Methods and systems for producing pressware

Information

  • Patent Grant
  • 11945670
  • Patent Number
    11,945,670
  • Date Filed
    Wednesday, July 7, 2021
    3 years ago
  • Date Issued
    Tuesday, April 2, 2024
    7 months ago
Abstract
A system for decurling a web from a roll of material comprises rollers, a decurling station actuator, a sensor, and a controller. The rollers are configured to pull the web along a path with an angle. The decurling station actuator is configured to shift one of the rollers relative to the other rollers to adjust the angle of the path. The sensor is configured to sense a characteristic of the roll of material and generate sensor data. The controller is configured to receive a signal representative of the sensor data and direct the decurling station actuator to shift one of the rollers based at least in part on the sensor data.
Description
RELATED APPLICATIONS

The present application is a non-provisional application and is related to co-pending applications entitled “METHODS AND SYSTEMS FOR PRODUCING PRESSWARE”, Ser. No. 17/369,348, filed on Jul. 7, 2021; “METHODS AND SYSTEMS FOR PRODUCING PRESSWARE”, Ser. No. 17/369,406, filed on Jul. 7, 2021; and “METHODS AND SYSTEMS FOR PRODUCING PRESSWARE”, Ser. No. 17/369,380, filed on Jul. 7, 2021; all of which are hereby incorporated in their entireties by reference herein.


BACKGROUND

Environmental imperatives are causing pressware manufacturers to transition from synthetic plastics to more sustainable materials such as paper to manufacture plates, bowls, trays, and other pressware. Current techniques for producing pressware include making blanks from a roll of material, scoring the blanks, and transporting the blanks via jets of air and gravity to a forming tool. However, such techniques are not reliable and prone to jams due to curling of the blanks. For example, pressware made of paper material involves unwinding the paper from a roll, which imparts an intrinsic curl on the paper. The curl gets more extreme as the paper roll diameter gets smaller. The blanks retain the intrinsic curl and frequently cause jams or mislocate as they are moved to the forming tool due to the curl. Current solutions for counteracting the intrinsic curl include providing decurling rollers that are manually adjusted by an experienced operator as the system is operating to account for increased curl. However, this solution is prone to human error, which results in jamming, and also requires expensive labor.


Further, the blanks can only include a single row of products due to the means of transporting the blanks to the forming station. The row is typically four or five products; therefore, the production rate is only four or five parts per machine stroke.


The background discussion is intended to provide information related to the present invention which is not necessarily prior art.


SUMMARY OF THE INVENTION

The present invention solves the above-described problems and other problems by providing systems and methods for producing pressware from a web of a roll of material that enable increased production rates, lower labor costs, and decrease the frequency of jams.


A system constructed according to an embodiment of the present invention comprises rollers, a decurling station actuator, a sensor, and a controller. The rollers are configured to pull the web along a path with an angle. The decurling station actuator is configured to shift one of the rollers relative to the other rollers to adjust the angle of the path. The sensor is configured to sense a characteristic of the roll of material and generate sensor data. The controller is configured to receive a signal representative of the sensor data and direct the decurling station actuator to shift one of the rollers based at least in part on the sensor data.


Another embodiment of the invention is a method of decurling a web from a roll of material. The method comprises pulling a portion of the material, via a plurality of rollers, along a path with an angle; sensing, via a sensor, a characteristic of the roll of material to generate sensor data; and directing, via a control system, a decurling station actuator to shift at least one of the rollers to adjust the angle of the path based at least in part on the sensor data.


A system for decurling a web from a roll of paper material according to another embodiment of the invention comprises a decurling station frame, a pair of pull roller assemblies, a rotatable decurl roller, a decurling station actuator, a sensor, and a controller. The decurling station frame includes a pair of rails that support the roll of paper material and support walls extending vertically from the pair of rails. The pull roller assemblies are horizontally spaced apart from one another on the support walls. Each pull roller assembly includes a rotatable pull roller, a rotatable pinch roller positioned proximate to the pull roller so that the pinch roller presses the web into the pull roller, and an actuator configured to rotate the pull roller. The rotatable decurl roller is supported by the support walls and is positioned between the pair of pull roller assemblies. The decurling station actuator is supported by the support walls and is configured to vertically shift the decurl roller. The sensor is configured to sense a characteristic of the roll of material and generate sensor data. The controller is configured to receive a signal representative of the sensor data and direct the decurling station actuator to vertically shift the roller mount based at least in part on the sensor data.


This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the detailed description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Other aspects and advantages of the present invention will be apparent from the following detailed description of the embodiments and the accompanying drawing figures.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

Embodiments of the present invention are described in detail below with reference to the attached drawing figures, wherein:



FIG. 1 is a perspective view of a system for producing pressware constructed in accordance with embodiments of the present invention;



FIG. 2 is an elevated perspective view of a decurling station of the system of FIG. 1;



FIG. 3 is a side perspective view of the decurling station of FIG. 2;



FIG. 4 is a top view of a portion of the decurling station of FIG. 2;



FIG. 5 is a sectional view of the decurling station of FIG. 4 along lines 5-5;



FIG. 6 is a sectional view of the decurling station of FIG. 4 along lines 6-6;



FIG. 7 is a perspective view of a scoring station of the system of FIG. 1;



FIG. 8 is an elevated perspective view of a scoring tool of the scoring station of FIG. 7;



FIG. 9 is a lowered perspective view of the scoring tool of the scoring station of FIG. 7;



FIG. 10 is a sectional view of the scoring tool of FIG. 8 along lines 10-10;



FIG. 11 is a top view of a web of material depicting exemplary scores and holes formed by the system of FIG. 1;



FIG. 12 is a perspective view of a forming station of the system of FIG. 1;



FIG. 13 is an elevated perspective view of a forming tool of the forming station of FIG. 12 with molds having draw rings;



FIG. 14 is a lowered perspective view of the forming tool of FIG. 13;



FIG. 15 is a sectional view of the forming tool of FIG. 13 along lines 15-15;



FIG. 16A is a perspective view of a positive mold of the forming tool of FIG. 13;



FIG. 16B is a top view of the positive mold of FIG. 16A;



FIG. 17 is a sectional view of the positive mold of FIG. 16B;



FIG. 18 is an enlarged view of the forming tool of FIG. 15 with the positive mold extending into a corresponding negative mold;



FIG. 19 is an enlarged view of portions of the positive mold and the negative mold of FIG. 18;



FIG. 20 is a sectional view of the forming tool of FIG. 13 along lines 15-15 with positive molds constructed according to another embodiment of the present invention;



FIG. 21 is a perspective view of one of the positive molds of the forming tool of FIG. 20;



FIG. 22 is a sectional view of the positive mold of FIG. 21 along lines 22-22;



FIG. 23 is a sectional view of the forming tool of FIG. 20 with the positive mold extending into a corresponding negative mold;



FIG. 24 is an enlarged view of portions of the positive mold and the negative mold of FIG. 23;



FIG. 25A is a perspective view of a picking station, stacking station, and chopping station of the system of FIG. 1;



FIG. 25B is a perspective view of the chopping station of FIG. 25A;



FIG. 26 is a perspective view of an exemplary height adjustment assembly of the scoring station and forming station of the system of FIG. 1;



FIG. 27 is a block diagram depicting selected components of the system of FIG. 1; and



FIG. 28 is a flowchart depicting exemplary steps of a method according to an embodiment of the present invention.





