These teachings relate generally to the field of commercial and residential security systems and, more particularly to the users ability to remotely access and control, via the Internet, the smart home and security peripheral devices managed by a remote system.
One of the major problems associated with current security systems is that all of the functionality associated with the system is centralized in the premises being secured by the system. By having the core operational component and corresponding system functionality centrally located in the monitored premises, it renders the system very susceptible to sabotage thereby making the system potentially disabled once an initial breach occurs. The system might be able to detect a breach into the premises, but once an individual has entered the monitored premises, the breaching individual has access to the entire security system due to its centralized location in the premises being monitored. As such, it is a significant concern, for security purposes, that the operational nature and corresponding functionally protecting a certain location is housed and maintained at the location being monitored.
Other than the limited telephonic communications between the Alarm Manager and a central monitoring station, the conventional art has very limited remote, off-site access. The lack of this remote access requires a technician to travel to the customer's premises to maintain, update and repair the system. These visits can be costly and time consuming, but more importantly, the system can be inoperative while waiting for the technician to address the problem leading to increased vulnerability. This is a significant problem in the current art as many system providers are chained to the telephonic communication system and, as such, are greatly limited in terms of remote access and maintenance.
Furthermore, the existing art requires a trained technician to install and integrate the various smart home and security peripheral devices with the system. Similar to the lack of remote functionality, this process can be very time consuming and cost prohibitive. Additionally, the requirements of a specialized electrical knowledge to access and diagnose the system inhibit its ability to be user friendly and easily maintained without specialized, professional knowledge.
There is therefore a need to provide a security system that allows for remote access, where such remote access shall allow accessibility and interaction with peripheral devices, communication between various peripheral devices, as well as diagnosing and administering the system.
There is a further need to utilize an off-site system where such off-site system contains all of the necessary functionally to allow the system to operate remotely with the various peripheral and access devices.
The problems set forth above as well as further and other problems are solved by the present teachings. These solutions and other advantages are achieved by the various embodiments of the teachings described herein below.
In one embodiment, the method of these teachings for rendering a security system less susceptible to sabotage it includes the steps of utilizing a remote server to manage security alerts and utilizing another remote system to arm and disarm the security system; the other remote system being in communication with the remote server. In another embodiment, the method of these teachings includes the steps of utilizing a remote server to manage security alerts, utilizing the remote server to administer security system updates and utilizing the remote server to set up the security system. In one instance, the step of managing security alerts includes determining a type of alert for an alert, merging an identifying ID with the alert type, determining a location of the alert and transmitting, using a transmitter and a preselected transmission method, the merged ID and alert type and the location to a predetermined site. In another instance, the step of setting up the security system includes referencing each security device in the security system to a device database; data in the device database comprising customer location, customer system preferences, customer name, and number and type of security devices utilized by the security system and enabling viewing/controlling a security device by means of a remote alarm keypad (also referred to as remote alarm console).
In one embodiment, the system of these teachings includes one or more processors, one or more communication devices for communicating over a network with remotely located security/Smart home devices and with a remote alarm console, one or more computer usable media having computer readable code embodied therein causing the one or more processors to: manage security alerts, administer security system updates and set up the security system.
For a better understanding of the present teachings, together with other and further objects thereof, reference is made to the accompanying drawings and detailed description and its scope will be pointed out in the appended claims.
a is a block diagram representation of a portion of the Remote Alarm Keypad of these teachings;
b is a block diagram representation of a portion of the Remote Alarm Panel of these teachings.
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
Typically, a conventional system contains six components: 1) the Security Devices 10; 2) the Alarm Panel 20, which contains the management algorithms for the Security Devices; 3) the Alarm Keypad 30; 4) a Local Phone line 40; 5) a telephone communications company (“Telco”) 60; and 6) a Security Central Monitoring station 70. In a conventional system, the Security Devices (e.g. motions sensors, window/door sensors) and the Alarm Keypad communicate with the Alarm Panel via a direct, hard-line connection. Additionally, the Alarm Panel sends various commands to the Security Devices as such commands were received from the Alarm Keypad. In the event of an alert, the Security Device sends a communication to the Alarm Keypad via the Alarm Panel. If a certain communication via the Alarm Keypad is not received in a particular time, the Alarm Panel will transmit the alert via the Local Phone and Telco to a Security Central Monitoring station. The Security Central Monitoring would then interpret the signal and communicate via the same telephone to the Alarm Panel or the customer. In a conventional system, the Security Devices, Alarm Panel and Alarm Keypad are hardwired into the monitored premises thereby creating limited remote accessibility and vulnerability. Additionally, in order for a user to access or determine the systems status, the user must be physically present in the premises.
“Remote,” as used herein, refers to being located at a different physical location, or having the capability to be moved to a different physical location from, and not being physically connected to the security devices or having the ability to access the system from a different physical location of the system.
