connecting device at the same time the film leading end overlaps with the film terminal end or after the film leading end has overlapped with the film terminal end. Thereafter, the robot may be operated for moving the second film roll from the connecting position to a set position spaced from the connecting position after connecting the films by the connecting device, so that the film of the second film roll is tensioned for feeding to the former.
With this method, it may be possible to provide a film processing technique that may use the robot to achieve a greater possibility in design, such as a spatial layout in the packaging machine.
In one embodiment, before moving to the connecting section, the second film roll taken out from the storage section may be positioned at a connection preparation section by the operation of the robot. The connecting preparation section may be located within the movable range of the robot. An adhesive may be used as the connecting device and may be applied to the film leading end of the film of the second film roll positioned at the connection preparation section, so that the film leading end of the film of the second film roll and the film terminal end of the film of the first film roll are connected to each other by the adhesive at the same time the film leading end overlaps with the film terminal end as a result of movement of the second film roll to the connecting position from the connection preparation section.
In this way, although a rolled diameter and/or a width may vary with change of the film roll, the robot can adjust the position of the film roll so as to be suitable for applying the adhesive according to the rolled diameter or the width of the film roll to be used. Therefore, it may be possible to further increase a possibility in design.
In another embodiment, the film leading end of the second film roll may be attached to a circumferential surface of the second film roll by an adhesive before the second film roll is stored in the storage section. As the second film roll moves from the connecting position to the set position, the film leading end of the second film roll may be separated from the circumferential surface of the second film roll against an adhesive force of the adhesive. The adhesive force of the adhesive may be smaller than a connecting force between the film leading end of the second film roll and the film terminal end of the first second film roll connected by the connecting device.
In this way, as the second film roll moves from the connecting position to the set position by the operation of the robot, the film leading end attached to the circumferential surface of the second film roll by the adhesive may be separated from the circumferential surface. Therefore, it may be possible to achieve simplification, for example, by omitting a dedicated device for separating the film leading end from the circumferential surface of the second film roll.
In a further embodiment, a first adhesive may be applied to one of side edges with respect to a widthwise direction of a part of the film of the first film roll held by the holding device before the film of the first film roll is cut at the cutting position by the cutting device. After the film of the first film roll has been cut, the part of the film may form the film terminal end of the first film roll and may be held by the holding device. A second adhesive may be used as the connecting device and may be applied to the film leading end of the film of the second film roll before the movement of the second film roll to the connecting position, so that the film leading end of the film of the second film roll and the film terminal end of the film of the first film roll are connected to each other by the first adhesive and the second adhesive at the same time the film leading end overlaps with the film terminal end as a result of movement of the second film roll to the connecting position after the second adhesive has been applied to the second film roll. The second adhesive may extend from a position proximal to a film attaching position in the widthwise direction away from the film attaching position. The film attaching position may be set to correspond to a position of the first adhesive applied to the film of the first film roll.
In this way, the second adhesive may be applied to the film leading end of the film of the second film roll such that the second adhesive extends from a position proximal to the film attaching position in the widthwise direction away from the film attaching position. Here, the film attaching position may be set to correspond to a position of the first adhesive applied to the film of the first film roll. Therefore, it may be possible to apply the second adhesive at a desired position without causing the film leading end of the film to be tuned upward or downward. In addition, the film attaching position, where no second adhesive is applied, may be adhered to one of side edges of the part of the film forming the film terminal end by the first adhesive. Therefore, it may be possible to prevent the film leading end and the film terminal end from being tuned up or down during the passage of the film along rollers or through the former of the packaging machine.
The robot may include a first arm and a second arm each having a support portion. The first arm may rotatably support the second film roll. The second arm may support the cutting device.
Therefore, it may be possible to further increase a possibility in design, for example, in terms of ease of adjustment of the cut position and/or the cut length of the film according to change of the film roll to be used.