The drawing figures do not limit the present invention to the specific embodiments disclosed and described herein. The drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the invention.


DETAILED DESCRIPTION OF THE EMBODIMENTS

The following detailed description of the invention references the accompanying drawings that illustrate specific embodiments in which the invention can be practiced. The embodiments are intended to describe aspects of the invention in sufficient detail to enable those skilled in the art to practice the invention. Other embodiments can be utilized and changes can be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense. The scope of the present invention is defined only by the appended claims, along with the full scope of equivalents to which such claims are entitled.


In this description, references to “one embodiment”, “an embodiment”, or “embodiments” mean that the feature or features being referred to are included in at least one embodiment of the technology. Separate references to “one embodiment”, “an embodiment”, or “embodiments” in this description do not necessarily refer to the same embodiment and are also not mutually exclusive unless so stated and/or except as will be readily apparent to those skilled in the art from the description. For example, a feature, structure, act, etc. described in one embodiment may also be included in other embodiments, but is not necessarily included. Thus, the present technology can include a variety of combinations and/or integrations of the embodiments described herein.


Turning to FIG. 1, a system 10 constructed in accordance with an embodiment of the invention is illustrated. The system 10 is configured to form pressware products 12 from a web 14 of a roll of material 16. The pressware products 12 may include plates, bowls, trays, or the like. The material 16 may comprise paper, polystyrene, recycled paper, vegetable or organic matter, cotton, bamboo, or the like. The roll of material 16 may have a diameter 18 or radius 20 (depicted in FIG. 2).


An embodiment of the system 10 may comprise a decurling station 22, a scoring station 24, a forming station 26, a picking station 28, a stacking station 30, a chopping station 32, and a control system 34 (schematically depicted in FIG. 27). Turning to FIGS. 2-6, the decurling station 22 is configured to pull the web 14 along a path with an angle 43. The decurling station 22 may include a frame 36, a pair of pull roller assemblies 38, 40, a decurl roller 42, a decurling station actuator 44, and a sensor 46 (schematically depicted in FIG. 27). The frame 36 may support one or more rolls of material 16, the pull roller assemblies 38, 40, the decurl roller 42, and the decurling station actuator 44. The frame 36 may include a pair of top rails 48, 50 and pairs of support walls 52, 54, 56, 58 extending vertically from the top rails 48, 50. One or more rolls 16 may be rotatably mounted to the frame 36 via mounts 59, which may be horizontally movable along the rails 48, 50. The support walls 52, 54, 56, 58 may support the assemblies 38, 40, the decurl roller 42, and the decurling station actuator 44. Particularly, support walls 52, 54 may support the first pull roller assembly 38, the decurl roller 42, and the decurling station actuator 44 while the support walls 56, 58 support the second pull roller assembly 40.


Turning to FIG. 5, each of the assemblies 38, 40 may include a pull roller 60, 62, a pinch roller 64, 66, a biasing element 68, 70, and a drive motor 72, 74. The pull rollers 60, 62 may be rotatably mounted to their respective support walls 52, 54, 56, 58 and driven by their respective motors 72, 74 to pull the web 14 from the roll 16. The pinch rollers 64, 66 may be biased toward the pull rollers 60, 62 via their respective biasing elements 68, 70 to enable the pull rollers 60, 62 to grip the web 14. In some embodiments, the pinch rollers 64, 66 may be rotatably mounted to arms 76, 78, which are in turn pivotally mounted to their respective support walls 52, 54, 56, 58 so that they are operable to pivot toward the pull rollers 60, 62. The biasing elements 68, 70 may be connected to the arms 76, 78 and bias the arms 76, 78 and therefore the pinch rollers 64, 66 against their respective pull rollers 60, 62. The biasing elements 68, 70 may comprise springs, pneumatic cylinders, or the like.


Turning to FIG. 6, the drive motors 72, 74 are configured to drive the pull rollers 60, 62 to pull the web 14 from the roll 16. The motors 72, 74 may drive the pull rollers 60, 62 via belt and pulley systems 80, 82. However, the motors 72, 74 may drive the rollers 60, 62 any number of ways without departing from the scope of the present invention. For example, the motors 72, 74 may directly drive their respective pull rollers 60, 62. In some embodiments, a single motor may be used to drive both rollers 60, 62 synchronously. The second assembly 40 may include an exit roller 84 for supporting the decurled web 14 as it exits the decurling station 22 (as depicted in FIG. 5).


Turning back to FIG. 5, the decurl roller 42 is shiftable to change the angle 43 of the path through which the web 14 is pulled to counteract the intrinsic curling of the web 14. The decurl roller 42 may be rotatable so that it rotates as the web 14 is pulled through the path. As depicted, the decurl roller 42 may be positioned between the pull roller assemblies 38, 40 and may be vertically shiftable to increase or decrease the angle 43. The decurling station actuator 44 may be configured to shift the decurl roller 42 to affect the angle 43 of the path. As used herein, an “actuator” may comprise any device or machine known in the art to achieve physical movements, including linear actuators, electrical actuators, hydraulic actuators, pneumatic actuators, electric motors, rotary actuators, piezoelectric actuators, or the like. The decurling station actuator 44 may be configured to shift the decurl roller 42 so that the angle 43 is obtuse at the top most position and acute at the lowermost position. The decurling station actuator 44 may include a nut 86 supporting the decurl roller 42, a spindle 88 rotatably secured to the support wall 58, and a servo motor 90 that drives the spindle 88. The nut 86 may be rotatably coupled to the spindle 88 and shiftable on the support wall 58. The servo motor 90 may drive the spindle 88, or cause it to rotate, via a pulley and belt system 92. The nut 86 and spindle 88 may have threads that cause the nut 86 to travel along the spindle 88 as it rotates to shift the decurl roller 42.


The decurl roller 42 and the rollers 60, 62 may be arranged any number of ways to pull the web 14 through the path to decurl the web 14 without departing from the scope of the present invention. Further, the decurl roller 42 may be configured to be shifted in any number of directions to affect the angle 43 of the path of the web 14 without departing from the scope of the present invention. In some embodiments, the decurling station 22 may include a support roller 94 positioned above the decurl roller 42 and also rotatably supported on the nut 86 so that it shifts with the decurl roller 42.


