This invention relates generally to electronically commutated motors, and more specifically, to methods and systems for recording operating information of an electronically commutated motor.
Power control systems for electronically commutated motors (ECM), sometimes referred to as brushless direct current (DC) motors, are utilized to control the operation of ECMs. More specifically, a processing device such as a microcontroller may be utilized in a power control system to control the operation of ECMs. Occasionally, in some cases because of the speeds, loads, and voltages involved with ECM operation, an ECM or power control system may fail.
A common failure mode for microcontroller based power control systems is a cascading type failure. This type of failure may begin with a power switch failure, which may allow a low voltage circuit, such as a power control system, to be overloaded by a high voltage and fail.
In one aspect, a unit for recording operating information of an electronically commutated motor (ECM) is provided. The unit includes a system controller communicatively coupled to an ECM. The system controller includes a processing device configured to control the unit. The unit also includes a memory device communicatively coupled to the system controller. The memory device is configured to receive and store ECM operating information provided by the processing device.
In another aspect, a method for providing a system to record operating information of an electronically commutated motor (ECM) is provided. The method includes configuring a processing device to collect operating data from an ECM, configuring the processing device to identify at least one of an ECM failure and a system controller failure, and configuring a memory device to receive and store the ECM operating data after at least one of an ECM failure, a system controller failure, and a user provided shut-down instruction.
In yet another aspect, a motor system is provided. The system includes an electronically commutated motor (ECM), a controller communicatively coupled to the ECM, the controller includes a processing device configured to control operation of the ECM, and a memory device communicatively coupled to the processing device. The memory device is configured to receive and store operating information collected by said processing device.
In yet another aspect, a method for recording operating information of an electronically commutated motor (ECM) is provided. The method includes collecting operating data from the ECM, identifying at least one of an ECM failure and a system controller failure, and storing the ECM operating data after identifying at least one of an ECM failure, a system controller failure, and a user provided power-down instruction.
In another aspect, a motor controller for an electric motor includes an enclosure and a processing device, memory device, and communication interface disposed within the enclosure. The processing device is configured to control the electric motor and collect operating information from the electric motor during operation of the electric motor. The memory device is communicatively coupled to the processing device. The memory device is configured to receive and store the operating information collected during operation of the electric motor. The a communication interface is communicatively coupled to the processing device and the memory device, and is configured to enable access to the operating information stored on the memory device by a computing device disposed remotely from the electric motor.
In another aspect, a method of collecting operating information for an electric motor is provided. The method includes controlling, by a processing device disposed local to the electric motor, operation of the electric motor to generate the operating information. The method includes writing the operating information to a memory device disposed local to the electric motor. The method includes transmitting the operating information to a computing device disposed remotely from the electric motor and coupled to the electric motor via a communication interface, for at least one of storage or display at the computing device.
In another embodiment, the printed circuit board is populated with a plurality of electronic components (not shown) coupled to the printed circuit board and each other to control output signals from the printed circuit board in order to control the operating characteristics of ECM 14. The configuration of the microprocessor and the electronic components is variable, based on at least one requirement of a user. In an exemplary embodiment, control module 12 is mounted remotely from ECM 14 and end shield 16. In another embodiment, control module 12 is mounted to an external surface of ECM 14. In yet another embodiment, a plurality of control modules are electrically coupled serially such that each control module is configured to control a motor operating characteristic.
Control module 12 is electrically coupled to end shield 16 by a cable 22. Also, end shield 16 is electrically coupled to ECM 14 by cables. Control module 12 is also electrically coupled to a user's power supply and interface circuitry (not shown in
In an exemplary embodiment, ECM 14 includes a single phase salient pole stator assembly, indicated generally at 38, including a stator core 40 formed from a stack of laminations made of a highly magnetically permeable material, and windings (not shown) of magnet wire wound on stator core 40 in a way known to those of ordinary skill in the art. A rotor 44 includes a rotor core (not shown) formed from a stack of laminations made of a magnetically permeable material substantially received in a central bore of stator core 40. Rotor 44 and stator 38 are illustrated as being solid in
In the embodiment shown in
Processing device 102 includes a Random Access Memory (RAM) configured to temporarily store predetermined operating information. Memory device 104 is configured to receive and store data from processing device 102. The data from processing device 102 may be transferred to memory device 104 directly after it is received by processing device 102 or transferred to memory device 104 after being temporarily stored in the RAM of processing device 102.
