The present invention relates to methods and systems for forming fabric-based electric circuits and/or circuit boards. More particularly, the present invention relates to methods and systems for selectively connecting and disconnecting conductors in a fabric.
In order to increase the density and flexibility of electric circuits, electric circuits have been formed on non-rigid substrates, such as woven and non-woven fabrics. Exemplary applications for fabric-based electric circuits include communications devices, such as cellular telephones, tactile sensors, biomedical sensors, general purpose computers, etc. In addition, flexible electric circuits, such as fabric-based watches, can be integrated into articles of clothing.
One problem with conventional fabric-based electric circuits is that the electrical resistance of connection points in a fabric varies from one connection point to another. For example, if conductors are woven into a fabric as warp yarns and weft yarns, the space between contact points of the warp and weft yarns varies from one contact point to the next. As a result, uniform resistance between contact points cannot be achieved. In addition, reduced contact between conductors at contact points increases DC resistance and produces undesirable AC characteristics, such as parasitic capacitance and inductance. Thus, there exists a long-felt need for improved methods and systems for selectively connecting and disconnecting conductors in a fabric.
The present invention includes methods and systems for selectively connecting and disconnecting conductors in a fabric. According to one aspect of the invention, first and second conductors are woven into a fabric such that the first and second conductors intersect at a crossover point. Next, heat and/or electrical energy is applied to the first and second conductors at the crossover point. The application of heat and/or electrical energy bonds the conductors at the crossover point and thereby improves both AC and DC characteristics.
Because conductive fibers can be selectively connected and disconnected in a flexible substrate, such as a fabric, the footprint of the circuit board is reduced. For example, a fabric with interconnected conductive fibers can be rolled up and/or folded to increase electrical component density.
According to another aspect of the invention, disconnect areas are provided in conductive fibers woven into a fabric. The disconnect areas may be floats that allow fibers to be selectively disconnected from a crossover point. In another example, the disconnect areas may be electrical, mechanical, or electro-mechanical switches.
Accordingly, it is an object of the invention to provide methods and systems for selectively connecting and disconnecting conductors in a fabric.
It is another object of the invention to provide methods and systems for selectively connecting and disconnecting conductors in a fabric that improve AC and DC signal characteristics.
It is another object of the invention to provide methods and systems for selectively connecting and disconnecting conductors in a fabric that are easily integratable into commercial fabric production processes, such as weaving.
Some of the objects of the invention having been stated hereinabove, other objects will become evident as the description proceeds when taken in connection with the accompanying drawings as best described hereinbelow.
Preferred embodiment of the invention will now be explained with reference to the accompanying drawings of which:
In the illustrated embodiment, conductors 102 are woven into the fabric as warp yarns, and conductors 104 are woven into the fabric as weft yarns. As such, each conductor 102 intersects each conductor 104 at a crossover point 110. According to an important aspect of the invention, conductors 102 and 104 are bonded to each other at crossover points 110. By “bonded,” it is meant that conductors 102 and 104 are joined in a manner to improve AC and DC electrical signal propagation characteristics.
According to a preferred embodiment of the present invention, conductive fibers 102 and 104 may be welded at crossover points 110. Welding conductive fibers 102 and 104 at crossover points 110 greatly improves AC and DC signal characteristics of electric circuits formed using conductive fibers 102 and 104. One exemplary welding method especially suitable for use with metallic fibers is resistance welding. Resistance welding involves adding heat and/or electrical current to conductive fibers 102 and 104 at crossover points 110. The addition of heat and/or electric current melts conductive fibers 102 and 104 at crossover points 110 to form a bond at crossover points 110. Exemplary resistance welding methods suitable for use with embodiments of the present invention will now be discussed in more detail.
One resistance welding method suitable for use in bonding conductors 102 and 104 at crossover points 110 is referred to as parallel probe resistance welding.
In operation, an electric current is applied to crossover point 110 through conductive probes 200 and 202. In the illustrated example, current flows from probe 200, through conductor 104, through conductor 102, back through conductor 104, and into probe 202. The electric current produces heat which bonds conductors 102 and 104 at crossover point 110. In general, the heat generated in resistance welding can be expressed as:
Heat=I2RtK,
where I is the weld current through the conductors to be welded, R is the electrical resistance in Ohms of the conductors, t is the time in seconds, milliseconds, or microseconds that current is applied to the conductors, and K is a thermal constant. The weld current I and the duration of the current t are controlled by the resistance welding power supply. The resistance of the conductors R is a function of the force applied by conductive probes 200 and 202 to crossover point 110 and the materials used. The thermal constant K is a function of the geometry of conductors 102 and 104 and the contact pressure applied by conductive probes 200 and 202 to crossover point 110. The bulk and contact resistance values of conductors 102 and 104, probes 200 and 202, and the interfaces between these objects affect the amount of heat generated.