The sensor 46 is configured to sense a characteristic of the roll 16 and generate sensor data based on the characteristic. The characteristic may be a weight of the roll 16, the diameter 18, the radius 20, a distance between an outer surface 47 (shown in FIG. 3) of the roll 16 and the sensor 46 (which may be indicative of the diameter 18 or radius 20), or the like. The sensor 46 may comprise a distance measuring device, such as a laser distance sensor, a load cell, or the like. The sensor 46 is configured to send a signal representative of the sensor data to the control system 34.


Turning to FIG. 7, the scoring station 24 scores the web 14 in preparation of forming the products 12. The scoring station 24 comprises a scoring station frame 96, a scoring tool 98, and a scoring station actuator 100. The scoring station frame 96 is configured to support the scoring tool 98 and the scoring station actuator 100. The frame 96 may include an upper gantry 102, a lower gantry 104, and upright supports 106, 108. The gantries 102, 104 support different portions of the scoring tool 98 and the scoring station actuator 100. The upright supports 106, 108 support the gantries 102, 104 and may include one or more tracks 110 for guiding the scoring tool 98 and or portions of the actuator 100.


Turning to FIG. 8, the scoring tool 98 is configured to be pressed against the web 14 to score the web 14. The scoring tool 98 may include a top tool 112 and a bottom tool 114. As depicted in FIGS. 9 and 10, the top tool 112 may include a top die plate 116, a punch backing plate 118 secured to the top die plate 116, a punch holder 120 secured to the punch backing plate 118, and a plurality of scoring punches 122 secured by the punch holder 120. The punches 122 include blades 124 that extend beyond the punch holder 120 and are operable to impart slots in the web 14.


The bottom tool 114 may include a bottom die plate 126 and a striker plate 128 secured to the bottom die plate 126, as depicted in FIG. 10. The striker plate 128 may include a plurality of scoring slots 130 (shown in FIG. 8) that are complementary to the blades 124 of the top tool 112. The punches 122 and their blades 124 and the corresponding slots 130 may extend about a shape 132 representing an outline of the pressware products 12, as shown in FIGS. 8 and 9. The punches 122 and slots 130 may extend radially away from the shape 132. However, the punches 122 and slots 130 may extend along the outline of the shape 132 any number of ways without departing from the scope of the present invention. Further, the punches 122 may be pointed to impart holes instead of slots without departing from the scope of the present invention. There may be any number of punches 122 for producing any number of slots about the shape 132 without departing from the scope of the present invention. Further, the punches 122 may only extend about a portion of the shape 132. There also may be any number of punches 122 and slots 130 extending about any number of shapes 132 for scoring any number of pressware products 12 without departing from the scope of the present invention. In some embodiments, the scoring tool 98 may include punches 122 and corresponding slots 130 for scoring sixteen pressware products 12 in a single stroke of the tool 98. However, the scoring tool 98 may include punches 122 and slots 130 for scoring any number of products 12 without departing from the scope of the present invention. Further, the scoring tool 98 may score any type of shape 132, the same shapes 132, or different shapes 132 without departing from the scope of the present invention. FIG. 11 depicts an exemplary web 14 scored for forming the pressware products 12 from the scored shapes 13.


Turning back to FIG. 7, the scoring station actuator 100 is configured to shift the scoring tool 98 and may include a top platen 134, a bottom platen 136, a height adjust assembly 138, a height adjust servo motor 140, an upper toggle assembly 142, a lower toggle assembly 144, a top platen servo drive 146, and a bottom platen servo drive 148. The top tool 112 may be secured to the top platen 134 which is vertically shiftable along the tracks 110 of the frame 96. The bottom tool 114 may be secured to the bottom platen 136 and also vertically shiftable and guided by the tracks 110. The top platen 134 may be secured to the height adjust assembly 138 for providing adjustments to the scoring depth of the punches 122. Turning briefly to FIG. 26, the height adjust assembly 138 may be driven by the height adjust servo motor 140. The height adjust assembly 138 may in turn be secured to the upper toggle assembly 142 which is operable to shift to move the top platen 134. The height adjust assembly 138 may include a lead screw 139, a wedge drive plate 141, and wedge sets 143. The lead screw 139 may be driven by the servo motor 140 and configured to push the wedge drive plate 141 against the wedge sets 143 to adjust the scoring depth of the tool 98. The scoring depth may be associated with a thickness of the web 14. The wedge sets 143 may be positioned between toggle bearing blocks 145 (connected to the upper toggle assembly 142) and the top platen 134. The wedge sets 143 may have an angled surface 147 that increases the distance between the bearing blocks 145 and the top platen 134 as the wedge sets 143 are pushed by the wedge drive plate 141. The toggle bearing blocks 145 may be biased against the wedge sets 143 via die springs 149.


Turning back to FIG. 7, the bottom platen 136 may be secured to the lower toggle assembly 144 which is operable to shift to move the bottom platen 136. The upper toggle assembly 142 may be driven by the top platen servo drive 146, and the lower toggle assembly 144 may be driven by the bottom platen servo drive 148. While FIG. 7 depicts the height adjust assembly 138 and corresponding motor 140 shifting the top platen 134 relative to the upper toggle assembly 142, the height adjust assembly 138 and corresponding motor 140 may shift the bottom platen 136 relative to the lower toggle assembly 144 without departing from the scope of the present invention. Further, the actuator 100 may actuate the tool 98 any number of ways without departing from the scope of the present invention. For example, the actuator 100 may shift only the upper tool 112 or alternatively only shift the bottom tool 114.


In some embodiments, the scoring station 24 may further include one or more indexers 150, 152 (indexer 152 is depicted in FIG. 1) for guiding and directing the web 14 through the station 24. The scoring station 24 may also include one or more force sensors 154 for detecting a force applied to the web 14 by the scoring tool 98.


Turning to FIG. 12, the forming station 26 is configured to punch the scored shapes 13 out of the web 14 and form the products 12. The forming station 26 may comprise a forming station frame 156, a forming tool 158, and a forming station actuator 160. The forming station frame 156 is configured to support the forming tool 158 and the forming station actuator 160. The frame 156 may include an upper gantry 162 and a lower gantry 164 for supporting different portions of the forming tool 158 and the forming station actuator 160 and upright supports 166, 168 for supporting the gantries 162, 164. The upright supports 166, 168 may include one or more tracks 170 for guiding the forming tool 158 and or portions of the actuator 160.