In another aspect according to the present disclosure, a film processing system may be provided for automatically connecting a film of a first film roll and a film of a second film roll to be exchanged with the first film roll in a packaging machine. The film processing system may include a robot configured to operate according to a film roll exchange command; a cutting device configured to automatically cut the film of the first film roll at a cut position when the film of the first film roll is unwound from the first film roll so as to extend to a former in a tensioned state while the first film roll is supported by the robot; a film holding device configured to hold a film terminal end of the film of the first film roll at a holding position on a downstream side of the cut position with respect to a feeding direction toward the former when the film is cut by the cutting device; and a storage section located within a movable range of the robot and configured to store the first film roll and the second film roll. The robot may be configured to move the first film roll to the storage section after the film has been cut, so that the first film roll is stored at the storage section. The robot may be further configured to take out the second film roll from the storage section, transfer the second film roll to a connecting position, rotatably support the second film roll at the connecting position, and move a film leading end of the second film roll such that the film leading end overlaps with the film terminal end of the film of the first film roll remained after being cut and held by the film holding device. The film processing system may further include a connecting device configured to connect the film leading end of the second film roll to the film terminal end of the film of the first film roll at the same time the film leading end overlaps with the film terminal end or after that film leading end has overlapped with the film terminal end. In this connection, the robot may be further configured to transfer the second film roll from the connecting position to a set position after the films have been connected by the connecting device, so that the film of the second film roll is tensioned for feeding to the former.
With this film processing system, it may be possible to provide a new film processing technique that may use the robot to achieve a greater possibility in design, such as a spatial layout in the packaging machine.
The film processing system may further include a film receiving device disposed at a position on an upstream side with respect to the feeding direction of the film holding device and configured to support the film of the first film roll in a tensioned state. A space may be defined between the film receiving device and the film holding device to allow a cutting tool of the cutting device to move into the space.
With this arrangement, in order to cut the film in the tensioned state, the cutting tool may move into the space defined between the film receiving device and the film holding device. Therefore, it is possible to reduce the risk of damage to the cutting tool. In addition, it is possible to neatly cut the film.
The film holding device may be a film suction device. By holding the film by using the film suction device, it may be possible to hold the film without damaging the film.
The film processing system may further include a film incident angle adjusting device disposed along a film feeding path between the former and the first film roll or the second film roll and configured to adjust an incident angle of the film with respect to the former. The film incident angle adjusting device may include a single guide roller configured to engage the film.
With this construction, the incident angle of the film with respect to the former can be adjusted by the film incident angle adjusting device. In addition, because the film incident angle adjustment device may include a single guide roller, it may be possible to simplify the construction of the packaging machine along the feeding path between the film roll and the former.
A representative embodiment will now be described with reference to the drawings. In
The horizontal form-fill packaging machine 10 may further include a robot 50. For example, the robot 50 may operate upon receipt of an exchange command for exchanging the film roll 30 with a film roll 40. The film roll 30 will be hereinafter also referred to as “old film roll 30,” and the film roll 40 will be hereinafter also referred to as “new film roll 40.” The exchange command may be generated based on information from a detecting device that may detect the residual amount of the film 30F of the film roll 30 that is being used, or based on information regarding change of articles to be filled. According to the exchange command, the robot 50 may operate to transfer the film 30F of the film roll 30, transfer a film 40F of film roll 40, and connect the film 30F of the film roll 30 and the film 40F of the film roll 40 to each other as will be explained later.
The robot 50 may be a dual-armed 15-axis multijoint robot and may have a first arm 51 and a second arm 52 that respectively have a first support portion 51H and a second support portion 52H connected to their leading ends (see
The engaging members 55 of the first support portion 51H can be engaged with and disengaged from attachment holes 32 formed in the inner circumferential surfaces of the film roll 30, so that the film roll 30 can be prevented from rotating relative to the first support portion 51H and can be permitted to rotate relative to the first support portion 51H. Similarly, the engaging members 55 of the first support portion 51H can be engaged with and disengaged from attachment holes 42 formed in the inner circumferential surface of the film roll 40, so that the film roll 40 can be prevented from rotating relative to the first support portion 51H and can be permitted to rotate relative to the first support portion 51H. Further, each of the connection working tools 210 and 220 may have attachment holes 24 formed in the inner circumferential surface thereof. The engaging members 55 of the second support portion 52H can be engaged with and disengaged from the attachment holes 24 of the connection working tool 210 or 220, so that the connection working tool 210 or 220 can be prevented from rotating relative to the second support portion 52H and can be permitted to rotate relative to the second support portion 52H.
