Methods And Systems For Providing Quality Of Service In Packet-Based Core Transport Networks

Abstract
Methods and systems for providing necessary and sufficient quality-of-service (QoS), in a packet-based core transport network that utilizes dynamic setting of bandwidth management pipes or thresholds to obviate link congestion are disclosed. Congestion avoidance is a necessary and sufficient requirement in order to guarantee Quality of Service (QoS) in packet-based core networks.
Description

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

The drawings below serve to better illustrate the embodiments presented in this paper. However, they are not to be construed as limiting the invention.



FIG. 1 is a simplified illustration of a network topology with link-sharing properties, whose aggregation points serve as contention for resource;



FIG. 2 shows a distinctive active probing infrastructure;



FIG. 3 shows backbone bandwidth distribution with variable threshold settings to backhaul links;



FIG. 4(
a) depicts a typical bandwidth aggregation point for multiple pipes;



FIG. 4(
b) is an illustration of bandwidth aggregation with dynamic adjustment;



FIG. 5 is a flowchart of the steps and decisions involved in policy enforcement of bandwidth threshold control for congestion avoidance;



FIG. 6 illustrates the specialized embodiment of the invention for dynamic adjustment of an IP-based network architecture and the corresponding feedback control mechanism;



FIG. 7 illustrates a typical backbone traffic in operator networks;



FIG. 8 depicts a Core QoS Manager performing correlation using network updates sent by active probes to impose required policy decisions onto identified affected Access Controllers.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 shows a distributed hierarchical tree topology typically implemented for scalable packet-based network architectures. It is composed of a number of nodes wherein each node allows for various services, like usable Internet services such as multimedia, to be accessible. Packet streams carrying information such as data, voice, video and other enhanced services are routed through these Internet nodes using destination-based routing, which usually traverse the shortest path through a network. The traffic aggregates at common links (backhaul 102/backbone 101) which may be prone to traffic overloads, congestion, excessive packet losses and delays. The core transport of interest is a source of contention for stream flows that can consume all available bandwidth across the shared link.


Since the bandwidth resource in this distributed network becomes the object for contention as more and more instantaneous traffic go through limited openings (for which we term a backbone link 101, the point of aggregation of backhaul 102 links), a much needed mechanism for regulating stream flows is desired. An Access Controller 604 presented in U.S. Patent document pending for approval entitled “Methods and Systems for Call Admission Control and Providing Quality of Service in Broadband Wireless Access Packet-Based Networks” by Dos Remedios, et. al. is a QoS apparatus that performs transport functions which include bandwidth management, packet filtering, traffic scheduling and prioritization. It is disseminated across the transport network encompassing both access and core backbone networks to enforce policies that control the way a requested service is provided or traffic is shaped. This ultimately implements a Resource and Admission Control functionality described in ITU-NGN papers. The Access Controller 604, thus, is the needed mechanism to properly manage the bandwidth and capacities available in the network.


To prevent poor network performance, sophisticated systems such as the Network Monitoring System (NMS) 603, Core QoS Manager 603, and Access Controllers 604, for monitoring, policy control, and policy enforcement, respectively, are implemented to respond to the changing network conditions in near real-time fashion. The Network Monitoring System 603, as described in U.S. Patent document pending for approval submitted by Dos Remedios, et. al., consists of a database that is aware of the network topology, network entities, and traffic conditions. The Core Qos Manager 603, a software module independent of or residing within the NMS 603, controls the Access Controllers 604 which in turn implements the core QoS policies by enforcing resource management.


Together, the NMS 603, Core QoS Manager 603, and Access Controllers 604 implement a feedback control mechanism 606 that allows the network to converge to a state without congestion, therefore guaranteeing QoS in the network. The general objective is to keep the utilization of links within desired limits. There are several forms of feedback control 606 that can be used. On/off control is simple but does not provide a quick and stable response. For instance, two utilization threshold settings can be set per link. One triggers throttling of bandwidth management settings, while the other eases the restriction. Proportional control provides quick response, but introduces error. This keeps the differential between a threshold and the utilization at a small value. However, this method needs to work with another type of control in order to handle conditions when the traffic utilization is naturally low. In general, a fast response introduces instability, while a stable response may not react to sudden changes in network conditions. A general PID (proportional integral derivative) controller may be used to tune control parameters based on the characteristics of the network to achieve optimal response. A chosen implementation will therefore be a compromise between complexity and effectiveness.