Recording system 100 also includes a communications interface 46 (shown in
In operation, the data stored by memory device 104 is accessed by a user, in one embodiment, specifically so that a user can recover a record of operating conditions prior to a failure, for example, at least one of an ECM failure or an ECM controller failure. A record of the conditions prior to a failure allows a user to analyze the cause of the failure, diagnose a specific area within a motor and motor control system to fix or replace, and prevent future failures through adjustments to failure-causing parts.
In an exemplary embodiment, processing device 102 updates a record of motor operating conditions at periodic intervals and stores those records in the RAM of processing device 102. The periodic intervals are chosen such that the conditions prior to a failure can be recovered and analyzed. Processing device 102 also detects when a failure is occurring or has occurred. Once a failure is detected, processing device 102 will not overwrite the data stored in the RAM so that the conditions prior to the failure can be recovered and analyzed.
In one embodiment, the RAM in processing device 102 stores historic information about conditions predetermined by a user to be of interest, for example, unusual conditions or events. These unusual conditions or events may include, but are not limited to, a peak control module temperature, a fault detection event count, and a start failure count.
In operation, processing device 102 transfers the information stored in the RAM to memory device 104. The transfer of the information stored in the RAM to memory device 104 may occur at a set time interval, at a power-down, or when a failure is detected by processing device 102. A power-down occurs when the power supply to the recording system is interrupted.
In an exemplary embodiment the data received and stored by memory device 104 may include, but is not limited to, a total powered time of the ECM, a total run time of the ECM, a total time operated in a cutback region, a total time over a preset thermal limit, a total number of run cycles, temperature extremes, a last operating torque level, a last operating bus voltage, a last operating speed, a last control module temperature, a count of fault events, a count of reset cycles, a count of oscillator stop events, a count of stall events, and “scratch-pad” events.
Memory device 104 may also be provided with, and store, production process information. This information may be copied to memory device 104 at the completion of a memory test, and may include a copy of a factory calibration including passmarks and other process records. The production process information is stored by memory device 104 so that the information will not be lost in the case of a catastrophic failure.
As stated above, the total powered time of an ECM may be received and stored by memory device 104. The total powered time of an ECM is the total length of time that the ECM has received power. In an exemplary embodiment, RAM variables for powered time are incremented within processing device 102 at each pass through a main program loop. This information is saved to memory device 104 at, for example, a power-down of recording system 100 or at the time of a detected failure.
The total run time of an ECM is the total length of time that the ECM has operated at or above a preset threshold. In an exemplary embodiment, RAM variables for run time are incremented if the motor is running and the product of speed and torque meets or exceeds a preset threshold (e.g., approximately 80% of full power). This information is saved to memory device 104 at, for example, a power-down of recording system 100 or at the time of a detected failure.
The total time in a cutback region is the total length of time that the ECM has operated at a speed that exceeds a preset rate of speed. In an exemplary embodiment, RAM variables for time in the cutback region are incremented if the ECM is running and the speed exceeds the preset rate of speed (e.g., approximately 80% of the speed when ECM is operating at full power). This information is saved to memory device 104 at, for example, a power-down of recording system 100 or at the time of a detected failure.
The total time over a thermal limit is the total length of time that the ECM has operated with the ECM baseplate temperature exceeding a preset thermal limit. In an exemplary embodiment, RAM variables for total time over a thermal limit are incremented if the motor is running and the ECM baseplate temperature exceeds the thermal limit setting. This information is saved to memory device 104 at, for example, a power-down of recording system 100 or at the time of a detected failure.
The total run cycles of an ECM is a count of the number of times an ECM is started. In an exemplary embodiment, RAM variables for operating cycles are incremented every time a start is successful. This information is saved to memory device 104 at, for example, a power-down of recording system 100 or at the time of a detected failure.
