Methods and systems for secure shared smartcard access

Information

  • Patent Grant
  • 7992203
  • Patent Number
    7,992,203
  • Date Filed
    Wednesday, May 24, 2006
    18 years ago
  • Date Issued
    Tuesday, August 2, 2011
    13 years ago
Abstract
An embodiment generally relates to a method of accessing a secure computer. The method includes capturing an authentication state of a security token in response to a verification of user authentication information. The method also includes providing the authentication state to at least one application requiring authentication with the security token and accessing the at least one application.
Description
FIELD

This invention generally relates to secure client-server systems. More particularly, the invention relates to a method and system secure shared smartcard access to a secure client.


DESCRIPTION OF THE RELATED ART

Computer security is a field of computer science concerned with the control of risks related to use of computer systems. In computer security, authentication is a process of determining whether a computer, a software application, or a user is, in fact, what or who it is declared to be.


An example of user authentication is a user credential, such as a user name and password. Requirements for user credentials may be different among multiple software applications, which complicate a user's access to multiple software applications during the same work session. For example, healthcare workers may use healthcare-related applications, such as clinical results reporting, physician order entry, and chart completion, and may use general-purpose software applications, such as e-mail, time and attendance, accounting, human resources self-service, and incident reporting.


Single sign-on (SSO) is a specialized form of software authentication that enables a computer, a computer program, or a user to authenticate once, and gain access to multiple software applications and/or multiple computer systems. For example, in a client/server environment, SSO is a session/user authentication process that permits a user to present one set of credentials at one time in order to access multiple software applications. The SSO credentials, which is requested at the initiation of the session, authenticates the user to access the software applications on the server that have been given access rights, and eliminates future authentication prompts when the user switches between software applications during a particular session. Examples of SSO or reduced signon systems include: enterprise single sign-on (E-SSO), web single sign-on (Web-SSO), Kerberos, and others.


E-SSO, also called legacy single sign-on, after primary user authentication, intercepts log-on prompts presented by secondary applications, and automatically fills in fields such as a log-on ID or password. E-SSO systems allow for interoperability with software applications that are unable to externalize user authentication, essentially through “screen scraping.” However, E-SSO requires cooperation among computers in the enterprise, and is sometimes referred to as enterprise reduced sign-on.


Although E-SSO is a solution in enterprises that have a single type of authentication scheme, primarily the ID/password. However, secure enterprise systems typically have multiple log-in systems such as a trusted patch authenticated smart card or a biometric based log-in system. The E-SSO solution cannot operate in these multiple log-in systems because the E-SSO solution has no direct access to the authentication information.


In some instances, a user may log-on to a secure machine with a smart card in the secure multi-user environment. A problem may arise if a second user logs into the secure machine with the first user's smart card inserted. One goal would be to prevent the second user from pretending to be the first user and causing havoc. However, this has to be balanced with the burden of requiring a user to enter a personal identification number to access each application in a session. The issue then becomes how to authenticate to a smart card once as a user and allow other people to use the smart card for other operations. More generally, how to share a log-in state with trusted applications.


SUMMARY

An embodiment generally relates to a method of accessing a secure computer. The method includes capturing an authentication state of a security token in response to a verification of user authentication information. The method also includes using the authentication state to provide authenticated services for the at least one application requiring authentication with the security token and accessing the at least one application.


Another embodiment generally pertains to a system for secure access. The system includes a computing machine configured to access a multi-user multi-machine system and a security device interface with the computing machine. The security device is configured to accept a security token for accessing the computing machine. The system also includes a security daemon configured to be executing on the computing machine. The security daemon is configured to initiate a session and capture an authentication state of a security token in response to a verification of user inputted authentication information. The security daemon may also bind the authentication state to the session.





BRIEF DESCRIPTION OF THE DRAWINGS

Various features of the embodiments can be more fully appreciated as the same become better understood with reference to the following detailed description of the embodiments when considered in connection with the accompanying figures, in which:



FIG. 1 illustrates an exemplary system 100 in accordance with an embodiment;



FIG. 2 illustrates an architectural diagram of the computing machine in accordance with another embodiment;



FIG. 3 illustrates an exemplary flow diagram in accordance with yet another embodiment;



FIG. 4 illustrates another exemplary flow diagram executed by the computing machine in accordance with yet another embodiment;



FIG. 5 illustrates yet another exemplary flow diagram in accordance with another embodiment;



FIG. 6 illustrates an exemplary computing machine.