Turning to FIG. 13, the forming tool 158 is configured to be actuated to punch out the scored shapes 13 and form the products 12. The forming tool 158 may include a positive mold assembly 172, a negative mold assembly 174, and heating elements 176. As depicted in FIGS. 14 and 15, the top tool 172 may include a positive mold shoe 178, a punch shoe 180, an insulator plate 182 (shown in FIG. 15), a plurality of molds 184, and a plurality of punches 186. The positive mold shoe 178 supports the plurality of molds 184, and the punch shoe 180 supports the punches 186. Some of the heating elements 176 may be positioned on and secured to the molds 184, and particularly to the top surfaces of the molds 184, to heat the molds 184 and in turn heat the web 14 to form the products 12. The insulator plate 182 may be positioned above the heated molds 184 to insulate portions of the positive mold assembly 172 from the heated molds 184.


The molds 184 include bottom surfaces 188 for forming top surfaces of the products 12. The molds 184 of the positive mold assembly 172 may include central portions 196 and annular portions 198A,B. Turning to FIGS. 15-19, in some embodiments, the annular portions 198A may be draw rings that are shiftable relative to the central portions 196. The central portions 196 may include flanges 196A that push down on the draw rings 198A to compress the rim of the products 12 to increase the rigidity of the rim of the products 12. However, the temperatures of the draw rings 198A and the central portions 196 need to be monitored and regulated to avoid thermal expansion issues (such as friction, scraping, wearing, and jamming) between the shifting draw rings 198A and the central portions 196. Thus, in some embodiments, to enable higher forming temperatures of the products 12, the molds 184 may include annular portions 198B that are integral to the central portions 196, as depicted in FIGS. 20-24.


The punches 186 include edges 190 configured to cut the shapes 13 from the web 14 along the slots. The forming tool 158 may include nitrogen gas springs 187 configured to help press the punches 186 against the web 14. The positive mold assembly 172 may also include a trim stripper 194 for pushing the scrap web 15 (discussed further below) away from the positive mold assembly 172.


Turning to FIGS. 13-15, the negative mold assembly 174 may include negative molds 200 with top surfaces 202 for forming bottom surfaces of the pressware products 12, a negative mold shoe 204, a die shoe 206, an insulator plate 208, and a trim die 210. The negative molds 200 may be complementary to the positive molds 184 and may be secured to the negative mold shoe 204. The die shoe 206 may be secured to the negative mold shoe 204, and the trim die 210 may secured to the die shoe 206. The trim die 210 may include edges 212 that pinch the web 14 with the punches 186 of the positive mold assembly 172 to remove the products 12 from the web 14. Some of the heating elements 176 may also be secured to the bottom surfaces of the negative molds 200 to heat the molds 200 and in turn help heat the web 14 to form the products 12. The insulator plate 208 may be positioned below the heated molds 200 to insulate portions of the negative mold assembly 174 from the heated molds 200.


Turning back to FIG. 12, the forming station actuator 160 is configured to actuate the forming tool 158 and may include a top platen 214, a bottom platen 216, a height adjust assembly 218, a height adjust servo motor 220 (depicted in FIG. 26), an upper toggle assembly 222, a lower toggle assembly 224, a top platen servo drive 226, and a bottom platen servo drive 228. The positive mold assembly 172 may be secured to the top platen 214 which is vertically shiftable and guided by the tracks 170 of the frame 156. The negative mold assembly 174 may be secured to the bottom platen 216 and also vertically shiftable and guided by the tracks 170. The top platen 214 may be secured to the height adjust assembly 218 for providing adjustments to the depth of the molds 184.


The height adjust assembly 218 may be driven by the height adjust servo motor 220. The height adjust assembly 218 and its height adjust servo motor 220 may be substantially similar to the height adjust assembly 138 and motor 140 of the scoring station 24. As depicted in FIG. 26, the height adjust assembly 218 may include a lead screw 219, a wedge drive plate 221, and wedge sets 223. The lead screw 219 may be driven by the servo motor 220 and configured to push the wedge drive plate 221 against the wedge sets 223 to adjust the scoring depth of the tool 158. The wedge sets 223 may be positioned between toggle bearing blocks 225 (connected to the upper toggle assembly 222) and the top platen 214. The wedge sets 223 may have an angled surface 227 that increases the distance between the bearing blocks 225 and the top platen 214 as the wedge sets 223 are pushed by the wedge drive plate 221. The toggle bearing blocks 225 may be biased against the wedge sets 223 via die springs 229. The height adjust assembly 218 may in turn be secured to the upper toggle assembly 222 which is operable to shift to move the top platen 214.


The bottom platen 216 may be secured to the lower toggle assembly 224 which is operable to shift to move the bottom platen 216. The upper toggle assembly 222 may be driven by the top platen servo drive 226, and the lower toggle assembly 224 may be driven by the bottom platen servo drive 228. While FIG. 12 depicts the height adjust assembly 218 and corresponding motor 220 shifting the top platen 214 relative to the upper toggle assembly 222, the height adjust assembly 218 and corresponding motor 220 may shift the bottom platen 216 relative to the lower toggle assembly 224 without departing from the scope of the present invention.


In some embodiments, the forming station 26 may further include one or more indexers 230, 232 (indexer 232 shown in FIG. 1) for guiding and directing the web 14 and scrap web 15 through the forming station 26. The forming station 26 may include one or more force sensors 234 for detecting a force applied to the web 14 by the forming tool 158.


Turning to FIG. 25A, the picking station 28 is configured to pick the products 12 from the bottom molds 200. The picking station 28 may include a frame 236, a vacuum cup extractor assembly 238, and a conveyor 240. The frame 236 may be adjacent to the forming station 26 so that the picking station 28 receives scrap web 15 from the forming station 26 and can access the products 12 formed at the forming station 26.


The vacuum cup extractor assembly 238 may be supported on the frame 236 and include tracks 242, actuators 244, 245 a shiftable frame 246, and a plurality of vacuum cups 248. The tracks 242 may be secured to the frame 236 and extend onto the frame 156 of the forming station 26. The actuators 244 are configured to move the shiftable frame 246 along the tracks 242 to shift the frame 246 above the negative mold assembly 174 of the forming station 26 and back to the frame 236 of the picking station 28. The actuators 245 are configured to lower the frame 246 so that the vacuum cups 248 engage the products 12. The shiftable frame 246 supports the plurality of vacuum cups 248 as it shifts along the tracks 242. The frame 236 and/or the vacuum cups 248 may be vertically shiftable so that the cups 248 can move toward the negative mold assembly 174 to engage the products 12, pull the products 12 up out of the molds 200, and move them above the conveyor 240. The vacuum cups 248 may be configured to releasably hold the products 12.


The conveyor 240 may be positioned below the tracks 242 on the frame 236 and be configured to transport the products 12 dropped by the vacuum cup extractor assembly 238 to the stacking station 30. The stacking station 30 may include a transverse conveyor 250 that receives rows of the products 12 from the conveyor 240 of the picking station 28 and transports each row transversely to a bin (not shown) causing the rows of products 12 to stack in the bin.


