The present invention relates generally to turbine engines, and more particularly, to systems and methods for securing turbine nozzles within a turbine carrier groove.
At least some known turbine engines, such as gas turbines and steam turbines, include a carrier for axially spaced, circumferential arrays of nozzles. The carrier typically includes carrier halves which extend arcuately 180° and are secured to one another at a horizontal joint face to form a 360° array of nozzles at each axial stage position. Typically, the nozzles include an airfoil having a dovetail-shaped base that is inserted in a corresponding dovetail-shaped groove in the carrier. When the nozzles are installed in each carrier half groove, the nozzle bases are stacked one against the other within the grooves forming a semi-circular array of nozzles.
One known method of retaining the nozzles within the grooves includes using shims to secure the nozzle in the proper position. However, shims have to be accurately cut and selectively assembled to fit each nozzle. If the shims are not accurately cut, the nozzle may jam when being installed over the shims, resulting in decreased efficiency of operation. Using shims is also a time consuming and labor intensive process, which may cause an increase in manufacturing costs.
Another known method of retaining the nozzles within the grooves includes using radial loading pins to secure each nozzle. With such method, a pin is disposed between the base of the nozzle and the base of the groove to bias the nozzle radially inwardly. The pins are typically made from steel to have high strength at room temperature assembly conditions, and high strength at high temperature operating conditions. Because of the pin material and the dovetail geometry of known nozzles, high stresses exist in the nozzle dovetail hook and an upstream ligament of the outer ring which holds the nozzle.
In one aspect, a nozzle assembly is provided. The nozzle assembly includes at least one stationary nozzle and an outer ring having a predefined shape. The outer ring includes at least one groove defined therein configured to receive at least a portion of the at least one stationary nozzle. The nozzle assembly also includes an attachment member coupled between the stationary nozzle and the outer ring. The attachment member has a first configuration at a first nozzle assembly operating temperature a second configuration at a second nozzle assembly operating temperature.
In another aspect, a rotary machine is provided. The rotary machine includes a rotor and at least one nozzle assembly coupled to the rotor. The nozzle assembly includes at least one stationary nozzle and an outer ring having a predefined shape. The outer ring includes at least one groove defined therein configured to receive at least a portion of the at least one stationary nozzle. The nozzle assembly also includes an attachment member coupled between the stationary nozzle and the outer ring. The attachment member has a first configuration at a first nozzle assembly operating temperature a second configuration at a second nozzle assembly operating temperature.
In yet another aspect, a method of assembling a rotary machine is provided. The method includes coupling at least one stationary nozzle to a rotor such that the at least one stationary nozzle extends radially outwardly from the rotor and coupling an outer ring having a predefined shape to the rotor such that the outer ring substantially circumscribes the rotor. The outer ring includes at least one groove defined therein, the groove configured to receive at least a portion of the at least one stationary nozzle therein. The method also includes coupling an attachment member between the at least one stationary nozzle and the outer ring. The attachment member has a first configuration at a first nozzle assembly operating temperature, and has a second configuration at a second nozzle assembly operating temperature.
As used herein, the terms “axial” and “axially” refer to directions and orientations extending substantially parallel to a longitudinal axis of a turbine engine. Moreover, the terms “radial” and “radially” refer to directions and orientations extending substantially perpendicular to the longitudinal axis of the turbine engine. In addition, as used herein, the terms “circumferential” and “circumferentially” refer to directions and orientations extending arcuately about the longitudinal axis of the turbine engine.
In the exemplary embodiment, steam turbine engine 10 is a single-flow steam turbine engine. Alternatively, steam turbine engine 10 may be any type of steam turbine, such as, without limitation, a low-pressure turbine engine, an opposed-flow high-pressure and intermediate-pressure steam turbine combination, a double-flow steam turbine engine, and/or other steam turbine types. Moreover, as discussed above, the present invention is not limited to only being used in steam turbine engines and can be used in other turbine systems, such as gas turbine engines.
In the exemplary embodiment shown in
In the exemplary embodiment, steam turbine engine 10 also includes a stator component 42 coupled to an inner shell 44 of casing 16. The plurality of sealing members 34 are coupled to stator component 42. Casing 16, inner shell 44, and stator component 42 each extend circumferentially about rotor 14 and sealing members 34. In the exemplary embodiment, sealing members 34 form a tortuous sealing path between stator component 42 and rotor 14. Rotor 14 includes a plurality of turbine stages 12 through which high-pressure high-temperature steam 40 is passed via steam channel 46. Turbine stages 12 include a plurality of inlet nozzles 48. Steam turbine engine 10 may include any number of inlet nozzles 48 that enables steam turbine engine 10 to operate as described herein. For example, steam turbine engine 10 may include more or fewer inlet nozzles 48 than shown in
During operation, high pressure and high temperature steam 40 is channeled to turbine stages 12 from a steam source, such as a boiler (not shown), wherein thermal energy is converted to mechanical rotational energy by turbine stages 12. More specifically, steam 40 is channeled through casing 16 from HP steam inlet 20 where it impacts the plurality of buckets 38 coupled to rotor 14 to induce rotation of rotor 14 about centerline axis 24. Steam 40 exits casing 16 at LP steam outlet 22. Steam 40 may then be channeled to the boiler (not shown) where it may be reheated or channeled to other components of the system, e.g., a condenser (not shown).