DETAILED DESCRIPTION OF EMBODIMENTS

For simplicity and illustrative purposes, the principles of the present invention are described by referring mainly to exemplary embodiments thereof. However, one of ordinary skill in the art would readily recognize that the same principles are equally applicable to, and can be implemented in, all types of secure distributed environments and that any such variations do not depart from the true spirit and scope of the present invention. Moreover, in the following detailed description, references are made to the accompanying figures, which illustrate specific embodiments. Electrical, mechanical, logical and structural changes may be made to the embodiments without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense and the scope of the present invention is defined by the appended claims and their equivalents.


Embodiments pertain generally to a method of sharing a security token among applications within a session. More particularly, a user may insert a security token, such as a smart card, into a secure computing machine and begin logging into the secure machine. An application may detect the presence of the inserted smart card and prompt the user to begin the log-on process. The user may authenticate to the security daemon, which then authenticate to the security token with the user entered authentication information. The security daemon may be configured to capture the authentication state and represent the authenticated security token to other applications in the session. In other words, the security daemon would log into the token, keep the token logged in and then use the fact that it has the token opened and logged in to perform operations on behalf of the user. As a result, the security daemon appears to the rest of the processes in the session that the security token is inserted through a Public Key Cryptography Standard (PKCS) #11 interface. Applications that require authentication may query the security daemon for authentication using the same PKCS #11 calls as they do in conventional smart card systems. Moreover, the security daemon may “own” the representation of the security token being inserted, i.e., the authentication state, by locking access to the card. As a result, other processes and/or applications cannot co-opt the authentication state in tokens that do not hold separate authentication states for different processes such as those defined in the PIV standards.


Other embodiments relate to accessing remote computers. More specifically, the security daemon provides a mechanism for secure shell (ssh) access to remote computing machines. More particularly, a local machine may securely connect to the remote machine using ssh protocols. The ssh application may advertise a PKCS #11 port that receives PKCS #11 calls on the remote client. During the authentication process, the remote computer may pass queries for authentication through the advertised port over the secured connection between the local and remote machines. The queries are directed to the security daemon, which presents the authentication state to the remote machine. After authentication, a user has access to the resources on the remote computer as though the user was physically logged-on in at the remote computer.



FIG. 1 illustrates an exemplary secure system 100 in accordance with an embodiment. It should be readily apparent to those of ordinary skill in the art that the system 100 depicted in FIG. 1 represents a generalized schematic illustration and that other components may be added or existing components may be removed or modified. Moreover, the system 100 may be implemented using software components, hardware components, or combinations thereof.


As shown in FIG. 1, the secure system 100 includes a server 105, clients 110 and a local network 115. The server 105 may be a computing machine or platform configured to execute secure and unsecure (or open) applications through a multiple user operating system (not shown) in conjunction with the clients 110. The server 105 may be implemented with server platforms as known to those skilled in the art from Intel, Advanced Micro Devices, Hewlett-Packard, etc.


The server 105 may interact with the clients over the local network 115. The local network 115 may be a local area network implementing an established network protocol such as Ethernet, token ring, FDDI, etc. The local network 115 provides a communication channel for the server 105 and clients 110 to exchange data and commands.


The clients 110 may be computing machine or platform (machine) configured to execute secure and open applications through the multi-user operating system. The clients 110 may be implemented with personal computers, workstations, thin clients, thick clients, or other similar computing platform.


Each client 110 may be configured to interface with a security device 120. The security device 120 may be configured to act as a gatekeeper to the client 110. More particularly, a user may use a security token, such as a smart card, to access the respective client 110. Each client 110 may have a security daemon 125 executing to monitor the security device 120, which is illustrated in FIG. 2.


