The present invention is directed to methods and systems for starting propeller-driven devices, for example, aerially starting propeller-driven aircraft.
Some propeller-driven aerial devices such as airplanes, unmanned aerial vehicles (UAVs), and missiles are deployed by launching them into the air from the ground, sea, an airplane, a balloon, or a missile. These devices typically include reciprocating engines, which power the propeller. The reciprocating engines are typically started with a starter, which may be heavy, complex and requires a functioning and charged battery.
Propellers are typically optimized for cruise flight. Accordingly, the aerodynamic configuration of the propeller does not generate large torques when the propeller is not spinning and air is flowing across it at relatively low velocities. Reciprocating engines typically have static friction, sliding friction, and compression resistance, all of which must be overcome before the engine begins to reciprocate. However, a propeller that is optimized to generate sufficient starting torque (e.g., while the air is flowing past it as the vehicle is gliding or falling) will not be efficient during cruise flight or when performing other operations requiring it to propel the vehicle. In one case, the propeller is extracting energy from the air (i.e., serving as a windmill) and in the other case the propeller is adding energy to air as a means of providing a propulsive force for the vehicle.
One approach to addressing the foregoing problem is to outfit the propeller with a variable pitch mechanism that encourages the propeller to windmill. The variable pitch mechanism adjusts the propeller angle of attack relative to the air impacting the propeller. If the variable pitch mechanism has sufficient range of operation, the propeller can be set to create large starting torques during engine start, and then adjusted to provide an efficient propulsive force during cruise and maneuvers. However, the variable pitch mechanism may be heavy, complex, and may reduce reliability. Accordingly, both the battery/starter approach and the variable pitch propeller approach add weight (which is at a premium for operations), cost, complexity, and unreliability to the aerial device.
In still another approach, fixed-pitch propellers can sometimes start an unstarted reciprocating engine if the vehicle dives at a high enough speed during the starting process. However, this method is unreliable and may require very high speeds to enable starting. High dive speeds can increase the structural weight and material strength requirements of the vehicle wings to prevent them from breaking or fluttering or both.
The present invention is directed generally toward methods and systems for starting propeller-driven devices. An apparatus in accordance with one aspect of the invention includes a removable fixture configured to be coupled to an engine-driven propeller. The fixture can include at least one portion (e.g., a vane portion) positioned to extract energy from an adjacent flow stream. At least one link can be configured to releasably couple the vane portion to the propeller to rotate the propeller during engine start-up. The link can be configured to separate the vane portion from the propeller when the propeller rotates. For example, the link can be configured to break under a threshold tensile force and/or shear force. In particular aspects of the invention, the link can be configured to break under a centrifugal force when the propeller spins above a threshold speed. In further particular embodiments, the fixture can be installed on a propeller-driven vehicle, for example, an unmanned aircraft.
Other aspects of the invention are directed to methods for starting an engine coupled to a propeller. One such method includes rotating the propeller by exposing a starting fixture releasably coupled to the propeller to an adjacent fluid stream. The method can further include releasing the starting fixture from the propeller after an engine coupled to the propeller begins to turn over. Releasing the fixture can include increasing a tensile force placed on a frangible link coupling the fixture to the propeller by increasing a rotation speed of the fixture, breaking the frangible link, and allowing the fixture to release from the propeller in a generally radial direction. The method can further include starting the engine before releasing the starting fixture.
The following disclosure describes methods and systems for starting propeller-driven devices, for example, aerially launched unmanned air vehicles (UAVs). Certain specific details are set forth in the following description and the Figures to provide a thorough understanding of various embodiments of the invention. Certain well-known details often associated with aircraft, propellers and engines are not set forth in the following disclosure, however, to avoid unnecessarily obscuring the various embodiments of the invention. Further, those of ordinary skill in the relevant art will understand that they can practice other embodiments of the invention without several of the details described below.
