Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems

Information

  • Patent Grant
  • 11819802
  • Patent Number
    11,819,802
  • Date Filed
    Friday, June 17, 2022
    2 years ago
  • Date Issued
    Tuesday, November 21, 2023
    a year ago
Abstract
Systems and apparatuses for neutralizing acidic compounds in flue gases emitted from a heat recovery coke oven. A representative system includes a spray dry absorber having a barrel that includes a plurality of wall plates that form sidewalls of the barrel. The wall plates include a steel plate and a corrosion resistant alloy cladded to the steel plate and the wall plates are oriented such that the corrosion resistant alloy faces toward and is in fluid communication with an interior area of the barrel. The alloy is resistant to corrosion caused by the acidic compounds in the flue gas and can prevent the steel plate from being corroded by these acidic compounds.
Description
TECHNICAL FIELD

The present technology relates to systems and methods for providing corrosion resistant surfaces to contaminant treatment systems such as spray dry absorbers.


BACKGROUND

Coke is a solid carbon fuel and carbon source used to melt and reduce iron ore in the production of steel. Coking ovens have been used for many years to convert coal into metallurgical coke. In one process, known as the “Thompson Coking Process,” coke is produced by batch feeding pulverized coal to an oven that is sealed and heated to very high temperatures for 24 to 48 hours under closely-controlled atmospheric conditions. During the coking process, the finely crushed coal devolatilizes and forms a fused mass of coke having a predetermined porosity and strength. Volatile gases emitted during the coking process are directed out of the coke oven and eventually pass into a heat recovery steam generator, which cools the flue gases so that vaporized contaminants within the flue gas condense and precipitate, before passing into a flue gas desulfurization system, which reduces the acidity and neutralizes acids present within the flue gas. The cooled and neutralized flue gas is then provided to a baghouse, which collects particulate matter, and the remaining flue gas is vented into the atmosphere.


The desulfurization system includes a barrel having an interior area defined by metallic wall plates and vertical supports that hold the wall plates in position. When the flue gas is received at the desulfurization system, the flue gas is sprayed into the interior area of the desulfurization system and mixed with a water-based neutralizing solution that is configured to neutralizes and cool the flue gas. As droplets of the mixture are sprayed into the interior area of the barrel, some of the droplets can dry to form a powder. Other, droplets, however, may stay wet for a prolonged period. When the droplets enter the interior area, some of the droplets are directed toward sidewalls of the barrel. While the dry droplets impact the wall plates and simply continue to fall down, some of the wet particles can adhere to the wall plates. However, the wall plates are typically formed from carbon steel, which is susceptible to corrosion from the acidic compounds as well as any unreacted neutralizing solution. Over time, the steel wall plates can become extremely corroded, which requires the flue gas desulfurization system to be shut down as the corroded panels are replaced, which can sometimes result in the coke plant exceeding environmental limits. Accordingly, there is a need for an improved desulfurization system that is less susceptible to corrosion from acidic compounds within the flue gas.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric, partial cut-away view of a portion of a horizontal heat recovery/non-recovery coke plant configured in accordance with embodiments of the present technology.



FIG. 2 is a perspective view a coke plant configured in accordance with embodiments of the present technology.



FIG. 3 is an isometric view of a spray dry absorber flue gas desulfurization system configured in accordance with embodiments of the present technology.



FIG. 4 is an isometric view of a barrel for a spray dry absorber configured in accordance with embodiments of the present technology.



FIG. 5 is a diagram showing a spray pattern of droplets of a mixture formed from flue gas and a neutralizing solution that are sprayed into the barrel shown in FIG. 4.



FIG. 6A shows a top view of a conventional wall plate before being corroded by corrosive contaminants in the flue gas and FIGS. 6B and 6C show wall plates after being corroded.



FIG. 7 shows a top view of a wall plate having a steel portion cladded with an alloy portion, in accordance with embodiments of the present technology.



FIG. 8 shows a top view of a wall plate formed entirely from a corrosion-resistant alloy, in accordance with embodiments of the present technology.



FIG. 9 shows a cross-sectional view of a spray dry absorber having a barrel that includes wall plates formed from corrosion resistant alloys, in accordance with embodiments of the present technology.



FIG. 10 shows a method for retrofitting an existing spray dry absorber with wall plates having a corrosion-resistant alloy portion, in accordance with embodiments of the present technology.



FIG. 11A shows a top view of a corroded wall plate that has been retrofitted with a new wall plate having a corrosion-resistant alloy portion using the method shown in FIG. 10, and FIG. 11B shows a top view of the new wall plate from FIG. 11A after the corroded wall plate has been removed, in accordance with embodiments of the present technology.



FIGS. 12A and 12B show a baghouse system configured to be fluidly coupled to the spray dry absorber shown in FIGS. 3-9 and that includes the corrosion-resistant alloy, in accordance with embodiments of the present technology.





DETAILED DESCRIPTION

Specific details of several embodiments of the disclosed technology are described below with reference to particular, representative configuration. The disclosed technology can be practiced in accordance with ovens, coke manufacturing facilities, and insulation and heat shielding structures having other suitable configurations. Specific details describing structures or processes that are well-known and often associated with coke ovens but that can unnecessarily obscure some significant aspects of the presently disclosed technology, are not set forth in the following description for clarity. Moreover, although the following disclosure sets forth some embodiments of the different aspects of the disclosed technology, some embodiments of the technology can have configurations and/or components different than those described in this section. As such, the present technology can include some embodiments with additional elements and/or without several of the elements described below with reference to FIGS. 1-12B.


For the sake of simplicity, the technology disclosed herein is described with respect to its application to a spray dry absorber. However, it should be appreciated that the technology disclosed herein is not limited to use in spray dry absorbers. Rather, the technology disclosed herein is applicable to any contaminant treatment systems that may be susceptible to corrosion due to, for example, the material being treated therein (e.g., high chlorine or sulfur species), incomplete particle drying, etc. In one non-limiting example, the technology described herein can be employed in dry scrubbing systems, such as a circulating dry scrubber. Circulating dry scrubbers differ from spray dry absorbers in that circulating dry scrubbers use a riser system and do not have atomizers. However, because circulating dry scrubbers are used to process high chloride content gases, they are susceptible to corrosion and can thus benefit from the technology described herein. Still other non-limiting examples include contaminant treatment systems used in trash to steam plants and municipal solid waste burning plants.


Referring to FIG. 1, a coke plant 100 which produces coke from coal in a reducing environment is illustrated. FIG. 1 illustrates four ovens 101 with sections cut away for clarity. Each oven 101 comprises an oven chamber 110 defined by a floor 111, a front door 114, a rear door 115 opposite the front door 114, two sidewalls 112 extending upwardly from the floor 111 intermediate the front 114 and rear 115 doors, and a crown 113 which forms the top surface of the oven chamber 110. The oven 101 can also include a platform 105 adjacent to the front door 114 that a worker can stand and walk on to access the front door and the oven chamber 110. In operation, coke is produced in the ovens 101 by first loading coal into the oven chamber 110, heating the coal in an oxygen depleted environment, driving off the volatile fraction of coal and then oxidizing the volatiles within the oven 101 to capture and utilize the heat given off. The coal volatiles are oxidized within the ovens over a 48-hour coking cycle and release heat to regeneratively drive the carbonization of the coal to coke. The coking cycle begins when the front door 114 is opened and coal is charged onto the floor 111. The coal on the floor 111 is known as the coal bed. Heat from the oven (due to the previous coking cycle) starts the carbonization cycle. Preferably, no additional fuel other than that produced by the coking process is used. Roughly half of the total heat transfer to the coal bed is radiated down onto the top surface of the coal bed from the luminous flame and radiant oven crown 113. The remaining half of the heat is transferred to the coal bed by conduction from the floor 111 which is convectively heated from the volatilization of gases in sole flue 118. In this way, a carbonization process “wave” of plastic flow of the coal particles and formation of high strength cohesive coke proceeds from both the top and bottom boundaries of the coal bed at the same rate, preferably meeting at the center of the coal bed after about 45-48 hours.


In operation, volatile gases emitted from the coal positioned inside the oven chamber 110 collect in the crown 113 and are drawn downstream in the overall system into downcomer channels 117 formed in one or both sidewalls 112. The downcomer channels 117 fluidly connect the oven chamber 110 with the sole flue 118 positioned. The sole flue 118 forms a circuitous path beneath the floor 111 and volatile gases emitted from the coal can pass through the downcomer channels 117 and enter the sole flue 118, where they combust and emit heat that supports the reduction of coal into coke. Uptake channels 116 are formed in one or both sidewalls 112 of the oven chambers 110 and are fluidly coupled between the sole flue 118 and uptake ducts 103 such that the combusted volatile gases can leave the sole flue 118 by passing through the uptake channels 116 toward the uptake ducts 103. The uptake ducts 103 direct the volatile gases into the common tunnel 102, which transports these gases downstream for further processing.



FIG. 2 shows a perspective view of the coke plant 100. After passing into the common tunnel 102 from the uptake ducts 103, the common tunnel 102 directs the flue gases, which can often be at a temperature greater than 2000° F., toward one or more heat recovery steam generators (HRSG) 120. The HRSGs can cool the flue gas to a temperature between 400° F. and 500° F. by directing the heated gas over a plurality of water-containing pipes and using the heat from the flue gas to convert liquid water into steam. A cooled gas duct 121 transports the cooled gas from the HRSG 120 to a flue gas desulfurization system 122, which is used to remove sulfur dioxide, hydrochloric acid, sulfuric acid, sulfur trioxide, and other contaminants from the flue gas. Fluidly connected and further downstream are a baghouse for collecting particulates, a draft control system for controlling air pressure and/or a draft within the system, and a main gas stack for exhausting cooled and treated exhaust to the environment (not shown in FIG. 2). Steam lines interconnect the heat recovery steam generators and a cogeneration plant so that the recovered heat can be utilized. The coke plant 100 can also be fluidly connected to a bypass exhaust stack 104 that can be used to vent hot exhaust gases to the atmosphere in emergency situations.



FIG. 3 shows an isometric view of a representative flue gas desulfurization system 122. The flue gas desulfurization system 122 includes a spray dry absorber 123. The spray dry absorber 123 includes a barrel 124 having a cylindrical portion 125 and a cone portion 126 coupled to the bottom of the cylindrical portion 125. A support portion 127 at least partially surrounds the cone portion 126 and can be used to support the weight of the barrel 124 and keep the cone portion 126 off of the ground. The barrel 124 includes a plurality of vertical supports 128 and a plurality of horizontal supports 129. The vertical supports 128 are distributed around a circumference of the cylindrical portion 125 and extend along a height of the cylindrical portion 125 while the horizontal support columns 128 are distributed along the height of the cylindrical portion 125 and extend around the circumference of the cylindrical portion 125. The barrel 124 also includes a plurality of wall plates 130 coupled to the vertical supports 128 and the horizontal supports 129. The cone portion 126 also includes wall plates 130. The vertical supports 128 and the horizontal supports 129 can support the wall plates 130 such that the wall plates 130 form sidewalls for the cylindrical portion 125 and can define an interior area of the barrel 124. A roof of the barrel 130 can also include wall plates 130.



FIG. 4 shows an isometric view of the barrel 124. The barrel 124 includes one or more inlets 132 formed in a roof 131 of the barrel 124. In the illustrated embodiment, the barrel 124 includes three inlets 132. In other embodiments, the barrel 124 can include one inlet 132, two inlets 132, or more than three inlets 132. In the illustrated embodiment, each of the inlets 132 includes a flue gas disperser 133 configured to receive flue gas 133 from the HRSG 120 and a rotary atomizer 134 configured to receive a neutralizing solution (generally including a neutralizing agent) and convert the neutralizing solution into a spray or atomized cloud of fine droplets. With this arrangement, the flue gas dispersers direct the received flue gas toward the cloud of neutralizing solution so that the flue gas and the droplets of neutralizing solution can mix together. In other embodiments, however, the desulfurization system can include other means for introducing and mixing the neutralizing solution and the flue gas.