After the operation for connecting the old and new films (e.g., films 30 and 40, respectively) as will be explained later, with the engaging members 55 having engaged with the attachment holes 42 of the film roll 40 (i.e., new film roll), the robot 50 may operate to move the first support portion 51H such that the film roll 40 moves from a film connecting position above the conveyor 22 to a set position spaced obliquely rearward and upward of the film connection position and is thereafter held at the set position. In this way, the robot 50 may serve as a positioning device for positioning the film roll 40 at the set position. In addition, when the film roll 40 is held a the set position, the first support portion 51H may serve as a film roll support device for rotatably supporting the film roll 40 about an axis extending in a horizontal direction. The film roll support device may be a part of a film supply section 80 for supplying the film 40F in a form of a web to the former 20. Upon receipt of an exchange command for exchanging the film roll 30 with the film roll 40, the robot 50 may operate to move the first arm 51 such that: (i) the first arm 51 having the film roll 30 supported thereon transfers the film roll 30 to an old film roll storing position of the first setting section 100; (ii) the first arm 51 takes a new film roll 40 from a new film roll storing position of the first setting section 100 and transfers the new film roll 40 to the set position; and (iii) the first arm 51 transfers the film 40F of the new film roll 40 to the film connecting position for connection with the film 30F of the old film roll 30. On the other hand, the robot 50 may operate to move the second arm 52 such that: (a) at the second set section 200, the second support portion 52H engages and holds each of the connection working tool 210 and 220 used for automatically exchanging the film roll 30 with the film roll 40 and for automatically connecting the film 30F and the film 40F; and (b) the second arm 52 moves to return each of the connection working tools 210 and 220 to its original storing position of the second set section 200 after the operation of each of the connection working tools 210 and 220 has been finished.
The film supply section 80 may be arranged between the former 20 and the first support portion 51H serving as the film roll support device for supporting the film roll at the set position. The film supply section 80 may include a feeding device 81 that may include a drive roller 82 and a driven roller 83. The drive roller 82 may be rotatably driven by a servo motor M or any other suitable drive device. The film 30F (or 40F) drawn from the film roll 30 (or 40) positioned at the set position may extend along the circumferential surface of the drive roller 82, thereafter extend along the circumferential surface of the driven roller 83 disposed to be opposed to the drive roller 82 at a position obliquely forward and upward thereof, and subsequently extend toward the former 20 that is located on the lower side of the driven roller 83. The drive roller 82, the driven roller 83, and the servo motor M constituting the feeding device 80 may be supported as a unit by a body frame W (see
When the first arm 51H supporting the film roll 30 by the first support portion 51 has moved to move the film roll 30 from the set position to a tensioning position obliquely forward and upward from the set position shown in
Referring now to
Referring again to
As shown in
The connection operation tools 210 and 220 for attachment to the second support portion 52H may be loaded on the second set section 200. The connection operation tool 210 and the connection operation tool 220 will be hereinafter also referred to as a first tool 210 and a second tool 220, respectively. As shown in
In order to enable that the second support portion 52H can easily take out the first and second tools 210 and 220, the second set section 200 may be provided with positioning guides 230 that can support the first and second tools 210 and 220 in such a manner that the first and second tools 210 and 220 are oriented vertically in an upright manner and are positioned with respect to the circumferential direction about their respective hollow cylindrical bodies for alignment with the second support portion 52H with respect to the rotational direction thereof.
In the above packaging machine 10, the film roll 30 may be automatically exchanged with the film roll 40, and the film 30F of the film roll 30 may be automatically connected to the film 40F of the film roll 40 as will be hereinafter described.