As shown in FIG. 2, a client 110 may be executing a multi-user operating system (OS) 205. The OS may be Linux, HPUX, or other similar operating systems. The security daemon 125 executes within the OS 205. The OS 205 may also interface with the secured applications 210 as well as unsecured applications (not shown). Secure application 210 may any type of software that requires authentication from the smart card to initialize and execute.


The OS 205 may also interface with an application program interface (labeled as API in FIG. 2) 215. The API 215 provides an interface between devices and the OS 205 transmitting and receiving data and commands therebetween. FIG. 2 shows the security device 120 and a network interface 220 interfaced with the API 215. The network interface 220 may also be configured to interface with local network 115. A client may use the network interface 220 to initiate secure shell (SSH) protocols to form a secure connection with remote computers from the client 110. SSH applications are well-known to those skilled in the art.


Returning to FIG. 1, the security daemon 125 may be configured to detect the presence of the inserted security token and prompt the user to begin the log-on process. The user may authenticate to the security daemon 125, which then authenticates to the security token with the user entered authentication information. The security daemon 125 may be configured to capture the authentication state and represent the authenticated security token to other applications in the session. The security daemon 125 may also be configured to interface with other processes and/or applications in the session with a PKCS #11 interface. PKCS #11 is a cryptographic token interface standard known to those skilled in the art.


The secure system 100 may also comprise a second network 130 that may be interfaced with local network 115. A remote client 110′ may be connected with the second network 130. The remote client 110′ may be similar to client 110 with a security device 120′. The security device 120′ may also function as a gatekeeper to the remote client 110′. Accordingly, a user may remote login to the remote client 110′ from one of the client 110 using secure shell (ssh) protocols. SSH protocols are well-known to those skilled in the art. During the remote log-in, the client 110 may create a secure connection using ssh protocols to connect with the remote client 110′. The ssh application may be configured to publish the PKCS #11 port of the client computer 110 to the remote client 110′. The remote client 110′ may forward authentication queries through the PKCS #11 port over the secure connection to the client 110. The security daemon 125 on the client 110 presents its authentication state to answer the authentication queries of the remote client 110′. Since the user of client 110 is a valid user, the remote client 110′ may grant access to the client 110 as though the user was logged on at the remote client 110′. This process may also be used to remote access client 110 from another client 110.



FIG. 3 illustrate a flow diagram 300 executed by the security daemon 125 in accordance with another embodiment. It should be readily apparent to those of ordinary skill in the art that the flow diagram 300 depicted in FIG. 3 represents a generalized illustration and that other steps may be added or existing steps may be removed or modified.


As shown in FIG. 3, the security daemon 125 may be configured to be in an idle state, in step 305. More particularly, the security daemon 125 may have been instantiation as part of the normal boot sequence. In some embodiments, the security daemon 125 may be instantiated by a system administrator or in response to an event such as the insertion of a security token in the security device 120.


In step 310, the security daemon 125 may be configured to detect the presence of the security token (i.e., a smart card, PIV smart card, etc.) in the security device 120. The security daemon 125 may then be configured to prompt the user to begin log-on, in step 310. More particularly, the security daemon 125 may prompt the user for authentication information such as personal identification number (PIN), a password or biometric parameter (retinal scan, fingerprint, etc) or enter the same into some trusted patch device. The security daemon 125 may display a dialog box to requesting the user for the authentication information.


In step 320, the security daemon 125 may be configured to pass the user authentication information to the security token for verification or to request that the token read the authentication information from it's trusted path. If the security token fails to verify, the authentication information, in step 325, the security daemon 125 may be configured to inform the user of the verification failure. In some embodiments, the security daemon 125 may prompt the user to re-enter the authentication information in step 315. Alternatively, the security daemon 125 may inform the user that verification failed and return to the idle state of step 305. Alternatively, the security token may detect too many failed attempts to authenticate and the security daemon 125 may be configured to inform the user that the security token is locked.