After the neutralizing solution, which in some embodiments is an alkaline slurry formed from, e.g., lime and water, but which can also include other neutralizing agents such as bicarbonates, and the flue gas are mixed, the mixture is directed into the interior area of the barrel 124. By atomizing the neutralizing solution, efficient contact between the flue gas and the neutralizing solution can occur, which allows for a rapid mass transfer between the flue gas and the neutralizing solution as the alkaline solution reacts with the acidic compounds in the flue gas. The mixture is dispersed into the interior area of the barrel 124 as droplets, and these droplets fall through the cylindrical portion 125 toward the cone portion 126. As the droplets fall, the neutralizing agent from the neutralizing solution (e.g., lime) reacts with the acidic compounds in the flue gas to form generally inert compounds. While this reaction takes place, remnant heat from the flue gas causes the water from the neutralizing solution to evaporate such that some of the droplets dry out and form a powder. This process typically also causes the powder to cool to a temperature between 235° F. and 250° F. Some of the dry powder, which is now cooled and neutralized, falls through an opening 135 formed in the bottom of the cone portion 126 and is collected for disposal and/or further processing while the rest of the dry powder is carried by the remaining gaseous components of the flue gas and exits the barrel 124 via outlet 136. From there, the gaseous components and the uncollected dry powder are directed to a baghouse that collects some or all of the remaining powder. The now cleaned and cooled flue gas is then exhausted into the atmosphere via the main gas stack. In some embodiments, the powder collected from the bottom of the cone portion 126 can be provided to a wet scrubber that can recover unused lime from the powder. While the neutralizing solution typically comprises lime and water, in some embodiments, the neutralizing solution can include caustic soda, fly ash, and/or sodium hydroxide in addition to, or instead of, lime.


When the droplets of flue gas contaminants and neutralizing solution are dispersed into the interior area of the barrel 124, the droplets tend to flow generally downwards toward the cone portion 126. However, some of the droplets can be directed toward the sidewalls of the barrel 124. FIG. 5 shows an example of the dispersal pattern of the droplets as they are introduced into interior area 137 of the barrel 125. While the droplets tend to flow toward cone portion 126, turbulence within the interior area can cause some of the droplets to flow toward the sidewalls of the barrel 125. In some embodiments, the droplets can even be directed upwards toward the roof of the barrel 125. If the individual droplets have completely dried into the powder by the time they reach the sidewalls, then the powder simply impacts the wall plates 130 and continues to fall toward the cone portion 126. However, not all of the droplets are completely dry by the time they reach the sidewalls.


In comparison to flue gases exhausted from coal burning power plants, flue gases exhausted from heat recovery coke ovens typically have much higher concentrations of acids, and in particular, hydrochloric acid. For example, flue gas exhausted from heat recovery coke ovens can sometimes have a concentration of hydrochloric acid that is 10 times higher (or more) than flue gas exhausted from coal burning power plants. This is primarily because heat recovery coke plants extract 80-90% of all of the chlorides in the coal while only burning about 25% of the coal and all of this is expelled from the oven as volatile matter during the coking process. Because of this, the flue gas received by the desulfurization system can have very high concentrations of hydrochloric acid (HCl) and sulfur dioxide (SO2). When the flue gas is then mixed with the neutralizing solution, the neutralizing agent (e.g., lime) in the neutralizing solution reacts with some of the hydrochloric acid and sulfur dioxide to form calcium chloride (CaCl2)), calcium sulfite (CaSO3), and calcium sulfate (CaSO4). Additionally, the sulfur dioxide can dissolve into the water component of the neutralizing solution to form sulfuric acid (HS). Calcium sulfite and calcium sulfate tend to dry very quickly. Accordingly, after being dispersed into the interior area 137, droplets having high amounts of these sulfur-containing compounds dry out quickly and form powder particles. On the other hand, calcium chloride tends to retain water and does not dry out very quickly. Because of this, droplets that have a high amount of calcium chloride can remain wet for an extended period of time after being dispersed into the interior area 137. In some instances, these droplets can remain wet until they impact the sidewalls of the barrel 124 and can sometimes stick to the wall plates 130. Further, because the flue gasses exhausted from the heat recovery coke oven have a high concentration of hydrochloric acid, the percentage of droplets dispersed into the interior area 137 that are wet enough to stick to the wall plates 130 is substantially higher than in spray dry absorbers used in coal burning power plants.


In conventional spray dry absorbers, such as those used in coal burning power plants, the wall plates 130 are typically formed entirely from steel. As such, when these wet droplets stick to the wall plates 130, the steel can be exposed to the various chemicals present in the droplets, including calcium chloride, calcium sulfite, and calcium sulfate, as well as any unreacted hydrochloric acid and/or sulfuric acid. Hydrochloric acid, sulfuric acid, and the calcium ions from the various calcium-containing compounds are all typically corrosive to steel. FIG. 6A shows a top view of a wall plate 130 that is formed from steel before being exposed to corrosive compounds and FIG. 6B shows a top view of the same wall plate 130 after the wet droplets hit the being exposed to the compounds. Because of the high concentration of hydrochloric acid in the flue gas exhausted by the heat recovery coke oven, a large number of droplets that impact the wall plate 130 can be sufficiently wet enough to stick to the wall plate 130. As a result, the steel in the wall plate 130 is exposed to the corrosive compounds in the droplets, which can allow the corrosive compounds to corrode the steel wall plate 130. Further, ash within the flue gas and unreacted neutralizing agent (e.g., lime) from the neutralizing solution can sometimes be trapped against the steel wall plates by the wet droplets, which can lead to under deposit corrosion of the steel wall. Accordingly, deposits that adhere to the wall plates 130 can cause corrosion and pitting in the steel, which can sometimes result in holes being formed through the wall plates 130 that expose the interior area 137 to the outside ambient air. When this happens, cool air from outside of the barrel 124 can be drawn into the interior area 137, which cools the gases and metal near the holes.


As the metal and air cool, moisture in the air can condense on the wall plate near the hole and can react with the with the acids from the flue gas and the reacted lime, which can cause the metal near the hole to also corrode. Accordingly, the formation of a hole through one of the wall plates 130 can accelerate the rate that the wall plate 130 corrodes. FIG. 6C shows an isometric view of an exterior portion of the barrel 124 having two wall plates 130 that have been completely corroded due to deposits that have adhered to them. Further, if the portions of the wall plates 130 that are positioned directly adjacent to the vertical supports 128 or horizontal supports 129 corroded enough to expose the vertical or horizontal supports 128, 129, the corrosive compounds can also corrode through these supports, which can threaten the structural integrity of the barrel 124. In the illustrated embodiments, the wall plates 130 susceptible to corrosion are depicted as being part of the sidewalls of the cylinder portion 125 of the barrel 124. However, this is only an example. Other portions of the barrel, such as the wall plates 130 that form the cone portion 126 or that form the roof 131 of the barrel 124, or the outlet 136 are also at risk of corrosion from the corrosive compounds. Additionally, other portions of the coke plant 100, such as the baghouse, the baghouse ash and dust collection bin, and the cross-over section between the baghouse and the desulfurization system, can also be subject to corrosion from the corrosive compounds in the flue gas, as well as corrosion caused by the leakage of outside air into the system.


To reduce and/or prevent the barrel of the spray dry absorber from being corroded by the corrosive contaminants of the flue gas, the barrel can be formed from wall plates that are at least partially formed from an alloy that is resistant to corrosion due to sulfur species, chlorine species, or both. For example, the wall plates can be formed from an alloy resistant to sulfuric acid and/or hydrochloric acid. FIG. 7 shows a top view of a wall plate 230 having a steel portion 238 cladded with an alloy portion 239 and that is coupled to two vertical supports 228. The wall plate 230 is attached to the vertical supports 228 such that the alloy portion 239 faces toward the interior area 237 of the barrel 224 while the steel portion 238 faces away from the interior area 237. In some embodiments, the steel portion 238 can be cladded with the alloy portion 239 by welding a plate formed from the corrosion-resistant alloy to a steel plate. In other embodiments, the steel portion 238 can be cladded with the alloy portion 239 by papering a thin foil/plate formed from the alloy to a steel plate or by positing the alloy onto the steel plate. In still other embodiments, however, the wall plate 230 may not even include a steel portion 238. For example, FIG. 8 shows a top view of a wall plate 330 that includes an alloy portion 339 coupled between to two vertical supports 128 but that does not include a steel portion. In this example, the wall plate 330 is formed entirely from the corrosion-resistant alloy. While the corrosion-resistant alloy can sometimes be weaker than steel, the vertical and horizontal supports 227 and 228 provide enough structural integrity for the barrel 224 that the lack of a steel portion 238 does not significantly affect the structural performance of the barrel 224.


The alloy portion 239 is formed from an alloy that is resistant to corrosion due to sulfur species, chlorine species, or both (e.g., sulfuric acid, hydrochloric acid, etc.). In some embodiments, the alloy portion 239 comprises a Nickel-Chromium alloy such as Alloy 20, which has between 32% and 38% Nickel, between 19% and 21% Chromium, between 2% and 3% Molybdenum, between 3% and 4% Copper, and a balance of Iron. In other embodiments, however, the alloy portion 239 can include a different Nickel-Chromium-Iron alloy, such as Inconel alloy, an Incoloy alloy, a Monel alloy, or a Hastelloy alloy. Weldable stainless steel alloys, such as AL-6XN can also be used. In still other embodiments, the alloy portion 239 can comprise a duplex or super duplex alloy, which offer high resistance to corrosion from sulfur and chlorine species and are relatively inexpensive. However, duplex and super duplex alloys typically undergo a phase transition when they are heated above certain temperatures and may no longer have the desired amount of resistance to corrosion after undergoing such a phase transition. For example, duplex alloy SS2205 undergoes a phase transition when heated to temperatures above 500° F. Accordingly, wall plates 230 having alloy portions 239 formed form duplex or super duplex alloys may only be installed in desulfurization systems where the flue gas is below the phase transition temperature of the specific alloy.


In some embodiments, all of the wall plates 230 for the barrel 224 have alloy portions 239 formed from a single alloy. In other embodiments, however, some of the wall plates 230 can include alloy portions 239 formed from a first corrosion-resistant alloy while other wall plates 230 can include alloy portions 239 formed from a second corrosion-resistant alloy. FIG. 9 shows a cross-sectional view of a spray dry absorber 223 having barrel 224 that includes a cylindrical portion 225, which can include first wall plates 230A having first alloy portions 239A, and a cone portion 226, which can include second wall plates 230B having second alloy portions 239B. With this arrangement, the barrel can include wall plates 230 formed from two different corrosion-resistant alloys. For example, because the flue gas provided to the inlets 232 can sometimes be hotter than the phase transition temperatures of some of duplex and super duplex alloys, duplex and super duplex alloys may not be suitable as the alloy portions 239A for the wall plates 230A. This is because the wall plates 230A are located close to the inlets 232 and are therefore more likely to contact flue gas that is hotter than the phase transition temperature of a given duplex or super duplex alloy. Instead, in some embodiments, the alloy portions 239B of the second wall plates 230B can be formed from a duplex or super duplex alloy while the alloy portions 239A for the wall plates 230A are formed from a different corrosion resistant alloy (e.g., Alloy 20) as the second wall plates 230B are located far enough away from the inlets 232 that the flue gas will be sufficiently cool by the time the gas and the droplets reach the wall plates 230B.


In some embodiments, the corrosion resistant alloy can be incorporated into the wall plates when the barrel is being constructed. However, because the individual wall plates are independent from each other and can be attached to and detached from the vertical and horizontal supports, existing spray dry absorbers can be retrofitted to include wall plates having the corrosion resistant alloy. For example, if it is determined that one or more of the wall plates 130 (FIGS. 3 and 6A-6C) are corroded, the corroded wall plates can be detached from the rest of the barrel and new wall plates 230 having the corrosion resistant alloy portions can be attached in their place. FIG. 10 shows a method 1000 that can be used to retrofit an existing spray dry absorber.