If the fixture 130 were left in place for a significant period of time after the engine 110 started, it would render the propeller 120 inefficient by increasing its drag and weight and reducing its thrust (though providing it with good low-speed starting torque).
In an embodiment shown in
In one embodiment, the frangible link 132 can be configured to break once the engine 110 reaches an appropriate idle speed. Alternatively, the frangible link 132 can be configured to break at a higher RPM so that the operation of the engine 110 above idle causes the frangible link 132 to break. In still another embodiment, the frangible link 132 can be configured to break at an RPM that is lower than idle (and, in a particular embodiment, prior to the engine 110 starting), but at an RPM high enough that the propeller 120 will continue to turn without the fixture 130 (e.g., by windmilling).
In an embodiment shown in
One feature of an embodiment of the fixture 130 described above is that it can have roughly the same overall shape as the propeller blades 121 (through the pitch of each fixture portion 131 differs from the pitch of the corresponding blade 121). Accordingly, an aspect ratio of each fixture portion 131 (e.g., a ratio of radial extent to circumferential extent) can be roughly the same as an aspect ratio of the corresponding blade 121. In other embodiments, these ratios can differ. For example,
In one particularly useful embodiment, the fixture 730 is installed on an aircraft having a pusher configuration (e.g., with the engine 120 behind the fuselage). Accordingly, the airflow over the engine 120 helps to deploy the fixture 730. In other embodiments, the fixture 730 can be mounted to an aircraft having a tractor configuration (e.g., with the propeller 120 mounted forward of the fuselage) and can be deployed with other devices (e.g., a powered actuator). In any of these embodiments, the fixture 730 overcomes the static friction, dynamic or sliding friction, and compression resistance of the engine 110 to cause the propeller 120 to spin freely or windmill. Fuel is then added to the engine 110 and the engine 110 is started. Generally, the higher the rotational velocity imparted by the fixture 730, the quicker and more reliably the engine 110 will start.
In a particular aspect of an embodiment shown in
One feature of the fixture 730 is that it will not depart in a radial direction from the propeller 120 but instead departs in a more axial or longitudinal direction. This feature may further reduce the likelihood for the wing-tips or other outboard structures of the corresponding aircraft to be damaged by the departing fixture 730.
In another aspect of an embodiment shown in
Referring now to
In any of the foregoing embodiments, the UAV 800 is captured when it flies into the recovery line 853. Accordingly, the UAV 800 can include a cleat or other capture device 806 positioned toward the tip of each wing 805. In other embodiments, the capture devices can be positioned on other lifting surfaces of the UAV 800, so long as the capture devices can engage with the recovery line 853 when the corresponding lifting surface strikes the recovery line 853. Once captured, the UAV 800 is suspended from the recovery line by the wing 805 (or other lifting surface). Further details of apparatuses and methods for capturing the aircraft are described in co-pending U.S. application Ser. No. 10/758,893, previously incorporated herein by reference.
In other embodiments, the fixtures described above can also have other configurations. For example, the fixture or fixture portions can be released by an actuator, e.g., a servo, electric motor, powered magnet, or any other actuation device or mechanism. The operator of the UAV can manually activate the actuator (e.g., by pushing a remote control button) or the actuator can be activated automatically after a pre-selected time period has elapsed. In other embodiments, other factors (e.g., engine RPM) can be used to determine when to automatically or manually jettison the fixture. In a particular embodiment, a microprocessor can determine when to activate the actuator and jettison the fixture.
The fixture can be made out of a number of materials including wood, metal, plastic, fiberglass, and/or a composite. The fixture can be flexible, rigid, or semi-rigid. The fixture can be carefully tailored to bend or deform as the engine rotation rate increases to improve its performance.
The propeller to which the fixture is attached can have a two, three, four or more blades. The fixture can include portions on all the blades or fewer than all the blades. Each fixture portion can cover an entire blade, or less than an entire blade (e.g., just the tip of the blade). In still further embodiments, the fixture can be used with variable pitch propellers. In this case, the fixture can reduce the required range of variable-pitch actuation, simplifying the variable-pitch mechanism.
