This invention relates generally to imaging systems and methods and more particularly to systems and methods for retrospective internal gating.
A large source of image degradation in medical imaging can be attributed to patient motion during the image acquisition, which causes loss of detail in the resultant images. For example respiratory motion causes blurring of the torso. This blurring can be difficult to characterize, and effectively can limit detectability of details, such as small lesions or lesions with low contrasts, and might reduce the accuracy of the measurements for the lesions which are visible.
Respiratory gating in is an approach to lessen the image degradation from respiratory motion by separating the breathing cycle into different phases and generating images from data corresponding to each of these phases. In the past few years there has been much research in developing this approach to imaging, with the hope that this can increase the quality diagnostic information derived from the images. The consensus in literature is that the respiratory gating of images presents a feasible solution to the image degradation introduced by respiratory motion. Researchers have studied the use of respiratory gated PET with respect to improving image quantification, lesion detectability and artifacts, image-coregistration accuracy, and the use of gated PET/CT in radiotherapy treatment planning. A variety of methods has been presented in the above literature for characterizing patient respiratory motion including techniques utilizing cameras, pressure belts, thermometers, point sources, pneumatic sensor systems, and mechanical ventilation (in dogs).
In addition to the above work, which used hardware derived respiratory signals, several software based methods have been proposed which utilize characterization of structural movement to gate the scans.
Acquiring and using software derived respiratory signals have several advantages over hardware based methods. The algorithms are image based, and thus machine independent, and can be used with existing scans, or scanners. What's more, if the algorithm is fully automated then the gated images can be generated without any extra effort or deviation from routine clinical procedures. They come at no additional “cost”, other than processing time, and can be generated along side traditional non-gated images.
Another advantage of using image based methods is that they provide assurance of the temporal alignment of the respiratory trace and the image data.
In one aspect, a method for retrospective internal gating is described. The method includes acquiring images at different times t1 . . . tn, and identifying temporally cyclical signals, which are combined to create a time varying object motion function which correlates times t1 . . . tn and the phases of the periodic motion.
In another aspect, a computer-readable medium encoded with a program is described. The program is configured to acquire images at different times t1 . . . tn, and identify temporally cyclical signals, which are combined to create a time varying object motion function which correlates times t1 . . . tn and the phases of the periodic motion.
In yet another aspect, a computer is described. The computer is configured to acquire images at different times t1 . . . tn, and identify temporally cyclical signals, which are combined to create a time varying object motion function which correlates times t1 . . . tn and the phases of the periodic motion.
Contemporary medical imaging produces 2D or 3D representations of patient anatomy or biological function. Several common type of medical imaging devices are Computed Tomography, Positron Emission tomography, Magnetic resonance imaging.
In Computed Tomography (CT), an x-ray source and a detector are rotated around a patient, within the imaging plane, and projections measured by the detector are gathered at various angles. These projections can then used in a reconstruction algorithm, to generate images spatially mapping attenuation characteristics of the patient.
In Positron Emmision Tomography (PET), a patient is administered a radiopharmaceutical, and placed within the field of view of a fixed ring of detectors. The detectors measure the gamma rays resulting from positron annihilation happening at the location of isotope. A reconstruction algorithm can then be applied to generate an image of the estimated spatial distribution of the radiopharmaceutical within the patient.
In Magnetic Resonance Imaging, the magnetic moment of nuclei are placed within an oscillating magnetic field, and different characteristics of there behavior are used to generate information, allowing for the creation of a anatomical or functional map. To achieve these images, information is spatially localized through the application of variations in the applied magnetic field. These variations can be applied in the form of gradients leaving only a slice of anatomy on-resonance to contribute to the signal.
Regardless of the imaging technique employed, all methods suffer from artifacts relating to patient motion. Sources of motion include respiration, and cardiac rhythms. Efforts have been made to create images corrected for this motion.
As used herein, an element or step recited in the singular and preceded with the word “a” or “an” should be understood as not excluding plural the elements or steps, unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
Also as used herein, the phrase “reconstructing an image” is not intended to exclude embodiments of the present invention in which data representing an image is generated but a viewable image is not. Therefore, as used herein the term “image” broadly refers to both viewable images and data representing a viewable image. However, many embodiments generate (or are configured to generate) at least one viewable image.
Additionally, although the herein described methods are described in a medical setting, it is contemplated that the benefits of the methods accrue to non-medical imaging systems such as those systems typically employed in an industrial setting or a transportation setting, such as, for example, but not limited to, a baggage scanning system for an airport, other transportation centers, government buildings, office buildings, and the like. The benefits also accrue to micro PET and CT systems which are sized to study lab animals as opposed to humans.
Voxel weighting factors 14 can be assigned to individual voxels establishing their importance during processing 18. In one embodiment, the weighting factor can be based upon the mean value of that voxel's 22 time-activity 26 information, values v1 . . . vn 24. In another embodiment that weighting factor can be based upon proximity to spatial activity gradients apparent in the images being used. A weighting factor of 0 can also be applied to voxels that the algorithm need not spend time processing. Weighting factors can be applied to some, none, or all voxels.