At step 1001, corroded wall plates are identified, and the location of these corroded wall plates is noted. The corroded wall plates can be identified using a variety of techniques. For example, the interior of the spray dry absorber can be examined by a technician during a scheduled shut-down of the system. The technician can note if individual wall plates need to be replaced immediately or if the replacement can be delayed until later. To determine the amount of corrosion present on the individual wall plates, the technician can visually examine the wall plates, can use chemical analysis, and/or can use physical measurements (e.g., thickness of the wall plate). Alternatively, a camera can be inserted into the system while the system is still in operation. Further, if the wall plates are extremely corroded, the corrosion can sometimes be detected from outside of the spray dry absorber. Leak detection can also be used to identify corroded wall plates. For example, an infrared camera can be used to detect leaks by identifying “cold” spots. Specific leak detection methods, such as helium leak detection methods can also be used. Visual inspection can also be used to identify leaks and therefore corroded wall plates. In one example, insulation formed on the exterior of the wall plates can appear “dented in”, which is an indication that a leak exists in the underlying wall at the location of the “dent”.


After determining that one or more of the wall plates are corroded, at step 1002, the spray dry absorber is allowed to cool. During operation of the spray dry absorber, the temperatures within the system are too hot for technicians to enter the system. Accordingly, before the corroded wall plates can be replaced, the spray dry absorber is shut down and gasses from the coke oven are temporarily directed to a different desulfurization system for processing. The system can be allowed to cool for up to 24 hours (or longer if needed) until the temperature of the system drops to a safe temperature.


After cooling, the corroded wall plates can be safely removed from the system. However, care must be taken when removing the corroded wall plates from the system to ensure that system is not damaged during the removal process as removing the corroded wall plates from the system requires cutting the carbon steel that forms the corroded wall plates, which can create slag. The corrosion-resistant alloys that form the new wall plates can be sensitive to this slag such that any contact with the carbon steel can destabilize the alloy and cause pitting or corrosion. Accordingly, at step 1003, anti-spatter spray can be applied to some or all of the wall plates within the spray dry absorber to reduce the amount of slag that can interact with the alloy. In some embodiments, the anti-spatter spray can be applied only to the exposed alloy portions on the new wall plates that have already been installed in the spray dry absorber to protect the corrosion-resistant alloy from slag or iron-containing dust that may be present within the barrel. In other embodiments, the entire interior of the barrel can be coated with the anti-spatter spray. In this way, any slag that is created by cutting the carbon steel can be cleaned off without allowing the slag to directly contact the alloy.


At step 1004, the corroded wall plates are removed from the spray dry absorber. The plates are typically welded to the horizontal and vertical supports, as well as to adjacent wall plates. Accordingly, removing the corroded wall plates typically requires the technicians to cut through metal. In some embodiments, the technicians can use a saw, a welder, and/or a plasma cutter to cut away the corroded wall plates. A grinder can also be used to clean up any metal burrs or residual welding marks created during the cutting process.


At step 1005, after removing the corroded wall plates, the new wall plates having the corrosion-resistant alloy are installed within the barrel. In some embodiments, the individual wall plates can be welded to the vertical and horizontal supports and to adjacent wall plates to secure the wall plates in place. In other embodiments, the wall plates can be installed using adhesive or mechanical fastening means, such as bolts and screws. In general, any suitable attachment means can be used to install the wall plates within the barrel.


At step 1006, after installing the new panels within the barrel, the barrel can be cleaned to remove any slag, anti-spatter spray, or any other contaminants present in the barrel before the desulfurization process is resumed. In some embodiments, a pressure washer can be used to clean the barrel manually. In other embodiments, one or more of the inlets (e.g., inlets 132 of FIG. 4) can be used to spray high-pressure water throughout the interior area of the barrel. As the barrel is washed, the dirty water can flow out of the barrel through the opening at the bottom of the cone portion and can be collected for further processing. The barrel can continue to be washed until the water flowing out of the barrel is clear and substantially free from contaminants. In some embodiments, an acid rinse can be used to clean the interior of the barrel.


At this point, the spray dry absorber is clean and is ready for further use. Accordingly, at step 1007, the system is turned on again and hot flue gasses from the coke oven can be directed toward the spray dry absorber. Replacing the corroded wall plates using this method allows existing spray dry absorbers to be upgraded and retrofitted as individual wall plates corrode instead of having to replace all of the wall plates at one time.


As noted previously, replacing the corroded wall plates with the new wall plates having a corrosion resistant alloy portion typically requires that the flue gas desulfurization system be shut down for an extended period of time, which can increase the cost of operating the coke plant and cause delays in production. Accordingly, it may not always be advisable to retrofit the existing spray dry absorbers by replacing the corroded wall plates 130. Instead, the spray dry absorber 130 can be retrofitted using a different technique. For example, FIG. 11A shows a top view of a new wall plate 430 attached to an exterior surface of a gas desulfurization plant having a corroded wall plate 130. The new wall plate 430 is attached to the existing vertical support columns 128 and new vertical support columns 428 are attached to the exterior side of the new wall plate 430. In this way, the spray dry absorber can be retrofitted with the new wall plate 430 without having to shut down the system. Further, using the new vertical support columns 428 can ensure that the system remains fully supported even if the wall plate 130 and the original support columns 128 are corroded. Accordingly, retrofitting the desulfurization system in this manner can allow the system to continue to operate without the risk of the system prematurely failing due to corrosion. At a later point, such as during a scheduled shutdown of the desulfurization system, the wall plates 130 and the original vertical support columns 128 can be removed from the desulfurization system. As shown in FIG. 11B, at this point, the new wall plates 430 and the vertical support columns 428 can form the exterior of the spray dry absorber. In the embodiments shown in FIGS. 11A and 11B, the new wall plate 430 only includes an alloy portion 439. In other embodiments, however, the new wall plates 430 can also include a steel portion coupled to the alloy portion 439. For example, the new wall plates 430 can include a steel portion cladded with the alloy portion 439.


The corrosion resistant alloy can also be used in other portions of the spray dry absorber. For example, in some embodiments, the outlet 136 (FIG. 4) can include the corrosion resistant alloy. Additionally, other portions of the flue gas desulfurization system, such as the baghouse, can include the corrosion resistant alloy. FIG. 12A shows an isometric view of a baghouse system 500. After the hot flue gasses are cooled and neutralized in the spray dry absorber, the gases can leave the spray dry absorber via the outlet 236 and are directed into a cross-over section 501, which fluidly couples the spray dry absorber to the baghouse system 500. The flue gas enters the baghouse enclosure 502 and passes through a plurality of filter bags within the enclosure 502. The filter bags are formed from a fine mesh that traps dust and particulate matter from the flue gas. The filter bags are attached to a shaker mechanism that shakes the filter bags so that any trapped particles fall into a hopper 503. FIG. 12B shows an isometric view of the hopper 503. An outlet port 504 at the bottom of the hopper 503 can be used to remove the particulates from the baghouse system 500. The hopper 503 can also include a cell plate 507 that the filter bags can attach to in order to hold the bottom end of the filter bags in place. After passing through the filter bags, the cleaned gas is directed out of the enclosure 502 and into the air outlet 505. A pressure regulator 506 coupled to the air outlet 505 can be used to regulate air pressure within the enclosure 502. The air can then be emitted into the atmosphere or directed to a secondary baghouse for further cleaning.


To ensure that the corrosive particulate matter in the flue gas does not corrode the baghouse system 500, some portions of the baghouse 500 can be formed form the corrosion resistant alloy. For example, in some embodiments, at least the interior of the cross-over section 501 can be formed from the corrosion-resistant alloy. In other embodiments, the enclosure 502 can be at least partially formed from the corrosion-resistant alloy. Portions of the hopper 503 can also be formed from the corrosion-resistant alloy. For example, the hopper can be formed form a plurality of plates 508 that direct the particulates toward the outlet port 504. Before passing through the outlet port 504, the particulate matter can accumulate within the hopper 504 such that the particulate matter can be in contact with one or more of the plates 508 for a prolonged period of time. Accordingly, one or more of the plates 508 can be formed from the corrosion-resistant alloy. Other portions of the hopper 503, such as the cell plate 507 or the outlet 504 can also be at least partially formed from the corrosion resistant alloy.


By the time the flue gas leaves the spray dry absorber and reaches the cross-over section 501, the flue gas will have cooled to a temperature of approximately 300° F., which is below the phase transition temperature of duplex and super duplex alloys. Accordingly, duplex and super duplex alloys can be used with the baghouse system 500 instead of more expensive alloys like Alloy 20. The corrosion-resistant alloy can also be incorporated into other types of dry scrubbers, such as circulating dry scrubbers. For example, because circulating dry scrubbers are typically fed from the bottom of the barrel and the particulate matter is collected from the top, the sidewalls and/or the roof of the barrel can include a corrosion resistant alloy to protect these portions of the circulating dry scrubbers from corrosion.


In the previously illustrated embodiments, the wall plates are described as having corrosion-resistant metallic alloys cladded to steel plates to reduce corrosion in the barrels. In other embodiments, however, other types of corrosion-resistant materials can be used to protect the steel. For example, in some embodiments, wall plates can include steel plates that are coated with a polymer material, such as an epoxy, that is resistant to corrosion.


The above detailed descriptions of embodiments of the technology are not intended to be exhaustive or to limit the technology to the precise form disclosed above. Although specific embodiments of, and examples for, the technology are described above for illustrative purposes, various equivalent modifications are possible within the scope of the technology, as those skilled in the relevant art will recognize. For example, while steps are presented in a given order, alternative embodiments may perform steps in a different order. Moreover, the various embodiments described herein may also be combined to provide further embodiments. Additionally, although many of the embodiments are described with respect to flue gas desulfurization systems for coke ovens, it should be noted that other applications and embodiments in addition to those disclosed herein are within the scope of the present technology. For example, the disclosed wall plates can be used in gas processing systems for other industrial systems, including trash to steam plants, petroleum coke plants (including plants that produce anode grade petroleum coke), and power plants.


Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Where the context permits, singular or plural terms may also include the plural or singular term, respectively. Additionally, the term “comprising” is used throughout to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of other features are not precluded. It will also be appreciated that specific embodiments have been described herein for purposes of illustration, but that various modifications may be made without deviating from the technology. Further, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.

Claims
  • 1. A system for treating acidic compounds in flue gases, the system comprising: a barrel having sidewalls that define an interior area, wherein— the barrel comprises a plurality of wall plates that form the sidewalls,each of the plurality of wall plates comprises a corrosion-resistant alloy,the wall plates are oriented such that the corrosion-resistant alloy is in fluid communication with the interior area of the barrel, andthe wall plates are configured to be in contact with a flue gas comprising acidic compounds.
  • 2. The system of claim 1, wherein the corrosion-resistance alloy is resistant to corrosion caused by oxygen species and/or halogen species.
  • 3. The system of claim 2, wherein the halogen species comprises chlorine.
  • 4. The system of claim 1, wherein the barrel comprises an outlet and the system further comprises: a baghouse downstream of the barrel and fluidly coupled to the outlet of the barrel,wherein at least a portion of the baghouse includes the alloy.
  • 5. The system of claim 4 wherein the baghouse further comprises: a plurality of filter bags configured to receive dust and particulate matter, wherein the filter bags are attached to a shaker mechanism that, in operation, shakes the filter bags and releases the trapped particulates into a hopper.
  • 6. The system of claim 1, wherein the alloy comprises a duplex alloy or a super duplex alloy.
  • 7. The system of claim 1, wherein the barrel further comprises an inlet configured to receive the flue gas, the inlet including an atomizer configured to spray a neutralizing agent, wherein, in operation, the neutralizing agent reacts with the acidic compounds of the flue gas.
  • 8. The system of claim 7, wherein the neutralizing agent comprises an alkaline solution and/or lime.
  • 9. The system of claim 7, wherein the inlet is at an upper portion of the barrel and the barrel further comprises an outlet at a lower portion of the barrel.
  • 10. The system of claim 1, wherein the barrel comprises a first section including a first cross-sectional dimension, and a second section downstream of the first section and including a second cross-sectional dimension smaller than the first cross-sectional dimension.
  • 11. A spray dry absorber for treating acidic gases, the absorber comprising: a barrel configured to receive acidic gases from an upstream industrial process, the barrel comprising sidewalls that define an interior area, wherein— the interior area includes a first portion, a second portion downstream of and fluidically coupled to the first portion, and a third portion downstream of and fluidically coupled to the second portion,the first portion includes an inlet configured to receive the acidic gases;the second portion includes first plates, andthe third portion includes second plates.
  • 12. The spray dry absorber of claim 11, wherein the first plates and/or the second plates comprise a corrosion-resistant alloy including an Inconel alloy, an Incoloy alloy, a Monel alloy or a Hastelloy alloy.
  • 13. The spray dry absorber of claim 11, wherein one of the first plates includes a first corrosion-resistant alloy and one of the second plates includes a second corrosion-resistant alloy different than the first corrosion-resistant alloy.
  • 14. The spray dry absorber of claim 11, wherein the first plates and the second plates are oriented such that the first corrosion-resistant alloy and the second corrosion-resistant alloy are in fluid communication with the interior area.
  • 15. The spray dry absorber of claim 11, wherein the first section includes an atomizer configured to disperse a neutralizing agent, wherein, in operation, the neutralizing agent reacts with the acidic gases.
  • 16. The system of claim 15, wherein the neutralizing agent comprises an alkaline solution and/or lime.
  • 17. The system of claim 15, wherein the first section is above the second section and the second section is above the third section.
  • 18. The system of claim 11, wherein the first section includes a first cross-sectional dimension and the second section includes a second cross-sectional dimension smaller than the first cross-sectional dimension.
CROSS-REFERENCE TO RELATED APPLICATION(S)

The present application is a continuation of U.S. patent application Ser. No. 16/729,122, titled “METHODS AND SYSTEMS FOR PROVIDING CORROSION RESISTANT SURFACES IN CONTAMINANT TREATMENT SYSTEMS” and filed Dec. 27, 2019, which claims the benefit of and priority to U.S. Provisional Patent Application No. 62/787,055, titled “METHOD AND SYSTEMS FOR PROVIDING CORROSION RESISTANT SURFACES IN SPRAY DRY ABSORBER” and filed Dec. 31, 2018, the disclosures of which are incorporated by reference herein in their entireties.