During the packaging operation using the film 30F of the film roll 30, the film roll 30 may be supported by the first support portion 51H and may be positioned to be fixed at the set position by the first arm 51, while the film 30F is guided by the feeding device 81 so as to be fed to the former 20. When the exchange command is outputted form the controller, for example, during stopping of the packaging operation, the robot 50 may automatically perform the connecting operation of the film 30F of the film roll 30 and the film 40F of the film roll 40. To this end, as shown in
After the operation of the first tool 210 has been finished, the robot 50 may operate the second arm 52 to return the first tool 210 to the original storage position of the second set section 200. Thereafter, the second arm 52 may take out the second tool 220 (including the cutters 222A and 222B and the film holder 224) from the second set section 200 and holds the second tool 220. The second arm 52 may then move the second tool 220 to a position on the rear side of the connecting operation section 70 as shown in
After the film 30F has been automatically cut by the cutters 222A and 222B, the first arm 51 may move the film roll 30 rearward from the tensioning position to a position shown in
With the film roll 40 positioned within the mark detectable range, the first support portion 51H may be driven to rotate the film roll 40 about a horizontal axis, while the mark detection device 92 may detect the position of the mark MK put on the film leading end 40FA of the film 40F of the film roll 40. Based on the information regarding the position of the mark MK, the rotation of the film roll 40 may be stopped at a position where the film leading end 40FA is oriented in a predetermined direction (more specifically, a position where the film leading end 40FA is at a lowermost position of the film roll 40). Then, the first arm 51 may transfer the film roll 40 to a position above the tape attaching device 94 while keeping the first support portion 51H to be oriented in the horizontal direction. After that as is best shown in
After the double-faced adhesive tape 96 has been attached to the film leading end 40FA of the film roll 40, the robot 50 may operate the first arm 51 to move the film roll 40 rearward in a parallel translation manner as shown in
As described above, the film processing method and the film processing system usable with the horizontal form-fill packaging machine 10 may have the following advantages:
(1) The first support portion 51H may serve as a transfer device for transferring the film rolls 30 and 40 and also serve as a film roll support device for supplying the film 30F and 40F to the film feeding section 80. Therefore, it is possible to connect the film 30F and 40F without need of a plurality of film roll support devices in addition to the transfer device as required in the conventional technique. Therefore, it may be possible to achieve a greater possibility in design, such as a spatial layout and to decrease the number of components. In addition, because it is not necessary to use guide rollers that are necessary in the conventional technique for guiding the films 30F and 40F, the construction of the film feeding section 80 can be further simplified.
(2) Because the glue may be applied to the side edge 30FS on one side of the film terminal end 30FZ, it may be possible to prevent the film leading end 40FZ and the film terminal end 30FZ from turning up and down during the movement of the connecting portion between the film 30F and 40F along rollers or during passage through the former 20.
(3) If the film roll 30 is necessary to be exchanged to another film roll, for example, due to change of article to be packaged, the film 30F may be rewound to the film roll 30 while the film 30F is pressed and squeezed against the outer circumferential surface of the film roll 30, and thereafter, the leading end of the rewound film 30F may be adhered to the outer circumferential surface of the film roll 30 by the glue. Therefore, the rewound state of the film 30F can be properly maintained without being loosened even after the film roll 30 has been removed from the first support portion 51. Hence, if the film roll 30 is used again, the film roll 30 can be transferred by the robot 50 without causing the film to be loosened during transferring. For this reason, the robot 50 can automatically connect the film 30F and the film 40F to be exchanged with the film 30F without misregistration between the films.
(4) In order to automatically cut the film 30F, with the film 30F tensioned between the first support portion 51H and the film suction portion 74, the cutting edge of cutter 222A may move into the space 76 between the film suction portion 74 and the film receiving portion 78 so as to cut through the substantially central portion the tensioned film 30F and to thereafter cut the film 30F by a length corresponding to a substantially half the width of the film 30F, and after that, the cutting edge of the cutter 222B may move into the substantially central portion of the film 30F and may thereafter cut the film 30F by a length corresponding to the remaining half of the width of the film 30F. Therefore, the film 30F can be neatly cut along a straight line in the widthwise direction. In addition, it is possible to reduce the risk of damages to the cutting edges of the cutters 222A and 222B.