In other embodiments, the fixture can be attached to devices other than aircraft. Examples include windmills, electric turbines, water turbines, propellers for watercraft, or fan stages for turbine engines. In any of these embodiments, the device includes a propeller, or propeller-like element that is started by wind or air blowing over it, and which requires an increased starting torque over that which would be provided by the propeller itself. The propeller itself can accordingly be optimized for operation at higher relative wind velocities, or rotational velocities, or both.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, aspects of the invention described in the context of particular embodiments may be combined or eliminated in other embodiments. Although advantages associated with certain embodiments of the invention have been described in the context of those embodiments, other embodiments may also exhibit such advantages. Additionally, none of the foregoing embodiments need necessarily exhibit such advantages to fall within the scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
The present application claims priority to U.S. Provisional Application 60/517,160 filed Nov. 3, 2003 and incorporated herein in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
965881 | Draper | Aug 1910 | A |
968339 | Geraldson | Aug 1910 | A |
975953 | Hourwich | Nov 1910 | A |
1144505 | Steffan | Jun 1915 | A |
1164967 | Thorp | Dec 1915 | A |
1317631 | Kinser | Sep 1919 | A |
1383595 | Black | Jul 1921 | A |
1384036 | Anderson | Jul 1921 | A |
1428163 | Harriss | Sep 1922 | A |
1499472 | Pratt | Jul 1924 | A |
1530010 | Neilson | Mar 1925 | A |
1556348 | Ray et al. | Oct 1925 | A |
1624188 | Simon | Apr 1927 | A |
1634964 | Steinmetz | Jul 1927 | A |
1680473 | Parker | Aug 1928 | A |
1686298 | Uhl | Oct 1928 | A |
1712164 | Peppin | May 1929 | A |
1716670 | Sperry | Jun 1929 | A |
1731091 | Belleville | Oct 1929 | A |
1737483 | Verret | Nov 1929 | A |
1738261 | Perkins | Dec 1929 | A |
1748663 | Tucker | Feb 1930 | A |
1756747 | Holland | Apr 1930 | A |
1777167 | Forbes | Sep 1930 | A |
1816976 | Kirkham | Aug 1931 | A |
1836010 | Audrain | Dec 1931 | A |
1842432 | Stanton | Jan 1932 | A |
1869506 | Richardson | Aug 1932 | A |
1892357 | Moe | Dec 1932 | A |
1912723 | Perkins | Jun 1933 | A |
1925212 | Steiber | Sep 1933 | A |
1940030 | Steiber | Dec 1933 | A |
1960264 | Heinkel | May 1934 | A |
2333559 | Grady et al. | Nov 1943 | A |
2347561 | Howard et al. | Apr 1944 | A |
2360220 | Goldman | Oct 1944 | A |
2364527 | Haygood | Dec 1944 | A |
2365778 | Schwab | Dec 1944 | A |
2365827 | Liebert | Dec 1944 | A |
2380702 | Persons | Jul 1945 | A |
2390754 | Valdene | Dec 1945 | A |
2435197 | Brodie | Feb 1948 | A |
2436240 | Wiertz | Feb 1948 | A |
2448209 | Boyer et al. | Aug 1948 | A |
2465936 | Schultz | Mar 1949 | A |
2488050 | Brodie | Nov 1949 | A |
2515205 | Fieux | Jul 1950 | A |
2526348 | Gouge | Oct 1950 | A |