Otherwise, if the authentication information is verified, in step 325, the security daemon 125 may be configured to capture and hold the authentication state of the inserted security token, in step 335. More specifically, this may be done by holding a PKCS #11 session open and attaching the security token with which the security daemon 125 could perform additional requests against the security token. The security daemon 125 may then represent itself as the authenticated security token to other applications through a PKCS #11 interface. In other words, the security daemon 125 appears to the rest of the processes in the session that the security token is inserted.


In step 340, the security daemon 125 may be configured to bind the authentication state with the current session state of the user. More particularly, in the situation where an application requests requests an initial authentication of the smart card. The application may initially authenticate to the security daemon 125 with some user session mechanism (usually something initialized at login) that does not involve user action (i.e., application authentication). The security daemon 125 would present that authentication information on behalf of the user for that application. Typical implementations of application authentication would include passing magic cookies, environment variables, file descriptors, shared memory segments, etc. to child processes of the parent session, using OS access controls, etc. If an application is part of the session, the security daemon 125 may be configured to implement the steps of FIG. 3 or could choose to only allow a single user session to be logged in.



FIG. 4 depicts a flow diagram 400 executed by secure applications 210 in accordance with yet another embodiment. It should be readily obvious to one of ordinary skill in the art that existing steps may be modified and/or deleted and other steps added in FIG. 4.


As shown in FIG. 4, a user may initiate a secure application 210, in step 405. More specifically, once the user has logged into a session, the user may click on an icon that represents the secure application 210. Alternatively, a command line prompt or menu selection may be used to invoke the secure application 210.


In step 410, as part of the instantiation of the secure application 210, the secure application 210 may be configured to query the security device 120 to determine whether the user has privileges to execute the secure application 210. Typically, secure applications 210 execute a call to the PKCS #11 interface. For these embodiments, the PKCS #11 interface may be connected to the security daemon 125.


In step 415, the secured application 210 call to the PKCS #11 interface may be answered by the security daemon 125, which holds the authentication state of the security token. The PKCS #11 interface returns a message that the security token is inserted and begins verification between the secure application 210 and the security daemon 125.


If verification fails, in step 420, the secure application 210 may display a dialog message informing that access to the secure application is denied, in step 425. Otherwise, if verification is successful, in step 420, the secure application 215 continues to instantiate and the user is granted access, in step 430.



FIG. 5 depicts a flow diagram 500 implemented by a client 10 accessing a remote client in accordance with yet another embodiment. It should be readily obvious to one of ordinary skill in the art that existing steps may be modified and/or deleted and other steps added in FIG. 5.


As shown in FIG. 5, a user may initiate a secure shell (ssh) application on a client 110 to access a remote client, in step 505. More specifically, once the user has logged into a session, the user may click on an icon that represents the ssh application. Alternatively, a command line prompt or menu selection may be used to invoke the ssh application.


In step 510, the ssh application may be configured to form a secure connection from the client 110 to the remote client. Once connected to the remote computer, the two clients may begin authentication.


In step 515, the client 110 may receive authentication queries from the remote client over the secure connection. More specifically, the remote client may execute a call to the PKCS #11 interface which is forwarded to the PKCS #11 interface of the security daemon 125 on the client 110.


In step 520, the forwarded call to the PKCS #11 interface may be answered by the security daemon 125, which holds the authentication state of the security token. The PKCS #11 interface returns a message that the security token is inserted to the remote client and begins verification between the remote client and the security daemon 125.


If verification fails, in step 525, the remote client may display a dialog message informing that access is denied, in step 530. Otherwise, if verification is successful, in step 525, the remote client may grant access to the client computer, in step 535.



FIG. 6 illustrates an exemplary block diagram of a computing platform 600 where an embodiment may be practiced. The functions of the security daemon may be implemented in program code and executed by the computing platform 600. The security daemon may be implemented in computer languages such as PASCAL, C, C++, JAVA, etc.