Voxel time-activity 26 information contained in v1 . . . vn 24 may have unwanted frequencies filtered out using frequency filters. For example, when methods are being used for respiratory gating, non respiratory frequencies (less than 2 seconds and greater than 15 seconds) can be filtered out or attenuated in the time-activity signals. This can be done to reduce the effects of noise in the signal. Other possible filters can be envisioned, such as ramp filters and Gaussian filters.
Information is combined from many voxels' time-activity 26 values to create a time varying object motion function. This is achieved by evaluating voxels and their respective time-activity information individually.
In one embodiment, voxels can be prioritized for processing by their weighting factors 14 defined earlier. The time varying object motion function is a summation of filtered individual voxel time-activity 26 curves.
In one embodiment, the processing is initiated by defining the time varying object motion function as the filtered time-activity values 30 of the voxel with the highest priority determined by the weighting factors 14. Subsequent filtered voxel time-activity values are synthesized, in order of priority, into a time varying object motion function using the following steps, shown in
1) The filtered time-activity values of the voxel are combined with the current time varying object motion function in three possible scenarios 36:
2) Of the three, the scenario with the highest standard deviation is chosen to serve as the new time varying object motion function 38 (i.e. the function with the greatest difference between peaks and valleys).
3) Unless the stopping criteria are met 34, the process is repeated for the next voxel.
With each iteration, and for each new voxel processed, the time varying object motion function 32 either remains the same, or is improved. In one embodiment these iterations may be set a priori to stop after the first 500 voxels are processed. Or, in another embodiment, they may be slated to stop after processing the voxel with a weighting factor above a specified threshold. In yet another embodiment, every voxel within the image space may be processed. In still yet another embodiment, voxels may be processed until the time varying object motion function meets a set criterion.
The purpose of step (1) is to determine the best contribution an individual voxel can make to the time varying object motion function. The scenarios using addition and subtraction are included to account for the fact that voxels may be in or out of phase with the time varying object motion function, depending on whether they were positioned superior or inferior to gradients of motion. Other embodiments using different methods of evaluating step (1) above can be envisioned.
Once the chosen stopping criteria are met, the current time varying object motion function 40 is returned for use in the mapping of image data to phase of motion.
Final phase information 20 for the motion of the imaged object can be extracted from the timing of the peaks and dips in the time varying object motion function. In one embodiment, relating to respiratory motion, local maxima and local minima on the time varying object motion function may be characterized as corresponding to the timing of full inspiration and full expiration, respectively.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
The present application is a continuation of U.S. patent application Ser. No. 16/395,201, filed Apr. 25, 2019, which is a continuation of U.S. patent application Ser. No. 16/178,332, filed Nov. 1, 2018 (now U.S. Pat. No. 10,448,903), which is a continuation of U.S. patent application Ser. No. 15/728,373, filed Oct. 9, 2017 (now U.S. Pat. No. 10,117,625), which is a continuation of U.S. patent application Ser. No. 12/151,121, filed May 5, 2008 (now U.S. Pat. No. 9,814,431), which claims priority to U.S. Provisional Patent Application 60/916,200, filed May 4, 2007, the entire contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
6144874 | Du | Nov 2000 | A |
6298260 | Sontag et al. | Oct 2001 | B1 |
6501981 | Schweikard et al. | Dec 2002 | B1 |
6539074 | Yavuz et al. | Mar 2003 | B1 |
6556695 | Packer et al. | Apr 2003 | B1 |
7359535 | Salla et al. | Apr 2008 | B2 |
7574249 | Piacsek et al. | Aug 2009 | B2 |
7734078 | Prince et al. | Jun 2010 | B2 |
7756307 | Thielemans | Jul 2010 | B2 |
8229187 | Deller | Jul 2012 | B2 |
9814431 | Kesner | Nov 2017 | B2 |
10117625 | Kesner | Nov 2018 | B2 |
10448903 | Kesner | Oct 2019 | B2 |
10863950 | Kesner | Dec 2020 | B2 |
20040218794 | Kao et al. | Nov 2004 | A1 |
20050123183 | Schleyer et al. | Jun 2005 | A1 |
20070081704 | Pan et al. | Apr 2007 | A1 |
20070127797 | Angelos et al. | Jun 2007 | A1 |
20070237372 | Chen et al. | Oct 2007 | A1 |
20080226149 | Wischmann et al. | Sep 2008 | A1 |
20080253636 | Deller | Oct 2008 | A1 |
20090076369 | Mistretta | Mar 2009 | A1 |
20090290774 | Shechter et al. | Nov 2009 | A1 |
20090299184 | Walker et al. | Dec 2009 | A1 |
20100183206 | Carlsen et al. | Jul 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20210093260 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
60916200 | May 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16395201 | Apr 2019 | US |
Child | 17120579 | US | |
Parent | 16178332 | Nov 2018 | US |
Child | 16395201 | US | |
Parent | 15728373 | Oct 2017 | US |
Child | 16178332 | US | |
Parent | 12151121 | May 2008 | US |
Child | 15728373 | US |