The picking station 28 may further include an indexer 252 for transporting the scrap web 15 to the chopping station 32. The chopping station 32 may include an indexer 254 that receives and/or pulls on the scrap web 15 into a scrap chopper 256. Turning to FIG. 25B, the scrap chopper 256 includes an edge 257 for cutting the scrap web 15 and an actuator 259 for actuating the edge 257 so that it presses against the scrap web 15 to cut the scrap web 15 into two or more pieces. The edge 257 may comprise any cutting device without departing from the scope of the present invention, including a knife, cutting blades attached to a rotating shaft (similar to a paper shredder), or the like.


Turning to FIG. 27, various components of the system 10 may be controlled by and/or in communication with the control system 34. The control system 34 may comprise a communication element 258, a memory element 260, a user interface 262, and a processing element 264. The communication element 258 may generally allow communication with systems or devices external to the system 10. The communication element 258 may include signal or data transmitting and receiving circuits, such as antennas, amplifiers, filters, mixers, oscillators, digital signal processors (DSPs), and the like. The communication element 258 may establish communication wirelessly by utilizing RF signals and/or data that comply with communication standards such as cellular 2G, 3G, 4G, 5G, or LTE, WiFi, WiMAX, Bluetooth®, BLE, or combinations thereof. The communication element 258 may be in communication with the processing element 264 and the memory element 260.


The memory element 260 may include data storage components, such as read-only memory (ROM), programmable ROM, erasable programmable ROM, random-access memory (RAM) such as static RAM (SRAM) or dynamic RAM (DRAM), cache memory, hard disks, floppy disks, optical disks, flash memory, thumb drives, universal serial bus (USB) drives, or the like, or combinations thereof. In some embodiments, the memory element 260 may be embedded in, or packaged in the same package as, the processing element 264. The memory element 260 may include, or may constitute, a “computer-readable medium”. The memory element 260 may store the instructions, code, code segments, software, firmware, programs, applications, apps, services, daemons, or the like that are executed by the processing element 264.


The user interface 262 generally allows the user to utilize inputs and outputs to interact with the system 10 and is in communication with the processing element 264. Inputs may include buttons, pushbuttons, knobs, jog dials, shuttle dials, directional pads, multidirectional buttons, switches, keypads, keyboards, mice, joysticks, microphones, or the like, or combinations thereof. The outputs of the present invention include a display 266 (depicted in FIG. 25A) but may include any number of additional outputs, such as audio speakers, lights, dials, meters, printers, or the like, or combinations thereof, without departing from the scope of the present invention.


The processing element 264 may include processors, microprocessors (single-core and multi-core), microcontrollers, DSPs, field-programmable gate arrays (FPGAs), analog and/or digital application-specific integrated circuits (ASICs), or the like, or combinations thereof. The processing element 264 may generally execute, process, or run instructions, code, code segments, software, firmware, programs, applications, apps, processes, services, daemons, or the like. The processing element 264 may also include hardware components such as finite-state machines, sequential and combinational logic, and other electronic circuits that can perform the functions necessary for the operation of the current invention. The processing element 264 may be in communication with the other electronic components through serial or parallel links that include address buses, data buses, control lines, and the like.


For example, the processing element 264 of the control system 34 may be in communication with the decurling station actuator 44 (and its servo motor 90), the decurling station sensor 46, the decurling station motors 72, 74, the scoring station actuator 100 (and its height adjust motor 140, the top platen servo drive 146, and the bottom platen servo drive 148), the scoring station indexers 150, 152, the scoring station force sensor 154, the forming station actuator 160 (including the height adjust motor 220, the top platen servo drive 226, and the bottom platen servo drive 228), the forming station heating elements 176, the forming station indexers 230, 232, the forming station force sensors 234, the picking station conveyor 240, the vacuum cup assembly actuators 244, 245, the stacking station conveyor 250, the picking station indexer 252, the chopping station indexer 254, the scrap chopper 256 (and its actuator 259), and/or other components or sensors. The processing element 264 may be in communication with the above components via the communication element 258 and/or direct wiring. The processing element 264 may be configured to send and/or receive information to and/or from the above components. The processing element 264 may also be configured to send and/or receive commands to and/or from the above components.


The processing element 264 may be configured to direct the decurling station motors 72, 74 to pull the web 14 from the roll of material 16. The processing element 264 may be configured to receive sensor data from the decurling station sensor 46. The processing element 264 may be configured to determine that the radius 20 and/or diameter 18 of the roll of material 16 is decreasing and therefore direct the decurling station actuator 44 (or servo motor 90) to adjust the position of the decurl roller 42—based at least in part on the sensor data—to decrease the angle of web 14 path, i.e., lower the decurl roller 42. Additionally or alternatively, the processing element 264 may be configured to determine a difference in radius 20 and/or diameter 18 or that the radius 20 and/or diameter 18 are below a threshold and then direct the decurling station actuator 44 to adjust the decurl roller 42. The processing element 264 may also be configured to determine that the radius 20 and/or diameter 18 of the roll of material 16 is larger than the previously determined radius 20 and/or diameter 18 and therefore direct the decurling station actuator 44 to adjust the position of the decurl roller 42 to increase the angle, i.e., raise the decurl roller 42. In some embodiments, alternatively or in addition to the sensor data, the processing element 264 may be configured to track an amount of time the roll of material 16 has been pulled, a number of times the web 14 has been pulled, a length of the roll of material 16 that has been pulled, or the like. The processing element 264 may be configured to direct the decurling station actuator 44 to adjust the position of the decurl roller 42 based on the amount of time the roll of material 16 has been pulled, the number of times the web 14 has been pulled, and/or the length of the roll of material 16 that has been pulled.


The processing element 264 may be configured to direct the decurling station motor 74 to activate to push the web 14 to the indexer 152 of the scoring station 24. The processing element 264 may simultaneously direct the indexer 152 to pull the web 14 between the top tool 112 and the bottom tool 114 of the scoring tool 98. The processing element 264 may be configured to direct the scoring station actuator 100 (or the servo motors 146, 148) to shift the tools 112, 114 together to score the web 14. The processing element 264 may be configured to direct the scoring station actuator 100 to shift the tools 112, 114 to a predetermined scoring depth. Further, the processing element 264 may be configured to receive a new predetermined scoring depth (for example, from the user interface 262) and direct the actuator 100 to shift the tools 112, 114 to the new predetermined scoring depth for each stroke. Additionally or alternatively, the processing element 264 may be configured to direct the motor 140 to adjust the height adjust assembly 138 to implement the new predetermined scoring depth. The processing element 264 may be configured to receive a scoring compression force detected by the force sensors 154, and direct the servo motors 146, 148 and/or the height adjust motor 140 so that the scoring compression force remains at or below a predetermined scoring compression force. The processing element 264 may also be configured to direct the indexer 150 to direct the scored web 14 to the forming station 26 in cooperation with the indexer 232 of the forming station 26.


