The present invention relates to systems and methods for enabling vehicles to closely follow one another through partial automation. Following closely behind another vehicle has significant fuel savings benefits, but is generally unsafe when done manually by the driver. On the opposite end of the spectrum, fully autonomous solutions require inordinate amounts of technology, and a level of robustness that is currently not cost effective.
Currently the longitudinal motion of vehicles is controlled during normal driving either manually or by convenience systems, and during rare emergencies it may be controlled by active safety systems.
Convenience systems, such as adaptive cruise control, control the speed of the vehicle to make it more pleasurable or relaxing for the driver, by partially automating the driving task. These systems use range sensors and vehicle sensors to then control the speed to maintain a constant headway to the leading vehicle. In general these systems provide zero added safety, and do not have full control authority over the vehicle (in terms of being able to fully brake or accelerate) but they do make the driving task easier, which is welcomed by the driver.
Some safety systems try to actively prevent accidents, by braking the vehicle automatically (without driver input), or assisting the driver in braking the vehicle, to avoid a collision. These systems generally add zero convenience, and are only used in emergency situations, but they are able to fully control the longitudinal motion of the vehicle.
Manual control by a driver is lacking in capability compared to even the current systems, in several ways. First, a manual driver cannot safely maintain a close following distance. In fact, the types of distance to get any measurable gain results in an unsafe condition, risking a costly and destructive accident. Second, the manual driver is not as reliable at maintaining a constant headway as an automated system. Third, a manual driver when trying to maintain a constant headway has rapid and large changes in command (accelerator pedal position for example) that result in a loss of efficiency.
The system described here combines the components to attain the best attributes of the state of the art convenience and safety systems and manual control. By using the components and communication for the very best safety systems, together with an enhanced version of the functionality for convenience systems, together with the features and functionality of a manually controlled vehicle, the current solution provides a safe, efficient convoying solution.
It is therefore apparent that an urgent need exists for reliable and economical Semi-Autonomous Vehicular Convoying. These improved Semi-Autonomous Vehicular Convoying Systems enable vehicles to follow closely together in a safe, efficient, convenient manner.
To achieve the foregoing and in accordance with the present invention, systems and methods for Semi-Autonomous Vehicular Convoying are provided. In particular the systems and methods for 1) A close following distance to save significant fuel, 2) Safety in the event of emergency maneuvers by the leading vehicle, 3) Safety in the event of component failures in the system, 4) An efficient mechanism for vehicles to find a partner vehicle to follow or be followed by, 5) An intelligent ordering of the vehicles based on several criteria, 6) Other fuel economy optimizations made possible by the close following, 7) Control algorithms to ensure smooth, comfortable, precise maintenance of the following distance, 8) Robust failsafe mechanical hardware, 9) Robust failsafe electronics and communication, 10) Other communication between the vehicles for the benefit of the driver, 11) Prevention of other types of accidents unrelated to the close following mode, 12) A simpler system to enable a vehicle to serve as a leading vehicle without the full system.
Note that the various features of the present invention described above may be practiced alone or in combination. These and other features of the present invention will be described in more detail below in the detailed description of the invention and in conjunction with the following figures.
In order that the present invention may be more clearly ascertained, some embodiments will now be described, by way of example, with reference to the accompanying drawings, in which:
The present invention will now be described in detail with reference to several embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of embodiments of the present invention. It will be apparent, however, to one skilled in the art, that embodiments may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention. The features and advantages of embodiments may be better understood with reference to the drawings and discussions that follow.
The present invention relates to systems and methods for Semi-Autonomous Vehicular Convoying. Such a system enables vehicles to follow closely behind each other, in a convenient, safe manner.
To facilitate discussion,
Embodiments of the present invention enable vehicles to follow closely together.
In accordance with the present invention, a key part of the functionality of one such embodiment is long range coordination between the vehicles. Shown in
These linking opportunities can also be determined while the vehicle is stationary, such as at a truck stop, rest stop, weigh station, warehouse, depot, etc. They can also be calculated ahead of time by the fleet manager. They may be scheduled at time of departure, or hours or days ahead of time, or may be found ad-hoc while on the road, with or without the assistance of the coordination functionality of the system.
The determination of which vehicle to suggest may take into account several factors, and choose an optimum such as the vehicle which minimizes a cost function. For example, it may minimize a weighted cost function of the distance between the vehicles and the distance between their destinations: Optimum=min(Wp(Posa−Posb)2+Wd(Desa−Desb)2), where Wp and Wd are the weights on the two cost terms respectively. This cost function could have any of the factors listed above.
Once the two vehicles have decided to coordinate, they may manually adjust their speed, or it may be automatic. If manual, the system may suggest to the leader to slow down, and to the follower to speed up. Or if the leader is stationary (at a truck stop, rest stop, etc.), it may suggest that he delay his departure the appropriate amount of time. These suggestions may be based on vehicle speed, destination, driver history, or other factors. If the system automatically controls the speed, it may operate the truck in a Cruise Control or Adaptive Cruise Control type mode, with the speed chosen to bring the two vehicles closer together. The system may also operate in a semi-automatic mode, where it limits the speed of the leading vehicle, to bring them closer together.
Once the vehicles are close together, the system takes control of the rear vehicle 420 and controls it to a close following distance behind the front vehicle 410 (
The linking event may consist of a smooth transition to the close distance following. This may take the form of a smooth target trajectory, with a controller that tries to follow this trajectory. Using Dm as the safe relative distance in manual mode, and Da as the desired distance in semi-autonomous following mode, and a time Tt for the transition to occur, the target distance may be Dg=Dm+(Da−Dm)*(1-cos(pi*t/Td))/2 for t less than or equal to Td. Thus in this way the change in gap per time is smallest at the beginning and the end of the transition, and largest in the middle, providing a smooth response. Other possible forms of this equation include exponentials, quadratics or higher powers, hyperbolic trigonometric functions, or a linear change. This shape may also be calculated dynamically, changing while the maneuver is performed based on changing conditions or other inputs.
The driver may deactivate the system in several ways. Application of the brake pedal may resume normal control, or may trigger a mode where the driver's braking is simply added to the system's braking. Applying the accelerator pedal may deactivate the system, returning to a manual mode. Other driver inputs that may trigger a system deactivation include: Turn signal application, steering inputs larger or faster than a threshold, clutch pedal application, a gear change, Jake (compression) brake application, trailer brake application, ignition key-off, and others. The driver can also deactivate the system by selecting an option on the GUI screen or other input device.
In the event of any system malfunction, including but not limited to component failures, software failures, mechanical damage, etc., the system may react in one of several safe ways. In general the trailing truck will start braking to ensure a safe gap is maintained. This braking may continue until the trailing truck has come to a complete stop, or it may continue only until a nominally safe distance is achieved (safe without automated control), or it may continue only until the malfunction has been identified. Additionally, one of several alerts may be used to notify the driver of the malfunction and subsequent action of the control system: a braking jerk, consisting of a small braking command, an audible tone, a seat vibration, a display on the GUI or other display, flashing the instrument cluster or other interior lights, increasing or decreasing engine torque momentarily, activation of the “Jake” (compression) brake, or other useful alerts.
To enable some or all of the described functionality, the system may have some or all of the following components shown in
Safety in the event of emergency maneuvers by the leading vehicle 410 is ensured by the use of the communication link between the two vehicles. This link may send some or all of the following: brake application pressure, brake air supply reservoir pressure, engine torque, engine RPM, compression (Jake) brake application, accelerator pedal position, engine manifold pressure, computed delivered torque, vehicle speed, system faults, battery voltage, and radar/lidar data.
The data link 1260 has very low latency (approximately 10 ms in one embodiment), and high reliability. This could be, but is not limited to, WiFi, radio modem, Zigbee, or other industry standard format. This link could also be a non-industry-standard format. In the event of a data link loss, the trailing vehicles should immediately start slowing, to ensure that if the front vehicle happens to brake immediately when the link is lost, the gap can be maintained safely.