“Physically connected,” as used herein, does not include being connected by means of a wireless connection or being connected to a wireless network.
“Monitoring site/center,” as used herein, refers to a remote manned or unmanned station that receives various alerts or other signals sent from the security system where, after receiving and interpreting such signal, an automated or manual response is undertaken based on the signal and its interpretation. In one instance, the received signal includes a protocol that indicates the nature of the signal and an indicator of the location from which to signal originates.
“Security devices,” as used herein, includes devices such as, but not limited to, motions sensors, window/door sensors, surveillance cameras, proximity alarms, identification verification systems (e.g. keycard readers, retina scanners, etc.), pressure sensors, temperature sensors, light sensors and smell detectors (e.g. smoke detectors). A “security system,” as used herein, is a system including one or more security devices, the system being designed, installed and operated to monitor, detect, observe or communicate about activity that may pose a situation of interest (such as, but not limited to, a security threat) in a location or locations.
“Emergency authorities,” as used herein, includes, but shall not be limited to any governmental authority providing police, fire or medical assistance or a private agency empowered by the customer or by operation of law to provide emergency police, fire and medical services.
The present teachings, however, incorporate different pathways to provide increased functionality and to solve the problems set forth above. As shown in
The remote Alarm Keypad (Alarm Console) is a mobile, computerized device (having one or more processors) that has the ability to access a network, such as the Internet, and communicate with the Remote Alarm Panel using a remote communication method, such as, but not limited to, wireless communications. This functionality is accomplished by placing specialized software (a computer usable medium has the specialized software embodied therein, the specialized software causing the one or more processors to perform the method described herein) on the device that has the ability to access and communicate with the Remote Alarm Panel utilizing various computerized call structures. The remote Alarm Keypad 140 (Alarm Console) serves a substantively similar function to the Alarm Keypad 20 in a conventional system, but due to use of networks, such as, but not limited to, the Internet and software, the Alarm Keypad does not need to be physically connected to the Alarm Panel or any of the Security Devices. In one embodiment, the Alarm Keypad, however, does not directly communicate with any of the Security Devices or the Device Gateway as all communications from the Alarm Keypad 140 are channeled through the Remote Alarm Panel 160.
The Remote Alarm Panel acts as the centralized intelligence of the system as it facilitates communication, via the Internet, between the Alarm Keypad (Alarm Console), the Security Central Monitoring and the Security Devices. The Remote Alarm Panel is, in one embodiment, a server that contains each customer's information, system configuration and alerts. This device will be housed at a remote location (e.g., but not limited to, the provider's location) and it is not necessary for it to be placed in the monitored premises. The Remote Alarm Panel, however, is not restricted to a hardware device as its major functionality is accomplished through software algorithms.
As compared to conventional systems, the present teachings allow complete remote functionality via a network, such as the Internet. There is no longer a need to physically connect or centrally locate any of the peripheral devices. This allows for the user to access the system from anywhere where Internet (network) connectivity is available. Additionally, an administrator function can remotely provide software updates as well as diagnose and maintain many major components of the system.
Some exemplary embodiments of the logic algorithms are presented below. It should be noted that the exemplary embodiments are presented to further illustrate the present teachings. The present teachings are not limited to only these exemplary embodiments. In the first exemplary embodiment, the video and logical data corresponding to an event are recorded and an alert message is sent.
Exemplary embodiment 1 Alert type:
In the second exemplary embodiment, the user designated reaction is to turn on lights in a sequence.
Exemplary embodiment 2 Alert type:
in the third exemplary embodiment, the user designated reaction is to track an object over a number of cameras as the object passes through the field of view of camera and to record the data and identify the alert.
Exemplary embodiment 3 Alert Type:
The Alarm Keypad has a custom user interface (350,
Interaction with the security system is obtained by means of the Remote Alarm panel 160, in some instances in conjunction with the Remote Alarm Keypad 140. The interaction with the security system includes, but it is not limited to, arming and disarming the security system or arming and disarming particular security devices in the security system, adjusting settings or parameters of predetermined security devices, updating firmware of predetermined security devices, adding new features to predetermined (selected) security devices, expanding capability of predetermined security devices, controlling predetermined security devices, and making requests of and obtaining device output from predetermined security devices. These capabilities are shown in
If the signal represents an alarm alert (210,
In one embodiment, the Remote Alarm Panel of these teachings includes one or more processors (460,
Since the core functionality is remote, all of the controls and functionally are accessible from the network and, as such, there is no need to have access to the monitored premises. A vast majority (approx. 99%) of the updates or repairs can be fixed remotely via software updates. This will allow the system provider to transparently enhance the features and functionally provided to the user without disrupting mission critical components of the overall system. Remote management tools will be used to monitor user gateways with the ability to proactively resolve hardware and software issues as they arise.