The processing element 264 may be configured to direct the indexers 230, 232 of the forming station 26 to position the web 14 between the forming station tools 172, 174 so that the scored portions 13 of the web 14 are aligned with the molds 184, 200 of the tools 172, 174. The processing element 264 may be configured to direct the forming station actuator 160 (or the servo drive motors 226, 228) to shift the tools 172, 174 to a forming position at a predetermined forming depth, whereby the punches 186 separate the shapes 13 from the web 14. The processing element 264 may be configured to adjust the forming depth by directing the drive motors 226, 228 or directing the servo motor 220 of the forming station height adjust assembly 218. The processing element 264 may be configured to receive a forming compression force detected by the force sensors 234, and direct the servo motors 226, 228 and/or the height adjust motor 220 so that the forming compression force remains at or below a predetermined forming compression force. The processing element 264 may also be configured to activate the heating elements 176 so that the molds 184, 200 are heated and therefore the portions 13 of the web 14 are heated. The processing element 264 may be configured to direct the forming station drive motors 226, 228 to hold the molds 184, 200 at their forming position for a predetermined amount of time. The processing element 264 may then direct the motors 226, 228 to shift open to allow the formed products 12 to be picked by the picking station 28.


The processing element 264 may be configured to direct the picking station actuators 244, 245 to shift the shiftable frame 246 so that the suspended vacuum cups 248 are positioned over the formed products 12. The processing element 264 may be configured to direct the actuator 245 to lower the cups 248 so that they engage the products 12, lift the cups 248 so that the cups 248 pull the products 12 away from their scrap web 15, and shift the cups 248 and products 12 to a position above the conveyor 240. The processing element 264 may be configured to cause the cups 248 to disengage the products 12 so that the products 12 fall onto the conveyor 240.


The processing element 264 may be configured to direct the conveyor 240 to activate so that the products 12 are transported to the transverse conveyor 250, which the processing element 264 may also cause to be activated so that the products 12 are stacked in a bin (not shown). Further, the processing element 264 may be configured to direct the indexers 252, 254 to pull the scrap web 15 into the scrap chopper 256 and to direct the scrap chopper actuator 259 to actuate the edge 257 to cut said scrap web 15.


The flow chart of FIG. 28 depicts the steps of an exemplary method 1000 of forming pressware products. In some alternative implementations, the functions noted in the various blocks may occur out of the order depicted in FIG. 28. For example, two blocks shown in succession in FIG. 28 may in fact be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order depending upon the functionality involved. In addition, some steps may be optional.


The method 1000 is described below, for ease of reference, as being executed by exemplary devices and components introduced with the embodiments illustrated in FIGS. 1-27. The steps of the method 1000 may be performed by the control system 34 through the utilization of processors, transceivers, hardware, software, firmware, or combinations thereof. However, some of such actions may be distributed differently among such devices or other devices without departing from the spirit of the present invention. Control of the system may also be partially implemented with computer programs stored on one or more computer-readable medium(s). The computer-readable medium(s) may include one or more executable programs stored thereon, wherein the program(s) instruct one or more processing elements to perform all or certain of the steps outlined herein. The program(s) stored on the computer-readable medium(s) may instruct processing element(s) to perform additional, fewer, or alternative actions, including those discussed elsewhere herein.


Referring to step 1001, a web may be pulled from a roll of material via pull rollers driven by decurling station motors. The pull rollers may be part of an assembly that includes pinch rollers biased against the pull rollers that cause the pull rollers to grip the web.


Referring to step 1002, sensor data associated with a physical characteristic of the roll of material may be generated via a sensor. The sensor may generate data based on a radius, diameter, weight, or the like, of the roll of material.


Referring to step 1003, a decurl roller is adjusted, via a decurl station actuator, to change an angle of a path of the web based at least in part on the sensor data. As the diameter of the roll of material decreases, the decurl roller is adjusted to decrease the angle so that the angle the web travels is more acute to overcome the intrinsic curl of the web.


Referring to step 1004, the decurled web is pressed by a scoring tool via a scoring station actuator. The tools may be shifted to a predetermined scoring depth. In some embodiments, this step may include receiving a new predetermined scoring depth (for example, from the user interface) and shifting the scoring tool to the new predetermined scoring depth for each stroke. This may include adjusting a height adjust assembly via a servo motor to implement the new predetermined scoring depth. The scores may extend radially outwardly from shapes representing outlines of the products.


Referring to step 1005, the scored web is pressed by a forming tool via a forming station actuator to form the products. The forming tool may be shifted to a forming position at a predetermined forming depth. In some embodiments, this step may include adjusting the forming depth via drive motors and/or a servo motor of a forming station height adjust assembly. This step may also include activating heating elements secured to molds of the forming tool to heat portions of the web. This step may include holding the molds at their forming position for a predetermined amount of time and shifting the forming tool to open and allow the formed products to be picked.


Referring to step 1006, the formed products are picked via a vacuum cup assembly driven by an actuator. This step may include shifting a frame with vacuum cups over the formed products, lowering the vacuum cups so that they engage the products, shifting the frame over a conveyor, and releasing the products from the cups.


Referring to step 1007, the products are stacked via a transverse conveyor. This step may include transporting the products via the conveyor beneath the vacuum cup assembly to the transverse conveyor. The transverse conveyor may receive rows of the products and then transport them transverse to the picker conveyor to stack each row.


Referring to step 1008, the scrap web may be cut via a scrap chopper. This step may include guiding the scrap web to a chopping station via one or more indexers of the picking station and/or the chopping station. The scrap web is then loaded into the scrap chopper, which includes one or more edges, blades, knives, or the like operable to cut the scrap web.


The method 1000 may include additional, less, or alternate steps and/or device(s), including those discussed elsewhere herein.


Additional Considerations


In this description, references to “one embodiment”, “an embodiment”, or “embodiments” mean that the feature or features being referred to are included in at least one embodiment of the technology. Separate references to “one embodiment”, “an embodiment”, or “embodiments” in this description do not necessarily refer to the same embodiment and are also not mutually exclusive unless so stated and/or except as will be readily apparent to those skilled in the art from the description. For example, a feature, structure, act, etc. described in one embodiment may also be included in other embodiments but is not necessarily included. Thus, the current technology can include a variety of combinations and/or integrations of the embodiments described herein.


Although the present application sets forth a detailed description of numerous different embodiments, it should be understood that the legal scope of the description is defined by the words of the claims set forth in any subsequent regular utility patent application. The detailed description is to be construed as exemplary only and does not describe every possible embodiment since describing every possible embodiment would be impractical. Numerous alternative embodiments may be implemented, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims.