In addition to safe operation during the loss of the data link 1260, the system should be safe in the event of failure of components of the system. For most failures, the trailing vehicles 420 start braking, until the driver takes control. This ensures that in the worst case where the front vehicle 410 starts to brake immediately when a system component fails, the system is still safe. The modified brake valve 1340 is also designed such that in the event of a complete failure, the driver can still brake the vehicle.
Ordering of the vehicles: The system arranges the vehicles on the road to ensure safety. This order may be determined by vehicle weight/load, weather/road conditions, fuel savings or linking time accrued, braking technology on the vehicle, destination or other factors. The system will (graphically or otherwise) tell the drivers which vehicle should be in the front. For example, to mitigate fatigue, the system may cause the trucks to exchange positions on a periodic basis.
To facilitate rapid deployment, a simpler version of the system enables vehicles to be a leading vehicle, shown in
The full system may also provide other fuel economy optimizations. These may include grade-based cruise control, where the speed set-point is determined in part by the grade angle of the road and the upcoming road. The system can also set the speed of the vehicles to attain a specific fuel economy, given constraints on arrival time. Displaying the optimum transmission gear for the driver 1410 can also provide fuel economy benefits.
The system may also suggest an optimal lateral positioning of the trucks, to increase the fuel savings. For example, with a cross wind, it may be preferable to have a slight offset between the trucks, such that the trailing truck is not aligned perfectly behind the leading truck. This lateral position may be some combination of a relative position to the surrounding truck(s) or other vehicles, position within the lane, and global position.
The data link between the two vehicles is critical to safety, so the safety critical data on this link has priority over any other data. Thus the link can be separated into a safety layer (top priority) and a convenience layer (lower priority). The critical priority data is that which is used to actively control the trailing vehicle. Examples of this may include acceleration information, braking information, system activation/deactivation, system faults, range or relative speed, or other data streams related to vehicle control.
The lower priority convenience portion of the link can be used to provide data to the driver to increase his pleasure of driving. This can include social interaction with the other drivers, video from the front vehicle's camera to provide a view of the road ahead. This link can also be used when the vehicle is stationary to output diagnostic information gathered while the vehicle was driving.
Because the system is tracking the movements of the vehicles, a tremendous amount of data about the fleet is available. This information can be processed to provide analysis of fleet logistics, individual driver performance, vehicle performance or fuel economy, backhaul opportunities, or others.
The system will have an “allow to merge” button to be used when the driver wants another vehicle to be able to merge in between the two vehicles. The button will trigger an increase in the vehicle gap to a normal following distance, followed by an automatic resumption of the close following distance once the merging vehicle has left. The length of this gap may be determined by the speed of the vehicles, the current gap, an identification of the vehicle that wishes to merge, the road type, and other factors. The transition to and from this gap may have a smooth shape similar to that used for the original linking event. Using Dv as the relative distance to allow a vehicle to cut in, and Da as the desired distance in semi-autonomous following mode, and a time Tt for the transition to occur, the target distance may be Dg=Da+(Dv−Da)*(1-cos(pi*t/Td))/2 for t less than or equal to Td.
For vehicles with an automatic transmission, the system can sense the application of the clutch pedal by inferring such from the engine speed and vehicle speed. If the ratio is not close to one of the transmission ratios of the vehicle, then the clutch pedal is applied or the vehicle is in neutral. In this event the system should be disengaged, because the system no longer has the ability to control torque to the drive wheels. For example this calculation may be performed as a series of binary checks, one for each gear: Gear_1=abs(RPM/WheelSpeed−Gear1Ratio)<Gear1Threshold and so on for each gear. Thus if none of these are true, the clutch pedal is engaged.
The system can estimate the mass of the vehicle to take into account changes in load from cargo. The system uses the engine torque and measured acceleration to estimate the mass. In simplest form, this says that M_total=Force_Wheels/Acceleration. This may also be combined with various smoothing algorithms to reject noise, including Kalman filtering, Luenberger observers, and others. This estimate is then used in the control of the vehicle for the trajectory generation, system fail-safes, the tracking controller, and to decide when full braking power is needed. The mass is also used to help determine the order of the vehicles on the road.
Many modifications and additions to the embodiments described above are possible and are within the scope of the present invention. For example, the system may also include the capability to have passenger cars or light trucks following heavy trucks. This capability may be built in at the factory to the passenger cars and light trucks, or could be a subset of the components and functionality described here, e.g., as an aftermarket product.
The system may also include an aerodynamic design optimized for the purpose of convoying, as shown in
For example, a hood may deploy, e.g., slide forward, from the roof of the follower vehicle. Portions of the hood may be textured (like an aerodynamic golf ball surface) or may be transparent so as not to further obscure the follower driver's view. In another example, the existing aerodynamic cone of a follower truck may be repositioned, and/or the cone profile dynamically reconfigured, depending on vehicular speed and weather conditions. This aerodynamic addition or modification may be on the top, bottom, sides, front, or back of the trailer or tractor, or a combination thereof.
This aerodynamic design may be to specifically function as a lead vehicle 1710, specifically as a following vehicle 1720, or an optimized combination of the two. It may also be adjustable in some way, either automatically or manually, to convert between optimized configurations to be a lead vehicle, a following vehicle, both, or to be optimized for solitary travel.
The data link between the two vehicles may be accomplished in one of several ways, including, but not limited to: a standard patch antenna, a fixed directional antenna, a steerable phased-array antenna, an under-tractor antenna, an optical link from the tractor, an optical link using one or more brake lights as sender or receiver, or others.
The data link, or other components of the system, may be able to activate the brake lights, in the presence or absence of brake pedal or brake application.
Other possible modifications include supplemental visual aids for drivers of follower vehicles, including optical devices such as mirrors and periscopes, to enable follower drivers to get a better forward-looking view, which is partially obscured by the lead vehicle.
Any portion of the above-described components included in the system may be in the cab, in the trailer, in each trailer of a multi-trailer configuration, or a combination of these locations.
The components may be provided as an add-on system to an existing truck, or some or all of them may be included from the factory. Some of the components may also be from existing systems already installed in the truck from the factory or as an aftermarket system.
The present invention is also intended to be applicable to current and future vehicular types and power sources. For example, the present invention is suitable for 2-wheeler, 3-wheelers, 4 wheelers, 16-wheelers, gas powered, diesel powered, two-stroke, four-stroke, turbine, electric, hybrid, and any combinations thereof. The present invention is also consistent with many innovative vehicular technologies such as hands-free user interfaces including head-up displays, speech recognition and speech synthesis, regenerative braking and multiple-axle steering.
The system may also be combined with other vehicle control systems such as Electronic Stability Control, Parking Assistance, Blind Spot Detection, Adaptive Cruise Control, Traffic Jam Assistance, Navigation, Grade-Aware Cruise Control, Automated Emergency Braking, Pedestrian detection, Rollover-Control, Anti-Jackknife control, Anti-Lock braking, Traction Control, Lane Departure Warning, Lanekeeping Assistance, and Sidewind compensation. It may also be combined with predictive engine control, using the command from the system to optimize future engine inputs.
In sum, the present invention provides systems and methods for Semi-Autonomous Vehicular Convoying. The advantages of such a system include the ability to follow closely together in a safe, efficient, convenient manner.
While this invention has been described in terms of several embodiments, there are alterations, modifications, permutations, and substitute equivalents, which fall within the scope of this invention. Although sub-section titles have been provided to aid in the description of the invention, these titles are merely illustrative and are not intended to limit the scope of the present invention.
It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, modifications, permutations, and substitute equivalents as fall within the true spirit and scope of the present invention.