US Referenced Citations (523)
Number Name Date Kind
425797 Hunt Apr 1890 A
469868 Osbourn Mar 1892 A
705926 Hemingway Jul 1902 A
760372 Beam May 1904 A
845719 Schniewind Feb 1907 A
875989 Garner Jan 1908 A
976580 Krause Jul 1909 A
1140798 Carpenter May 1915 A
1378782 Floyd May 1921 A
1424777 Schondeling Aug 1922 A
1429346 Horn Sep 1922 A
1430027 Plantinga Sep 1922 A
1486401 Van Ackeren Mar 1924 A
1530995 Geiger Mar 1925 A
1572391 Klaiber Feb 1926 A
1677973 Marquard Jul 1928 A
1705039 Thornhill Mar 1929 A
1721813 Geipert Jul 1929 A
1757682 Palm May 1930 A
1818370 Wine Aug 1931 A
1818994 Kreisinger Aug 1931 A
1830951 Lovett Nov 1931 A
1848818 Becker Mar 1932 A
1895202 Montgomery Jan 1933 A
1947499 Schrader et al. Feb 1934 A
1955962 Jones Apr 1934 A
1979507 Underwood Nov 1934 A
2075337 Burnbaugh Mar 1937 A
2141035 Daniels Dec 1938 A
2195466 Otto Apr 1940 A
2235970 Wilputte Mar 1941 A
2340283 Vladu Jan 1944 A
2340981 Otto Feb 1944 A
2394173 Harris et al. Feb 1946 A
2424012 Bangham et al. Jul 1947 A
2486199 Nier Oct 1949 A
2609948 Laveley Sep 1952 A
2641575 Otto Jun 1953 A
2649978 Smith Aug 1953 A
2667185 Beavers Jan 1954 A
2723725 Keiffer Nov 1955 A
2756842 Chamberlin et al. Jul 1956 A
2813708 Frey Nov 1957 A
2827424 Homan Mar 1958 A
2873816 Emil et al. Feb 1959 A
2902991 Whitman Sep 1959 A
2907698 Schulz Oct 1959 A
2968083 Lentz et al. Jan 1961 A
3015893 McCreary Jan 1962 A
3026715 Briggs Mar 1962 A
3033764 Hannes May 1962 A
3175961 Samson Mar 1965 A
3199135 Trucker Aug 1965 A
3224805 Clyatt Dec 1965 A
3259551 Thompson, Jr. Jul 1966 A
3265044 Juchtern Aug 1966 A
3267913 Jakob Aug 1966 A
3327521 Briggs Jun 1967 A
3342990 Barrington et al. Sep 1967 A
3444046 Harlow May 1969 A
3444047 Wilde May 1969 A
3448012 Allred Jun 1969 A
3453839 Sabin Jul 1969 A
3462345 Kernan Aug 1969 A
3511030 Brown et al. May 1970 A
3542650 Kulakov Nov 1970 A
3545470 Paton Dec 1970 A
3587198 Hensel Jun 1971 A
3591827 Hall Jul 1971 A
3592742 Thompson Jul 1971 A
3616408 Hickam Oct 1971 A
3623511 Levin Nov 1971 A
3630852 Nashan et al. Dec 1971 A
3652403 Knappstein et al. Mar 1972 A
3676305 Cremer Jul 1972 A
3709794 Kinzler et al. Jan 1973 A
3710551 Sved Jan 1973 A
3746626 Morrison, Jr. Jul 1973 A
3748235 Pries Jul 1973 A
3784034 Thompson Jan 1974 A
3806032 Pries Apr 1974 A
3811572 Tatterson May 1974 A
3836161 Pries Oct 1974 A
3839156 Jakobi et al. Oct 1974 A
3844900 Schulte Oct 1974 A
3857758 Mole Dec 1974 A
3875016 Schmidt-Balve Apr 1975 A
3876143 Rossow et al. Apr 1975 A
3876506 Dix et al. Apr 1975 A
3878053 Hyde Apr 1975 A
3894302 Lasater Jul 1975 A
3897312 Armour et al. Jul 1975 A
3906992 Leach Sep 1975 A
3912091 Thompson Oct 1975 A
3912597 MacDonald Oct 1975 A
3917458 Polak Nov 1975 A
3928144 Jakimowicz Dec 1975 A
3930961 Sustarsic et al. Jan 1976 A
3933443 Lohrmann Jan 1976 A
3957591 Riecker May 1976 A
3959084 Price May 1976 A
3963582 Helm et al. Jun 1976 A
3969191 Bollenbach Jul 1976 A
3975148 Fukuda et al. Aug 1976 A
3979870 Moore Sep 1976 A
3984289 Sustarsic et al. Oct 1976 A
3990948 Lindgren Nov 1976 A
4004702 Szendroi Jan 1977 A
4004983 Pries Jan 1977 A
4025395 Ekholm et al. May 1977 A
4040910 Knappstein et al. Aug 1977 A
4045056 Kandakov et al. Aug 1977 A
4045299 MacDonald Aug 1977 A
4059885 Oldengott Nov 1977 A
4065059 Jablin Dec 1977 A
4067462 Thompson Jan 1978 A
4077848 Gainer et al. Mar 1978 A
4083753 Rogers et al. Apr 1978 A
4086231 Ikio Apr 1978 A
4093245 Connor Jun 1978 A
4100033 Holter Jul 1978 A
4100491 Newman, Jr. et al. Jul 1978 A
4100889 Chayes Jul 1978 A
4111757 Ciarimboli Sep 1978 A
4124450 MacDonald Nov 1978 A
4133720 Franzer et al. Jan 1979 A
4135948 Mertens et al. Jan 1979 A
4141796 Clark et al. Feb 1979 A
4143104 van Konijnenburg et al. Mar 1979 A
4145195 Knappstein et al. Mar 1979 A
4147230 Ormond et al. Apr 1979 A
4162546 Shortell Jul 1979 A
4176013 Garthus et al. Nov 1979 A
4181459 Price Jan 1980 A
4189272 Gregor et al. Feb 1980 A
4194951 Pries Mar 1980 A
4196053 Grohmann Apr 1980 A
4211608 Kwasnoski et al. Jul 1980 A
4211611 Bocsanczy Jul 1980 A
4213489 Cain Jul 1980 A
4213828 Calderon Jul 1980 A
4222748 Argo et al. Sep 1980 A
4222824 Flockenhaus et al. Sep 1980 A
4224109 Flockenhaus Sep 1980 A
4225393 Gregor et al. Sep 1980 A
4226113 Pelletier et al. Oct 1980 A
4230498 Rueckl Oct 1980 A
4235830 Bennett et al. Nov 1980 A
4239602 La Bate Dec 1980 A
4248671 Belding Feb 1981 A
4249997 Schmitz Feb 1981 A
4263099 Porter Apr 1981 A
4268360 Tsuzuki et al. May 1981 A
4271814 Lister Jun 1981 A
4284478 Brommel Aug 1981 A
4285772 Kress Aug 1981 A
4287024 Thompson Sep 1981 A
4289479 Johnson Sep 1981 A
4289584 Chuss et al. Sep 1981 A
4289585 Wagener et al. Sep 1981 A
4296938 Offermann et al. Oct 1981 A
4298497 Colombo Nov 1981 A
4299666 Ostmann Nov 1981 A
4302935 Cousimano Dec 1981 A
4303615 Jarmell et al. Dec 1981 A
4307673 Caughey Dec 1981 A
4314787 Kwasnik et al. Feb 1982 A
4316435 Nagamatsu et al. Feb 1982 A
4324568 Wilcox et al. Apr 1982 A
4330372 Cairns et al. May 1982 A
4334963 Stog Jun 1982 A
4336107 Irwin Jun 1982 A
4336843 Petty Jun 1982 A
4340445 Kucher et al. Jul 1982 A
4342195 Lo Aug 1982 A
4344820 Thompson Aug 1982 A
4344822 Schwartz et al. Aug 1982 A
4353189 Thiersch et al. Oct 1982 A
4366029 Bixby et al. Dec 1982 A
4373244 Mertens et al. Feb 1983 A
4375388 Hara et al. Mar 1983 A
4385962 Stewen et al. May 1983 A
4391674 Velmin et al. Jul 1983 A
4392824 Struck et al. Jul 1983 A
4394217 Holz et al. Jul 1983 A
4395269 Schuler Jul 1983 A
4396394 Li et al. Aug 1983 A
4396461 Neubaum et al. Aug 1983 A
4406619 Oldengott Sep 1983 A
4407237 Merritt Oct 1983 A
4421070 Sullivan Dec 1983 A
4431484 Weber et al. Feb 1984 A
4439277 Dix Mar 1984 A
4440098 Adams Apr 1984 A
4445977 Husher May 1984 A
4446018 Cerwick May 1984 A
4448541 Lucas May 1984 A
4452749 Kolvek et al. Jun 1984 A
4459103 Gieskieng Jul 1984 A
4469446 Goodboy Sep 1984 A
4474344 Bennett Oct 1984 A
4487137 Horvat et al. Dec 1984 A
4498786 Ruscheweyh Feb 1985 A
4506025 Kleeb et al. Mar 1985 A
4508539 Nakai Apr 1985 A
4518461 Gelfand May 1985 A
4527488 Lindgren Jul 1985 A
4564420 Spindeler et al. Jan 1986 A
4568426 Orlando Feb 1986 A
4570670 Johnson Feb 1986 A
4614567 Stahlherm et al. Sep 1986 A
4643327 Campbell Feb 1987 A
4645513 Kubota et al. Feb 1987 A
4655193 Blacket Apr 1987 A
4655804 Kercheval et al. Apr 1987 A
4666675 Parker et al. May 1987 A
4680167 Orlando Jul 1987 A
4690689 Malcosky et al. Sep 1987 A
4704195 Janicka et al. Nov 1987 A
4720262 Durr et al. Jan 1988 A
4724976 Lee Feb 1988 A
4726465 Kwasnik et al. Feb 1988 A
4732652 Durselen et al. Mar 1988 A
4749446 van Laar et al. Jun 1988 A
4793981 Doyle et al. Dec 1988 A
4821473 Cowell Apr 1989 A
4824614 Jones et al. Apr 1989 A
4889698 Moller et al. Dec 1989 A
4898021 Weaver et al. Feb 1990 A
4918975 Voss Apr 1990 A
4919170 Kallinich et al. Apr 1990 A
4929179 Breidenbach et al. May 1990 A
4941824 Holter et al. Jul 1990 A
5052922 Stokman et al. Oct 1991 A
5062925 Durselen et al. Nov 1991 A
5078822 Hodges et al. Jan 1992 A
5087328 Wegerer et al. Feb 1992 A
5114542 Childress et al. May 1992 A
5213138 Presz May 1993 A
5227106 Kolvek Jul 1993 A
5228955 Westbrook, III Jul 1993 A
5234601 Janke et al. Aug 1993 A
5318671 Pruitt Jun 1994 A
5370218 Johnson et al. Dec 1994 A
5398543 Fukushima et al. Mar 1995 A
5423152 Kolvek Jun 1995 A
5447606 Pruitt Sep 1995 A
5480594 Wilkerson et al. Jan 1996 A
5542650 Abel et al. Aug 1996 A
5597452 Hippe et al. Jan 1997 A
5603810 Michler Feb 1997 A
5622280 Mays et al. Apr 1997 A
5659110 Herden et al. Aug 1997 A
5670025 Baird Sep 1997 A
5687768 Albrecht et al. Nov 1997 A
5705037 Reinke et al. Jan 1998 A
5715962 McDonnell Feb 1998 A
5720855 Baird Feb 1998 A
5745969 Yamada et al. May 1998 A
5752548 Matsumoto et al. May 1998 A
5787821 Bhat et al. Aug 1998 A
5810032 Hong et al. Sep 1998 A
5816210 Yamaguchi Oct 1998 A
5857308 Dismore et al. Jan 1999 A
5881551 Dang Mar 1999 A
5913448 Mann et al. Jun 1999 A
5928476 Daniels Jul 1999 A
5966886 Di Loreto Oct 1999 A
5968320 Sprague Oct 1999 A
6002993 Naito et al. Dec 1999 A
6003706 Rosen Dec 1999 A
6017214 Sturgulewski Jan 2000 A
6022112 Isler et al. Feb 2000 A
6059932 Sturgulewski May 2000 A
6126910 Wilhelm Oct 2000 A
6139692 Tamura et al. Oct 2000 A
6152668 Knoch Nov 2000 A
6156688 Ando et al. Dec 2000 A
6173679 Bruckner et al. Jan 2001 B1
6187148 Sturgulewski Feb 2001 B1
6189819 Racine Feb 2001 B1
6290494 Barkdoll Sep 2001 B1
6412221 Emsbo Jul 2002 B1
6495268 Harth, III et al. Dec 2002 B1
6539602 Ozawa et al. Apr 2003 B1
6596128 Westbrook Jul 2003 B2
6626984 Taylor Sep 2003 B1
6699035 Brooker Mar 2004 B2
6712576 Skarzenski et al. Mar 2004 B2