One goal of resistance welding at a crossover point in a fabric containing conductive and non-conductive fibers according to an embodiment of the present invention is to focus the heat generated close to crossover point 110 and avoid damaging non-conductive fibers 106 and 108 that are proximal to crossover point 110. The desired amount of current and desired current application time can be determined by calculating the total resistance as discussed above and determining the desired current and current application time required to melt a given material. Alternatively, optimal weld currents can be determined experimentally. In experiments performed on conductors in a woven fabric, it was determined that a weld current of 1400 Amperes produced the best AC and DC signal characteristics with the least amount of damage to non-conductive fibers.
Another resistance welding technique suitable for bonding conductive fibers at crossover points according to an embodiment of the present invention is top-bottom resistance welding. In top-bottom resistance welding, one probe is applied to the top side of the material to be welded, and the other probe is applied to the bottom side of the material to be welded.
Yet another resistance welding technique that can be used to bond conductive fibers in a fabric according to an embodiment of the present invention is conductive loop resistance welding. In conductive loop resistance welding, a single loop probe is applied to the material to be welded. A current is applied to the loop to generate heat. The heat generated by the resistance of the loop melts the material to be welded at the point of contact with the loop.
In most coaxial conductors, the center conductors carry the signal and the outer conductors are connected to ground. Accordingly, in order to design circuitry using coaxial conductors woven into a fabric, it is desirable to bond the inner conductors of the coaxial fibers at the crossover point. In order to bond inner conductor 704 of conductor 104 to inner conductor 704 of conductor 102, a solvent that dissolves insulating layer 700 may first be applied to crossover point 110. Next, a solvent that dissolves outer conductors 702 but not inner conductor 704 is preferably applied to crossover point 110. Next, insulator 706 is preferably dissolved using a suitable solvent. Once insulating layers 700 and 706 and outer conductors 702 are dissolved, inner conductors 704 can be bonded in any suitable means, for example, using any of the resistance welding techniques described above with respect to
In twisted pair transmission lines, one conductor may function as a signal conductor and the other conductor may be connected to ground. Accordingly, in order to design circuits using twisted pair conductors in a fabric, it is preferable to interconnect at least the signal conductors at crossover points 110. In
Although resistance welding is the primary method discussed herein for bonding conductors at crossover points, the present invention is not limited to resistance welding. Any suitable bonding method may be used. For example, conductors in a fabric may be bonded using ultrasonic welding, laser welding, microwave welding, solvent bonding, conductive adhesive or conductive epoxy.
According to another aspect, the present invention includes methods for selectively disconnecting conductive fibers in a fabric.
According to an important aspect of the invention, conductive fibers 102 and 104 include disconnect areas 900 that allow selective electrical disconnection from crossover point 110. In the illustrated example, disconnect areas 900 are floats in fabric 100A. Providing floats in fibers 102 and 104 allows conductors 102 and 104 to be selectively cut and hence disconnected from crossover point 110. In a fabric including a plurality of conductive fibers, every crossover point may be bonded at manufacturing time. Disconnect areas 900, which may be floats, switches, or other types of disconnect areas, may be provided at each crossover point. Desired electric circuits may then be formed by selectively cutting conductive fibers 102 or 104 at specific crossover points.
The present invention is not limited to providing floats in conductive fibers in a fabric to form disconnect areas. In an alternate embodiment of the invention, floats 900 may be replaced by electrical, mechanical, or electro-mechanical switches. Disconnect areas 900 may comprise electrical, mechanical, or electromechanical switches.
As discussed above, the methods for connecting and disconnecting conductors in a fabric described herein greatly improve both AC and DC characteristics of circuits formed using the crossover points. Desirable DC characteristics that were achieved included reduced resistance over unwelded crossover points and substantially uniform resistance across multiple crossover points.
In one evaluation, copper conductors were welded in a fabric and resistance was measured using a HEWLETT PACKARD 3478A multimeter. In performing the measurements, one multimeter probe was placed on one conductor at a predetermined distance from a crossover point and another multimeter probe was placed on the other conductor at a predetermined distance from point. The resistance values for the welded sample were compared against resistance values for unwelded copper conductors in a fabric. In this example, the weld current applied was 1000 Amperes and top-bottom resistance welding was used.
Tables 1 through 3 shown below illustrate measured resistance values for the welded copper conductors.
In Tables 1-3, resistance measurements were taken three times for each sample and averaged. The quantity RAB in Tables 1-3 is the resistance measured by the multimeter including the resistance of the multimeter probes. The resistance Rc in Tables 1 through 3 is the resistance of the multimeter contacts or probes. The actual resistance RAB-Rc is the resistance of a circuit formed by a portion of conductor 102 between the multimeter probes, a portion of conductor 104 between the multimeter probes, and a crossover point 110. It can be seen from Tables 1-3 that the average resistance for each of the three samples is substantially uniform, i.e., about 0.06 Ohms.
The data illustrated in Tables 1-3 can be contrasted with the data for unwelded copper samples in Table 5.
