Firearm training is performed to improve a shooter's skills. Such skills may include accuracy, reaction time, breath control, target acquisition, consistency, pre-trigger break force control, follow-through, etc. At the most basic level, firearm training may be performed in a controlled shooting range where a shooter stands at a bench and shoots at targets at a known distance from the shooter. More complex training involves the shooter physically traversing a course with various targets deployed along the course.
Modernly, a firearms training simulator allows shooters to improve skills using virtual training tools. With these tools, virtual ranges can be displayed to a shooter, typically by projecting the virtual range onto a screen.
The shooter uses an inert, replica weapon to shoot at targets in the virtual range. The replica weapon emits laser pulses (either visible or IR), when the trigger of the replica weapon is pulled, that strike the virtual range. In some embodiments, the replica weapon may be implemented simply by using ammunition cartridges that include a “primer” momentary selection switch coupled to a laser emitting device in an otherwise functional weapon. In this way, when the trigger of the weapon is pulled, the firing pin will strike the momentary switch, causing laser light to be emitted from the weapon, which is projected onto the virtual range. In some embodiments, the replica weapon is implemented by removing the barrel or portions of the action in an actual firearm, and replacing them with components that reset the trigger and/or actuates the bolt when the trigger is pulled to simulate semi-automatic weapons.
The training simulator further includes a detector configured to identify where the laser is emitted on the projected virtual range. The training simulator can then determine various shooting characteristics of a range session.
Range training is very common and useful, but not without its drawbacks. In particular, range training can only approximate aspects of a situation outside of a range in which firearms are used. Range training typically is not able to accurately simulate terrain differences that might occur outside of the range. Further, range training is idealistic resulting in less stressful shooting. Thus, shooting performance on a range is typically much higher than outside of a range.
The subject matter claimed herein is not limited to embodiments that solve any disadvantages or that operate only in environments such as those described above. Rather, this background is only provided to illustrate one exemplary technology area where some embodiments described herein may be practiced.
One embodiment illustrated herein includes a shooting training apparatus. The shooting training apparatus includes a screen configured to display a virtual range. The shooting training apparatus further includes a footing surface configured to dynamically reorient during a shooting session, wherein the footing surface dynamically reorients independent of what is displayed in the virtual range.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
Additional features and advantages will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by the practice of the teachings herein. Features and advantages of the invention may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims. Features of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of the invention as set forth hereinafter.
In order to describe the manner in which the above-recited and other advantages and features can be obtained, a more particular description of the subject matter briefly described above will be rendered by reference to specific embodiments which are illustrated in the appended drawings. Understanding that these drawings depict only typical embodiments and are not therefore to be considered to be limiting in scope, embodiments will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Embodiments illustrated herein are directed to systems and methods for introducing interference into range training. In particular, the interference introduced into the range training relates to introducing interference in footing surfaces. For example, embodiments may introduce dynamic orientation changes of footing surfaces while a shooter is shooting. In some embodiments, such interference may be multi-faceted. For example, in some examples, different portions of the footing surface may be dynamically reoriented in different directions with respect to each other. Alternatively, or additionally, different portions of the footing surface may be reoriented in different directions at different rates. Alternatively, or additionally, portions of the footing surface may be dynamically reoriented while also moving laterally in one or more directions. Alternatively, or additionally, portions of the footing surface may include visual, tactile, audio, or other cues directing the shooter to perform certain movements on the footing surface. Alternatively, or additionally, portions of the footing surface may include visual, tactile, audio, or other cues directing the shooter to perform certain task as part of the shooting training.
Some embodiments herein may be implemented using various virtual training tools. For example, some embodiments may use one or more different systems for displaying a virtual range. In some embodiments, the training tools may include a projector to display the virtual range and a detector to detect laser hits from a training weapon. In some embodiments, a virtual range may be displayed on a screen having light sources in the screen to display the virtual range and detectors in the screen to detect laser hits. In some embodiments, the training tools may be configured to have a detection resolution of 1/16 of an inch at 10 feet. Some embodiments may be configured to have a detection resolution of 1/32 of an inch at 10 feet. This may be particularly useful for simulating rifle training. Further, some embodiments may implement a training weapon with multiple laser pulses per a given primer strike, which in some embodiments, may correspond to a single trigger pull. This too can be useful for rifle simulations when simulating lock and dwell time.
Additional details are now illustrated.
Referring now to
The shooter 102 has a weapon 110. The weapon 110 projects a laser beam 112 on to the screen 106, and specifically the portion of the screen having the virtual range 104 projected onto it.