This application is a continuation of U.S. application Ser. No. 16/028,307, filed Jul. 5, 2018, now U.S. Pat. No. 10,162,366, which is a continuation of U.S. application Ser. No. 15/817,038, filed Nov. 17, 2017, now U.S. Pat. No. 10,042,365, which is a continuation of U.S. application Ser. No. 15/607,316, filed May 26, 2017, which is a continuation of U.S. application Ser. No. 14/292,583, filed May 30, 2014, now U.S. Pat. No. 9,665,102, which is a division of U.S. patent application Ser. No. 13/542,622, filed Jul. 5, 2012, now U.S. Pat. No. 8,744,666, all of which are entitled “Systems and Methods for Semi-Autonomous Vehicular Convoys” and are incorporated by reference herein in their entirety for all purposes. Additionally, U.S. patent application Ser. No. 13/542,622 claims the benefit U.S. Provisional Patent Application No. 61/505,076, filed on Jul. 6, 2011, which is entitled “Systems and Methods for Semi-Autonomous Vehicular Convoying” and is incorporated by reference herein in its entirety for all purposes. Additionally, U.S. application Ser. No. 14/292,583 is a division U.S. patent application Ser. No. 13/542,627, filed Jul. 5, 2012, now U.S. Pat. No. 9,582,006, entitled “Systems and Methods for Semi-Autonomous Convoying of Vehicles”, which is incorporated by reference herein in its entirety for all purposes, and which in turn also claims the benefit of U.S. Provisional Patent Application No. 61/505,076, filed on Jul. 6, 2011.
Number | Name | Date | Kind |
---|---|---|---|
3725921 | Yee et al. | Apr 1973 | A |
4317117 | Chasek | Feb 1982 | A |
4370718 | Chasek | Jan 1983 | A |
5166881 | Akasu | Nov 1992 | A |
5295551 | Sukonick | Mar 1994 | A |
5331561 | Barrett et al. | Jul 1994 | A |
5484078 | Bronovicki | Jan 1996 | A |
5572449 | Tang et al. | Nov 1996 | A |
5633456 | Stander | May 1997 | A |
5680122 | Mio | Oct 1997 | A |
5777451 | Kobayashi et al. | Jul 1998 | A |
5781119 | Yamashita et al. | Jul 1998 | A |
5800958 | Manteghi | Sep 1998 | A |
5815825 | Tachibana et al. | Sep 1998 | A |
6032097 | Lihoshi | Feb 2000 | A |
6125321 | Tabata | Sep 2000 | A |
6128559 | Saitou et al. | Oct 2000 | A |
6188950 | Tsutsumi et al. | Feb 2001 | B1 |
6265990 | Isogai et al. | Jul 2001 | B1 |
6285929 | Hashimoto | Sep 2001 | B1 |
6314366 | Farmakis et al. | Nov 2001 | B1 |
6345603 | Abboud et al. | Feb 2002 | B1 |
6356820 | Hashimoto et al. | Mar 2002 | B1 |
6370471 | Lohner et al. | Apr 2002 | B1 |
6370475 | Breed et al. | Apr 2002 | B1 |
6397149 | Hashimoto | May 2002 | B1 |
6418370 | Isogai et al. | Jul 2002 | B1 |
6484078 | Kageyama | Nov 2002 | B1 |
6510381 | Grounds et al. | Jan 2003 | B2 |
6604038 | Lesesky et al. | Aug 2003 | B1 |
6633006 | Wolf et al. | Oct 2003 | B1 |
6765495 | Dunning et al. | Jul 2004 | B1 |
6879910 | Shike et al. | Apr 2005 | B2 |
6898585 | Benson et al. | May 2005 | B2 |
6963795 | Hassig et al. | Nov 2005 | B2 |
6975246 | Trudeau | Dec 2005 | B1 |
7286825 | Shishido et al. | Oct 2007 | B2 |
7460951 | Altan et al. | Dec 2008 | B2 |
7554435 | Tengler et al. | Jun 2009 | B2 |
7593811 | Schmidt et al. | Sep 2009 | B2 |
7729823 | Ruoppolo | Jun 2010 | B2 |
7782227 | Boss et al. | Aug 2010 | B2 |
7831345 | Vauramo | Nov 2010 | B2 |
7894982 | Reeser et al. | Feb 2011 | B2 |
8026833 | Scacchi | Sep 2011 | B2 |
8073574 | Yamamoto et al. | Dec 2011 | B2 |
8116921 | Ferrin | Feb 2012 | B2 |
8139109 | Schmiedel et al. | Mar 2012 | B2 |
8224551 | Grolle et al. | Jul 2012 | B2 |
8275491 | Ferrin et al. | Sep 2012 | B2 |
8326473 | Simpson et al. | Dec 2012 | B2 |
8352111 | Mudalige | Jan 2013 | B2 |
8352112 | Mudalige | Jan 2013 | B2 |
8354955 | Miyake | Jan 2013 | B2 |
8442735 | Hrovat et al. | May 2013 | B2 |
8510029 | Curtis et al. | Aug 2013 | B2 |
8538656 | Yamashiro | Sep 2013 | B2 |
8554468 | Bullock | Oct 2013 | B1 |
8618922 | Debouk et al. | Dec 2013 | B2 |
8620517 | Caveney et al. | Dec 2013 | B2 |
8649962 | Davis et al. | Feb 2014 | B2 |
8660779 | Shida | Feb 2014 | B2 |
8666587 | Anderson | Mar 2014 | B2 |
8676466 | Mudalige | Mar 2014 | B2 |
8682511 | Andreasson | Mar 2014 | B2 |
8688349 | Grolle et al. | Apr 2014 | B2 |
8738238 | Rekow | May 2014 | B2 |
8744666 | Switkes et al. | Jun 2014 | B2 |
8775060 | Solyom et al. | Jul 2014 | B2 |
8798907 | Shida | Aug 2014 | B2 |
8922391 | Rubin et al. | Dec 2014 | B2 |
8947531 | Fischer et al. | Feb 2015 | B2 |
8948995 | Pandita et al. | Feb 2015 | B2 |
8954272 | Adam et al. | Feb 2015 | B2 |
8970401 | Molander et al. | Mar 2015 | B2 |
8992391 | Seastrom et al. | Mar 2015 | B2 |
9037389 | You | May 2015 | B2 |
9079587 | Rupp et al. | Jul 2015 | B1 |
9141112 | Loo et al. | Sep 2015 | B1 |
9145137 | Doi et al. | Sep 2015 | B2 |
9174672 | Zeng et al. | Nov 2015 | B2 |
9182764 | Kolhouse et al. | Nov 2015 | B1 |
9221396 | Zhu et al. | Dec 2015 | B1 |
9224300 | Lee et al. | Dec 2015 | B2 |
9355423 | Slusar | May 2016 | B1 |
9367065 | Dolgov et al. | Jun 2016 | B2 |
9373149 | Abhyanker | Jun 2016 | B2 |
9396661 | Okamoto | Jul 2016 | B2 |
9412271 | Sharma | Aug 2016 | B2 |
9423794 | Lind et al. | Aug 2016 | B2 |
9449258 | Palacio et al. | Sep 2016 | B1 |
9460622 | Franklin et al. | Oct 2016 | B1 |
9494944 | Alam et al. | Nov 2016 | B2 |
9511764 | Pilutti et al. | Dec 2016 | B2 |
9582006 | Switkes et al. | Feb 2017 | B2 |
9598078 | Moran et al. | Mar 2017 | B2 |
9613466 | Bullock | Apr 2017 | B1 |
9616743 | Mays et al. | Apr 2017 | B1 |
9632507 | Korn | Apr 2017 | B1 |
9645579 | Switkes et al. | May 2017 | B2 |
9665102 | Switkes et al. | May 2017 | B2 |
9721474 | Eskilson | Aug 2017 | B2 |
9725083 | Dextreit | Aug 2017 | B2 |
9771070 | Zagorski et al. | Sep 2017 | B2 |
9799224 | Okamoto | Oct 2017 | B2 |
9823166 | Dudar et al. | Nov 2017 | B2 |
9852475 | Konrardy et al. | Dec 2017 | B1 |
9878657 | Wunsche et al. | Jan 2018 | B2 |
9884631 | James et al. | Feb 2018 | B2 |
9927816 | Karoui et al. | Mar 2018 | B2 |
9928746 | MacNeille et al. | Mar 2018 | B1 |
9940840 | Schubert et al. | Apr 2018 | B1 |
9956964 | Desnoyer et al. | May 2018 | B2 |
9964948 | Ullrich et al. | May 2018 | B2 |
10013877 | Lu et al. | Jul 2018 | B2 |