6758875 Reid et al. Jul 2004 B2
6786941 Reeves et al. Sep 2004 B2
6830660 Yamauchi et al. Dec 2004 B1
6907895 Johnson et al. Jun 2005 B2
6946011 Snyder Sep 2005 B2
6964236 Schucker Nov 2005 B2
7056390 Fratello Jun 2006 B2
7077892 Lee Jul 2006 B2
7314060 Chen et al. Jan 2008 B2
7331298 Barkdoll et al. Feb 2008 B2
7433743 Pistikopoulos et al. Oct 2008 B2
7497930 Barkdoll et al. Mar 2009 B2
7547377 Inamasu et al. Jun 2009 B2
7611609 Valia et al. Nov 2009 B1
7644711 Creel Jan 2010 B2
7722843 Srinivasachar May 2010 B1
7727307 Winkler Jun 2010 B2
7785447 Eatough et al. Aug 2010 B2
7803627 Hodges et al. Sep 2010 B2
7823401 Takeuchi et al. Nov 2010 B2
7827689 Crane Nov 2010 B2
7998316 Barkdoll Aug 2011 B2
8071060 Ukai et al. Dec 2011 B2
8079751 Kapila et al. Dec 2011 B2
8080088 Srinivasachar Dec 2011 B1
8146376 Williams et al. Apr 2012 B1
8152970 Barkdoll et al. Apr 2012 B2
8172930 Barkdoll May 2012 B2
8236142 Westbrook Aug 2012 B2
8266853 Bloom et al. Sep 2012 B2
8311777 Sugiura et al. Nov 2012 B2
8383055 Palmer Feb 2013 B2
8398935 Howell et al. Mar 2013 B2
8409405 Kim et al. Apr 2013 B2
8500881 Orita et al. Aug 2013 B2
8515508 Kawamura et al. Aug 2013 B2
8568568 Schuecker et al. Oct 2013 B2
8640635 Bloom et al. Feb 2014 B2
8647476 Kim et al. Feb 2014 B2
8800795 Hwang Aug 2014 B2
8956995 Masatsugu et al. Feb 2015 B2
8980063 Kim et al. Mar 2015 B2
9039869 Kim et al. May 2015 B2
9057023 Reichelt et al. Jun 2015 B2
9103234 Gu et al. Aug 2015 B2
9169439 Sarpen et al. Oct 2015 B2
9193913 Quanci et al. Nov 2015 B2
9193915 West et al. Nov 2015 B2
9200225 Barkdoll et al. Dec 2015 B2
9238778 Quanci et al. Jan 2016 B2
9243186 Quanci et al. Jan 2016 B2
9249357 Quanci et al. Feb 2016 B2
9273249 Quanci et al. Mar 2016 B2
9273250 Choi et al. Mar 2016 B2
9321965 Barkdoll Apr 2016 B2
9359554 Quanci et al. Jun 2016 B2
9404043 Kim Aug 2016 B2
9463980 Fukada et al. Oct 2016 B2
9476547 Quanci et al. Oct 2016 B2
9498786 Pearson Nov 2016 B2
9580656 Quanci et al. Feb 2017 B2
9672499 Quanci et al. Jun 2017 B2
9683740 Rodgers et al. Jun 2017 B2
9708542 Quanci et al. Jul 2017 B2
9862888 Quanci et al. Jan 2018 B2
9976089 Quanci et al. May 2018 B2
10016714 Quanci et al. Jul 2018 B2
10041002 Quanci et al. Aug 2018 B2
10047295 Chun et al. Aug 2018 B2
10047296 Chun et al. Aug 2018 B2
10053627 Sarpen et al. Aug 2018 B2
10233392 Quanci et al. Mar 2019 B2
10308876 Quanci et al. Jun 2019 B2
10323192 Quanci et al. Jun 2019 B2
10392563 Kim et al. Aug 2019 B2
10435042 Weymouth Oct 2019 B1
10526541 West et al. Jan 2020 B2
10526542 Quanci et al. Jan 2020 B2
10578521 Dinakaran et al. Mar 2020 B1
10611965 Quanci et al. Apr 2020 B2
10619101 Quanci et al. Apr 2020 B2
10732621 Cella et al. Aug 2020 B2
10760002 Ball et al. Sep 2020 B2
10851306 Crum et al. Dec 2020 B2
10877007 Steele et al. Dec 2020 B2
10883051 Quanci et al. Jan 2021 B2
10920148 Quanci et al. Feb 2021 B2
10927303 Choi et al. Feb 2021 B2
10947455 Quanci et al. Mar 2021 B2
10968393 West et al. Apr 2021 B2
10968395 Quanci et al. Apr 2021 B2
10975309 Quanci et al. Apr 2021 B2
10975310 Quanci et al. Apr 2021 B2
10975311 Quanci et al. Apr 2021 B2
11008517 Chun et al. May 2021 B2
11008518 Quanci et al. May 2021 B2
11021655 Quanci et al. Jun 2021 B2
11053444 Quanci et al. Jul 2021 B2
11060032 Quanci et al. Jul 2021 B2
11071935 Quanci et al. Jul 2021 B2
11098252 Quanci et al. Aug 2021 B2
11117087 Quanci Sep 2021 B2
11142699 West et al. Oct 2021 B2
11186778 Crum et al. Nov 2021 B2
11193069 Quanci et al. Dec 2021 B2
11214739 Quanci et al. Jan 2022 B2
11261381 Quanci et al. Mar 2022 B2
11359145 Ball et al. Jun 2022 B2
11359146 Quanci et al. Jun 2022 B2
11365355 Quanci et al. Jun 2022 B2
11395989 Quanci Jul 2022 B2
11441077 Quanci et al. Sep 2022 B2
11441078 Quanci et al. Sep 2022 B2
20020170605 Shiraishi et al. Nov 2002 A1
20030014954 Ronning et al. Jan 2003 A1
20030015809 Carson Jan 2003 A1
20030057083 Eatough et al. Mar 2003 A1
20040220840 Bonissone et al. Nov 2004 A1
20050087767 Fitzgerald et al. Apr 2005 A1
20050096759 Benjamin et al. May 2005 A1
20060029532 Breen et al. Feb 2006 A1
20060102420 Huber et al. May 2006 A1
20060149407 Markham et al. Jul 2006 A1
20070087946 Quest et al. Apr 2007 A1
20070102278 Inamasu et al. May 2007 A1
20070116619 Taylor et al. May 2007 A1
20070251198 Witter Nov 2007 A1
20080028935 Andersson Feb 2008 A1
20080179165 Chen et al. Jul 2008 A1
20080250863 Moore Oct 2008 A1
20080257236 Green Oct 2008 A1
20080271985 Yamasaki Nov 2008 A1
20080289305 Girondi Nov 2008 A1
20090007785 Kimura et al. Jan 2009 A1
20090032385 Engle Feb 2009 A1
20090105852 Wintrich et al. Apr 2009 A1
20090152092 Kim et al. Jun 2009 A1
20090162269 Barger et al. Jun 2009 A1
20090217576 Kim et al. Sep 2009 A1
20090257932 Canari Oct 2009 A1
20090283395 Hippe Nov 2009 A1
20100015564 Chun et al. Jan 2010 A1
20100095521 Kartal et al. Apr 2010 A1
20100106310 Grohman Apr 2010 A1
20100113266 Abe et al. May 2010 A1
20100115912 Worley May 2010 A1
20100119425 Palmer May 2010 A1
20100181297 Whysall Jul 2010 A1
20100196597 Di Loreto Aug 2010 A1
20100276269 Schuecker et al. Nov 2010 A1
20100287871 Bloom et al. Nov 2010 A1
20100300867 Kim et al. Dec 2010 A1
20100314234 Knoch et al. Dec 2010 A1
20110000284 Kumar et al. Jan 2011 A1
20110014406 Coleman et al. Jan 2011 A1
20110048917 Kim et al. Mar 2011 A1
20110083314 Baird Apr 2011 A1
20110088600 McRae Apr 2011 A1
20110120852 Kim May 2011 A1
20110144406 Masatsugu et al. Jun 2011 A1
20110168482 Merchant et al. Jul 2011 A1
20110174301 Haydock et al. Jul 2011 A1
20110192395 Kim Aug 2011 A1
20110198206 Kim et al. Aug 2011 A1
20110223088 Chang et al. Sep 2011 A1
20110253521 Kim Oct 2011 A1
20110291827 Baldocchi et al. Dec 2011 A1
20110313218 Dana Dec 2011 A1
20110315538 Kim et al. Dec 2011 A1
20120031076 Frank et al. Feb 2012 A1
20120125709 Merchant et al. May 2012 A1
20120152720 Reichelt et al. Jun 2012 A1
20120177541 Mutsuda Jul 2012 A1
20120179421 Dasgupta Jul 2012 A1
20120180133 Ai-Harbi et al. Jul 2012 A1
20120195815 Moore et al. Aug 2012 A1
20120228115 Westbrook Sep 2012 A1
20120247939 Kim et al. Oct 2012 A1
20120305380 Wang et al. Dec 2012 A1
20120312019 Rechtman Dec 2012 A1
20130020781 Kishikawa Jan 2013 A1
20130045149 Miller Feb 2013 A1
20130213114 Wetzig et al. Aug 2013 A1
20130216717 Rago et al. Aug 2013 A1
20130220373 Kim Aug 2013 A1
20130306462 Kim et al. Nov 2013 A1
20140039833 Sharpe, Jr. et al. Feb 2014 A1
20140156584 Motukuri et al. Jun 2014 A1
20140208997 Alferyev et al. Jul 2014 A1
20140224123 Walters Aug 2014 A1
20150041304 Kim et al. Feb 2015 A1
20150122629 Freimuth et al. May 2015 A1
20150143908 Cetinkaya May 2015 A1
20150175433 Micka et al. Jun 2015 A1
20150219530 Li et al. Aug 2015 A1
20150226499 Mikkelsen Aug 2015 A1
20160026193 Rhodes et al. Jan 2016 A1
20160048139 Samples et al. Feb 2016 A1
20160149944 Obermeier et al. May 2016 A1
20160154171 Kato et al. Jun 2016 A1
20160370082 Olivo Dec 2016 A1
20170173519 Naito Jun 2017 A1
20170182447 Sappok et al. Jun 2017 A1
20170226425 Kim et al. Aug 2017 A1
20170261417 Zhang Sep 2017 A1
20170313943 Valdevies Nov 2017 A1
20170352243 Quanci et al. Dec 2017 A1
20190317167 LaBorde et al. Oct 2019 A1
20200071190 Wiederin et al. Mar 2020 A1
20200139273 Badiei May 2020 A1
20200173679 O'Reilly et al. Jun 2020 A1
20200208059 Quanci et al. Jul 2020 A1
20200208063 Quanci et al. Jul 2020 A1
20200208833 Quanci et al. Jul 2020 A1
20210130697 Quanci et al. May 2021 A1
20210163821 Quanci et al. Jun 2021 A1
20210163823 Quanci et al. Jun 2021 A1
20210198579 Quanci et al. Jul 2021 A1
20210261877 Despen et al. Aug 2021 A1
20210340454 Quanci et al. Nov 2021 A1
20210363426 West et al. Nov 2021 A1
20210363427 Quanci et al. Nov 2021 A1
20210371752 Quanci et al. Dec 2021 A1
20210388270 Choi et al. Dec 2021 A1
20220056342 Quanci et al. Feb 2022 A1
20220106527 Quanci et al. Apr 2022 A1
20220195303 Quanci et al. Jun 2022 A1
20220204858 West et al. Jun 2022 A1
20220204859 Crum et al. Jun 2022 A1
20220226766 Quanci et al. Jul 2022 A1
20220251452 Quanci et al. Aug 2022 A1
20220298423 Quanci et al. Sep 2022 A1
20220325183 Quanci et al. Oct 2022 A1
20220356410 Quanci et al. Nov 2022 A1
Foreign Referenced Citations (227)
Number Date Country
1172895 Aug 1984 CA
2775992 May 2011 CA
2822841 Jul 2012 CA
2822857 Jul 2012 CA
2905110 Sep 2014 CA
87212113 Jun 1988 CN
87107195 Jul 1988 CN
2064363 Oct 1990 CN
2139121 Jul 1993 CN
1092457 Sep 1994 CN
1255528 Jun 2000 CN
1270983 Oct 2000 CN
2528771 Feb 2002 CN
1358822 Jul 2002 CN
2521473 Nov 2002 CN
1468364 Jan 2004 CN
1527872 Sep 2004 CN
2668641 Jan 2005 CN
1957204 May 2007 CN
101037603 Sep 2007 CN
101058731 Oct 2007 CN