As shown in FIG. 6, the computer system 600 includes one or more processors, such as processor 602 that provide an execution platform for embodiments of the security daemon. Commands and data from the processor 602 are communicated over a communication bus 604. The computer system 600 also includes a main memory 606, such as a Random Access Memory (RAM), where the security daemon may be executed during runtime, and a secondary memory 608. The secondary memory 608 includes, for example, a hard disk drive 610 and/or a removable storage drive 612, representing a floppy diskette drive, a magnetic tape drive, a compact disk drive, etc., where a copy of a computer program embodiment for the security daemon may be stored. The removable storage drive 612 reads from and/or writes to a removable storage unit 614 in a well-known manner. A user interfaces with the security daemon with a keyboard 616, a mouse 618, and a display 620. The display adapter 622 interfaces with the communication bus 604 and the display 620 and receives display data from the processor 602 and converts the display data into display commands for the display 620.


Certain embodiments may be performed as a computer program. The computer program may exist in a variety of forms both active and inactive. For example, the computer program can exist as software program(s) comprised of program instructions in source code, object code, executable code or other formats; firmware program(s); or hardware description language (HDL) files. Any of the above can be embodied on a computer readable medium, which include storage devices and signals, in compressed or uncompressed form. Exemplary computer readable storage devices include conventional computer system RAM (random access memory), ROM (read-only memory), EPROM (erasable, programmable ROM), EEPROM (electrically erasable, programmable ROM), and magnetic or optical disks or tapes. Exemplary computer readable signals, whether modulated using a carrier or not, are signals that a computer system hosting or running the present invention can be configured to access, including signals downloaded through the Internet or other networks. Concrete examples of the foregoing include distribution of executable software program(s) of the computer program on a CD-ROM or via Internet download. In a sense, the Internet itself, as an abstract entity, is a computer readable medium. The same is true of computer networks in general.


While the invention has been described with reference to the exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments without departing from the true spirit and scope. The terms and descriptions used herein are set forth by way of illustration only and are not meant as limitations. In particular, although the method has been described by examples, the steps of the method may be performed in a different order than illustrated or simultaneously. Those skilled in the art will recognize that these and other variations are possible within the spirit and scope as defined in the following claims and their equivalents.