Moreover, in the exemplary embodiment, nozzle assembly 100 includes at least one stationary nozzle 120. Groove 114 is sized and oriented to receive at least a portion of nozzle 120 therein. More specifically, in the exemplary embodiment, nozzle assembly 100 includes grooves 114 defined within ring top half 112, and each groove 114 is sized and oriented to receive nozzle 120 therein. In the exemplary embodiment, each nozzle 120 includes a first end portion 122 and a second end portion 124 that is opposite first end portion 122. In the exemplary embodiment, each first end portion 122 is dovetailed and includes a first, or upstream, hook portion 128, a second upstream hook portion 129, a first downstream hook portion 130 and a second downstream, hook portion 131. A bottom half (not shown) of ring 110 is coupled to the lower half casing and receives nozzles 120 in a manner similar to ring top half 112. HP section 21 also includes a plurality of rotatable buckets 132 that are securely coupled to rotor 14.
In the exemplary embodiment, a coupling portion 140 extends from each nozzle first end portion 122. More specifically, in the exemplary embodiment, each coupling portion 140 is formed integrally with respective nozzle first end portion 122 such that nozzle 120 and coupling portion 140 are a unitary component. Coupling portion 140 may be formed with nozzle 120 via a variety of known manufacturing processes known in the art, such as, but not limited to, molding process, drawing process or a machining process. One or more types of materials may be used to fabricate coupling portion 140 and/or nozzle 120 with the materials selected based on suitability for one or more manufacturing techniques, dimensional stability, cost, moldability, workability, rigidity, and/or other characteristic of the material(s). For example, coupling portion 140 and/or nozzle 120 may be fabricated from a metal, such as an alloy steel and/or a nickel based material.
In the exemplary embodiment, coupling portion 140 is integrally formed with, and is positioned adjacent to, nozzle first end portion 122. Coupling portion 140 is positioned adjacent to groove 114. Coupling portion first end 142, in the exemplary embodiment, includes an arcuate groove 150 defined therein. Groove 150 is sized and oriented to receive an attachment member 152 therein. In the exemplary embodiment, one attachment member 152 is positioned within each groove 150. In the exemplary embodiment, attachment member 152 is a pin or bolt that couples at least a portion of nozzle first end portion 122 to at least a portion of ring groove 114 such that nozzle 120 and outer ring 110 are securely coupled together.
Moreover, in the exemplary embodiment, rotor 14 includes a rotor surface 180 that includes a plurality of substantially annular rotor grooves 182 formed therein. At least one substantially arcuate sealing strip 184 is securely coupled within each rotor groove 182. In the exemplary embodiment, nozzle second end portion 124 is positioned adjacent to sealing strips 184. In the exemplary embodiment, sealing strips 184 substantially reduce an amount of fluid flowpath leakage that may occur between rotor 14 and casing 18.
In the exemplary embodiment, attachment member 152 is fabricated using a material that has sufficient tensile strength at ambient temperature during assembly to hold nozzles 120 in position, and decreases in tensile strength at high temperature operating conditions (e.g., above about 400° C.). More specifically, in the exemplary embodiment, attachment member 152 is fabricated using brass, brass alloy, copper, copper alloy, and/or any other material known in the art that enables attachment member 152 to function as described herein.
In the exemplary embodiment, attachment member 152 has a first configuration at a first nozzle assembly operating temperature a second configuration at a second nozzle assembly operating temperature. Attachment member 152 is configured to radially bias nozzle 120 a distance from ring 110 while in the first configuration. Attachment member 152 creates a gap between nozzle 120 and ring 110 while in the first configuration. Attachment member 152 transforms to the second configuration at the second nozzle assembly operating temperature, which is higher than the first nozzle assembly operating temperature. When attachment member 152 transforms to the second configuration, nozzle 120 moves and contacts ring 110, thereby closing the gap.
During operation, steam enters HP section 21 via HP section steam inlet 20 (shown in
A technical effect of the systems and methods described herein includes at least one of: (a) coupling at least one stationary nozzle to a rotor such that the at least one stationary nozzle extends radially outwardly from the rotor; (b) coupling an outer ring having a predefined shape to the rotor such that the outer ring substantially circumscribes the rotor, the outer ring includes at least one groove defined therein, the at least one groove configured to receive at least a portion of the at least one stationary nozzle therein; and (c) coupling an attachment member between the at least one stationary nozzle and the outer ring, the attachment member having a first configuration at a first nozzle assembly operating temperature, and having a second configuration at a second nozzle assembly operating temperature.
The systems and methods described herein facilitate improving turbine engine performance by providing nozzle assembly attachment member that substantially reduces operating stresses induced to the turbine. Specifically, an attachment member having a first configuration at a first nozzle assembly operating temperature and a second configuration at a second nozzle assembly operating temperature is described. The attachment member radially biases a nozzle relative to a turbine casing while in the first configuration and transforms to a second configuration at a higher operating temperature to move operating stresses off of the attachment member and the casing, and onto a contact surface where a nozzle hook contacts the casing. Therefore, in contrast to known turbines that use shims to reduce operating stresses, the apparatus, systems, and methods described herein facilitate reducing the time and difficulty in assembling nozzle assemblies, facilitate reducing operating stresses and cost associated with nozzle assemblies, and enable coupling at the nozzle base to reduce dynamic stresses in the dovetail.
The methods and systems described herein are not limited to the specific embodiments described herein. For example, components of each system and/or steps of each method may be used and/or practiced independently and separately from other components and/or steps described herein. In addition, each component and/or step may also be used and/or practiced with other assemblies and methods.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.