101157874 Apr 2008 CN
101211495 Jul 2008 CN
201121178 Sep 2008 CN
101385248 Mar 2009 CN
100510004 Jul 2009 CN
101486017 Jul 2009 CN
201264981 Jul 2009 CN
101497835 Aug 2009 CN
101509427 Aug 2009 CN
101886466 Nov 2010 CN
101910530 Dec 2010 CN
102072829 May 2011 CN
102155300 Aug 2011 CN
2509188 Nov 2011 CN
202226816 May 2012 CN
202265541 Jun 2012 CN
102584294 Jul 2012 CN
202415446 Sep 2012 CN
202470353 Oct 2012 CN
103399536 Nov 2013 CN
103468289 Dec 2013 CN
103913193 Jul 2014 CN
203981700 Dec 2014 CN
104498059 Apr 2015 CN
105001914 Oct 2015 CN
105137947 Dec 2015 CN
105189704 Dec 2015 CN
105264448 Jan 2016 CN
105467949 Apr 2016 CN
106661456 May 2017 CN
106687564 May 2017 CN
107445633 Dec 2017 CN
100500619 Jun 2020 CN
201729 Sep 1908 DE
212176 Jul 1909 DE
1212037 Mar 1966 DE
2720688 Nov 1978 DE
2 212 544 Dec 1980 DE
3231697 Jan 1984 DE
3328702 Feb 1984 DE
3315738 Mar 1984 DE
3329367 Nov 1984 DE
3407487 Jun 1985 DE
19545736 Jun 1997 DE
19803455 Aug 1999 DE
1012531 Nov 2002 DE
10154785 May 2003 DE
102005015301 Oct 2006 DE
102006004669 Aug 2007 DE
102006026521 Dec 2007 DE
102009031436 Jan 2011 DE
102011052785 Dec 2012 DE
010510 Oct 2008 EA
0126399 Nov 1984 EP
0208490 Jan 1987 EP
0903393 Mar 1999 EP
1538503 Jun 2005 EP
1860034 Nov 2007 EP
2295129 Mar 2011 EP
2468837 Jun 2012 EP
2339664 Aug 1977 FR
2517802 Jun 1983 FR
2764978 Dec 1998 FR
364236 Jan 1932 GB
368649 Mar 1932 GB
441784 Jan 1936 GB
606340 Aug 1948 GB
611524 Nov 1948 GB
725865 Mar 1955 GB
871094 Jun 1961 GB
923205 May 1963 GB
S50148405 Nov 1975 JP
S5319301 Feb 1978 JP
54054101 Apr 1979 JP
S5453103 Apr 1979 JP
57051786 Mar 1982 JP
57051787 Mar 1982 JP
57083585 May 1982 JP
57090092 Jun 1982 JP
S57172978 Oct 1982 JP
58091788 May 1983 JP
59051978 Mar 1984 JP
59053589 Mar 1984 JP
59071388 Apr 1984 JP
59108083 Jun 1984 JP
59145281 Aug 1984 JP
60004588 Jan 1985 JP
61106690 May 1986 JP
62011794 Jan 1987 JP
62285980 Dec 1987 JP
01103694 Apr 1989 JP
01249886 Oct 1989 JP
H0319127 Mar 1991 JP
03197588 Aug 1991 JP
04159392 Jun 1992 JP
H04178494 Jun 1992 JP
H05230466 Sep 1993 JP
H0649450 Feb 1994 JP
H0654753 Jul 1994 JP
H06264062 Sep 1994 JP
H06299156 Oct 1994 JP
07188668 Jul 1995 JP
07216357 Aug 1995 JP
H07204432 Aug 1995 JP
H0843314 Feb 1996 JP
H08104875 Apr 1996 JP
08127778 May 1996 JP
H08218071 Aug 1996 JP
H10273672 Oct 1998 JP
H11131074 May 1999 JP
H11256166 Sep 1999 JP
2000204373 Jul 2000 JP
2000219883 Aug 2000 JP
2001055576 Feb 2001 JP
2001200258 Jul 2001 JP
2002097472 Apr 2002 JP
2002106941 Apr 2002 JP
2003041258 Feb 2003 JP
2003051082 Feb 2003 JP
2003071313 Mar 2003 JP
2003292968 Oct 2003 JP
2003342581 Dec 2003 JP
2004169016 Jun 2004 JP
2005503448 Feb 2005 JP
2005135422 May 2005 JP
2005154597 Jun 2005 JP
2005263983 Sep 2005 JP
2005344085 Dec 2005 JP
2006188608 Jul 2006 JP
2007063420 Mar 2007 JP
3924064 Jun 2007 JP
2007231326 Sep 2007 JP
4101226 Jun 2008 JP
2008231278 Oct 2008 JP
2009019106 Jan 2009 JP
2009073864 Apr 2009 JP
2009073865 Apr 2009 JP
2009135276 Jun 2009 JP
2009144121 Jul 2009 JP
2010229239 Oct 2010 JP
2010248389 Nov 2010 JP
2011504947 Feb 2011 JP
2011068733 Apr 2011 JP
2011102351 May 2011 JP
2012102302 May 2012 JP
2012102325 May 2012 JP
2013006957 Jan 2013 JP
2013510910 Mar 2013 JP
2013189322 Sep 2013 JP
2014040502 Mar 2014 JP
2015094091 May 2015 JP
2016169897 Sep 2016 JP
1019960008754 Oct 1996 KR
19990017156 May 1999 KR
1019990054426 Jul 1999 KR
20000042375 Jul 2000 KR
20030012458 Feb 2003 KR
1020040020883 Mar 2004 KR
20040107204 Dec 2004 KR
20050053861 Jun 2005 KR
20060132336 Dec 2006 KR
100737393 Jul 2007 KR
100797852 Jan 2008 KR
20080069170 Jul 2008 KR
20110010452 Feb 2011 KR
101314288 Apr 2011 KR
20120033091 Apr 2012 KR
20130050807 May 2013 KR
101318388 Oct 2013 KR
20140042526 Apr 2014 KR
20150011084 Jan 2015 KR
20170038102 Apr 2017 KR
20170058808 May 2017 KR
20170103857 Sep 2017 KR
101862491 May 2018 KR
2083532 Jul 1997 RU
2441898 Feb 2012 RU
2493233 Sep 2013 RU
1535880 Jan 1990 SU
201241166 Oct 2012 TW
201245431 Nov 2012 TW
50580 Oct 2012 UA
WO9012074 Oct 1990 WO
WO9945083 Sep 1999 WO
WO02062922 Aug 2002 WO
WO2005023649 Mar 2005 WO
WO2005031297 Apr 2005 WO
WO2005115583 Dec 2005 WO
WO2007103649 Sep 2007 WO
WO2008034424 Mar 2008 WO
WO2008105269 Sep 2008 WO
WO2009147983 Dec 2009 WO
WO2010103992 Sep 2010 WO
WO2011000447 Jan 2011 WO
WO2011126043 Oct 2011 WO
WO2012029979 Mar 2012 WO
WO2012031726 Mar 2012 WO
WO2013023872 Feb 2013 WO
WO2010107513 Sep 2013 WO
WO2014021909 Feb 2014 WO
WO2014043667 Mar 2014 WO
WO2014105064 Jul 2014 WO
WO2014153050 Sep 2014 WO
WO2016004106 Jan 2016 WO
WO2016033511 Mar 2016 WO
WO2016086322 Jun 2016 WO
Non-Patent Literature Citations (154)
Entry
U.S. Appl. No. 17/532,058, filed Nov. 22, 2021, Quanci et al.
U.S. Appl. No. 17/736,960, filed May 5, 2022, Quanci et al.
U.S. Appl. No. 17/747,708, filed May 18, 2022, Quanci et al.
U.S. Appl. No. 17/947,520, filed Sep. 19, 2022, Quanci et al.
ASTM D5341-99(2010)e1, Standard Test Method for Measuring Coke Reactivity Index (CRI) and Coke Strength After Reaction (CSR), ASTM International, Wesd Conshohocken, PA, 2010.
Astrom, et al., “Feedback Systems: An Introduction for Scientists and Engineers,” Sep. 16, 2006, available on line at http://people/duke.edu/-hpgavin/SystemID/References/Astrom-Feedback-2006.pdf ; 404 pages.
Basset et al., “Calculation of steady flow pressure loss coefficients for pipe junctions,” Proc Instn Mech Engrs., vol. 215, Part C, p. 861-881 IMechIE 2001.
Beckman et al., “Possibilities and limits of cutting back coking plant output,” Stahl Und Eisen, Verlag Stahleisen, Dusseldorf, DE, vol. 130, No. 8, Aug. 16, 2010, pp. 57-67.
Bloom, et al., “Modular cast block—The future of coke oven repairs,” Iron & Steel Technol, AIST, Warrendale, PA, vol. 4, No. 3, Mar. 1, 2007, pp. 61-64.
Boyes, Walt. (2003), Instrumentation Reference Book (3rd Edition)—34.7.4.6 Infrared and Thermal Cameras, Elsevier. Online version available at: https://app.knovel.com/hotlink/pdf/id:kt004QMGV/instrumentation-reference-2/digital-video.
Clean coke process: process development studies by USS Engineers and Consultants, Inc., Wisconsin Tech Search, request date Oct. 5, 2011, 17 pages.
“Conveyor Chain Designer Guil”, Mar. 27, 2014 (date obtained from wayback machine), Renold.com, Section 4, available online at: http://www.renold/com/upload/renoldswitzerland/conveyor_chain_-_designer_guide.pdf.
Costa, et al., “Edge Effects on the Flow Characteristics in a 90 deg Tee Junction,” Transactions of the ASME, Nov. 2006, vol. 128, pp. 1204-1214.
Crelling, et al., “Effects of Weathered Coal on Coking Properties and Coke Quality”, Fuel, 1979, vol. 58, Issue 7, pp. 542-546.
Database WPI, Week 199115, Thomson Scientific, Lond, GB; AN 1991-107552.
Diez, et al., “Coal for Metallurgical Coke Production: Predictions of Coke Quality and Future Requirements for Cokemaking”, International Journal of Coal Geology, 2002, vol. 50, Issue 1-4, pp. 389-412.
“High Alumina Cement-Manufacture, Characterisitics and Usses,” TheConstructor.org, https://thecontructor.org/concrete/high-alumina-cement/23686/; 12 pages, no date.
Industrial Furnace Deign Handbool, Editor-in-Chief; First Deisgn Institute of FIrst Ministry of Machinery Industry, Beijing: Mechanical Industry Press, pp. 180-183, Oct. 1981.
Joseph, B., “A tutorial on inferential control and its applications,”Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), San Diego, CA, 1999, pp. 3106-3118 vol. 5.
Kerlin, Thomas (1999), Practical Thermocouple Thermometry—1.1 The Thermocouple. ISA. Online version available at http:app.knovel.com/pdf/id:kt007XPTM3/practical-thermocouple/the-thermocouple.
Kochanski et al., “Overview of Uhde Heat Recovery Cokemaking Technology,” AISTech Iron and Steel Technology Conference Proceedings, Association for Iron and Steel Technology, U.S., vol. 1, Jan. 1, 2005, pp. 25-32.
Knoerzer et al., “Jewell-Thompson Non-Recovery Cokemaking”, Steel Times, Fuel & Metallurgical Journals Ltd. London, GB, vol. 221, No. 4, Apr. 1, 1993, pp. 172-173,184.
Madias, et al., “A review on stamped charging of coals” (2013). Available at https://www.researchgate.net/publication/263887759_A_review_on_stamped_charging_of_coals.
Metallurgical Coke MSDS, ArcelorMittal, May 30, 2011, available online at http://dofasco.arcelormittal.com/-/media/Files/A/Arcelmormittal-Canada/material-safety/metallurgical-coke.pdf.
“MIddletown Coke Company HRSG Maintenance BACT Analysis Option 1—Induvidual Spray Quenches Sun Heat Recovery Coke Facility Process Flow Diagram Middletown Coke Company 100 Oven Case #1-24.5 VM”, (Sep. 1, 2009), URL: http://web.archive.org/web/20090901042738/http://epa.ohio.gov/portals/27/transfer/ptiApplication/mcc/new.262504.pdf, (Feb. 12, 2016), XP055249803 [X] 1-13 p. 7 pp. 8-11.