Connectivity performance metrics like utilization, Round-Trip Time (RTT) latency, jitter, and packet loss and service connectivity are sent to the NMS 603 via hardware probes, as defined in U.S. Patent document pending for approval entitled “Design and Methods for a Distributed Database, Distributed Processing Network Management System” by Dos Remedios, et. al. Alternatively, the NMS 603 can query link utilizations from other nodes in the network like router equipment. Other parameters such as packet loss and latency can also be used as thresholds to generate alarms for activation of bandwidth management policy adjustments. These parameters can be used to identify backbone links 101 which are generating threshold violation alarms. A portion of the total backbone link 301 capacity can then be distributed among the affected backhaul links 302. Various calculations are presented on how to distribute this portion of link capacity to take into consideration the SLA to each subscriber. The sample calculations presented here does not limit the scope of the invention.


The Network Management System (NMS) 603 may either use active or passive techniques to determine the affected backhauls 203 or users 204 of threshold-violating links. Active monitoring probes 205, acting like highway patrols, are distributed across several links where the likelihood of bottlenecks may exist. A possible location for an active probe 205 is shown in FIG. 2. These active probes 205 send messages to the NMS 603 containing updated information for link utilization, latency, or packet loss. They also perform packet dumps to generate summaries of IP addresses or identifiers which are passing through the link. This list of identifiers as contained in packet headers 206 captured by active probes 205, together with the NMS 603 network topology database yield a list of backhaul 203 links whose Access Controller 604 bandwidth management policy must be adjusted to avoid congestion. The correlation and mapping using captured list of identifiers sent by active probes 805 are shown in detail in FIG. 8.


Alternatively, simple passive monitoring can also be implemented. In this approach, the NMS 603 just queries utilization information from network nodes and equipment 201. The links nearing congestion are then identified. Path traversal algorithms can be used to identify the affected IP addresses or backhaul links 203. Additionally, the routing tables can be queried to determine traffic flow through the network. The link and the list of users or IP addresses are correlated to determine the Access Controllers 604 whose bandwidth management policies need adjustment.


In FIG. 3, a backbone link 301 whose pipe is monitored against threshold settings, where thresholds 1303, 2304, and 3305 is at say 80%, 90% and 100% of its total capacity. Threshold 1304, for example, has been set to trigger an alarm when utilization has reached this limit, while at the same time implementing the value set at threshold 2305 as the capacity allowed to be distributed among the backhaul 302 links terminated to it. These threshold settings, 1303 and 2304, enable good latency to be maintained across the link by not allowing the total pipe capacity to be used up. The Core QoS Manager 603 uses the knowledge on utilization threshold violations and other pertinent information for bandwidth management obtained from the NMS 603, to form resource management decisions based on designed core QoS policies. Since an Access Controller 604 is interfaced with both backbone 301 and backhaul 302 links, the Core QoS Manager 603 instructs the Access Controller 604 to implement the core QoS policies by adjusting the bandwidth of backhaul pipe 302 settings to fit their aggregated traffic into their shared backbone link 301. Since monitoring allows the network operator to know exactly which links generate large traffic, the thresholds in the Access Controller 604 can be set so that stations generating a large amount of traffic are penalized.



FIG. 4
a shows a typical scenario for a congested link, wherein continuous and ill-managed traffic from input pipes or backhauls 402 are forced through a limited backbone pipe 401, which give rise to excessive packet stream crowding at this chokepoint. Packets going through a bottleneck have a high probability of being dropped or lost even if traffic shaping is implemented at the network endpoints.


In FIG. 4b however, bandwidth management is implemented at the Access Controllers 604 since it has the capability of linking access capacity (like radio BTS 104) to backhaul 402 capacity, as well as to the core network capacity through the policies issued by the Core QoS Manager 603. This kind of approach in bandwidth management creates a centralized view for core QoS, wherein the Core QoS Manager 603 is “network-aware”, having a holistic idea on what is transpiring across the network in order to decide on policy enforcements that effectively achieve congestion avoidance without compromising agreed SLAs. The Core QoS Manager 603, which can be a software module in the NMS 603, essentially imparts to the Access Controllers 604 a “hint” of network conditions. This concept is an extension of the initial purpose of an Access Controller 604. Originally, an Access Controller 604 performs bandwidth management against the bandwidth of the backhaul link 402. This is a radical departure from typical bandwidth management being implemented at the access levels only like radio sector-level or BRAS traffic-shaping. Extending QoS guarantees and bandwidth management up to the core fulfills one of the necessary requirements of an NGN deployment.



