Field
This disclosure relates to a personal ranging system. More specifically, the disclosure is directed to a personal and portable ranging system that is arranged to make a user more aware of the objects surrounding them.
Description of the Related Art
Pedestrians and slow-moving vehicles such as bicycles, must often share roads and highways with many types of fast-moving vehicles. In many cases, the pedestrian or slow-moving vehicle may not be visible to oncoming traffic. The pedestrian or slow moving vehicle, may not be aware of the approaching high speed traffic. This is a situation that can easily result in a serious accident.
Bicycles are typical of slow-moving vehicles with high potential for being victims of accidents with faster vehicles. Bicyclists rarely move as fast as normal highway traffic. They often are not completely aware of their surroundings due to poor visibility, helmets, wind noise, varying terrain, and other environmental factors. Most cycling traffic accidents occur either because the cyclist did not anticipate the approaching vehicle (often from the rear) or the driver of the vehicle did not see the cyclist in time to take evasive action.
In addition to cyclists, there are many other potential victims of fast-moving vehicles both on and off the road. These include pedestrians, skiers, highway workers, roller-bladders, skaters, and other personnel that must use highways, roads, or trails where visibility may be limited. Larger vehicles with limited visibility, including motorcycles, horse-drawn vehicles, and farm vehicles, may also be involved in accidents with rapidly approaching vehicles.
To reduce the possibility of accidents, slow moving, limited-visibility vehicles, and pedestrians would be aided by a proximity detector that would warn them of oncoming traffic and make the oncoming traffic aware of their presence. A vehicle proximity-alerting device could help avoid many of these potential accidents and possibly decrease the morbidity and mortality of cyclists, pedestrians, and others.
The disclosure is a personal and portable ranging system that is configured to detect obstacles and/or oncoming vehicles and can be used in many different settings. For example, the ranging system can be used by a pedestrian and/or a vehicle to detect upcoming obstacles and/or oncoming traffic.
The disclosure addresses these needs and provides further related advantages.
The disclosure provides various aspects of a system for providing a personal and portable ranging system that is configured to make a user more aware of the objects surrounding them. The ranging system comprises elements to allow the ranging system to be configured to be used in many different arrangements, such that the ranging system can be used by a pedestrian, a vehicle, or the like. The ranging system can be used in many different settings, such as roads, highways, trails, bike paths and the like. The disclosure provides a ranging systems that can be easily operated by a single individual.
In one aspect of the disclosure, as broadly described herein, a ranging system comprises a sensor unit comprising at least one ranging sensor, a processing unit configured to receive information obtained from the at least one ranging sensor and configured to provide at least one output notification signal, and a notification device configured to provide at least one alert signal in response to the at least one output notification signal. The notification device can provide information regarding objects detected by the ranging system.
Further disclosed herein is a method of notifying a user of surrounding objects. In one aspect, as broadly described herein, the method comprises scanning an area, collecting data on objects within the scanned area, processing the collected data, and providing an output notification signal to a notification device, wherein the notification device is configured to provide at least one alert signal of objects detected within the scanned area.
This has outlined, rather broadly, the features and technical advantages of the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages of the disclosure will be described below. It should be appreciated by those skilled in the art that this disclosure may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the teachings of the disclosure as set forth in the appended claims. The novel features, which are believed to be characteristic of the disclosure, both as to its organization and method of operation, together with further objects and advantages, will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present disclosure.
The disclosure is directed to methods and systems for providing a personal and portable ranging system. The ranging system is configured to make a user more aware of the objects surrounding them. In one aspect, the ranging system comprises a sensor unit comprising one or more ranging sensors configured to collect information directed to a user's surroundings, such as but not limited to objects and/or obstacles. The information collected can comprise where objects are located relative to the user, whether the objects are stationary or moving, the rate at which the objects are moving, and in what direction they are moving relative to the user. This information is processed and organized into an output notification signal. The information comprised in the output notification signal is then communicated to the user through one or a combination of different methods, including but not limited to lights, visual displays, sounds, and integrations with phones, smartphones, and other present and future devices (eg. Google Glass) that are configured to communicate information visually, audibly, tactilely or a combination thereof to the user.