10017039 | Colavincenzo | Jul 2018 | B1 |
10017179 | Alden et al. | Jul 2018 | B2 |
10027024 | Powell | Jul 2018 | B2 |
10031522 | Moran et al. | Jul 2018 | B2 |
10042365 | Switkes et al. | Aug 2018 | B2 |
10074894 | Birnbaum et al. | Sep 2018 | B1 |
10078338 | Smartt et al. | Sep 2018 | B2 |
10152064 | Switkes et al. | Dec 2018 | B2 |
10162366 | Switkes et al. | Dec 2018 | B2 |
20010001138 | Zhu et al. | May 2001 | A1 |
20020077748 | Nakano | Jun 2002 | A1 |
20020133285 | Hirasago | Sep 2002 | A1 |
20020135507 | Winner et al. | Sep 2002 | A1 |
20020152015 | Seto | Oct 2002 | A1 |
20020198632 | Breed et al. | Dec 2002 | A1 |
20030094858 | Shiue et al. | May 2003 | A1 |
20030225517 | Schiffmann | Dec 2003 | A1 |
20040046448 | Brown | Mar 2004 | A1 |
20040078133 | Miller et al. | Apr 2004 | A1 |
20040140143 | Saeki et al. | Jul 2004 | A1 |
20040245853 | Odagawa et al. | Dec 2004 | A1 |
20040252863 | Chang et al. | Dec 2004 | A1 |
20060074557 | Mulligan et al. | Apr 2006 | A1 |
20060089771 | Messih et al. | Apr 2006 | A1 |
20060095195 | Nishimura et al. | May 2006 | A1 |
20060106534 | Kawamata et al. | May 2006 | A1 |
20060161341 | Haegebarth et al. | Jul 2006 | A1 |
20060195250 | Kawaguchi | Aug 2006 | A1 |
20060229804 | Schmidt et al. | Oct 2006 | A1 |
20070005609 | Breed | Jan 2007 | A1 |
20070021915 | Breed et al. | Jan 2007 | A1 |
20070027614 | Reeser et al. | Feb 2007 | A1 |
20070030212 | Shibata | Feb 2007 | A1 |
20070032245 | Alapuranen | Feb 2007 | A1 |
20070043502 | Mudalige et al. | Feb 2007 | A1 |
20070060045 | Prautzsch | Mar 2007 | A1 |
20070083318 | Parikh | Apr 2007 | A1 |
20070115138 | Arakawa | May 2007 | A1 |
20070210953 | Abraham et al. | Sep 2007 | A1 |
20070213915 | Tenge et al. | Sep 2007 | A1 |
20070233337 | Plishner | Oct 2007 | A1 |
20070244641 | Altan et al. | Oct 2007 | A1 |
20070256481 | Nishiyama et al. | Nov 2007 | A1 |
20070276597 | Kato et al. | Nov 2007 | A1 |
20080009985 | Plishner | Jan 2008 | A1 |
20080033649 | Hasegawa et al. | Feb 2008 | A1 |
20080040023 | Breed et al. | Feb 2008 | A1 |
20080059007 | Whittaker et al. | Mar 2008 | A1 |
20080119965 | McCrary | May 2008 | A1 |
20080122652 | Tengler et al. | May 2008 | A1 |
20080147253 | Breed | Jun 2008 | A1 |
20080154629 | Breed et al. | Jun 2008 | A1 |
20080249667 | Horvitz et al. | Oct 2008 | A1 |
20080255722 | McClellan et al. | Oct 2008 | A1 |
20080258890 | Follmer et al. | Oct 2008 | A1 |
20090012666 | Simpson et al. | Jan 2009 | A1 |
20090051510 | Follmer et al. | Feb 2009 | A1 |
20090062974 | Tamamoto et al. | Mar 2009 | A1 |
20090079839 | Fischer | Mar 2009 | A1 |
20090118889 | Helno et al. | May 2009 | A1 |
20090157461 | Wright et al. | Jun 2009 | A1 |
20090164082 | Kobayashi et al. | Jun 2009 | A1 |
20090198427 | Jackson et al. | Aug 2009 | A1 |
20090219161 | Kocher | Sep 2009 | A1 |
20090222186 | Jensen | Sep 2009 | A1 |
20090259354 | Krupadanam et al. | Oct 2009 | A1 |
20090271083 | Kumar | Oct 2009 | A1 |
20090286648 | Vesenjak | Nov 2009 | A1 |
20090287412 | Menzel et al. | Nov 2009 | A1 |
20090326799 | Crook | Dec 2009 | A1 |
20100044998 | Franchineau | Feb 2010 | A1 |
20100045507 | Yamano et al. | Feb 2010 | A1 |
20100049374 | Ferrin et al. | Feb 2010 | A1 |
20100094509 | Luke et al. | Apr 2010 | A1 |
20100106356 | Trepagnier et al. | Apr 2010 | A1 |
20100191449 | Iawamoto | Jul 2010 | A1 |
20100194638 | Rivard | Aug 2010 | A1 |
20100250088 | Grolle et al. | Sep 2010 | A1 |
20100256835 | Mudalige | Oct 2010 | A1 |
20100256836 | Mudalige | Oct 2010 | A1 |
20100256852 | Mudalige | Oct 2010 | A1 |
20100332101 | Braunberger et al. | Dec 2010 | A1 |
20110010022 | Beavin | Jan 2011 | A1 |
20110083011 | Dicrescenzo | Apr 2011 | A1 |
20110093177 | Horn | Apr 2011 | A1 |
20110112730 | Rekow | May 2011 | A1 |
20110118967 | Tsuda | May 2011 | A1 |
20110184596 | Andreasson | Jul 2011 | A1 |
20110184605 | Neff | Jul 2011 | A1 |
20110210872 | Molander | Sep 2011 | A1 |
20110222730 | Steinberg et al. | Sep 2011 | A1 |
20110270514 | Shida | Nov 2011 | A1 |
20110270520 | Kronenberg | Nov 2011 | A1 |
20110274523 | Petalas | Nov 2011 | A1 |
20110301779 | Shida | Dec 2011 | A1 |
20120061154 | Pfister | Mar 2012 | A1 |
20120086582 | Durekovic et al. | Apr 2012 | A1 |
20120089294 | Fehse et al. | Apr 2012 | A1 |
20120105270 | Miyake et al. | May 2012 | A1 |
20120109421 | Scarola | May 2012 | A1 |
20120109610 | Anderson et al. | May 2012 | A1 |
20120123660 | Kagawa et al. | May 2012 | A1 |
20120139549 | Sufrin-Disler et al. | Jun 2012 | A1 |
20120166057 | Amato et al. | Jun 2012 | A1 |
20120206282 | Gorbold | Aug 2012 | A1 |
20120221235 | Prudhomme-Lacroix et al. | Aug 2012 | A1 |
20120226965 | Hammererschmidt et al. | Sep 2012 | A1 |
20120239268 | Chen et al. | Sep 2012 | A1 |
20120252415 | Menzel et al. | Oct 2012 | A1 |
20120259516 | Grolie et al. | Oct 2012 | A1 |
20120259538 | Oexmann | Oct 2012 | A1 |
20120323474 | Breed et al. | Dec 2012 | A1 |
20130015984 | Yamashiro | Jan 2013 | A1 |
20130018766 | Christman | Jan 2013 | A1 |
20130024084 | Yamashiro | Jan 2013 | A1 |
20130030606 | Mudalige et al. | Jan 2013 | A1 |
20130030657 | Chatterjee et al. | Jan 2013 | A1 |
20130041567 | Yamashiro | Feb 2013 | A1 |
20130041576 | Switkes et al. | Feb 2013 | A1 |
20130066511 | Switkes et al. | Mar 2013 | A1 |
20130079953 | Kumabe | Mar 2013 | A1 |
20130080040 | Kumabe | Mar 2013 | A1 |
20130080041 | Kumabe | Mar 2013 | A1 |
20130090803 | Stahlin et al. | Apr 2013 | A1 |
20130116861 | Nemoto | May 2013 | A1 |
20130124064 | Nemoto | May 2013 | A1 |
20130144465 | Shida | Jun 2013 | A1 |
20130144502 | Shida | Jun 2013 | A1 |
20130151058 | Zagorski et al. | Jun 2013 | A1 |
20130158852 | Stahlin et al. | Jun 2013 | A1 |
20130165146 | Stahlin et al. | Jun 2013 | A1 |
20130173114 | Pillai | Jul 2013 | A1 |
20130211624 | Lind et al. | Aug 2013 | A1 |
20130218365 | Caveney et al. | Aug 2013 | A1 |
20130231820 | Solyom et al. | Sep 2013 | A1 |
20130235169 | Kato | Sep 2013 | A1 |
20130317676 | Cooper et al. | Nov 2013 | A1 |
20130325306 | Caveney et al. | Dec 2013 | A1 |
20140005875 | Hartmann et al. | Jan 2014 | A1 |