FIG. 5 exemplifies the method for which the decision criteria are recursively implemented inside the Core QoS Manager 603 to avoid network congestion. First, average utilization data 501 are obtained; it is then checked against a utilization threshold 502 of a link. Once a utilization threshold, K, say at 80%, is reached 502, the system checks if the allocation threshold, L, say at 50%, is less than the allocated capacity, M, which is the total committed information rate of all subscribers boarded on the affected link divided by the said affected link capacity 503. This step is performed to ensure that the Committed Information Rates, which is part of the SLAs, are not violated. A violation will trigger to advise the network operator to upgrade affected transmission link 505. If the aggregate of the sold subscriber CIRs do not violate a threshold, the Core QoS Manager 603 performs dynamic policy adjustment by re-configuring the bandwidth policy settings on the affected Access Controllers 604. The Access Controllers 604, serving the affected subscribers or source IP addresses, then enforce the policies 504 onto the backhaul pipes 402 terminated to it. Alternatively, policy adjustment decisions can also be based on combination of utilization and other parameters such as link packet loss and latency. This is particularly useful in events of link failures or errors where alternate paths are congested. Active and passive monitoring results can be correlated to optimize policy adjustment decisions.


Dynamic adjustment design criteria are then applied by distributing a backbone link capacity fairly or in a weighted manner among the backhaul links 402. The result of the calculation is configured by the Core QoS Manager 603 into the Access Controllers 604:







Access





Controller





Bandwidth





Manager





Pipe





Setting

=


Backbone





allocated





capacity





304


#





of





Backhauls





on





the





same





affected





Backbone





link






Alternatively, the basis of the distribution can be correlated to the sold CIRs. This will result to a different bandwidth pipe setting depending on the number of subscribers or the sum of CIRs per Access Controller 604:







Access





Controller





Bandwidth





Manager





Pipe





Setting

=





Total





CIR





of





Subscribers





in





a





Backhaul
×






Backbone





capacity





304





Total





CIR





of





Subscribers





sharing





affected





Backbone











link






Another algorithm is to identify the affected Access Controller/s 604 or backhaul/s 102 which has the highest ratio/s of average utilization to their total sold CIR. Adjusting the bandwidth setting on the concerned Access Controllers 604 is a slow start process where the QoS Manager 603 will observe whether these minimal adjustments will already solve the congestion situation. The new bandwidth settings can be a percentage of the initial setting. Recurring congestion states will result to implementing bandwidth adjustments across the board on all affected Access Controllers 604, the settings of which may approach the values given in the above formulas.


The aggregated subscriber traffic is then appropriately shaped at the Access Controllers 604 as depicted in FIG. 4b. The system is recursive and converges as it makes use of its knowledge of network resources availability as explicitly shown in FIG. 6. Convergence, however, is dependent on the specific type of feedback control mechanism 606 like on/off, proportional, PID, or combinations thereof.


The system can also be used to monitor congestion at the backhauls 102. The active probe software modules can be incorporated into the Access Controllers 604. The Access Controller bandwidth manager pipe can be adjusted to be equal to a value like:







Access





Controller





Bandwidth





Manager





Pipe





Setting

=

Function


(


Total





CIR





of





Subscribers





in





a





Backhaul
×
Allowance





Value

,

Maximum





Subscriber





MIR
×
Allowance





Value


)






This method is a way of creating a perception among users that their experience is fairly the same regardless of the load in a base station or Access Controller 604. The bandwidth setting is adjusted in proportion to the number of users or sold CIRs in an Access Controller 604. This is also a way of proactively controlling the traffic that will traverse a backhaul 404, thus minimizing the probability of congestion at the backbone 403.


Variations of the cited algorithms can also be used to detect violations of sold CIR in the backhaul links 102 to trigger a link upgrade advisory. Combinations of these backbone 101 and backhaul 102 link checking algorithms can be implemented in order to guide the operator in network upgrade decisions. Bandwidth policy adjustments relating to possible congestion in the core or backbone links 101 must take precedence because more subscribers will be affected.