2669403 | Milligan | Feb 1954 | A |
2735391 | Buschers | Feb 1956 | A |
2814453 | Trimble et al. | Nov 1957 | A |
2843342 | Ward | Jul 1958 | A |
2844340 | Daniels et al. | Jul 1958 | A |
2908240 | Hodge | Oct 1959 | A |
2919871 | Sorensen | Jan 1960 | A |
2933183 | Koelsch | Apr 1960 | A |
3069118 | Bernard | Dec 1962 | A |
RE25406 | Byrne et al. | Jun 1963 | E |
3163380 | Brodie | Dec 1964 | A |
3268090 | Wirkkala | Aug 1966 | A |
3454244 | Walander | Jul 1969 | A |
3468500 | Carlsson | Sep 1969 | A |
3484061 | Niemkiewicz | Dec 1969 | A |
3516626 | Strance et al. | Jun 1970 | A |
3684219 | King | Aug 1972 | A |
3708200 | Richards | Jan 1973 | A |
3765625 | Myhr et al. | Oct 1973 | A |
3827660 | Doolittle | Aug 1974 | A |
3939988 | Wellman | Feb 1976 | A |
3943657 | Leckie | Mar 1976 | A |
3980259 | Greenhalgh et al. | Sep 1976 | A |
4067139 | Pinkerton et al. | Jan 1978 | A |
4079901 | Mayhew et al. | Mar 1978 | A |
4143840 | Bernard et al. | Mar 1979 | A |
4147317 | Mayhew et al. | Apr 1979 | A |
D256816 | McMahon et al. | Sep 1980 | S |
4236686 | Barthelme et al. | Dec 1980 | A |
4238093 | Siegel et al. | Dec 1980 | A |
4279195 | Miller | Jul 1981 | A |
4296894 | Schnabele et al. | Oct 1981 | A |
4296898 | Watson | Oct 1981 | A |
4311290 | Koper | Jan 1982 | A |
4408737 | Schwaerzler | Oct 1983 | A |
4410151 | Hoppner et al. | Oct 1983 | A |
4471923 | Hoppner et al. | Sep 1984 | A |
4523729 | Frick | Jun 1985 | A |
4566658 | Di Giovanniantonio et al. | Jan 1986 | A |
4678143 | Griffin | Jul 1987 | A |
4730793 | Thurber, Jr. et al. | Mar 1988 | A |
4753400 | Reuter et al. | Jun 1988 | A |
4809933 | Buzby et al. | Mar 1989 | A |
4842222 | Baird | Jun 1989 | A |
4909458 | Martin | Mar 1990 | A |
4979701 | Colarik et al. | Dec 1990 | A |
5007875 | Dasa | Apr 1991 | A |
5039034 | Burgess et al. | Aug 1991 | A |
5042750 | Winter | Aug 1991 | A |
5054717 | Taylor | Oct 1991 | A |
5109788 | Heinzmann | May 1992 | A |
5119935 | Stump et al. | Jun 1992 | A |
5253605 | Collins | Oct 1993 | A |
5253606 | Ortelli | Oct 1993 | A |
5509624 | Takahashi | Apr 1996 | A |
5583311 | Rieger | Dec 1996 | A |
5655944 | Fusselman | Aug 1997 | A |
5687930 | Wagner et al. | Nov 1997 | A |
5906336 | Eckstein | May 1999 | A |
6015261 | Barone | Jan 2000 | A |
6264140 | McGeer et al. | Jul 2001 | B1 |
6457673 | Miller | Oct 2002 | B1 |
6478650 | Tsai | Nov 2002 | B1 |
6835045 | Barbee et al. | Dec 2004 | B1 |
20020100838 | McGeer et al. | Aug 2002 | A1 |
20030222173 | McGeer et al. | Dec 2003 | A1 |
20040232282 | Dennis | Nov 2004 | A1 |
20050133665 | Dennis et al. | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
4301671 A1 | Jul 1993 | DE |
854371 | Apr 1940 | FR |
2 080 216 | Feb 1982 | GB |
2 150 895 | Jul 1985 | GB |
2 219 777 | Dec 1989 | GB |
07-304498 | Nov 1995 | JP |
WO 0075014 A1 | Dec 2000 | WO |
WO 0107318 A1 | Feb 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20050093507 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
60517160 | Nov 2003 | US |