The ranging system comprises a sensor unit comprising the one or more ranging sensors that are configured to detect objects in proximity to the user. The one or more ranging sensors can also be configured to transmit the collected information to a processing unit. The processing unit is configured to receive the information and is configured to process the information in order provide at least one output notification signal that is transmitted to a notification device by a transmission unit. Examples of information provided in the at least one output notification signal can comprise the position, speed, trajectory of any object within range of the sensor or sensors and/or a combination thereof. The disclosure is not intended to be limited to the examples disclosed herein, as such, other data points and/or information of the scanned area can be provided in the output notification signal.
The range of detection of the sensor unit, which is the distance that an object can be detected relative to the sensor unit, can be dependent upon many different factors, such as but not limited to the type of sensor used or the environment in which the sensor unit is used. In one aspect, the sensor unit can have a range of detection of 0-300 feet, while in some aspects the sensor unit can have a range of detection of 0-100 feet, and yet in other aspects the sensor unit can have a range of detection of 0-50 feet. These ranges are intended to be non-limiting examples and are not intended to limit the scope of the disclosure. In some aspects, the range of detection of the sensor unit can be adjusted to be increased or decreased based on certain conditions, such as but not limited to, terrain, weather, rate of speed of the user, or surrounding objects. The ranging sensors can be comprised of many different ranging technologies, such as but not limited to ultrasound, LIDAR, RADAR, imaging, magnetic induction and the like or a combination thereof. In some aspects, the ranging sensor can comprise an imaging device configured to obtain and/or collect video and/or still images, wherein the video and/or images are analyzed by an image recognition software in order to identify objects within range of the ranging sensor and determine their relative distance and/or trajectory from the ranging sensor.
The processing unit is configured to provide at least one output notification signal of information obtained by the sensor unit to the transmission unit, wherein the transmission unit is configured to transmit the at least one output notification signal to the notification device for communication to the user. The notification device can be comprised of software for smart phones or other portable electronic devices, a separate piece of hardware that can be carried by the user, or both. Transfer of information from the processing unit to the notification device may be done via a wired connection or a wireless connection.
In one aspect of the invention, the ranging system may further comprise at least one component to house the sensor unit, the processing unit, and the transmission unit. In one aspect, the at least one component is a housing wherein the sensor unit, the processing unit, and the transmission unit are within the housing. The housing can provide protection from environmental conditions, as well as provide protection against physical damage. In some aspects, the sensor unit, the processing unit and the transmission unit can be mounted within the housing, while in other aspects, the sensor unit, the processing unit and the transmission unit can be received within the housing allowing for ease of removal. In other aspects, the sensor unit, processing unit, and transmission unit may be housed separately, wherein the connection between the units may be wired, wireless or a combination thereof.
In some aspects, the notification unit may be comprised of software or hardware, or both software and hardware. The software may be a mobile application operated on a portable electronic device or a website operated on a server that receives the information from the transmission unit and displays information to the user in response to the data received from the transmission unit. The ranging system does not need to be connected to a network (i.e. the internet or a local network) to function. However, in some aspects, the ranging system can be connected to a network, such as but not limited to the Internet, a local network, or the like, which may enable users with compatible ranging systems to communicate with each other and share information about the objects surrounding each ranging system connected to the network. This network may be created by the ranging systems themselves, as diagrammed in
The sensor unit 102 is configured to scan a particular area and to collect data about the objects within the particular area. The collected data provides information about objects within the scanned area, such as but not limited to, moving objects, stationary objects, size of objects, rate of speed of moving objects, direction of moving objects, etc. The collected data allows the user to be aware of the objects within the scanned area, which allows the user to determine whether to proceed along the scanned particular area or to alter their course. The ranging system could assist users in altering their course due to objects and/or obstacles that are not readily visible.
The ranging system 100 can comprise one or multiple technologies to detect objects. In some aspects, the sensor unit can comprise ultrasonic sonar, LIDAR (light detection and ranging), RADAR, magnetic induction, optical/image processing sensors, and/or a combination thereof. The ranging system may contain its own power-supply (e.g. internal rechargeable battery) or be powered by an external source of power (e.g. hub-mounted dynamo or photovoltaic cell).