Throughout this specification, plural instances may implement components, operations, or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated. Structures and functionality presented as separate components in example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein.


Certain embodiments are described herein as including logic or a number of routines, subroutines, applications, or instructions. These may constitute either software (e.g., code embodied on a machine-readable medium or in a transmission signal) or hardware. In hardware, the routines, etc., are tangible units capable of performing certain operations and may be configured or arranged in a certain manner. In example embodiments, one or more computer systems (e.g., a standalone, client or server computer system) or one or more hardware modules of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as computer hardware that operates to perform certain operations as described herein.


In various embodiments, computer hardware, such as a processing element, may be implemented as special purpose or as general purpose. For example, the processing element may comprise dedicated circuitry or logic that is permanently configured, such as an application-specific integrated circuit (ASIC), or indefinitely configured, such as an FPGA, to perform certain operations. The processing element may also comprise programmable logic or circuitry (e.g., as encompassed within a general-purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations. It will be appreciated that the decision to implement the processing element as special purpose, in dedicated and permanently configured circuitry, or as general purpose (e.g., configured by software) may be driven by cost and time considerations.


Accordingly, the term “processing element” or equivalents should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. Considering embodiments in which the processing element is temporarily configured (e.g., programmed), each of the processing elements need not be configured or instantiated at any one instance in time. For example, where the processing element comprises a general-purpose processor configured using software, the general-purpose processor may be configured as respective different processing elements at different times. Software may accordingly configure the processing element to constitute a particular hardware configuration at one instance of time and to constitute a different hardware configuration at a different instance of time.


Computer hardware components, such as communication elements, memory elements, processing elements, and the like, may provide information to, and receive information from, other computer hardware components. Accordingly, the described computer hardware components may be regarded as being communicatively coupled. Where multiple of such computer hardware components exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) that connect the computer hardware components. In embodiments in which multiple computer hardware components are configured or instantiated at different times, communications between such computer hardware components may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple computer hardware components have access. For example, one computer hardware component may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further computer hardware component may then, at a later time, access the memory device to retrieve and process the stored output. Computer hardware components may also initiate communications with input or output devices, and may operate on a resource (e.g., a collection of information).


The various operations of example methods described herein may be performed, at least partially, by one or more processing elements that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processing elements may constitute processing element-implemented modules that operate to perform one or more operations or functions. The modules referred to herein may, in some example embodiments, comprise processing element-implemented modules.


Similarly, the methods or routines described herein may be at least partially processing element-implemented. For example, at least some of the operations of a method may be performed by one or more processing elements or processing element-implemented hardware modules. The performance of certain of the operations may be distributed among the one or more processing elements, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the processing elements may be located in a single location (e.g., within a home environment, an office environment or as a server farm), while in other embodiments the processing elements may be distributed across a number of locations.


Unless specifically stated otherwise, discussions herein using words such as “processing,” “computing,” “calculating,” “determining,” “presenting,” “displaying,” or the like may refer to actions or processes of a machine (e.g., a computer with a processing element and other computer hardware components) that manipulates or transforms data represented as physical (e.g., electronic, magnetic, or optical) quantities within one or more memories (e.g., volatile memory, non-volatile memory, or a combination thereof), registers, or other machine components that receive, store, transmit, or display information.


As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.


The patent claims at the end of this patent application are not intended to be construed under 35 U.S.C. § 112(f) unless traditional means-plus-function language is expressly recited, such as “means for” or “step for” language being explicitly recited in the claim (s).


Although the invention has been described with reference to the embodiments illustrated in the attached drawing figures, it is noted that equivalents may be employed and substitutions made herein without departing from the scope of the invention as recited in the claims.