The training environment further includes a detector 114. The detector can identify where the laser beam 112 strikes the virtual range 104. The detector is coupled to a computing processor 120 that executes computer executable instructions to use information about where the laser beam 112 strikes the virtual range 104, and determines what bullets from a live-fire weapon would have struck.
In the example illustrated in
In some embodiments, the computing processor 120 is configured to model various range and/or weapon characteristics. For example, in some embodiments, the computing processor 120 may be configured to model long-distance rifle shots by introducing delays and bullet drop. Illustratively, if the computing processor 120 is configured to model shooting for a long range target, when the detector 114 detects a laser strike on the screen 106, the computing processor 120 may determine that a model bullet strike strikes a different location and/or target then the location and/or target corresponding to the location and/or target where the laser strikes the screen 106.
For example, as illustrated in
With respect to the weapon 110, various characteristics are implemented in some embodiments. These characteristics can be implemented by virtue of characteristics of the weapon 110 itself and/or processing performed by the computing processor 120. As described previously, in some embodiments, the computing processor 120 may be configured to model delays and bullet drops. In some embodiments, the weapon 110 is configured to emit two laser pulses as opposed to just a single laser pulse per primer strike. In particular, the weapon 110 may be configured to emit a first laser pulse immediately when an actual or simulated primer strike of a bullet in the weapon is struck, which typically occurs a very short time (lock time) after the trigger of the weapon 110 is pulled. A second laser pulse is emitted at a time (dwell time) corresponding with when a bullet would leave the barrel of an actual weapon corresponding to the weapon 110. The dwell time, in other embodiments may be the time from when the primer is struck to when a bolt unlocks and extracts a spent cartage in a gun being simulated by the weapon 110. Thus, the weapon 110 may include delay circuitry configured to trigger the second laser pulse (and in some embodiments, the first laser pulse). The use of multiple laser pulses may be used to model bullet trajectory based on lock and dwell time which is related to when a primer of a bullet is struck and when the bullet leaves the barrel of an actual weapon or when a bolt opens and a cartridge is extracted. In this example, the detector 114 will detect the two strikes, which information is provided to the computing processor 120 where the computing processor 120 can determine what an actual bullet trajectory would look like related to the shooter's performance in the training environment 100. For example, a shooter's follow-through can be evaluated based on the two laser strikes on the screen 106 for a single trigger pull and/or a single shot fired.
In the example illustrated in
Referring now to
Returning once again to
While the examples illustrated show that the footing surface 116 reorients, it should also be appreciated that in various embodiments, the footing surface may have lateral movement. That is, portions of the footing surface may be dynamically reoriented while also moving laterally in one or more directions. Such lateral movement can be multi-directional. This can be envisioned as a multi-directional treadmill configuration. Although, as illustrated in
In some embodiments, the orientation of the various portions of the footing surface 116 is unrelated to what is displayed on the screen 106 in the virtual range 104. Thus, in these embodiments, the shooter 102 receives stimulation from the footing surface 116 that is unrelated to what the shooter 102 sees in the virtual range 104. This may be useful in training in that the shooter 102 learns to deal with unexpected perturbances while performing shooting actions. The illustrated embodiments can have a number of different benefits including improving the shooter's balance and building body tissues in the shooter. In some embodiments, portions of the footing surface 116 comprise one or more Reax Board floors or one or more Reax Run Treadmills available from Reaxing S.P.A of Milano, Italy.
Referring now to
While illuminated tiles are illustrated herein, it should be appreciated that in other embodiments, other cues may be provided to the user. For example, cues may be displayed on the screen 106. Alternatively, the system may include audio systems coupled to the computing processor 120 such that the computing processor can cause audio cues to be provided to the shooter 102. In still other embodiments, the computing processor 120 may control tactile elements, such as solenoids, vibration generators, or other tactile generators. Such tactile elements may be implemented in the footing surface 116, in the weapon 110, in other wearable devices worn by the shooter, etc.
In some embodiments, the prompt array 138 may have the ability to display different colored lights. In some embodiments, the color of the light displayed may correspond to targets in the virtual range 104 at which the shooter 102 should fire the weapon 110. For example, if a tile in the prompt array 138 is illuminated blue, this portion of the training session may indicate that the shooter is to move to the blue tile in the prompt array 138 and fire the weapon 110 at blue targets in the virtual range 104.
An evaluation of the shooter 102 in a training session will include if and/or how well the shooter 102 was able to move to the illuminated tile and select targets corresponding with the illuminated color of the tile. In some embodiments, this can be accomplished by computing evaluations performed by the computing processor 120. In some embodiments, the prompt array 138 may be formed using reacts lights Pro available from Reaxing S.P.A of Milano, Italy.