In one aspect, the sensor unit can comprise a single static LIDAR sensor that provides a narrow angle of detection that may be only a few degrees. In some aspects of the ranging system, combining one or multiple sensors in different orientations can provide a wider angles of detection. In one aspect, the sensor unit can have an angle of detection of 360 degrees, while in some aspects the sensor unit can have an angle of detection of 270 degrees, and yet in other aspects the sensor unit can have an angle of detection of 170 degrees. These ranges are examples and are not intended to limit the disclosure. In yet other aspects, the angle of detection of the sensor unit can be adjustable to be increased or decreased, and is not intended to be limited to a set angle of detection.
In another aspect, as shown in
In another aspect, as shown in
In yet another aspect, as shown in
In the aspect of
In the aspect of
In another aspect of the disclosure, the sensor unit 102 can comprise optical features, such as but not limited to, lenses, reflectors, diffusers, the like, or a combination thereof, to alter, adjust, spread, increase and/or decrease the area of detection of the sensor unit. The above aspect has been described as the sensor unit comprising a LIDAR sensor 108. However, the disclosure is not intended to be limited to a LIDAR sensor, and other known sensing technologies can be used, such as but not limited to ultrasonic sonar, RADAR, magnetic induction, and optical/image processing sensors. For example, ultrasonic sonar, RADAR, magnetic induction, and optical/image processing sensors all have much broader angles of detection than LIDAR. In other aspects of the disclosure, the ranging system 100 can comprise one or more of these sensor units affixed stationary or oscillated laterally via a motor to provide the entire visible range for the ranging system. While in other aspects, the one or more sensor units can be used in combination with one or more beam altering devices, such as but not limited to optical features, to alter and/or adjust the visible range of the ranging system. Data from a ranging system comprising multiple sensors could be combined using a Kalman-type filter or the like to provide a more accurate and/or broader range of detection.
In another aspect of the disclosure, the sensor unit 102 can comprise one or more cameras configured to collect images and/or video of the surrounding area within the range of detection of the sensor unit 102. The collected images and/or video form a data stream that is transmitted by the sensor unit to the processing unit 104, wherein the processing unit comprises an image recognition system that processes the data stream of images and/or video collected by the sensor unit 102 in order to identify objects that are captured in the images and/or video. The image recognition system is configured to process the data stream of images and/or video to determine relative distance, speed, and/or trajectory of identified objects, relative to the sensor. The results of the processed data stream form an output notification signal which is transmitted to the notification unit in order to alert the user of the ranging system of the proximity and/or movement of the objects.
The sensor unit 102 receives a signal of discrete object data points 120 of objects in time and space within range of the one or more sensors 108 and transmits ranging information to the processing unit 104. Based on the position of the sensor 102 when the signal is received, the last data point collected from the sensor and sensor position (or neighboring sensor or sensor position), and the time elapsed between those data points 120, the processing unit 104 processes the ranging information from the sensor unit 102 and identifies individual objects 115 and maps their position, speed, acceleration, and trajectory with respect to the sensor unit. The processing unit 104 creates an output notification signal 122 that is transmitted to the transmission unit. The output notification signal 122 can comprise a two-dimensional field of any detected objects within range of the sensor unit 102 with respect to the sensor unit.
The information of detected objects and their position, speed, and trajectory is transmitted from the transmission unit 106 to a notification device 124 and is used to create at least one alert signal 126, which in some aspects, can comprise a two-dimensional representation of the objects that are in range of and detected by the sensor unit 102. In some aspects, the two-dimensional representation of the surrounding objects and their movements is communicated to the user via a visual display (notification device) 124 that shows the objects detected with respect to the user in a two-dimensional plane, as shown in
With some sensors, it may be possible to detect additional information about objects in range, including heat or light emitted by the objects. This information can be used by the ranging system to not only communicate distance, speed, and trajectory of surrounding objects, but also what type of objects they might be based on additional information collected from them by the sensor. This aspect of the disclosure could require additional signal processing from the sensor unit data by the processing unit 104 to determine what type of object it is. This additional signal processing takes all of the object data points 120 from the sensors 102, including but not limited to speed, temperature, or light reflection characteristics, and matches them against a database of known characteristics of common objects to identify the potential type of object as it approaches the ranging system. In this aspect, the database can be pre-programmed into the processing unit 104, after being created by vigorous testing of the ranging system.