20140005906 | Pandita et al. | Jan 2014 | A1 |
20140005941 | Paek et al. | Jan 2014 | A1 |
20140019031 | Solyom et al. | Jan 2014 | A1 |
20140067220 | Seiler | Mar 2014 | A1 |
20140100734 | Yamashiro | Apr 2014 | A1 |
20140107867 | Yamashiro | Apr 2014 | A1 |
20140129075 | Carleton | May 2014 | A1 |
20140136044 | Conrad | May 2014 | A1 |
20140142799 | Ferguson et al. | May 2014 | A1 |
20140142801 | Shah | May 2014 | A1 |
20140145838 | Tuukkanen | May 2014 | A1 |
20140148994 | Ando | May 2014 | A1 |
20140156118 | Wiemeyer et al. | Jun 2014 | A1 |
20140172265 | Funabashi | Jun 2014 | A1 |
20140197967 | Modica et al. | Jul 2014 | A1 |
20140210645 | Sharma | Jul 2014 | A1 |
20140214255 | Dolgov et al. | Jul 2014 | A1 |
20140222278 | Fujita | Aug 2014 | A1 |
20140236414 | Droz | Aug 2014 | A1 |
20140236449 | Horn | Aug 2014 | A1 |
20140244144 | You | Aug 2014 | A1 |
20140249693 | Stark et al. | Sep 2014 | A1 |
20140277608 | Debouk et al. | Sep 2014 | A1 |
20140297063 | Shida | Oct 2014 | A1 |
20140303870 | Switkes et al. | Oct 2014 | A1 |
20140306799 | Ricci | Oct 2014 | A1 |
20140306826 | Ricci | Oct 2014 | A1 |
20140309836 | Ollis | Oct 2014 | A1 |
20140316671 | Okamoto | Oct 2014 | A1 |
20140316865 | Okamoto | Oct 2014 | A1 |
20140324339 | Adam et al. | Oct 2014 | A1 |
20140350756 | Schoonmaker et al. | Nov 2014 | A1 |
20140350793 | Schrabler et al. | Nov 2014 | A1 |
20140350835 | Martin | Nov 2014 | A1 |
20150012157 | Nemeth et al. | Jan 2015 | A1 |
20150012204 | Breuer et al. | Jan 2015 | A1 |
20150015267 | Mueller et al. | Jan 2015 | A1 |
20150025731 | Uehara | Jan 2015 | A1 |
20150045993 | Cooper et al. | Feb 2015 | A1 |
20150061492 | Braunberger | Mar 2015 | A1 |
20150100192 | Lee et al. | Apr 2015 | A1 |
20150120137 | Zeng et al. | Apr 2015 | A1 |
20150151737 | Birch et al. | Jun 2015 | A1 |
20150153733 | Ohmura et al. | Jun 2015 | A1 |
20150153738 | Al-Buraiki et al. | Jun 2015 | A1 |
20150154871 | Rothoff et al. | Jun 2015 | A1 |
20150161894 | Duncan et al. | Jun 2015 | A1 |
20150178998 | Attard et al. | Jun 2015 | A1 |
20150251676 | Golden et al. | Sep 2015 | A1 |
20150262481 | Selin | Sep 2015 | A1 |
20150274161 | Stierlin | Oct 2015 | A1 |
20150279122 | Lorenzen | Oct 2015 | A1 |
20150291160 | Kim | Oct 2015 | A1 |
20150296019 | Onishi et al. | Oct 2015 | A1 |
20150314790 | Deragarden et al. | Nov 2015 | A1 |
20150334371 | Galera et al. | Nov 2015 | A1 |
20150356635 | Thurston | Dec 2015 | A1 |
20150378722 | Zuniga-Hernandez | Dec 2015 | A1 |
20160009284 | Tokimasa et al. | Jan 2016 | A1 |
20160009288 | Yu | Jan 2016 | A1 |
20160019782 | Alam et al. | Jan 2016 | A1 |
20160026187 | Alam et al. | Jan 2016 | A1 |
20160039412 | Stahlin | Feb 2016 | A1 |
20160054735 | Switkes et al. | Feb 2016 | A1 |
20160102981 | Hubbard et al. | Apr 2016 | A1 |
20160170021 | Rashid et al. | Jun 2016 | A1 |
20160170487 | Saisho | Jun 2016 | A1 |
20160187141 | Kulkami et al. | Jun 2016 | A1 |
20160194014 | Rajendran | Jul 2016 | A1 |
20160198303 | Grotendorst et al. | Jul 2016 | A1 |
20160240085 | Otsuka | Aug 2016 | A1 |
20160267796 | Hiroma et al. | Sep 2016 | A1 |
20160272207 | Dolgov et al. | Sep 2016 | A1 |
20160273930 | Wada et al. | Sep 2016 | A1 |
20160297447 | Suzuki | Oct 2016 | A1 |
20160300186 | Scharaswak et al. | Oct 2016 | A1 |
20160359741 | Cooper et al. | Dec 2016 | A1 |
20160362048 | Matthews et al. | Dec 2016 | A1 |
20160373261 | Tschache et al. | Dec 2016 | A1 |
20160375732 | Lazar et al. | Dec 2016 | A1 |
20170011633 | Boegel | Jan 2017 | A1 |
20170036601 | Kimura | Feb 2017 | A1 |
20170058477 | Niroumand | Mar 2017 | A1 |
20170069203 | Sharma | Mar 2017 | A1 |
20170083844 | Baker et al. | Mar 2017 | A1 |
20170115666 | Kolhouse et al. | Apr 2017 | A1 |
20170122841 | Dudar et al. | May 2017 | A1 |
20170132299 | Fox et al. | May 2017 | A1 |
20170146801 | Stempora | May 2017 | A1 |
20170168503 | Amla et al. | Jun 2017 | A1 |
20170174223 | Munasinghe et al. | Jun 2017 | A1 |
20170178536 | Manci et al. | Jun 2017 | A1 |
20170186327 | Uysal et al. | Jun 2017 | A1 |
20170197544 | Wang et al. | Jul 2017 | A1 |
20170197615 | Elie et al. | Jul 2017 | A1 |
20170212511 | Paiva Ferreira et al. | Jul 2017 | A1 |
20170227972 | Sabau | Aug 2017 | A1 |
20170235316 | Shattil | Aug 2017 | A1 |
20170238321 | Sartori | Aug 2017 | A1 |
20170242095 | Schuh et al. | Aug 2017 | A1 |
20170242443 | Schuh et al. | Aug 2017 | A1 |
20170261997 | Switkes et al. | Sep 2017 | A1 |
20170287233 | Nix | Oct 2017 | A1 |
20170289864 | Narasimha et al. | Oct 2017 | A1 |
20170293296 | Stenneth et al. | Oct 2017 | A1 |
20170305365 | Matsumoto | Oct 2017 | A1 |
20170308097 | Switkes et al. | Oct 2017 | A1 |
20170309187 | Lin | Oct 2017 | A1 |
20170323244 | Rani et al. | Nov 2017 | A1 |
20170329348 | Li et al. | Nov 2017 | A1 |
20170344023 | Laubinger et al. | Nov 2017 | A1 |
20170349058 | Bernier et al. | Dec 2017 | A1 |
20170349176 | Alden et al. | Dec 2017 | A1 |
20170361762 | Wunsche et al. | Dec 2017 | A1 |
20170363430 | Al-Dahle et al. | Dec 2017 | A1 |
20180006365 | Powell | Jan 2018 | A1 |
20180018605 | Light-Holets et al. | Jan 2018 | A1 |
20180032072 | Hoye | Feb 2018 | A1 |
20180047293 | Dudar | Feb 2018 | A1 |
20180050697 | Kuszmaul et al. | Feb 2018 | A1 |
20180074514 | Switkes et al. | Mar 2018 | A1 |
20180082590 | MacNeille et al. | Mar 2018 | A1 |
20180082591 | Pandy | Mar 2018 | A1 |
20180084511 | Wu et al. | Mar 2018 | A1 |
20180111611 | MacNeille et al. | Apr 2018 | A1 |
20180120861 | Saxena et al. | May 2018 | A1 |
20180137763 | Deragarden et al. | May 2018 | A1 |
20180143650 | Klaus et al. | May 2018 | A1 |
20180143651 | Klaus et al. | May 2018 | A1 |
20180144640 | Price et al. | May 2018 | A1 |
20180186381 | Erlien et al. | Jul 2018 | A1 |
20180188725 | Cremona et al. | Jul 2018 | A1 |
20180188744 | Switkes et al. | Jul 2018 | A1 |
20180188745 | Pilkington | Jul 2018 | A1 |
20180188746 | Lesher et al. | Jul 2018 | A1 |
20180190119 | Miller et al. | Jul 2018 | A1 |
20180190128 | Saigusa | Jul 2018 | A1 |
20180210457 | Smartt et al. | Jul 2018 | A1 |
20180210461 | Cremona et al. | Jul 2018 | A1 |