In addition, low time constant, real-time adjustments may not be that necessary for an actual implementation. As shown in FIG. 7, typical network operator link traffic will be busy for certain parts of the day. Even though the instantaneous load varies, it can be expected that when a certain threshold 701 is exceeded, the average load for the network will remain high for a long time interval. For example, the response time for the network monitoring and the corresponding dynamic adjustment can be set to 5 minutes 702. Even though the network load may drop below the threshold within this time interval, it is not necessary to turn off the bandwidth control since the network load will most certainly increase again. Bandwidth adjustment will not be turned off when the network load decreases for a sufficient period of time. Sufficient sampling of the network load is achieved by just setting the response time much quicker than the time constant of the network traffic load profile.


Modifications on the decision criteria may also be implemented like tracking the sum of subscriber CIRs per link in advance as the subscribers are admitted into the network to generate link upgrade advisories. The algorithms and the formulas presented in this paper may also be modified depending on network planning parameters such as oversubscription factor which may vary according to subscriber usage profiles.


Lastly, dimensioning for network scalability can be modeled using the frequency that links have violated certain utilization or capacity thresholds as depicted above. As such, network operators can perform statistical analysis using the CIR limits alerted and viewed from the central NMS 603 to assess network needs and to be able to maintain true QoS.

Claims
  • 1. A system implementing feedback control mechanisms to manage available core transport bandwidth to guarantee QoS in packet-based networks, the system comprising of: (a) Network Management System (NMS);(b) Core QoS Manager;(c) and Access Controllers.
  • 2. A method to implement bandwidth management policy adjustments and a generalized way of implementing Resource and Admission Control Functions (RACF) in a Next-Generation Network (NGN), the method comprising of: (a) Network Monitoring Feedback Control Mechanism;(b) Resource Management;(c) Policy Enforcement.
  • 3. An architecture wherein core transport of interest consists of: (a) backbone links connecting edge nodes or aggregators of backhaul links;(b) backhaul links connecting the backbone to the remote sites or base stations serving the subscribers, each served by an Access Controller
  • 4. A method in claim 2, wherein each subscriber terminal, like a PC or IP phone, is given a committed information rate (CIR) and maximum information rate (MIR), as part of the Service Level of Agreement (SLA).
  • 5. A system in claim 1 wherein a Network Management System has a database of the network topology, dynamic link conditions and utilizations, and link congestion states which become the basis for link utilization, packet loss, or latency violation alerts, or combinations thereof.
  • 6. A system in claim 1, wherein the Core QoS Manager is a software program module independent of or inside the NMS which perform resource management decisions to enforce QoS policies into the Access Controllers.
  • 7. A method in claim 2, which includes algorithms for correlating link congestion state to the affected Access Controllers using the generated list of subscribers, IP addresses, or source/destination of traffic streams, or any identifier using: (a) Passive Network Tree Traversal and/or routing table queries;(b) Active Probing of Traffic passing through links.
  • 8. A system in claim 1, where the Core QoS Manager calculates the appropriate bandwidth management setting per Access Controller, the method consisting of: (a) Defining utilization thresholds for each link;(b) Checking for SLA CIR violations per link;(c) Generation of network link upgrade alerts;(d) Triggering dynamic bandwidth adjustment.
  • 9. A Method in claim 8, wherein Access Controller pipe settings are determined by several algorithms such as: (a) Distributing the backbone capacity equally or weighted among the affected Access Controllers;(b) Distributing the backbone capacity among the affected Access Controllers in proportion to sum of subscriber CIRs in a backhaul;(c) Configuring Access Controller pipe settings based on served subscriber CIR or MIR to proactively limit the traffic traversing a backhaul link;(d) Identifying the Access Controller/s with the highest backhaul utilization to sum of sold backhaul CIRs ratio/s and performing a slow start process to set their pipes at a percentage of the initial setting;(e) Setting the initial pipe to a predetermined value, and modifying this value based on the observed response;(f) Combinations or variations of these algorithms.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application acknowledges the benefits of U.S. Pat. No. 6,765,873 entitled “Connections Bandwidth Right Sizing Based On Network Resources Occupancy Monitoring” by Fichou, et. al. filed on Jun. 29, 2000 and patented on Jul. 20, 2004, and U.S. Pat. No. 6,931,011 B2 entitled “Methods And Systems For Bandwidth Management In Packet Data Networks” by Giacopelli, et. al. filed on Jan. 31, 2001 and patented on Aug. 16, 2005, the disclosure of which are incorporated herein by reference in its entirety.