Examples of the temperature extremes that may be stored are a minimum and a maximum ECM temperature. In an exemplary embodiment, a value representing the minimum ECM temperature and a value representing the maximum ECM temperature are saved to memory device 104 at, for example, a power-down of recording system 100 or at the time of a detected failure. In an exemplary embodiment, the values representing the minimum ECM temperature and the maximum ECM temperature are stored in the form of RAM words.
The last operating torque level may also be stored by memory device 104. In an exemplary embodiment, a value representing the last measured torque level before operation ceased is saved to memory device 104 at a power-down of control module 12 or at the time of a detected failure. In an exemplary embodiment, the value representing the last measured torque level before operation ceased is stored in the form of a RAM word.
The last operating bus voltage may also be stored by memory device 104. In an exemplary embodiment, a value representing the last measured bus voltage is saved to memory device 104 at a power-down of control module 12 or at the time of a detected failure. The decision to store this data is made when the bus voltage has fallen below a preset limit, so an older copy of the bus voltage measurement must be used. In an exemplary embodiment, approximately once every 936 ms, a bus voltage reading is stored in a three level memory buffer so that the history of the bus voltage is available, and the peak bus voltage may be selected and saved to memory device 104.
A last operating speed may also be stored by memory device 104. In an exemplary embodiment, a value representing the last operating speed is saved to memory device 104 at a power-down of control module 12 or at the time of a detected failure. In an exemplary embodiment, the value representing the last operating speed is stored in the form of a RAM word.
A last module temperature may also be stored by memory device 104. In an exemplary embodiment, a value representing the last module temperature is saved to memory device 104 at a power-down of control module 12 or at the time of a detected failure. In an exemplary embodiment, the value representing the last module temperature is stored in the form of a RAM word.
A count of fault events may also be stored by memory device 104. In an exemplary embodiment, RAM variables for fault events are incremented every time a fault intervention runs. Examples of a fault event include, but are not limited to, a circuit connection failure, a component failure, and a software failure. This information is saved to memory device 104 at, for example, a power-down of recording system 100 or at the time of a detected failure.
A count of reset cycles may also by stored by memory device 104. In an exemplary embodiment, RAM variables for reset cycles are incremented each time the initialization routine runs. This information is saved to memory device 104 at, for example, a power-down of recording system 100 or at the time of a detected failure.
A count of oscillator stop events may also be stored by memory device 104. In an exemplary embodiment, RAM variables for oscillator failure are incremented each time the clock fail interrupt runs. This information is saved to memory device 104 at, for example, a power-down of recording system 100 or at the time of a detected failure.
A count of stall events may also be stored by memory device 104. In an exemplary embodiment, RAM variables for operating cycles are incremented every time a start is unsuccessful. This information is saved to memory device 104 at, for example, a power-down of recording system 100 or at the time of a detected failure.
Each type of information stored by memory device 104 may be stored separately, but also may be stored in groups. For example, a section of memory in memory device 104 may be used to store a pairing of different types of information. Relevant information may be extracted from not only each individual type of information, but also from the results of a comparison of different types of information. In an exemplary embodiment, a measured value may be paired with a representation of the time that the measured value was obtained.
Memory device 104 may also provide storage of miscellaneous information. Storage of miscellaneous information, which may include any information a user would like to store, is referred to herein as a scratch-pad memory function of memory device 104. The miscellaneous information may include information about the system controller which can be used by a successor system controller in the case the original system controller is replaced. The information about the system controller may also identify and track the motors that have been connected to the system controller.
In an exemplary embodiment, at least sixteen blocks (16 byte size) of memory within memory device 104 are reserved for the scratch-pad memory function. The scratch-pad memory function is used by the customer for storage and retrieval of miscellaneous information via special serial commands that specify the block number where the particular information is stored. It is the responsibility of the system control designer to regulate this usage so that the write endurance of the part is not exceeded (e.g., 1 million cycles is typical for an EEPROM).
In the exemplary embodiment of
More specifically, processing device 102 may be a serial EEPROM. In an exemplary embodiment, shown in
The transfer of the information stored in the RAM of processing device 102 to memory device 104 consumes processor time. In an exemplary embodiment, timer interrupts in the motor drive are allowed to run during a transfer of information between the RAM and the memory device 104. This ensures that motor operation is not interrupted by memory transfers. Copies of the information to be transferred are loaded onto the RAM and written back to the EEPROM at intervals or when the power is failing.