(5) In order to attach the double-faced adhesive tape 96 to the film leading end 40FS of the film 40F of the film roll 40 at the connection preparation section 90, the film roll 40 may be moved to press the film attaching portion 40FS against the block 97 and the claw 97a, so that the double-faced adhesive tape 96 is attached to the front surface of the film leading end 40FA so as to extend from a position spaced proximal to the film attaching portion 40FS (i.e., a position spaced from the side edge by the distance L) toward the opposite side edge away from the film attaching portion 40FS in the widthwise direction. Therefore, it may be possible to neatly attach the double-faced adhesive tape 96 to the film leading end 40FA at an appropriate position along a straight line in the widthwise direction. This may avoid the film leading end 40FA from turning up and down from the film roll 40, which may occur in the case that the double-faced adhesive tape 96 is attached starting from the side edge of the film 40F.
The above teachings may be applied to any other packaging machines in which a film is unwound from a film roll. In addition, the material of the film may not be limited and may be resin, paper, metal or any other material.
Although the double-faced adhesive tape 96 has been used as a connecting device for connecting the films 30F and 40F in the above embodiment, the connecting device may not be limited to the double faced adhesive tape 96 that is a drying and solidifying type adhesive. Here, the term “drying and solidifying type adhesive” is used to mean an adhesive that contains an adhesive material dissolved in water or solvent. The adhesive material may be solidified after evaporation of water or solvent. For example, the drying and solidifying type adhesive may include glue other than the adhesive tape. Other than the drying and solidifying type adhesive, it may be possible to use a technique such as a heat welding technique and an ultrasonic welding technique. Preferably, the connection device may maintain a connecting state between the films even after the film leading end adhered to the outer circumferential surface of the film roll has been separated from the outer circumferential surface during the transfer of the film roll to the storing position.
Although the glue has been used as an adhesive device for adhering the film leading end to the outer circumferential surface of the film roll, any other drying and solidifying type adhesive such as a double-faced adhesive tape can be used. It may be also possible to use a chemical reaction type adhesive or any other type of adhesive.
Although the double-faced adhesive tape 96 is attached to the film leading end 40FA for connection with the film terminal end 30FZ, it may be possible to attach the adhesive tape 96 to the film terminal end 30FZ held by the film holding device, and thereafter the film leading end 40FA may be pressed against the film terminal end 30FZ for connection by the double-faced adhesive tape 96. Also by this arrangement, the films 30F and 40F can be automatically connected.
It may be possible to provide a supply device such as a conveyor for automatically supplying a new film roll to the first set section at each time the robot takes the film roll from the first set section.
It may be possible to provide a discharge device such as a conveyor for automatically discharge the film roll to the outside of the first set section at each time the film roll is set at the first set section by the robot.
Although the first set section is configured to store the film rolls such that the axes of the film rolls are oriented in the vertical direction, it may be possible to store the film rolls with their axes oriented in the horizontal direction or any other direction as long as the film rolls are within the movable range of the robot. This may be also applied to the second set section.
Although the first support portion 51H is configured to support the film rolls and the second support portion 52H is configured to support the cutting tools in the above embodiment, the first support portion 51H may be configured to support the cutting tools and the second support portion 52H may be configured to support the film rolls.
The robot 50 may include three or more arms for performing film connection operations for a plurality of packaging machines that are suitably arranged.
Although the robot 50 is provided as a separated device from the packaging machine, it may be possible to mount the first and second arms 51 and 52 to a machine body or any of the components of the packaging machine, so that a robot body supporting these arms can be eliminated.
Although the first support portion 51H supports the film roll so as to allow rotation of the film roll during the packaging operation, the first support portion may be rotatably driven to assist the film to be unwound from the film roll.
Although the permanent marker has been used as the marking device 212, the marking device 212 may be a seal attaching device that can attach a seal serving as the mark MK to the back surface of the film 30F.
The mark detection device 92 may detect the position of the mark MK, for example based on image information obtained by an imaging device, such as a camera. It may be also possible to position the first support portion relative to the film roll and to position the second support portion relative to the first and second tools based on image information obtained by an imaging device(s).
The first set section 100 may be separated into a plurality of set sections. For example, the old film roll transferred by the first support portion may be stored in a different set section from that storing the new film roll to be used in the future.