In Table 5, the average actual resistance of the unwelded copper samples taken over four different readings is 0.29432 Ohms, which is nearly five times the resistance of the welded copper samples. Accordingly, connecting conductive fibers at crossover points achieves substantially lower resistance than simply weaving conductive fibers into a fabric. As a result, electrical power dissipation at crossover points is reduced.
In addition to improving DC electrical characteristics, bonding conductors at crossover points also improved AC characteristics. Exemplary improvements in AC characteristics included and reduced parasitic capacitance and inductance over unwelded conductors in a fabric.
While the examples discussed herein relate to bonding conductors in a woven fabric, the present invention is not limited to connecting and disconnecting conductors in woven fabrics. The methods described herein can be used to connect and disconnect conductors in any type of fabric in which conductors intersect at crossover points, such as knitted fabrics and non-wovens. In addition, the present invention is not limited to connecting and disconnecting conductors in plain woven fabrics. The methods and systems described herein can also be used to bond conductors woven in a fabric in weaves, such as twill weave, basket weave, multilayered fabric weaves, and weaves in three-dimensional fabrics.
It will be understood that various details of the invention may be changed without departing from the scope of the invention. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation—the invention being defined by the claims.
This work was supported by grant number N39998-98-C-3566 from the Department of Defense-Defense Advanced Research Projects Agency (DOD-DARPA). Thus, the U.S. government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3745287 | Walker | Jul 1973 | A |
3933520 | Gay et al. | Jan 1976 | A |
4091176 | Alfenaar | May 1978 | A |
4129677 | Boe | Dec 1978 | A |
4199637 | Sado | Apr 1980 | A |
4247596 | Yee | Jan 1981 | A |
4255973 | Karplus | Mar 1981 | A |
4267233 | Tanaka et al. | May 1981 | A |
4308533 | Schmidt | Dec 1981 | A |
4350580 | Kadija | Sep 1982 | A |
4417959 | Kadija et al. | Nov 1983 | A |
4429179 | Chynoweth | Jan 1984 | A |
4432838 | Kadija | Feb 1984 | A |
4439303 | Cocchi | Mar 1984 | A |
4463323 | Piper | Jul 1984 | A |
4639825 | Breidegam | Jan 1987 | A |
4654748 | Rees | Mar 1987 | A |
4661376 | Liang | Apr 1987 | A |
4664158 | Sands | May 1987 | A |
4664971 | Soens | May 1987 | A |
4676561 | Barrett, II | Jun 1987 | A |
4735847 | Fujiwara et al. | Apr 1988 | A |
4743349 | Bachot et al. | May 1988 | A |
4803096 | Kuhn et al. | Feb 1989 | A |
4820170 | Redmond et al. | Apr 1989 | A |
4889963 | Onai | Dec 1989 | A |
4918814 | Redmond et al. | Apr 1990 | A |
4929803 | Yoshida et al. | May 1990 | A |
4975317 | Kuhn et al. | Dec 1990 | A |
5102727 | Pittman et al. | Apr 1992 | A |
5162135 | Gregory et al. | Nov 1992 | A |
5173366 | Mitamura et al. | Dec 1992 | A |
5177187 | MacDiarmid et al. | Jan 1993 | A |
RE34233 | Bachot et al. | Apr 1993 | E |
5246797 | Imhof et al. | Sep 1993 | A |
5248468 | Mitamura et al. | Sep 1993 | A |
5281171 | Job | Jan 1994 | A |
5292573 | Adams, Jr. et al. | Mar 1994 | A |
5316830 | Adams, Jr. et al. | May 1994 | A |
5398547 | Gerardi et al. | Mar 1995 | A |
5420465 | Wallace et al. | May 1995 | A |
5624736 | DeAngelis et al. | Apr 1997 | A |
5636378 | Griffith | Jun 1997 | A |
5689791 | Swift | Nov 1997 | A |
5698148 | Asher et al. | Dec 1997 | A |
5720892 | DeAngelis et al. | Feb 1998 | A |
5776608 | Asher et al. | Jul 1998 | A |
5788897 | Hsu | Aug 1998 | A |
5802607 | Triplette | Sep 1998 | A |
5874672 | Gerardi et al. | Feb 1999 | A |
5878620 | Gilbert et al. | Mar 1999 | A |
5906004 | Lebby et al. | May 1999 | A |
5952099 | Asher et al. | Sep 1999 | A |
6044287 | Cornell | Mar 2000 | A |
6051335 | Dinh-Sybeldon et al. | Apr 2000 | A |
6080690 | Lebby et al. | Jun 2000 | A |
6120939 | Whear et al. | Sep 2000 | A |
6123883 | Mattes et al. | Sep 2000 | A |
6145551 | Jayaraman et al. | Nov 2000 | A |
6158884 | Lebby et al. | Dec 2000 | A |
6210771 | Post et al. | Apr 2001 | B1 |
6381482 | Jayaraman et al. | Apr 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20030129905 A1 | Jul 2003 | US |