In an exemplary embodiment, the API functions have the form of a block move, performed discontinuously by means of multiple passes through a state machine. More specifically, the firmware environment has a main loop that contains a call to the state machine. If there is a transfer pending, some predetermined number of words is transferred, until enough passes have occurred to complete the range.
In this embodiment, the lower level operations are divided into separate calls, such that a single word transfer is done without going through the state machine simply by doing a series of subroutine calls. Dividing the lower level operations into separate calls allows usage of single words in the device without waiting for the main loop to do the transfer.
In an exemplary embodiment, write enable/disable functions are included inside the API functions. The memory device 104 is left in the write disabled state between function calls. The API function may define a maximum block transfer size allowed. In one embodiment, the API function defines the maximum block transfer size allowed only if the maximum block transfer size is less than 255. Processing device 102 performs a range check comparing a string length against the maximum block transfer size.
In this exemplary embodiment, the API may also define a number of words to transfer per each pass through the state machine. This allows the transfer rate to be adjusted in response to its environment.
The API may also include values for the highest and lowest RAM locations allowed. The processing device 102 is configured to terminate a transfer if the RAM destination address is outside this range.
In an exemplary embodiment, port pin data direction and level are saved at the beginning of a call and restored at the end. Saving in this manner allows the EEPROM interface to coexist with other functions.
Referring further to
In another exemplary embodiment, memory device 104 includes protective circuitry or at least one component configured to prevent damage to the information stored on memory device 104. As described above, during a motor or a motor controller failure, low voltage components may be exposed to voltages high enough to damage the low voltage components such as processing device 102 and memory device 104.
In an exemplary embodiment, protective circuit 106 is a clamp circuit. In the embodiment of
Method 200 also includes storing 204 the operating information in the RAM of processing device 102. In one embodiment, processing device 102 collects one type of motor operation information and temporarily stores that piece of information in the RAM. After a predetermined time period, processing device 102 re-records the same type of motor operation information and replaces the previous information stored in the RAM with the more recently collected information. Updating the motor operation information as described above ensures that should a failure occur, the information is stored at a point in time that is close to the time of the failure.
In another example embodiment, processing device 102 collects one type of motor operation information and temporarily stores that piece of information in the RAM. After a predetermined time period, processing device 102 collects an updated version of the same type of motor operation information and compares it to the information stored in the RAM. Depending on how processing device 102 is configured, processing device 102 will either replace the older information with the updated version of the information, or continue to store the older information. Information such as temperature extremes (e.g. high and low ECM operating temperatures) are stored in the RAM in this manner.
In yet another exemplary embodiment, processing device 102 monitors one aspect of motor operation. When the aspect of motor operation being monitored by processing device 102 meets a specific criteria, a RAM variable is incremented to track the number of times that the aspect being monitored occurred or the length of time that the aspect being monitored occurred. Aspects of motor operation, for example, the number of reset cycles and the total time over a thermal limit are stored in the RAM in this manner.
Method 200 further includes determining 206 whether a motor or motor controller failure is occurring or has occurred. Determining 206 whether a motor or motor controller failure is occurring or has occurred includes configuring processing device 102 to recognize when a motor or motor controller failure is occurring or has occurred. When a failure is determined, method 200 includes transferring 208 the information stored in the RAM to the memory device for secure storage of pre-failure operating conditions.
Method 200 also includes scheduling 210 the transfer of the information stored in the RAM to the memory device 104. More specifically, method 200 includes transferring 208 the information stored in the RAM to memory device 104 after the expiration of a preset time period. If a failure is not determined, the processing device continues monitoring motor operation 202.
In an exemplary embodiment, processing device 102 may be configured to retrieve instructions from memory device 104. In an exemplary embodiment, processing device 102 is configured to retrieve instructions from a predetermined location within memory device 104 after a specific type of operating information monitored by processing device 102 reaches a predetermined measurement or count. Storing contingent operating instructions in memory device 104 allows control of the ECM to be customized automatically in response to a measured operating condition.