Referring now to
One embodiment illustrated herein includes a method of performing shooting training. The method includes dynamically reorienting a footing surface during a shooting session. The footing surface dynamically reorients independent of what is occurring downrange from the footing surface. That is, the footing surface reorientation is not connected to things that may be occurring in a virtual or live-fire range.
Embodiments of the method may further include displaying a virtual range downrange from the footing surface.
Embodiments of the method may further include detecting laser strikes from a weapon fired by a shooter. In some embodiments, detecting laser strikes comprises detecting laser strikes at a resolution of 1/16th of an inch or smaller on a virtual range when a shooter is shooting 10 feet from the virtual range. In an alternative embodiment, detecting laser strikes comprises detecting laser strikes at a resolution of 1/32nd of an inch or smaller on a virtual range when a shooter is shooting 10 feet from the virtual range.
Embodiments of the method may further include detecting laser strikes from a weapon fired by a shooter.
Embodiments of the method may further include modeling long-distance rife shots by introducing delay and bullet drop.
Embodiments of the method may further include performing a calibration operation for a virtual range.
Embodiments of the method may further include providing at least one of visual, tactile, or audio prompts to a shooter.
Further, the methods may be practiced by a computer system including one or more processors and computer-readable media such as computer memory. In particular, the computer memory may store computer-executable instructions that when executed by one or more processors cause various functions to be performed, such as the acts recited in the embodiments.
Embodiments of the present invention may comprise or utilize a special purpose or general-purpose computer including computer hardware, as discussed in greater detail below. Embodiments within the scope of the present invention also include physical and other computer-readable media for carrying or storing computer-executable instructions and/or data structures. Such computer-readable media can be any available media that can be accessed by a general purpose or special purpose computer system. Computer-readable media that store computer-executable instructions are physical storage media. Computer-readable media that carry computer-executable instructions are transmission media. Thus, by way of example, and not limitation, embodiments of the invention can comprise at least two distinctly different kinds of computer-readable media: physical computer-readable storage media and transmission computer-readable media.
Physical computer-readable storage media includes RAM, ROM, EEPROM, CD-ROM or other optical disk storage (such as CDs, DVDs, etc.), magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer.
A “network” is defined as one or more data links that enable the transport of electronic data between computer systems and/or modules and/or other electronic devices. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a computer, the computer properly views the connection as a transmission medium. Transmissions media can include a network and/or data links which can be used to carry desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer. Combinations of the above are also included within the scope of computer-readable media.
Further, upon reaching various computer system components, program code means in the form of computer-executable instructions or data structures can be transferred automatically from transmission computer-readable media to physical computer-readable storage media (or vice versa). For example, computer-executable instructions or data structures received over a network or data link can be buffered in RAM within a network interface module (e.g., a “NIC”), and then eventually transferred to computer system RAM and/or to less volatile computer-readable physical storage media at a computer system. Thus, computer-readable physical storage media can be included in computer system components that also (or even primarily) utilize transmission media.
Computer-executable instructions comprise, for example, instructions and data which cause a general purpose computer, special purpose computer, or special purpose processing device to perform a certain function or group of functions. The computer-executable instructions may be, for example, binaries, intermediate format instructions such as assembly language, or even source code. Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the described features or acts described above. Rather, the described features and acts are disclosed as example forms of implementing the claims.
Those skilled in the art will appreciate that the invention may be practiced in network computing environments with many types of computer system configurations, including, personal computers, desktop computers, laptop computers, message processors, hand-held devices, multi-processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers, mobile telephones, PDAs, pagers, routers, switches, and the like. The invention may also be practiced in distributed system environments where local and remote computer systems, which are linked (either by hardwired data links, wireless data links, or by a combination of hardwired and wireless data links) through a network, both perform tasks. In a distributed system environment, program modules may be located in both local and remote memory storage devices.
Alternatively, or in addition, the functionality described herein can be performed, at least in part, by one or more hardware logic components. For example, and without limitation, illustrative types of hardware logic components that can be used include Field-programmable Gate Arrays (FPGAs), Application-specific Integrated Circuits (ASICs), Application-specific Standard Products (ASSPs), System-on-a-chip systems (SOCs), Complex Programmable Logic Devices (CPLDs), etc.
The present invention may be embodied in other specific forms without departing from its characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application claims the benefit of and priority to U.S. Provisional Patent Application Ser. No. 63/623,730 filed on Jan. 22, 2024, and entitled “METHODS AND SYSTEMS FOR SIMULATED TARGET PRACTICE,” and which application is expressly incorporated herein by reference in its entirety.
| Number | Date | Country | |
|---|---|---|---|
| 63623730 | Jan 2024 | US |