Practical Technical Manual of Refractories, Baoyu Hu, etc., Beijing: Metallurgical Indursty Press, Chapter 6; 2004, 6-30.
Refractories for Ironmaking and Steelmaking: A History of Battles over High Temperatures; Kyoshi Sugita (Japan, Shaolin Zhang), 1995, p. 160, 2004, 2-29.
“Refractory Castables,” Victas.com Dec. 28, 2011 (date obtaines from WayBack Machine), https://www/vitcas.com/refactory-castables; 5 pages.
Rose, Harold J., “The Selection of Coals for the Manufacture of Coke,” American Institute of Mining and Metallurgical Engineers, Feb. 1926, 8 pages.
Waddell, et al., “Heat-Recovery Cokemaking Presentation,” Jan. 1999, pp. 1-25.
Walker D N et al, “Sun Coke Company's heat recovery cokemaking technology high coke quality and low environmental imoact”, Revue De Metallurgie—Cahiers D'Informations Techniques, Revue De Metallurgie. Paris, FR, (Mar. 1, 2003), vol. 100, No. 3, ISSN 0035-1563, p. 23.
Westbrook, “Heat-Recovery Cokemaking at Sun Coke,” AISE Steel Technology, Pittsburg, PA, vol. 76, No. 1, Jan. 1999, pp. 25-28.
“What is dead-band control,” forum post by user “wireaddict” on AllAboutCircuits.com message board, Feb. 8, 2007, accessed Oct. 23, 2018 at https:/forum.allaboutcircuits.com/threads/what-is-dead-band-control.4728/; 8 pages.
Yu et al., “Coke Oven Production Technology,” Lianoning Science and Technology Press, first edition, Apr. 2014, pp. 356-358.
“Resources and Utilization of Coking Coal in China,” Mingxin Shen ed., Chemical Industry Press, first edition, Jan. 2007, pp. 242-243, 247.
International Search Report and Written Opinion for PCT/US2019/068815; dated Apr. 29, 2020, 11 pages.
Canadian Office Action in Canadian Application No. 3,125,589; dated Sep. 27, 2022; 6 pages.
U.S. Appl. No. 15/614,525, filed Jun. 5, 2017, titled Methods and Systems For Automatically Generating a Remedial Action in an Industrial Facility.
U.S. Appl. No. 17/076,563, filed OCt. 21, 2020, now U.S. Pat. No. 11,186,778, titeld System and Method for Repairing a Coke Oven.
U.S. Appl. No. 16/729,068, filed Dec. 27, 2019, titled Systems and Methods for Utilizing Flue Gas.
U.S. Appl. No. 17/320,343, filed May 14, 2021, titled Coke Plant Tunnel Repair and Flexible Joints.
U.S. Appl. No. 17/532,058, filed Nov. 22, 2021, titled Coke Plant Tunnel Repair and Anchor Distribution.
U.S. Appl. No. 17/388,874, filed Jul. 29, 2021, titled Spring-Loaded Heat Recovery Oven System and Method.
U.S. Appl. No. 17/967,615, filed Oct. 17, 2022, Quanci, et al.
U.S. Appl. No. 18/047,916, filed Oct. 19, 2022, Quanci et al.
U.S. Appl. No. 18/052,739, filed Nov. 4, 2022, Quanci et al.
U.S. Appl. No. 18/052,760, filed Nov. 4, 2022, Quanci et al.
U.S. Appl. No. 18/168,142, filed Feb. 13, 2023, Quanci et al.
U.S. Appl. No. 18/313,647, filed May 8, 2023, Quanci et al.
De Cordova, et al. “Coke oven life prolongation—A multidisciplinary approach.” 10.5151/2594-357X-2610 (2015) 12 pages.
Lin, Rongying et al., “Study on the synergistic effect of calcium and aluminum on improving ash fusion temperature of semi-coke,” International Journal of Coal Preparation and Utilization, May 31, 2019 (published online), vol. 42, No. 3, pp. 556-564.
Lipunov, et al. “Dianostics of the Heating Systgem and Lining of Coke Ovens,” Coke and Chemistry, 2014, Vopl. 57, No. 12, pp. 489-492.
Tiwari, et al., “A novel technique for assessing the coking potential of coals/cole blends for non-recovery coke making process,” Fuel, vol. 107, May 2013, pp. 615-622.
Canadian Office Action in Canadian Application No. 3,125,589; dated May 5, 2023; 6 pages.
U.S. Appl. No. 07/587,742, filed Sep. 25, 1990, now U.S. Pat. No. 5,114,542, titled Nonrecovery Coke Oven Battery and Method of Operation.
U.S. Appl. No. 07/878,904, filed May 6, 1992, now U.S. Pat. No. 5,318,671, titled Method of Operation of Nonrecovery Coke Oven Battery.
U.S. Appl. No. 09/783,195, filed Feb. 14, 2001, now U.S. Pat. No. 6,596,128, titled Coke Oven Flue Gas Sharing.
U.S. Appl. No. 07/886,804, filed May 22, 1992, now U.S. Pat. No. 5,228,955, titled High Strength Coke Oven Wall Having Gas Flues Therein.
U.S. Appl. No. 08/059,673, filed May 12, 1993, now U.S. Pat. No. 5,447,606, titled Method of and Apparatus for Capturing Coke Oven Charging Emissions.
U.S. Appl. No. 08/914,140, filed Aug. 19, 1997, now U.S. Pat. No. 5,928,476, titled Nonrecovery Coke Oven Door.
U.S. Appl. No. 09/680,187, filed Oct. 5, 2000, now U.S. Pat. No. 6,290,494, titled Method and Apparatus for Coal Coking.
U.S. Appl. No. 10/933,866, filed Sep. 3, 2004, now U.S. Pat. No. 7,331,298, titled Coke Oven Rotary Wedge Door Latch.
U.S. Appl. No. 11/424,566, filed Jun. 16, 2006, now U.S. Pat. No. 7,497,930, titled Method and Apparatus for Compacting Coal for a Coal Coking Process.
U.S. Appl. No. 12/405,269, filed Mar. 17, 2009, now U.S. Pat. No. 7,998,316, titled Flat Puch Coke Wet Quenching Apparatus and Process.
U.S. Appl. No. 13/205,960, filed Aug. 9, 2011, now U.S. Pat. No. 9,321,965, titled Flat Push Coke Wet Quenching Apparatus and Process.
U.S. Appl. No. 11,367,236, filed Mar. 3, 2006, now U.S. Pat. No. 8,152,970, titled Method and Appratus for Producing Coke.
U.S. Appl. No. 12/403,391, filed Mar. 13, 2009, now U.S. Pat. No. 8,172,930, titled Cleanable in Situ Spark Arrestor.
U.S. Appl. No. 12/849,192, filed Aug. 3, 2010, now U.S. Pat. No. 9,200,225, titled Method and Apparatus for Compacting Coap for a Coal Coking Process.
U.S. Appl. No. 13/631,215, filed Sep. 28, 2012, now U.S. Pat. No. 9,683,740, titled Methods for Handling Coal Processing emissions and Associated Systems and Devices.
U.S. Appl. No. 13/730,692, filed Dec. 28, 2012, now U.S. Pat. No. 9,193,913, titled Reduced Output Rate Coke Oven Operation With Gas Sharing Providing Extended Process Cycle.
U.S. Appl. No. 14/655,204, now U.S. Pat. No. 10,016,714, filed Jun. 24, 2015, titled Systems and Methods for Removing Mercury From Emissions.
U.S. Appl. No. 16/000,516, now U.S. Pat. No. 11,117,087, filed Jun. 5, 2018, titled Systems and Methods for Removing Mercury From Emissions.
U.S. Appl. No. 17/459,380, filed Jun. 5, 2018, titled Systems and Methods for Removing Mercury From Emissions.
U.S. Appl. No. 13/830,971, filed Mar. 14, 2013, now U.S. Pat. No. 10,047,296, titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods, now U.S. Pat. No. 10,048,295.
U.S. Appl. No. 16/026,363, filed Jul. 3, 2018, now U.S. Pat. No. 11,008,517, titled Non-Perpendicular Connections Between Coke Oven Uptakes and a Hot Common Tunnel, and Associated Systems and Methods.
U.S. Appl. No. 13/730,796, filed Dec. 28, 2012, now U.S. Pat. No. 10,883,051, titled Methods and Systems for Improved Coke Quenching.
U.S. Appl. No. 17/140,564, filed Jan. 4, 2021, titled Methods and Systems for Improved Coke Quenching.
U.S. Appl. No. 13/730,598, filed Dec. 28, 2012, now U.S. Pat. No. 9,238,778, titled Systems and Methods for Improving Quenched Coke Recovery.
U.S. Appl. No. 14/952,267, filed Nov. 25, 2015, now U.S. Pat. No. 9,862,888, titled Systems and Methods for Imrpoving Quenched Coke Recovery.
U.S. Appl. No. 15/830,320, filed Dec. 4, 2017, now U.S. Pat. No. 10,323,192, titled Systems and Methods for Imrpoving Quenched Coke Recovery.
U.S. Appl. No. 13/730,735, filed Dec. 28, 2012, now U.S. Pat. No. 9,273,249, titled Systems and Methods for Controlling Air Distribution in a Coke Oven.
U.S. Appl. No. 14/655,013, filed Jun. 23, 2015, now U.S. Pat. No. 11,142,699, titled Vent Stack Lids and Associated Systems and Methods.
U.S. Appl. No. 17/471,491, filed Sep. 10, 2021, now U.S. Pat. No. 11,142,699, titled Vent Stack Lids and Associated Systems and Methods.
U.S. Appl. No. 13/843,166, filed Mar. 15, 2013, now U.S. Pat. No. 9,273,250, titled Methods and Systems for Improved Quench Tower Design.
U.S. Appl. No. 15/014,547, filed Feb. 3, 2016, now, U.S. Pat. No. 10,927,303, titled Methods for Improved Quench Tower Design.
U.S. Appl. No. 17/155,818, filed Jan. 22, 2021, titled Methods and Systems for Improved Quench Tower Design.
U.S. Appl. No. 14/655,003, filed Jun. 23, 2015, now U.S. Pat. No. 10,760,002, titled Systems and Methods for Maintaining a Hot Car in a Coke Plant.
U.S. Appl. No. 16/897,957, filed Jun. 10, 2020, now U.S. Pat. No. 11,359,145, titled Systems and Methods for Maintaining a Hot Car in a Coke Plant.
U.S. Appl. No. 13/829,588, filed Mar. 14, 2013, now U.S. Pat. No. 9,193,915, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns.
U.S. Appl. No. 15/322,176, filed Dec. 27, 2016, now U.S. Pat. No. 10,526,541, titled Horizontal Heat Recovery Coke Ovens Having Monolith Crowns.