20180210462 | Switkes et al. | Jul 2018 | A1 |
20180210463 | Switkes et al. | Jul 2018 | A1 |
20180210464 | Switkes et al. | Jul 2018 | A1 |
20180211544 | Smartt et al. | Jul 2018 | A1 |
20180211545 | Smartt et al. | Jul 2018 | A1 |
20180211546 | Smartt et al. | Jul 2018 | A1 |
20180217610 | Schuh et al. | Aug 2018 | A1 |
20180267559 | Switkes et al. | Sep 2018 | A1 |
20180314267 | Switkes et al. | Nov 2018 | A1 |
20180337703 | Price et al. | Nov 2018 | A1 |
20190035284 | Tam | Jan 2019 | A1 |
20190068582 | Kim et al. | Feb 2019 | A1 |
20190073908 | Neubecker et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
102007058192 | Jun 2009 | DE |
102011002275 | Oct 2012 | DE |
102014013672 | Apr 2015 | DE |
1975901 | Mar 2009 | EP |
2390744 | Nov 2012 | EP |
3316064 | May 2018 | EP |
982173 | Feb 1965 | GB |
991046 | May 1965 | GB |
2540039 | Jan 2017 | GB |
2551248 | Dec 2017 | GB |
2557001 | Jun 2018 | GB |
2557434 | Jun 2018 | GB |
2558051 | Jul 2018 | GB |
H05170008 | Jul 1993 | JP |
2995970 | Dec 1999 | JP |
2010030525 | Feb 2010 | JP |
5141849 | Feb 2013 | JP |
5170008 | Mar 2013 | JP |
2014056483 | Mar 2014 | JP |
2017215681 | Dec 2017 | JP |
2004077378 | Sep 2004 | WO |
2009024563 | Feb 2009 | WO |
2009043643 | Apr 2009 | WO |
2009071345 | Jun 2009 | WO |
2010098554 | Sep 2010 | WO |
2011125193 | Oct 2011 | WO |
2011151274 | Dec 2011 | WO |
2013006826 | Jan 2013 | WO |
2013147682 | Oct 2013 | WO |
2013165297 | Nov 2013 | WO |
2013187835 | Dec 2013 | WO |
2014062118 | Apr 2014 | WO |
2014092628 | Jun 2014 | WO |
2014133425 | Sep 2014 | WO |
2014137270 | Sep 2014 | WO |
2014137271 | Sep 2014 | WO |
2014145918 | Sep 2014 | WO |
2015047174 | Apr 2015 | WO |
2015047175 | Apr 2015 | WO |
2015047176 | Apr 2015 | WO |
2015047177 | Apr 2015 | WO |
2015047178 | Apr 2015 | WO |
2015047179 | Apr 2015 | WO |
2015047181 | Apr 2015 | WO |
2015047182 | Apr 2015 | WO |
2015156731 | Oct 2015 | WO |
2016065055 | Apr 2016 | WO |
2016087555 | Jun 2016 | WO |
2016087901 | Jun 2016 | WO |
2016134610 | Sep 2016 | WO |
2016134770 | Sep 2016 | WO |
2016135207 | Sep 2016 | WO |
2016182489 | Nov 2016 | WO |
2016201435 | Dec 2016 | WO |
2017035516 | Mar 2017 | WO |
2017048165 | Mar 2017 | WO |
2017164792 | Mar 2017 | WO |
2017070714 | Apr 2017 | WO |
2018217219 | Jul 2017 | WO |
2017148113 | Sep 2017 | WO |
2017179793 | Oct 2017 | WO |
2017184062 | Oct 2017 | WO |
2017184063 | Oct 2017 | WO |
2017196165 | Nov 2017 | WO |
2017200433 | Nov 2017 | WO |
2017204712 | Nov 2017 | WO |
2017209124 | Dec 2017 | WO |
2017209666 | Dec 2017 | WO |
2017210200 | Dec 2017 | WO |
2018000386 | Jan 2018 | WO |
2018035145 | Feb 2018 | WO |
2018038964 | Mar 2018 | WO |
2018039114 | Mar 2018 | WO |
2018039134 | Mar 2018 | WO |
2018043519 | Mar 2018 | WO |
2018043520 | Mar 2018 | WO |
2018043753 | Mar 2018 | WO |
2018054520 | Mar 2018 | WO |
2018085107 | May 2018 | WO |
2018106774 | Jun 2018 | WO |
2018111177 | Jun 2018 | WO |
2018135630 | Jul 2018 | WO |
2018137754 | Aug 2018 | WO |
2019014372 | Jan 2019 | WO |
2018208372 | Feb 2019 | WO |
Entry |
---|
Al Alam, Assad et al. “An Experimental Study on the Fuel Reduction Potential of Heavy Duty Vehicle Platooning”, J010 13th International IEEE Annual Conference on Intelligent Transportation Systems, Sep. 2010, pp. 306-311. |
Al Alam, Assad et al. “Establishing Safety for Heavy Duty Vehicle Platooning: A Game Theoretical Approach”, Proceedings of the 18th World Congress, The International Federation of Automatic Control (IFAC'11) Milano, Italy, Sep. 2011, pp. 3818-3823. |
Alvarez, Luis & Horowitz, Roberto, “Safe Platooning in Automated Highway Systems Part I: Safety Regions Design”, Vehicle System Dynamics, vol. 32, Jul. 1999, pp. 23-55. |
Alvarez, Luis & Horowitz, Roberto, “Safe Platooning in Automated Highway Systems Part II: Velocity Tracking Controller”, Vehicle System Dynamics, vol. 32, Jul. 1999, pp. 57-84. |
Aoki, Keiji, “Research and development of fully automated vehicles”, International Conference “Global/Local nnovations for Next Generation Automobiles” Part 1, paper OS5-1, Nov. 2013, 3 pages. |
Automated Highway System: Milestone 2 Report, Task C2: Downselect System Configurations and Workshop #3 (National Automated Highway System Consortium, Troy, MI, Jun. 1997), 604 pages. |
Bae, Hong S. et al., “Road Grade and Vehicle Parameter Estimation for Longitudinal Control Using GPS”, J001 IEEE Intelligent Transportation Systems Conference Proceedings, Oakland, CA, Aug. 25-29, 2001, pp. 166-171. |
Bergenheim, Carl et al., “Vehicle-lo-Vehicle Communication for a Platooning System”, Procedia—Social and Behavioral Sciences, vol. 48, Jun. 2012, pp. 1222-1233. |
Bergenheim, Carl et al., “Overview of Platooning Systems”, 19th ITS World Congress, Vienna, Austria, Oct. 22-26, 2012, 7 pages. |
Bevly, David et al. “Heavy Truck Cooperative Adaptive Cruise Control: Evaluation, Testing, and Stakeholder Engagement for Near Term Deployment: Phase One Final Report”, Report to Federal Highway Administration (Auburn University, Auburn, AL, Apr. 2015), 135 pages;Relrieved Aug. 23, 2018 at http://alri—0nline.org/wp-conlenl/ uploads/2015/05/DA TPPhase 1 FinalReport.pdf. |
Bishop, Richard et al., “While Paper: Automated Driving and Platooning Issues and Opportunities”, ATA Technology and Maintenance Council Future Truck Program, Automated Driving and Platooning Task Force Report Auburn Univ., Auburn, AL, Sep. 2015), 48 pages;Relrieved Nov. 17, 2017 from http://eng.auburn.edu/-dmbevly/-HWA_AU _ TRUCK_EAR/FHWA_AuburnDATP _Phase1 Final Report. |
Brizzolara, Davide & Toth, Andrea, “The Emergence of Truck Platooning”, Baltic Transport Journal, Mar. 2016, pp. 58-59. |
Browand, Fred et al,, “Fuel Saving Achieved in the Field Test of Two Tandem Truck,” California PATH Research Report UCB-ITS-PRR-2004-20, Jun. 2004, 29 pages. |
Desjardins, Charles, et al., “Cooperative Adaptive Cruise Control: A Reinforcement Learning Approach,” IEEE Transactions on Intelligent Transportation Systems, vol. 12, No. 4, pp. 1248-1260, Dec. 2011. |