To summarize, a non-volatile memory is included in the associated circuitry of a processing device based ECM control. The memory allows the processing device to store information about the operating environment history of the motor. The operating environment history of the motor can be retrieved from the memory and analyzed after a motor or motor controller failure. The operating environment history of the motor can also be retrieved at any time from the memory and analyzed in order to aide a user in optimizing the system over time. The memory is protected from potentially damaging voltages by circuitry designed to limit voltage. The protective circuitry protects the memory from the effects of a failure that may destroy the associated processing device or motor. Protecting the memory allows a user to retrieve from the memory the operating environment history of the motor from a time prior to the failure even after the destruction of the motor and/or the processing device.
Finally, the memory and processing device together provide a secondary storage medium for information that is useful to the system controller. The processing device may be configured to retrieve operating instructions from the memory after receiving a predetermined level or count of a particular type of operating data the processing device had been monitoring.
The term “user”, as used herein, includes a human operator, as well as systems and applications. Therefore, the term user is not limited to being a human, and in many instances references a system or application that includes software operating on a processor. In addition, the terms “data”, “message”, “information”, and “file” are sometimes used herein interchangeably, and each of those terms broadly refer to information in any format.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
This application is a continuation of U.S. patent application Ser. No. 16/567,570 filed Sep. 11, 2019, which is a continuation of U.S. Pat. No. 10,447,193 filed Aug. 23, 2018, which is a continuation of U.S. Pat. No. 10,069,451, filed Mar. 16, 2017, which is a continuation of to U.S. Pat. No. 9,621,080, filed Dec. 15, 2015, which is a continuation of U.S. Pat. No. 9,236,819, filed on Jan. 28, 2014, which is a continuation of U.S. Pat. No. 8,749,927, filed Aug. 17, 2012, which is a continuation of U.S. Pat. No. 8,269,448, filed Jan. 15, 2010, which is a continuation of U.S. Pat. No. 7,675,257, filed Mar. 9, 2007, all of which are hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4381457 | Wiles | Apr 1983 | A |
4384243 | Muskovac | May 1983 | A |
4412160 | Kojima et al. | Oct 1983 | A |
4445198 | Eckert | Apr 1984 | A |
4716286 | Taylor | Dec 1987 | A |
5033010 | Lawrence et al. | Jul 1991 | A |
5055755 | Ozawa et al. | Oct 1991 | A |
5251157 | Prather | Oct 1993 | A |
5473229 | Archer et al. | Dec 1995 | A |
5592058 | Archer et al. | Jan 1997 | A |
5744921 | Makaran | Apr 1998 | A |
5884237 | Kanki et al. | Mar 1999 | A |
5917428 | Discenzo | Jun 1999 | A |
5936315 | Lais | Aug 1999 | A |
5982120 | Akiyama et al. | Nov 1999 | A |
6041287 | Dister | Mar 2000 | A |
6118235 | Redlich | Sep 2000 | A |
6124692 | Canada et al. | Sep 2000 | A |
6199018 | Quist et al. | Mar 2001 | B1 |
6262550 | Kliman et al. | Jul 2001 | B1 |
6271638 | Erdman et al. | Aug 2001 | B1 |
6295510 | Discenzo | Sep 2001 | B1 |
6297742 | Canada | Oct 2001 | B1 |
6453260 | Prough | Sep 2002 | B1 |
6469920 | Butler et al. | Oct 2002 | B2 |
6512343 | Yasohara | Jan 2003 | B1 |
6529135 | Bowers | Mar 2003 | B1 |
6529136 | Cao et al. | Mar 2003 | B2 |
6601015 | Milvert | Jul 2003 | B1 |