In one instance, a network, such as, but not limited to, the Internet, is utilized via a remote device with computing capability, Alarm Keypad 140 (in one instance these teachings not being limited only to that instance, an iPod Touch™) to manage, control, interact and receive communications from various security peripheral devices installed in another remote location. In this embodiment, all security system functionality resides remotely from the computer and peripheral devices location. All security device management, alarm alerts, generation of the alarm Contact ID, communication to a remote monitoring center all reside at a remote site from the device with computing capability 140 and security peripheral device locations.
In one instance, all of the functionality enabled by a broadband connection is utilized to remotely manage security peripheral devices. All security devices are connected through a broadband gateway to a remote data site, Remote Alarm Panel 160, where all security functionality and configuration resides. System configuration and functionality can be accessed remotely via a remote computer. Any alarm from an armed device or emergency alert from the remote computer will generate the appropriate Contact ID codes (in one instance, industry standard transmission protocols) and transmit the information to a central monitoring station via a transceiver (in one exemplary embodiment, Sur-Gard™ receiver and Security monitoring software is utilized). In one instance, disruption of the network connection between a security device and the gateway generates an alert. Some features of the Remote Alarm Panel include:
The method and system of the present teachings enable controlling a security system and smart home devices using a computer application to emulate conventional alarm panel keypads using virtual controls over alarm system behavior. The computer application communicates through a secure wireless connection to the remote alarm panel site 160 and back through the gateway 120 providing substantially constant communication I/O with all system devices.
Some computer application features include:
In the embodiment described hereinabove, Applications can exist on the same network and receive simultaneous updates from a central location. Application can receive updates remotely to enable/disable features and add product enhancements without the need for customer interaction.
For the purposes of describing and defining the present teachings, it is noted that the term “substantially” is utilized herein to represent the inherent degree of uncertainty that may be attributed to any quantitative comparison, value, measurement, or other representation. The term “substantially” is also utilized herein to represent the degree by which a quantitative representation may vary from a stated reference without resulting in a change in the basic function of the subject matter at issue.
Elements and components described herein may be further divided into additional components or joined together to form fewer components for performing the same functions.
Each computer program may be implemented in any programming language, such as assembly language, machine language, a high-level procedural programming language, or an object-oriented programming language. The programming language may be a compiled or interpreted programming language.
Each computer program may be implemented in a computer program product tangibly embodied in a computer-readable storage device for execution by a computer processor. Method steps of the invention may be performed by a computer processor executing a program tangibly embodied on a computer-readable medium to perform functions of the invention by operating on input and generating output.
Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CDROM, any other optical medium, punched cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or cartridge, or any other medium from which a computer can read. From a technological standpoint, a signal or carrier wave (such as used for Internet distribution of software) encoded with functional descriptive material is similar to a computer-readable medium encoded with functional descriptive material, in that they both create a functional interrelationship with a computer. In other words, a computer is able to execute the encoded functions, regardless of whether the format is a disk or a signal.
Although the invention has been described with respect to various embodiments, it should be realized that these teachings are also capable of a wide variety of further and other embodiments within the spirit and scope of the appended claims.
This application is a continuation-in-part of U.S. application Ser. No. 12/789,581, entitled METHODS AND SYSTEMS FOR REMOTE MANAGEMENT OF SECURITY SYSTEMS, filed on May 28, 2010 now U.S. Pat. No. 8,508,581, which in turn claims priority of U.S. Provisional Application No. 61/307,207, entitled METHODS AND SYSTEMS FOR REMOTE MANAGEMENT OF SECURITY SYSTEMS, filed on Feb. 23, 2010, both of which are incorporated by reference herein in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
6542075 | Barker et al. | Apr 2003 | B2 |
6717513 | Sandelman et al. | Apr 2004 | B1 |
6917288 | Kimmel et al. | Jul 2005 | B2 |
6965313 | Saylor et al. | Nov 2005 | B1 |
6972676 | Kimmel et al. | Dec 2005 | B1 |
7373346 | Hays et al. | May 2008 | B2 |
7619512 | Trundle et al. | Nov 2009 | B2 |
8209400 | Baum et al. | Jun 2012 | B2 |
8665084 | Shapiro et al. | Mar 2014 | B2 |
8714449 | Jentoft | May 2014 | B2 |
20040086088 | Naidoo et al. | May 2004 | A1 |
Number | Date | Country |
---|---|---|
2124206 | Nov 2009 | EP |
2128834 | Dec 2009 | EP |
2008041214 | Apr 2008 | WO |
Number | Date | Country | |
---|---|---|---|
61307207 | Feb 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12789581 | May 2010 | US |
Child | 13963613 | US |