Claims
  • 1. A system for decurling a web from a roll of material, the system comprising: a plurality of rollers configured to pull the web along a path with an angle, wherein the plurality of rollers comprise a pair of pull roller assemblies spaced apart from one another, each of the pair of pull roller assemblies including a pull roller and a pinch roller configured to pull the web from the roll of material;a decurling station actuator configured to shift at least one of the plurality of rollers relative to the other rollers to adjust the angle of the path, wherein the at least one of the plurality of rollers is a decurl roller positioned between the pair of pull roller assemblies, wherein each of the pair of pull roller assemblies further comprises—an arm pivotable toward the pull roller and configured to support the pinch roller, and a biasing element configured to bias the pinch roller toward the pull roller so that the pinch roller presses the web against the pull roller;a sensor configured to sense a characteristic of the roll of material and generate sensor data; anda controller configured to receive a signal representative of the sensor data and direct the decurling station actuator to shift the decurl roller based at least in part on the sensor data.
  • 2. The system of claim 1, wherein the characteristic of the roll of material sensed by the sensor is a radius of the roll of material.
  • 3. The system of claim 2, wherein the controller is configured to— determine that the radius of the roll of material is decreasing, anddirect the decurling station actuator to shift the at least one of the plurality of rollers to decrease the angle of the path.
  • 4. The system of claim 2, wherein the sensor comprises a distance measuring device configured to measure a distance between the sensor and an outer surface of the roll.
  • 5. The system of claim 1, wherein the characteristic of the roll of material sensed by the sensor is a weight of the roll of material.
  • 6. The system of claim 5, wherein the controller is configured to— determine that the weight of the roll of material is decreasing, anddirect the decurling station actuator to shift the at least one of the plurality of rollers to decrease the angle of the path.
  • 7. The system of claim 1, wherein the decurling station actuator is configured to shift the decurl roller along a vertical axis between the pair of pull roller assemblies.
  • 8. The system of claim 1, wherein the at least one of the plurality of rollers is shiftable along an axis long enough that the angle of the path is operable to change from an obtuse angle to an acute angle.
  • 9. The system of claim 1, wherein the decurling station actuator comprises— a nut supporting the at least one of the plurality of rollers,a vertical spindle configured to engage the nut, anda servo motor configured to rotate at least one of the nut or the vertical spindle to vertically shift the at least one of the plurality of rollers.
  • 10. A method of decurling a web from a roll of material, the method comprising: pulling a portion of the web, via a plurality of rollers, along a path forming an angle, wherein the plurality of rollers comprise a pair of pull roller assemblies spaced apart from one another, each of the pair of pull roller assemblies including a pull roller and a pinch roller configured to pull the web from the roll of material;sensing, via a sensor, a characteristic of the roll of material to generate sensor data; anddirecting, via a control system, a decurling station actuator to shift at least one of the rollers to adjust the angle of the path based at least in part on the sensor data, wherein the at least one of the plurality of rollers is a decurl roller positioned between the pair of pull roller assemblies, wherein each of the pair of pull roller assemblies further comprises—an arm pivotable toward the pull roller and configured to support the pinch roller, and a biasing element configured to bias the pinch roller toward the pull roller so that the pinch roller presses the web against the pull roller.
  • 11. The method of claim 10, wherein the sensor comprises a distance measuring device configured to measure a distance between the sensor and an outer surface of the roll.
  • 12. The method of claim 10, wherein the pulling step includes directing, via the control system, a pair of roller motors to rotate the pull rollers.
  • 13. A system for decurling a web from a roll of paper material, the system comprising: a decurling station frame including—a pair of rails that support the roll of paper material, andsupport walls extending vertically from the pair of rails;a pair of pull roller assemblies horizontally spaced apart from one another on the support walls, each of the pair of pull roller assemblies including—a rotatable pull roller,a rotatable pinch roller positioned proximate to the pull roller so that the pinch roller presses the web into the pull roller, andan actuator configured to rotate the pull roller;a rotatable decurl roller supported by the support walls and positioned between the pair of pull roller assemblies;a decurling station actuator supported by the support walls and configured to vertically shift the decurl roller;a sensor configured to sense a characteristic of the roll of paper material and generate sensor data; anda controller configured to receive a signal representative of the sensor data and direct the decurling station actuator to vertically shift the decurl roller based at least in part on the sensor data.
  • 14. The system of claim 13, wherein the controller is configured to— determine that a radius of the roll of paper material is decreasing, anddirect the decurling station actuator to vertically shift the decurl roller downward away from the pull rollers.
  • 15. The system of claim 13, wherein the decurling station actuator comprises— a nut supporting the decurl roller,a vertical spindle configured to engage the nut, anda servo motor configured to rotate at least one of the nut or the vertical spindle to vertically shift the decurl roller.
  • 16. The system of claim 15, wherein the vertical spindle is rotatably mounted to one of the support walls and includes— a screw portion that engages the nut, anda spindle pulley rotatably fixed to the screw portion,wherein the servo motor includes an axle and the decurling station actuator further comprises a belt configured to transfer power from the axle to the spindle pulley.
  • 17. The system of claim 13, further comprising a support roller rotatably supported by the decurling station actuator above the decurl roller.
  • 18. The system of claim 13, further comprising an exit roller rotatably mounted on the support walls adjacent the pair of pull roller assemblies.
US Referenced Citations (85)
Number Name Date Kind
3604652 Sleeper Sep 1971 A
3768950 Ihde Oct 1973 A
4242293 Dowd Dec 1980 A
4415515 Rosenberg Nov 1983 A
4416133 Doyle Nov 1983 A
4497620 Dempsey Feb 1985 A
4539072 Frye Sep 1985 A
4680023 Varano Jul 1987 A
4775086 Kataoka Oct 1988 A
4926358 Tani May 1990 A
4952281 Akira Aug 1990 A
5237381 Hamada Aug 1993 A
5450102 Ishida Sep 1995 A
5485386 Andreasson Jan 1996 A
5539511 Wenthe, Jr. Jul 1996 A
5566906 Kamada Oct 1996 A
5727367 Cahill Mar 1998 A
5787331 Ohkuma Jul 1998 A
5904643 Seeberger et al. May 1999 A
5964390 Børresen et al. Oct 1999 A
5975745 Oishi Nov 1999 A
6106453 Sinn et al. Aug 2000 A
6142045 Coxe Nov 2000 A
6199859 Schauer Mar 2001 B1
6206815 Focke Mar 2001 B1
6527687 Fortney et al. Mar 2003 B1
6613253 Negishi Sep 2003 B1
6908189 Miyamoto et al. Jun 2005 B2
6908242 Oshima Jun 2005 B2
7036923 Takagi May 2006 B2
7182008 Negishi Feb 2007 B2
7229167 Miyamoto Jun 2007 B2
7281678 Matsugi Oct 2007 B2
7419462 Zelinski Sep 2008 B1
7618204 Blanchard, Jr. Nov 2009 B2
7713580 Yamamoto May 2010 B2
7819790 Grischenko et al. Oct 2010 B2
8047834 Sofronie et al. Nov 2011 B2
8086158 Domoto Dec 2011 B2
8414464 Grischenko et al. Apr 2013 B2
8430660 Johns et al. Apr 2013 B2
8430802 Treccani et al. Apr 2013 B2
8540443 Okuno Sep 2013 B2
8721064 Miyamoto et al. May 2014 B2
8795571 Bryl Aug 2014 B2
9011308 Treccani et al. Apr 2015 B2
9075379 Egawa Jul 2015 B2
9346643 Ito May 2016 B2
9808117 Wnek et al. Nov 2017 B2
9896372 Vogt et al. Feb 2018 B2
9969192 Suzuki et al. May 2018 B2
10022932 Wnek Jul 2018 B2
10353324 Oura Jul 2019 B2
10562256 Vassa et al. Feb 2020 B2
10562728 Ota Feb 2020 B2
10661522 Fukuda May 2020 B2
10703064 Vassa et al. Jul 2020 B2
11235488 Lim Feb 2022 B2
11396155 Block Jul 2022 B2
20030137572 Miyamoto Jul 2003 A1
20030156176 Miyamoto Aug 2003 A1
20030197298 Hegishi Oct 2003 A1
20050098674 Matsugi May 2005 A1
20050281964 Yamamoto Dec 2005 A1
20070072758 Van Oosterhout Mar 2007 A1
20070221024 Negishi Sep 2007 A1
20070248396 Blanchard, Jr. Oct 2007 A1
20090190984 Yamamoto Jul 2009 A1
20100238251 Tsuzawa Sep 2010 A1
20110081189 Okuno Apr 2011 A1
20120037680 Ito Feb 2012 A1
20130057629 Miyamoto Mar 2013 A1
20140140746 Egawa May 2014 A1
20160136981 Suzuki May 2016 A1
20160176147 Vassa et al. Jun 2016 A1
20170253452 Ota Sep 2017 A1
20180067423 Oura Mar 2018 A1
20180178479 Kellermann Jun 2018 A1
20190352117 Mosegaard Nov 2019 A1
20230008774 Chun Jan 2023 A1
20230009038 Chun Jan 2023 A1
20230010876 Chun Jan 2023 A1
20230011906 Chun Jan 2023 A1
20230034788 Lee Feb 2023 A1
20230173779 Chun Jun 2023 A1
Foreign Referenced Citations (3)
Number Date Country
109279426 Jan 2019 CN
2016185097 Nov 2016 WO
2021001276 Jan 2021 WO
Non-Patent Literature Citations (1)
Entry
European Patent Office Partial Search Report received in related application No. 22183547.3, dated Nov. 22, 2022, 14 pages.
Related Publications (1)
Number Date Country
20230011906 A1 Jan 2023 US