6640196 | Unsworth | Oct 2003 | B1 |
6661684 | Morita | Dec 2003 | B2 |
6768279 | Skinner et al. | Jul 2004 | B1 |
6810292 | Rappenecker et al. | Oct 2004 | B1 |
6847854 | Discenzo | Jan 2005 | B2 |
6895176 | Archer et al. | May 2005 | B2 |
6949899 | Horng et al. | Sep 2005 | B2 |
6990398 | Kinugawa | Jan 2006 | B2 |
7005884 | Gunton | Feb 2006 | B2 |
7024335 | Parlos | Apr 2006 | B1 |
7095194 | Kro et al. | Aug 2006 | B2 |
7127373 | House et al. | Oct 2006 | B2 |
7135830 | El Ibiary | Nov 2006 | B2 |
7142990 | Bouse et al. | Nov 2006 | B2 |
7145265 | Mc Nulty et al. | Dec 2006 | B2 |
7222050 | Kakegawa et al. | May 2007 | B2 |
7298110 | Lindsey | Nov 2007 | B2 |
7342763 | Mladenik | Mar 2008 | B2 |
7602132 | Davis | Oct 2009 | B2 |
7675257 | Beifus et al. | Mar 2010 | B2 |
7797062 | Discenzo | Sep 2010 | B2 |
8073588 | Peters | Dec 2011 | B2 |
8314576 | Fahimi et al. | Nov 2012 | B2 |
20030120441 | Sotack | Jun 2003 | A1 |
20030204777 | Kojori | Oct 2003 | A1 |
20040135534 | Cullen | Jul 2004 | A1 |
20050033577 | Bradley et al. | Feb 2005 | A1 |
20050125090 | Sakano et al. | Jun 2005 | A1 |
20050189892 | Kokami et al. | Sep 2005 | A1 |
20060238388 | Jayanth | Oct 2006 | A1 |
20070078614 | Discenzo et al. | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
0841574 | May 1998 | EP |
11304534 | Nov 1999 | JP |
2004084890 | Mar 2004 | JP |
1990005959 | May 1990 | WO |
Entry |
---|
European Search Report, Application No. EP 08250731 dated May 25, 2010, 7 pgs. |
European Search Report, dated Dec. 14, 2012, for co-pending EP patent application No. EP 12176582 (12 pgs). |
First Examination Report from the EPO for co-pending EP application No. EP12176582.0 dated Aug. 5, 2013, 7 pgs. |
First Official Communication re: EPO Application No. 08250731.0-2206 dated Feb. 21, 2011, 6 pgs. |
National Instruments: “Protecting RS-232 Serial Port from Over-Voltage,” Dec. 20, 2006, 1 pg. |
Notice of Allowance and Fee(s) Due U.S. Appl. No. 12/688,443 dated May 21, 2012; 9 pgs. |
Notice of Allowance dated Oct. 16, 2009 from U.S. Appl. No. 11/684,245, 8 pgs. |
Notification of First Office Action dated Dec. 4, 2013 including Search Report re Chinese Patent Application No. 201210250316.7, 15 pgs. |
Partial European Search Report, dated Sep. 17, 2012, for co-pending EP patent application No. EP12176582, 8 pgs. |
“Protection circuits SP720, SP721, Technical brief TB320, application note AN9304”, in: “Transient Voltage Suppression Devices 1994”, Aug. 1993 (Aug. 1993), Harris Semiconductur, Melbourne, Florida, USA, pp. 11.6 to 11.15 and 12.15 to 12.21. |
“Protection of RS-232 Serial Connections,” American Power Conversion, White Paper #16, Jan. 1, 2003, pp. 1-8. |
Transient Voltage Suppressor TVS305-TVS430 TVS505-TVS528 Apr. 7, 1996, pp. 4-17-4-20, XP55073550, Watertown, MA 02172, Retrieved from the Internet on Jul. 30, 2013: URL: http://datasheet.iiic.ccmicrosemi/TVS515.pdf. |
Notice of Allowance dated May 9, 2018 from U.S. Appl. No. 15/460,686, 9 pgs. |
Number | Date | Country | |
---|---|---|---|
20210159837 A1 | May 2021 | US | |
20220052634 A9 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16567570 | Sep 2019 | US |
Child | 17163990 | US | |
Parent | 16110229 | Aug 2018 | US |
Child | 16567570 | US | |
Parent | 15460686 | Mar 2017 | US |
Child | 16110229 | US | |
Parent | 14970169 | Dec 2015 | US |
Child | 15460686 | US | |
Parent | 14166541 | Jan 2014 | US |
Child | 14970169 | US | |
Parent | 13588607 | Aug 2012 | US |
Child | 14166541 | US | |
Parent | 12688443 | Jan 2010 | US |
Child | 13588607 | US | |
Parent | 11684245 | Mar 2007 | US |
Child | 12688443 | US |