Claims
  • 1. A method of secure access, the method comprising: capturing, by a security daemon in a computer system, an authentication state of a security token in response to a verification of user authentication information;receiving a request for authentication from at least one application requiring authentication with the security token;providing, by the security daemon in response to the request, the authentication state to the at least one application requiring authentication with the security token, wherein the security daemon utilizes the authentication state to represent the security token in authentication requests; andallowing access to the at least one application.
  • 2. The method of claim 1, further comprising: prompting, using the computer system, for user authentication information in response to the insertion of the security token into the computer system;receiving the user authentication information; andverifying the user authentication information.
  • 3. The method of claim 1, further comprising: using a PKCS #11 interface to allow the at least one application to access the authentication state.
  • 4. The method of claim 1, further comprising: connecting with a remote secure computer from the computer system;providing the authentication state to access the remote computer; andaccessing at least one remote application on the remote computer in response to the remote computer authenticating with the authentication state.
  • 5. The method of claim 1, wherein the security token is a token which does not contain separate authentication states for processes.
  • 6. The method of claim 5, further comprising locking the authentication state of the token with a session state.
  • 7. The method of claim 5, wherein the security token is a personal identity verification (PIV) token.
  • 8. The method of claim 1, wherein the security token is shared among multiple users.
  • 9. The method of claim 8, further comprising: creating a respective session state for each user;creating an associated authentication state for each respective session state based on the security token; andbinding the associated authentication state with each respective session.
  • 10. An apparatus comprising: a memory containing instructions; anda processor, communicatively connected to the memory, that executes the instructions to perform the method of claim 1.
  • 11. A non-transitory computer readable medium comprising executable code for performing the method of claim 1.
  • 12. A system for secure access, comprising: a computing machine configured to access a multi user multi-machine system;a security device interface with the computing machine, the security device interface configured to accept a security token for accessing the computing machine; anda security daemon configured to be executing on the computing machine, wherein the security daemon is configured to: initiate a session and capture an authentication state of the security token in response to a verification of user inputted authentication information;bind the authentication state to the session;receive a request for authentication from an application requiring authentication with the security token, wherein the security daemon utilizes the authentication state to represent the security token in authentication requests; andprovide the authentication state to the application requiring authentication with the security token.
  • 13. The system of claim 12, wherein the security daemon is further configured to provide the authentication state to requesting applications requesting authorization.
  • 14. The system of claim 12, wherein the security daemon is further configured to prompt a user for the authentication information in response to detecting a presence of the security token in the security device.
  • 15. The system of claim 12, wherein the security daemon is further configured to verify received authentication information.
  • 16. The system of claim 13, wherein the security daemon is further configured to store the authentication state of the security token in response to the verification of the authentication information.
  • 17. The system of claim 12, wherein the computing machine is configured to access a remote computing machine using a secure shell protocol connection.