Although the suction portion 74 has been used as the film holding device for holding the film 30F, the film holding device may not be limited to the suction portion 74. For example, plates or claws movable toward and away from the tensioned film 30F in the widthwise direction may be disposed at the connection section 70. The plates or claws may be coupled to an actuator that is operable to move the plates or claws for holding the film from opposite sides according to a command signal from the controller during the film connecting operation.
Although the cutters 222A and 222B serving as a cutting device are moved by the second support portion for cutting the film 30F, the cutters 222A and 222B may be mounted to a different member from the second support portion. For example, the cutters 222A and 222B may be disposed at the connection operation section 70 and may be coupled to an actuator(s). According to a command signal transmitted from the control device to the actuator(s), the cutters 222A and 222B may automatically move into and out of the space 76 formed between the film suction portion 74 and the film receiving portion 78 for cutting the film 30F.
The flat surface portion 78A of the film receiving portion 78 may be replaced with any other surface portion that does not have a flat surface. Thus, variously shaped surface portions may be used as long as they allow the film to be tensioned in the feeding direction and in the widthwise direction.
A suitable roller device, such as a set of parallel rollers movable relative to each other to change a distance(s) therebetween, may be arranged in the film feeding section 80 at a position between the connecting operation section 70 and the feeding device 81. With this arrangement, during the film exchange operation and the cutting operation, a part of the film wound around the rollers of the roller device may be drawn for continuously supplying the film to the former. This may allow a continuous packaging operation or minimize the time necessary for stopping the supply of the film to the former.
Representative, non-limiting examples of the present invention were described above in detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention. Furthermore, each of the additional features and teachings disclosed above may be utilized separately or in conjunction with other features and teachings to provide improved packaging machines, and methods of making and using the same.
Moreover, combinations of features and steps disclosed in the above detailed description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe representative examples. Furthermore, various features of the above-described representative examples, as well as the various independent and dependent claims below, may be combined in ways that are not specifically and explicitly enumerated in order to provide additional useful embodiments of the present teachings.
All features disclosed in the description and/or the claims are intended to be disclosed separately and independently from each other for the purpose of original written disclosure, as well as for the purpose of restricting the claimed subject matter, independent of the compositions of the features in the embodiments and/or the claims. In addition, all value ranges or indications of groups of entities are intended to disclose every possible intermediate value or intermediate entity for the purpose of original written disclosure, as well as for the purpose of restricting the claimed subject matter.
Number | Date | Country | Kind |
---|---|---|---|
2014-053540 | Mar 2014 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3194508 | Netze | Jul 1965 | A |
3317153 | Raymond | May 1967 | A |
3409242 | Kishioka | Nov 1968 | A |
3771737 | Swann | Nov 1973 | A |
3891158 | Shearon | Jun 1975 | A |
3974490 | Mori | Aug 1976 | A |
4543152 | Nozaka | Sep 1985 | A |
4575016 | Pali | Mar 1986 | A |
4575017 | Pali | Mar 1986 | A |
4892263 | Beisswanger | Jan 1990 | A |
4934624 | Grollimund | Jun 1990 | A |
5152472 | Spang | Oct 1992 | A |
5337969 | Martin | Aug 1994 | A |
5692698 | Forbes | Dec 1997 | A |
5849123 | Rice | Dec 1998 | A |
5935361 | Takahashi | Aug 1999 | A |
20040118964 | Long | Jun 2004 | A1 |
20060169826 | Benvenuti | Aug 2006 | A1 |
20070278341 | Tsurunaga | Dec 2007 | A1 |
20100264248 | Butterworth | Oct 2010 | A1 |
20130056576 | Andrews | Mar 2013 | A1 |
20150259168 | Inoue | Sep 2015 | A1 |
20160060059 | Macura | Mar 2016 | A1 |
20160060060 | Macura | Mar 2016 | A1 |
20160060062 | Macura | Mar 2016 | A1 |
20170088380 | Mark | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
2000-264509 | Sep 2000 | JP |
2005138938 | Jun 2005 | JP |
2005231789 | Sep 2005 | JP |
Entry |
---|
European Patent Application No. 15157842.4, Extended European Search Report dated Sep. 21, 2015 (4 pages). |
Number | Date | Country | |
---|---|---|---|
20150259168 A1 | Sep 2015 | US |