In one aspect of the disclosure for use with pedestrians (e.g. hikers, hunters, soldiers, etc.), a ranging system 200 can be affixed to the head or other body part 202 of the user via elastic or other refastening band (much like a headlamp), or attached to a hat or helmet that is configured for use with the sensor unit. See
In one aspect of the disclosure for use with bicyclists, a ranging system 300 is housed in a single housing 302, while in other aspects, the multiple components can be individually housed separately, all of which are affixed to a bicycle frame or bicycle rack 304 via clamp, band, or strap made of any variety of materials, so that the ranging system 300 remains affixed to the bicycle or bicycle rack 304 and does not substantially move with respect to the bicycle while the bicycle moves and/or encounters uneven terrain. In various aspects, the ranging system 300 may or may not require the need to aim the sensor unit and/or ranging system in a specific direction when affixing the ranging system to the bicycle 304. In some aspects, a notification unit 306 can be mounted to the handlebars 308 of the bicycle 304, while in other aspects, the notification unit 306 can be mounted to other parts of the bicycle 304 and is not intended to be limited to the handlebars 308. In yet other aspects, the notification unit 306 can be on the user. The ranging system 300 provides the rider awareness of objects to the rear as well as in blind spots on either side while riding. See
In one aspect of the disclosure for use with motorcyclists, the ranging system is housed in a single or multiple components, all of which are affixed to the frame of the motorcycle via customized mounting bracket, so that the ranging system remains affixed to the motorcycle and does not substantially move with respect to the motorcycle while the motorcycle moves and/or encounters uneven terrain. In various aspects, the ranging system may or may not require the need to aim the sensor unit and/or ranging system in a specific direction when affixing the ranging system to the motorcycle. In some aspects, a notification unit can be mounted on or near the handlebars of the motorcycle, while in other aspects, the notification unit can be mounted to other parts of the motorcycle and is not intended to be limited to the handlebars. This way the ranging system is able to provide the rider additional awareness of objects to the rear as well as in blind spots on either side.
The following is a description of one aspect of the logic flow circuit for a method of using the portable ranging system, as shown in the diagram of
In an aspect of the disclosure using a sensor system that does not require any oscillation, the increment servo motor, max or min position, and reverse direction steps in the logic flow circuit described above are unnecessary for the function of the portable ranging system, as shown in the diagram
In an aspect of the disclosure using multiple sensors operating simultaneously, there may be additional steps in the logic flow circuit after reading the distance sensor taking into account the position of the sensor relative to the other sensors in order to merge the object distance information together into a single picture of objects in range surrounding the sensor unit.
In an aspect of the disclosure where the sensor is not required to be pointed in a certain direction (eg. horizontal to the ground), a gyroscope may be utilized to determine the position of the sensor or sensors relative to the plane of the earth. In this aspect, the gyroscope is built into the sensor unit and communicates information to the processing unit along with the information from the sensors. The processing unit uses information from the gyroscope to determine which data from the sensor unit to process and communicate to the user, and which data to ignore.
In another aspect of the disclosure where the sensor is able to detect additional information about an object beyond its distance and position, there may be additional data processing steps before sending the information to the transmission unit to clean-up or enhance the data. This may include searching a catalog of known object characteristics to determine the type of object (based on the catalog), and saving this information to the buffer array along with the distance information. The object type would then also be sent to the transmission unit for communication to the user of the portable ranging system.
In one aspect of the disclosure, the transmission unit 106 is configured to communicate wirelessly to separate or remote ranging systems 100 that are in range 503 of the sensor unit 102. This provides the ability for the information collected by the sensor unit 102 to be communicated directly 502 or indirectly 504 to multiple ranging systems 100 within range 503 of each other, including other pedestrians, bicyclists, motorcyclists, or automobile drivers that have compatible ranging systems. A diagram of this aspect in
Although the disclosure has been described in considerable detail with reference to certain configurations thereof, other versions are possible. Ranging systems according to the disclosure can utilize various sensing technologies. Furthermore, the notification device can be any type of device that can provide any type of notification to a user in response to the signal received from the transmission unit, and is not intended to be limited to the aspects disclosed herein. Therefore, the spirit and scope of the invention should not be limited to the versions described above.
This application claims the benefit of priority of U.S. Provisional Application Ser. No. 62/240,159 to Paul O'Leary et al., filed on Oct. 12, 2015. The contents of Ser. No. 62/240,159 including its drawings, schematics, diagrams and written description, are hereby incorporated in their entirety by reference.
Number | Date | Country | |
---|---|---|---|
62240159 | Oct 2015 | US |