Erlien, “Shared Vehicle Control Using Safe Driving Envelopes for Obstacle Avoidance and Stability”, A Dissertation submitted to the Department of Mechanical Engineering and the Committee on Graduate Studies of Stanford University, Mar. 2015. |
Holm, “Vehicle Mass and Road Grade Estimation Using Kalman Filter”, MSc Thesis, Department of Electrical Engineering, Sweden, Aug. 2011. |
Jacobson, Jan et al. “Functional Safety in Systems of Road Vehicles”, SP Report 2010:07 (SP Technical Research nstitute of Sweden, Boras, Sweden, Jul. 2010), 50 pages. |
Kidambi et al., “Methods in Vehicle Mass and Road Grade Estimation”, SAE International, University of Michigan, Apr. 1, 2014. |
Klaus et al., U.S. Appl. No. 15/860,024, filed Jan. 3, 2018. |
Korean Intellectual Property Office, ISA, “International Search Report and Written Opinion” in PCT Application No. PCT/US2012/045830, dated Jan. 7, 2013, 10 pages. |
Kozan, Recep et al., “An Experimental Approach for Engine Mapping,” Modem Applied Science, vol. 3, No. 3, March J009, pp. 3-9. |
Kunze, Ralph et al., “Organization and Operation of Electronically Coupled Truck Platoons on German Motorways”, International Conference on Intelligent Robotics and Applications, Conference Proceedings ICIRA 2009, Singapore, Dec. 2009, pp. 135-146. |
Kunze, Ralph et al. “Efficient Organization of Truck Platoons by Means of Data Mining”, ICINCO 2010, Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics, vol. 1, Funchal, Madeira, Portugal, Jan. 2010, pp. 104-113. |
Kuszmaul et al., U.S. Appl. No. 15/605,456, filed May 25, 2017. |
Jacobson et al., “Functional Safety in Systems of Road Vehicles”, SP Technical Research Institute of Sweden, Jul. 2010. |
Larson, Jeffrey et al., “Coordinated Route Optimization for Heavy-duty Vehicle Platoons”, Proceedings of the 16th International IEEE Annual Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, Oct. 2013, pp. 1196-1202. |
Li, Shengbo Eben et al., “Strategies to Minimize Fuel Consumption of Passenger Cars during Car-Following Scenario,” J011 American Control Conference, San Francisco, CA, USA, Jun. 29-Jul. 1, 2011, pp. 2107-2112. |
Lu, Xiao-Yun & Shladover, Steven E., “Automated Truck Platoon Control and Field Test”, in Road Vehicle Automation, Lecture Notes in Mobility, G. Meyer & S. Beiker (eds) (Springer Intl. Publishing, Switzerland, Jul. 2014), pp. 247-261. |
Meisen, Philipp et al. “A Data-Mining Technique for the Planning and Organization of Truck Platoons”, International Conference on Heavy Vehicles, Paris, France, vol. 10, May 2008, pp. 270-279. |
Michaelian, Mark, et al., “Field Experiments Demonstrate Fuel Savings for Close-Following,” California PATH Research Report UCB-ITS-PRR-2000-14, 28 pages, Sep. 2000. |
Micheau, Philippe, et al., “Revolution Speed Limiter for Engine Subjected to Large Load Variation,” IFAC Advances in Automotive Control, Salerno, Italy, 2004, pp. 221-226. |
Nowakowski, Christopher, et al., “Cooperative Adaptive Cruise Control: Testing Drivers' Choices of Following Distances,” California PATH Research Report UCB-ITS-PRR-2011-01, 171 pages, Jan. 2011. |
Nowakowski, Christopher et al., “Cooperative Adaptive Cruise Control (CACC) for Truck Platooning: Operational Concept Alternatives”, Research Report under Cooperative Agreement No. DTFH61-13-H-00012 Task 1.2, California PATH Program, (U.C. Berkeley, Berkeley, CA, Mar. 2015), 50 pages; Retrieved Aug. 25, 2017 from http://escholarship.org/uc/item/7jf9n5wm. |
Nowakowski, Christopher et al., “Heavy vehicle automation: Human factors lessons learned”, Procedia Manufacturing vol. 3, Jul. 2015, pp. 2945-2952. |
Packard, Andrew et al., “Section 5, Simple Cruise Control,” ME 132, Dynamic Systems and Feedback, Class Notes, Spring 2005, Instructor Prof. A. Packard, Department of Mechanical Engineering, UC Berkeley, pp. 24-52. |
Paulsson et al., “Vehicle Mass and Road Grade Estimation Using Recursive Least Squares”, MSc Thesis, Lund University, 2016. |
Porche, Isaac R., et al., “Real Time Task Manager for Communications and Control in Multicar Platoons,” Proceedings of the Intelligent Vehicles '92 Symposium, pp. 409-414, Jun. 29- Jul. 1, 1992. |
Ramakers, Richard et al., “Electronically coupled truck platoons on German highways,” Proceedings of the 2009 7 EEE International Conference on Systems, Man, and Cybernetics, San Antonio, TX, USA—Oct. 2009, pp. 2409-2414. |
Roeth, Michael, “CR England Peloton Technology Platooning Test Nov. 2013”, {North American Council on Freight Efficiency {NACFE.org), Fort Wayne, IN, Dec. 2013); Retrieved Aug. 23, 2018 at hllps://nacfe.org/wp-contenl/uploads/2018/02/Peloton-NACFE-F uel-Test-Report-120213.pdf. |
SAE International, Surface Vehicle Recommended Practice, J1939-71, Mar. 2011, Vehicle Application Layer, 1201 pages. |
Sheikholeslam, Shahab, et al., “A System Level Study of the Longitudinal Control of a Platoon of Vehicles,” Transactions of the ASME, vol. 114, pp. 286-292, Jun. 1992. |
Sheikholeslam, Shahab, et al., “Longitudinal Control of a Platoon of Vehicles,” Proceedings of the American Control Conference, May 23-25, 1990, pp. 291-296. |
“Kozan, Recep et al., ““An Experimental Approach for Engine Mapping,”” Modem Applied Science, vol. 3, No. 3, Mar. J009, pp. 3-9.”. |
Lu, Xiao-Yun & Shladover, Steven E., “Automated Truck Platoon Control and Field Test”, in Road Vehicle Automation, Lecture Notes in Mobility, G. Meyer & S. Beiker (eds) (Springer Intl. Publishing, Switzerland, Jul. 2014), p. 247-261. |
Montvey, et al., Priority Document associated with EP Application No. 03 100457.5., Feb. 25, 2003. |
Sheikholeslam, Shahab, et al., “Longitudinal Control of a Platoon of Vehicles; III: Nonlinear Model,” UCB PATH Report UCB-ITS-PRR-90-1, 25 pages, Apr. 1990. |
Shladover, Steven E., “Development and Evaluation of Selected Mobility Applications for VII (a.k.a. IntelliDrive),” California PATH PowerPoint Presentation; available at http://slideplayer.com/slide/6981587/, Jul. 1, 2009; 17 pages. |
Shladover, Steven E. et al. “Development and Evaluation of Selected Mobility Applications for VII: Concept of 40 ::lperations”, California PATH Research Report UCB-ITS-PRR-2011-09, (U.C. Berkeley, Jun. 2011), 109 pages. |