U.S. Appl. No. 15/511,036, filed Mar. 14, 2017, now U.S. Pat. No. 10,968,383, titled Coke Ovens Having Monolith Component Construction.
U.S. Appl. No. 17/190,720, filed Mar. 3, 2021, titled Coke Ovens Having Monolith Component Construction.
U.S. Appl. No. 13/589,009, filed Aug. 17, 2012, now U.S. Pat. No. 9,359,554, titled Automatic Draft Control System for Coke Plants.
U.S. Appl. No. 15/139,568, filed Apr. 27, 2016, now U.S. Pat. No. 10,947,455, titled Automatic Draft Control System for Coke Plants.
U.S. Appl. No. 17/176,391, filed Feb. 16, 2021, titled Automatic Draft Control System for Coke Plants.
U.S. Appl. No. 13/588,996, filed Aug. 17, 2012, now U.S. Pat. No. 9,243,186, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 14/959,450, filed Dec. 4, 2015, now U.S. Pat. No. 10,041,002, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 16/047,198, filed Jul. 27, 2018, now U.S. Pat. No. 10,611,965, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 16/828,448, filed Mar. 24, 2020, now U.S. Pat. No. 11,441,077, titled Coke Plant Including Exhaust Gas Sharing.
U.S. Appl. No. 13/589,004, filed Aug. 17, 2012, now U.S. Pat. No. 9,249,357, titled Method and Apparatus for Volatile Matter Sharing in Stamp-Charged Coke Ovens.
U.S. Appl. No. 13/730,673, filed Dec. 28, 2012, now U.S. Pat. No. 9,476,547, titled Exhaust Flow Modifier, Duct Intersection Incorporating the Same, and Methods Therefor.
U.S. Appl. No. 15/281,891, filed Sep. 30, 2016, now U.S. Pat. No. 10,975,309, titled Exhaust Flow Modifier, Duck Intersection Incorporating the Same, and Methods Therefor.
U.S. Appl. No. 17/191,119, filed Mar. 3, 2021, titled Exhaust Flow Modifier, Duck Intersection Incorporating the Same, and Methods Therefor.
U.S. Appl. No. 13/597,394, filed Aug. 29, 2012, now U.S. Pat. No. 9,169,439, titled Method and Apparatus for Testing Coal Coking Properties.
U.S. Appl. No. 14/865,581, filed Sep. 25, 2015, now U.S. Pat. No. 10,053,627, titled Method and Apparatus for Testing Coal Coking Properties, now U.S. Pat. No. 10,053,627.
U.S. Appl. No. 14/839,384, filed Aug. 28, 2015, now U.S. Pat. No. 9,580,656, titled Coke Oven Charging System.
U.S. Appl. No. 15/443,246, filed Feb. 27, 2017, now U.S. Pat. No. 9,976,089, titled Coke Oven Charging System.
U.S. Appl. No. 14/587,670, filed Dec. 31, 2014, now U.S. Pat. No. 10,619,101, titled Methods for Decarbonizing Coking Ovens, and Associated Systems and Devices.
U.S. Appl. No. 16/845,530, filed Apr. 10, 2020, now U.S. Pat. No. 11,359,146, titled Methods for Decarbonizing Coking Ovens, and Associated Systems and Devices.
U.S. Appl. No. 14/984,489, filed Dec. 30, 2015, now U.S. Pat. No. 10,975,310, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 14/983,837, filed Dec. 30, 2015, now U.S. Pat. No. 10,968,395, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 14/986,281, filed Dec. 31, 2015, now U.S. Pat. No. 10,975,311, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 17/222,886, filed Apr. 12, 2021, titled Multi-Modal Beds of Coking Material.
U.S. Appl. No. 14/987,625, filed Jan. 4, 2016, now U.S. Pat. No. 11,060,032, titled Integrated Coke Plant Automation and Optimization Using Advanced Control and Optimization Techniques.
U.S. Appl. No. 17/172,476, filed Feb. 10, 2021, titled Integrated Coke Plant Automation and Optimization Using Advanced Control and Optimization Techniques.
U.S. Appl. No. 14/839,493, filed Aug. 28, 2015, now U.S. Pat. No. 10,233,392, titled Method and System for Optimizing Coke Plant Operation and Output.
U.S. Appl. No. 16/251,352, filed Jan. 18, 2019, now U.S. Pat. No. 11,053,444, titled Method and System for Optimizing Coke Plant Operation and output.
U.S. Appl. No. 14/839,551, filed Aug. 28, 2015, now U.S. Pat. No. 10,308,876, titled Burn Profiles for Coke Operations.
U.S. Appl. No. 16/428,014, filed May 31, 2019, now U.S. Pat. No. 10,920,148, titled Improved Burn Profiles for Coke Operations.
U.S. Appl. No. 17/155,719, filed Jan. 22, 2021, now U.S. Pat. No. 11,441,078, titled Improved Burn Profiles for Coke Operations.
U.S. Appl. No. 14/839,588, filed Aug. 28, 2015, now U.S. Pat. No. 9,708,542, titled Method and System for Optimizing Coke Plant Operation and Output.
U.S. Appl. No. 15/392,942, filed Dec. 28, 2016, now U.S. Pat. No. 10,526,542, titled Method and System for Dynamically Charging a Coke Oven.
U.S. Appl. No. 16/735,103, filed Jan. 6, 2020, now U.S. Pat. No. 11,214,739, titled Method and System for Dynamically Charging a Coke Oven.
U.S. Appl. No. 15/614,525, filed Jun. 5, 2017, now U.S. Pat. No. 11,508,230, titled Methods and Systems for Automaticall Generating a remedial Action in an Industrial Facility.
U.S. Appl. No. 18/047,916, filed Oct. 19, 2022, titled Methods and Systems for Automatically Generating a Remedial Action in an Industrial Facility.
U.S. Appl. No. 15/987,860, filed May 23, 2018, now U.S. Pat. No. 10,851,306, titled System and Method for Repairing a Coke Oven.
U.S. Appl. No. 17/076,563, filed Oct. 21, 2020, now U.S. Pat. No. 11,186,778, titled System and Method for Repairing a Coke Oven.
U.S. Appl. No. 17/521,061, filed Nov. 8, 2021, titled System and Method for Repairing a Coke Oven.
U.S. Appl. No. 17/135,483, filed Dec. 28, 2020, titled Oven Health Optimization Systems and Methods.
U.S. Appl. No. 16/729,053, filed Dec. 27, 2019, titled Oven Uptakes.
U.S. Appl. No. 16/729,036, filed Dec. 27, 2019, now U.S. Pat. No. 11,365,355, titled Systems and Methods for Treating a Surface of a Coke Plant.
U.S. Appl. No. 17/747,708, filed May 18, 2022, titled Systems and Methods for Treating a Surface of a Coke Plant.
U.S. Appl. No. 16/729,201, filed Dec. 27, 2019, titled Gaseous Tracer Leak Detection.
U.S. Appl. No. 16/729,122, filed Dec. 27, 2019, now U.S. Pat. No. 11,395,989, titled Methods and Systems for Providing Corrosion Resistant Surfaces in Contaminant treatment Systems.
U.S. Appl. No. 16/729,068, filed Dec. 27, 2019, now U.S. Pat. No. 11,486,572, titled Systems and Methods for Utilizing Flue Gas.
U.S. Appl. No. 17/947,520, filed Sep. 19, 2022, titled Systems and Methods for Utilizing Flue Gas.
U.S. Appl. No. 16/729,129, filed Dec. 27, 2019, now U.S. Pat. No. 11,008,518, titled Coke Plant Tunnel Repair and Flexible Joints.
U.S. Appl. No. 17/320,343, filed May 14, 2021, now U.S. Pat. No. 11,597,881, titled Coke Plant Tunnel Repair and Flexible Joints.
U.S. Appl. No. 18/168,142, filed Feb. 13, 2023, titled Coke PLant Tunnel Repair and Flexible Joints.
U.S. Appl. No. 16/729,170, now U.S. Pat. No. 11,193,069, filed Dec. 27, 2019, titled Coke Plant Tunnel Repair and Anchor Distribution.
U.S. Appl. No. 17/532,058, now U.S. Pat. No. 11,505,747, filed Nov. 22, 2021, titled Coke Plant Tunnel Repair and Anchor Distribution.
U.S. Appl. No. 17/967,615, filed Oct. 17, 2022, titled Coke Plant Tunnel Repair and Anchor Distribution.
U.S. Appl. No. 16/729,157, filed Dec. 27, 2019, now U.S. Pat. No. 11,071,935, titled Particulate Detection for Industrial Facilities, and Associated Systems and Methods.
U.S. Appl. No. 16/729,057, filed Dec. 27, 2019, now U.S. Pat. No. 11,021,655, titled Decarbonization of Coke Ovens and Associated Systems and Methods.
U.S. Appl. No. 17/321,857, filed May 17, 2021, titled Decarbonization of Coke Ovens and Associated Systems and Methods.
U.S. Appl. No. 16/729,212, filed Dec. 27, 2019, now U.S. Pat. No. 11,261,381, titled Heat Recovery Oven Foundation.
U.S. Appl. No. 17/584,672, filed Jan. 26, 2022, titled Heat Recovery Oven Foundation.
U.S. Appl. No. 16/729,219, now U.S. Pat. No. 11,098,252, filed Dec. 27, 2019, titled Spring-Loaded Heat Recovery Oven System and Method.
U.S. Appl. No. 17/388,874, filed Jul. 29, 2021, now, U.S. Pat. no. 11,680,208, titled Spring-Loaded Heat Recovery Oven System and Method.
U.S. Appl. No. 18/313,647, filed May 8, 2023, titled Spring-Loaded Heat Recovery Oven System and Method.
U.S. Appl. No. 17/736,960, filed May 20, 2022, titled Foundry Coke Products, and Associated Systems and Methods.
U.S. Appl. No. 17/306,895, filed May 3, 2021, titled High-Quality Coke Products.
U.S. Appl. No. 18/052,739, filed Nov. 4, 2022, titled Foundry Coke Products and Associated Processing Methods via Cupolas.
U.S. Appl. No. 18/052,760, filed Nov. 2, 2022, titled Foundry Coke Products, and Associated Systems, Devices, and Methods.
Related Publications (1)
Number Date Country
20230012031 A1 Jan 2023 US
Provisional Applications (1)
Number Date Country
62787055 Dec 2018 US
Continuations (1)
Number Date Country
Parent 16729122 Dec 2019 US
Child 17843164 US