  • 18. The system of claim 17, wherein the remote computing machine is configured to forward queries for authentication through a local port created by the secure shell protocol.
  • 19. The system of claim 18, wherein the security daemon is configured to present the authentication state to respond to the queries for authentication.
  • 20. The system of claim 19, wherein the remote computing machine is configured to make available resources to the computing machine as though the security token is authenticated at the remote computing machine.
  • 21. The system of claim 12, wherein the security daemon is configured to interface with applications and process with a PKCS #11 compliant interface.
  • 22. A method of sharing a security token among a plurality of users, each user assigned respective initial authentication information that in combination with the security token identifies each user, the method comprising: creating a respective session state for each user;creating, by a security daemon a computer system, an associated authentication state for each respective session state in response to verification of the respective initial authentication information with the security token; andbinding, by the security daemon, the respective session state for each user with the associated authentication state to provide access to secure applications,wherein the security daemon utilizes the associated authentication state to represent the security token to provide access to secure applications cleared for access for the respective user.
US Referenced Citations (205)
Number Name Date Kind
4108367 Hannan Aug 1978 A
4849614 Watanabe et al. Jul 1989 A
4924330 Seamons et al. May 1990 A
5247163 Ohno et al. Sep 1993 A
5355414 Hale et al. Oct 1994 A
5499371 Henninger et al. Mar 1996 A
5594227 Deo Jan 1997 A
5631961 Mills et al. May 1997 A
5666415 Kaufman Sep 1997 A
5721781 Deo et al. Feb 1998 A
5745576 Abraham et al. Apr 1998 A
5745678 Herzberg et al. Apr 1998 A
5768373 Lohstroh et al. Jun 1998 A
5862310 Crawford et al. Jan 1999 A
5923884 Peyret et al. Jul 1999 A
5937006 Gennaro et al. Aug 1999 A
5943423 Muftic Aug 1999 A
5991411 Kaufman et al. Nov 1999 A
5991882 O'Connell Nov 1999 A
6005942 Chan et al. Dec 1999 A
6005945 Whitehouse Dec 1999 A
6011847 Follendore, III Jan 2000 A
6016476 Maes et al. Jan 2000 A
6044155 Thomlinson et al. Mar 2000 A
6072876 Obata et al. Jun 2000 A
6141420 Vanstone et al. Oct 2000 A
6178507 Vanstone Jan 2001 B1
6179205 Sloan Jan 2001 B1
6226744 Murphy et al. May 2001 B1
6377825 Kennedy et al. Apr 2002 B1
6490680 Scheidt et al. Dec 2002 B1
6502108 Day et al. Dec 2002 B1
6539093 Asad et al. Mar 2003 B1
6636975 Khidekel et al. Oct 2003 B1
6643701 Aziz et al. Nov 2003 B1
6687190 Momich et al. Feb 2004 B2
6691137 Kishi Feb 2004 B1
6698654 Zuppicich Mar 2004 B1
6734886 Hagan et al. May 2004 B1
6760752 Liu et al. Jul 2004 B1
6804687 Sampson Oct 2004 B2
6819766 Weidong Nov 2004 B1
6826686 Peyravian Nov 2004 B1
6829712 Madoukh Dec 2004 B1
6880037 Boyer Apr 2005 B2
6880084 Brittenham et al. Apr 2005 B1
6898605 Constantino May 2005 B2
6898714 Nadalin et al. May 2005 B1
6931133 Andrews et al. Aug 2005 B2
6941326 Kadyk et al. Sep 2005 B2
6970970 Jung et al. Nov 2005 B2
6978933 Yap et al. Dec 2005 B2
6986040 Kramer et al. Jan 2006 B1
7007105 Sullivan et al. Feb 2006 B1
7010600 Prasad et al. Mar 2006 B1
7050589 Kwan May 2006 B2
7051213 Kobayashi et al. May 2006 B1
7085386 Audebert et al. Aug 2006 B2
7114028 Green et al. Sep 2006 B1
7156302 Yap et al. Jan 2007 B2
7159763 Yap et al. Jan 2007 B2
7185018 Archbold et al. Feb 2007 B2
7251728 Toh et al. Jul 2007 B2
7278581 Ong Oct 2007 B2
7299364 Noble et al. Nov 2007 B2
7302585 Proudler et al. Nov 2007 B1
7356688 Wang Apr 2008 B1
7374099 de Jong May 2008 B2
7386705 Low et al. Jun 2008 B2
7437757 Holdsworth Oct 2008 B2
7451921 Dowling et al. Nov 2008 B2
7475250 Aull et al. Jan 2009 B2
7475256 Cook Jan 2009 B2
7480384 Peyravian et al. Jan 2009 B2
7502793 Snible et al. Mar 2009 B2
7571321 Appenzeller et al. Aug 2009 B2
7602910 Johansson et al. Oct 2009 B2
7702917 Tevosyan et al. Apr 2010 B2
7769996 Randle et al. Aug 2010 B2
7822209 Fu et al. Oct 2010 B2
7860243 Zheng et al. Dec 2010 B2
20010008012 Kausik Jul 2001 A1
20010036276 Ober et al. Nov 2001 A1
20010054148 Hoornaert et al. Dec 2001 A1
20020004816 Vange et al. Jan 2002 A1
20020007351 Hillegass et al. Jan 2002 A1