Shladover, Steven E. et al. “Development and Evaluation of Selected Mobility Applications for VII: Concept of 40 ::lperations”, California PATH Working Paper UCB-ITS-PWP-2009-3 (U.C. Berkeley, Berkeley, CA, Mar. 2009), 14 pages. |
Shladover, Steven E., et al., “Demonstration of Automated Heavy-Duty Vehicles,” California PATH Research Report UCB-ITS-PRR-2005-23, Jun. 2005, 459 pages. |
Shladover, Steven E. et al., “Cooperative Adaptive Cruise Control: Definitions and Operating Concepts”, Transportation Research Record: Journal of the Transportation Research Board, vol. 2489, Nov. 2015, pp. 145-152. |
Sugimachi, Toshiyuki et al., “Development of Autonomous Platooning System for Heavy-duty Trucks,” Proceedings of the 7th IFAC Symposium on Advances in Automotive Control, The International Federation of Automatic Control, Sep. 4-7, 2013. Tokyo, Japan, IFAC Proceedings Volumes vol. 46, Issue 21, (2013) pp. 52-57. |
“Surface Vehicle Recommended Practice, J1939-71, Vehicle Application Layer” (SAE International, Warrendale, PA, Mar. 2011), 1201 pages. |
Switkes et al., International Application No. PCT/USI7/47771, filed on Aug. 21, 2017. |
Tsao et al., “An Automated Highway System Dedicated to Inter-City Trucking: Design Options, Operating Concepts, and Deployment”, 2002, ITS Journal 7:169-196, San Jose State University, San Jose, CA, p. 174-176 (Year: 2002). |
Tsugawa, Sadayuki et al., “An Overview on an Automated Truck Platoon within the Energy ITS Project”, Proceedings of the 7th IFAC Symposium on Advances in Automotive Control, Tokyo, Japan, IFAC Proceedings vol. 16, Issue 21, Sep. 2013, pp. 41-46. |
Tsugawa, Sada Yuki et al., “A Review of Truck Platooning Projects for Energy Savings”, IEEE Transactions on Intelligent Vehicles, vol. 1 No. 1, Mar. 2016, pp. 68-77. |
Tsugawa, Sadayuki, et al., “An Automated Truck Platoon for Energy Saving,” 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4109-4114, Sep. 25-30, 2011. |
Wille, Matthias et al., “KONVOI: Electronically coupled truck convoys”, in Human Factors for Assistance and Automation, D. de Waard et al. {Eds.) {Shaker Publishing, Maastricht, the Netherlands, Jan. 2008), pp. 243-256. |
U.S. Appl. No. 61/167,121, filed Apr. 6, 2009. |
U.S. Appl. No. 15/590,803, filed May 9, 2017. |
U.S. Appl. No. 15/926,813, filed Mar. 20, 2018. |
U.S. Appl. No. 15/926,805, filed Mar. 20, 2018. |
U.S. Appl. No. 15/908,677, filed Feb. 28, 2018. |
U.S. Appl. No. 15/908,745, filed Feb. 28, 2018. |
U.S. Appl. No. 15/988,905, filed May 24, 2018. |
U.S. Office Action dated Jun. 15, 2018 from U.S. Appl. No. 15/590,803. |
U.S. Office Action dated May 17, 2019 from U.S. Appl. No. 15/590,803. |
U.S. Office Action dated Feb. 4, 2019 from U.S. Appl. No. 15/590,803. |
U.S. Office Action dated Mar. 21, 2019 from U.S. Appl. No. 15/926,809. |
U.S. Office Action dated Nov. 28, 2018 from U.S. Appl. No. 15/926,809. |
U.S. Office Action dated May 13, 2019 from U.S. Appl. No. 15/926,813. |
U.S. Final Office Action dated Sep. 5, 2018 from U.S. Appl. No. 15/936,271. |
U.S. Office Action dated Jun. 19, 2018 from U.S. Appl. No. 15/936,271. |
U.S. Office Action dated Feb. 12, 2019 from U.S. Appl. No. 15/936,271. |
U.S. Office Action dated May 9, 2019 from U.S. Appl. No. 15/936,271. |
White Paper, “Automated Driving and Platooning Issues and Opportunities”, ATA Technology and Maintenance Council Future Truck Program, Sep. 21, 2015. |
Zabat, Michael et al., “The Aerodynamic Performance of Platoons: Final Report,” California PATH Research Report UCB-ITS-PRR-95-35, 172 pages, Oct. 1995. |
Zhao Siyang et al., “Vehicle to Vehicle Communication and Platooning for EV with Wireless Sensor Network”, SICE Annual Conference 2015, Hangzhou, China, Jul. 2015, pp. 1435-1440. |
“Friedrichs, Andreas et al., ““A Generic Sollware Architecture for a Driver Information System to Organize and Operate Truck Platoons,”” Conference Paper—May 2008, pp. 250-259.”. |
“Geiger, Andreas et al., ““Team AnnieWAY's Entry to the 2011 Grand Cooperative Driving Challenge””, IEEE Transactions on Intelligent Transportation Systems, vol. 13, No. 3, Sep. 2012, pp. 1008-1017.”. |
“Gerdes, J. Christian & Hedrick, J. Karl, ““Brake System Requirements for Platooning on an Automated Highway””, Proceedings of the American Control Conference, Seattle, WA, Jun. 1995, pp. 165-169.”. |
“Gerdes, J.C., et al., Vehicle Speed and Spacing Control Via Coordinated Throttle and Brake Actuation, Control Eng. Practice, vol. 5, No. 11, pp. 1607-1614, Sep. 1997.”. |
“Halle, Simon, ““Automated Highway Systems: Platoons of Vehicles Viewed as a Multiagent System””, M.Sc. Dissertation, Faculte des Sciences et de Genie (Univ. Laval, Quebec, Canada, Jun. 2005), 194 pages.”. |
“Hellstrom, Magnus, ““Engine Speed Based Estimation of the Indicated Engine Torque,”” Master's thesis performed at Vehicular Systems, Dept. of Electrical Engineering at Linkopings universitet, Feb. 16, 2005, Reg nr. LiTH-ISYEX-3569-2005, 59 pages.”. |
“Holm, ““Vehicle Mass and Road Grade Estimation Using Kalman Fitter””, MSc Thesis, Department of Electrical Engineering, Sweden, Aug. 2011.”. |
International Search Report and Written Opinion in PCT Application No. PCT/US18/023723, dated Dec. 24, 2018,73 pages. |
International Search Report and Written Opinion in PCT Application No. PCT/US16/60167, dated Jan. 19, 2017, 5 pages. |
International Search Report and Written Opinion dated Feb. 23, 2018 from International Application No. PCT/US2017/058477. |
Number | Date | Country | |
---|---|---|---|
20190086935 A1 | Mar 2019 | US | |
20190361465 A9 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
61505076 | Jul 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13542622 | Jul 2012 | US |
Child | 14292583 | US | |
Parent | 13542627 | Jul 2012 | US |
Child | 13542622 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16028307 | Jul 2018 | US |
Child | 16188872 | US | |
Parent | 15817038 | Nov 2017 | US |
Child | 16028307 | US | |
Parent | 15607316 | May 2017 | US |
Child | 15817038 | US | |
Parent | 14292583 | May 2014 | US |
Child | 15607316 | US |