20020007359 Nguyen Jan 2002 A1
20020010679 Felsher Jan 2002 A1
20020029343 Kurita Mar 2002 A1
20020056044 Andersson May 2002 A1
20020059144 Meffert et al. May 2002 A1
20020064095 Momich et al. May 2002 A1
20020080958 Ober et al. Jun 2002 A1
20020099727 Kadyk et al. Jul 2002 A1
20020112156 Gien et al. Aug 2002 A1
20020120842 Bragstad et al. Aug 2002 A1
20020133707 Newcombe Sep 2002 A1
20020171546 Evans et al. Nov 2002 A1
20020184149 Jones Dec 2002 A1
20020188848 Buttiker Dec 2002 A1
20030005291 Burn Jan 2003 A1
20030012386 Kim et al. Jan 2003 A1
20030028664 Tan et al. Feb 2003 A1
20030035548 Kwan Feb 2003 A1
20030056099 Asanoma et al. Mar 2003 A1
20030075610 Ong Apr 2003 A1
20030093695 Dutta May 2003 A1
20030115455 Aull et al. Jun 2003 A1
20030115466 Aull et al. Jun 2003 A1
20030115467 Aull et al. Jun 2003 A1
20030115468 Aull et al. Jun 2003 A1
20030167399 Audebert et al. Sep 2003 A1
20030172034 Schneck et al. Sep 2003 A1
20040042620 Andrews et al. Mar 2004 A1
20040053642 Sandberg et al. Mar 2004 A1
20040066274 Bailey Apr 2004 A1
20040088562 Vassilev et al. May 2004 A1
20040096055 Williams et al. May 2004 A1
20040103324 Band May 2004 A1
20040103325 Priebatsch May 2004 A1
20040120525 Miskimmin et al. Jun 2004 A1
20040144840 Lee et al. Jul 2004 A1
20040146163 Asokan et al. Jul 2004 A1
20040153451 Phillips et al. Aug 2004 A1
20040162786 Cross et al. Aug 2004 A1
20040230831 Spelman et al. Nov 2004 A1
20050022123 Constantino Jan 2005 A1
20050033703 Holdsworth Feb 2005 A1
20050109841 Ryan et al. May 2005 A1
20050114673 Raikar et al. May 2005 A1
20050119978 Ates Jun 2005 A1
20050123142 Freeman et al. Jun 2005 A1
20050136390 Adams et al. Jun 2005 A1
20050138386 Le Saint Jun 2005 A1
20050144312 Kadyk et al. Jun 2005 A1
20050184163 de Jong Aug 2005 A1
20050184164 de Jong Aug 2005 A1
20050184165 de Jong Aug 2005 A1
20050188360 de Jong Aug 2005 A1
20050216732 Kipnis et al. Sep 2005 A1
20050262361 Thibadeau Nov 2005 A1
20050279827 Mascavage et al. Dec 2005 A1
20050289652 Sharma et al. Dec 2005 A1
20060005028 Labaton Jan 2006 A1
20060010325 Liu et al. Jan 2006 A1
20060015933 Ballinger et al. Jan 2006 A1
20060036868 Cicchitto Feb 2006 A1
20060043164 Dowling et al. Mar 2006 A1
20060072747 Wood et al. Apr 2006 A1
20060073812 Punaganti Venkata et al. Apr 2006 A1
20060075133 Kakivaya et al. Apr 2006 A1
20060075486 Lin et al. Apr 2006 A1
20060101111 Bouse et al. May 2006 A1
20060101506 Gallo et al. May 2006 A1
20060173848 Peterson et al. Aug 2006 A1
20060174104 Crichton et al. Aug 2006 A1
20060206932 Chong Sep 2006 A1
20060208066 Finn et al. Sep 2006 A1
20060226243 Dariel Oct 2006 A1
20060291664 Suarez et al. Dec 2006 A1
20060294583 Cowburn et al. Dec 2006 A1
20070014416 Rivera et al. Jan 2007 A1
20070074034 Adams et al. Mar 2007 A1
20070112721 Archbold et al. May 2007 A1
20070113267 Iwanski et al. May 2007 A1
20070113271 Pleunis May 2007 A1
20070118891 Buer May 2007 A1
20070162967 de Jong et al. Jul 2007 A1
20070169084 Frank et al. Jul 2007 A1
20070189534 Wood et al. Aug 2007 A1
20070204333 Lear et al. Aug 2007 A1
20070230706 Youn Oct 2007 A1
20070271601 Pomerantz Nov 2007 A1
20070280483 Fu Dec 2007 A1
20070282881 Relyea Dec 2007 A1
20070283163 Relyea Dec 2007 A1
20070283427 Gupta et al. Dec 2007 A1
20070288745 Kwan Dec 2007 A1
20070288747 Kwan Dec 2007 A1
20080005339 Kwan Jan 2008 A1
20080019526 Fu Jan 2008 A1
20080022086 Ho Jan 2008 A1
20080022088 Fu et al. Jan 2008 A1
20080022121 Fu et al. Jan 2008 A1
20080022122 Parkinson et al. Jan 2008 A1
20080022128 Proudler et al. Jan 2008 A1
20080034216 Law Feb 2008 A1
20080046982 Parkinson Feb 2008 A1
20080056496 Parkinson Mar 2008 A1
20080059790 Parkinson Mar 2008 A1
20080059793 Lord et al. Mar 2008 A1
20080069338 Relyea Mar 2008 A1
20080069341 Relyea Mar 2008 A1
20080072283 Relyea Mar 2008 A1
20080077794 Arnold et al. Mar 2008 A1
20080077803 Leach et al. Mar 2008 A1
20080133514 Relyea Jun 2008 A1
20080148047 Appenzeller et al. Jun 2008 A1
20080189543 Parkinson Aug 2008 A1
20080209224 Lord Aug 2008 A1
20080209225 Lord Aug 2008 A1
20080229401 Magne Sep 2008 A1
20090003608 Lee et al. Jan 2009 A1
20090133107 Thoursie May 2009 A1
20100313027 Taylor Dec 2010 A1
Foreign Referenced Citations (3)
Number Date Country
9724831 Jul 1997 WO
0048064 Mar 2000 WO
2007096590 Aug 2007 WO
Related Publications (1)
Number Date Country
20070277032 A1 Nov 2007 US