The present disclosure relates generally to vehicle components and, more particularly, to methods and systems for use in supporting a battery in a vehicle environment.
At least some known battery supports are fabricated primarily from sheet metal. As a result, known battery support configurations are limited to sheet metal-forming restrictions. As such, known battery supports fabricated from sheet metal generally have simple configurations and are locally reinforced using stamped-metal parts that are welded and/or coupled to the supports. Although the stamped-metal parts may increase an overall strength and/or durability of the battery support, such parts also increase the overall weight of the battery support, which may negatively impact the operational performance of a vehicle.
In one aspect, a battery support is provided. The battery support includes a base having an upper surface and a lower surface, a spine extending downwardly from and axially along the base such that at least a portion of the base is cantilevered from the spine, and at least one rib extending downwardly from the base and laterally from the spine. The upper surface is sized to support a battery thereon.
In another aspect, a method is provided for supporting a battery. The method includes coupling a spine to a rail generally along an axial direction. The spine extends generally axially downwardly from the a base such that at least a portion of the base is cantilevered from the spine. At least one rib extends generally downwardly from the base and generally laterally from the spine. The cantilevered portion of the base and the at least one rib extend generally laterally from the spine generally in a first direction. The cantilevered portion of the base extends generally laterally from the spine at a first elevation. A flange is coupled to the rail generally along the axial direction such that the flange extends generally laterally from the spine in a second direction opposite the first direction. The flange extends generally laterally from the spine at a second elevation different from the first elevation such that the cantilevered portion of the base and the flange are vertically offset.
The features, functions, and advantages described herein may be achieved independently in various embodiments of the present disclosure or may be combined in yet other embodiments, further details of which may be seen with reference to the following description and drawings.
Although specific features of various embodiments may be shown in some drawings and not in others, this is for convenience only. Any feature of any drawing may be referenced and/or claimed in combination with any feature of any other drawing.
The subject matter described herein relates generally to vehicle components and, more particularly, to methods and systems for use in supporting a battery. In one embodiment, a battery support is a molded, metal insert-free, open structure that includes a base having an upper surface and a lower surface. The upper surface is sized to support a battery thereon. A spine extends downwardly from the base such that at least a portion of the base is cantilevered from the spine. At least one rib extends downwardly from the base and from the spine to provide vertical support to the base.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural elements or steps unless such exclusion is explicitly recited. Furthermore, references to “one embodiment” of the present invention or the “exemplary embodiment” are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features.
In the exemplary embodiment, base 170 includes a first outer edge portion 200 (shown in
In the exemplary embodiment, a spine 240 (shown in
In the exemplary embodiment, spine 240 includes at least one mechanism that enables spine 240 to “fail” generally in the X-axis 120. More specifically, in the exemplary embodiment, spine 240 is configured and/or designed to address axial loading issues. For example, in the exemplary embodiment, spine 240 includes at least one line of weakness 280 (shown in
In the exemplary embodiment, at least one rib 330 (shown in
In the exemplary embodiment, at least one flange 340 (shown in
In the exemplary embodiment, flange 340 includes at least one mechanism that enables flange 340 to “fail” generally in the X-axis 120. More specifically, in the exemplary embodiment, flange 340 is configured and/or designed to address axial loading issues. For example, in the exemplary embodiment, flange 340 includes at least one line of weakness 380 (shown in
In the exemplary embodiment, spine 240 is coupled 420 to rail 110 generally along the X-axis 120. More specifically, in the exemplary embodiment, a respective coupling mechanism 270 is received within each opening 260 to facilitate coupling 420 spine 240 to rail 110. In the exemplary embodiment, battery support 130 is molded 410 such that recess 320 is positioned generally between coupling mechanisms 270 and/or openings 260. More specifically, in the exemplary embodiment, a first portion of spine 240 is coupled 420 to rail 110, and a second portion of spine 240 is coupled 420 to rail 110 such that recess 320 is positioned generally between the first portion and the second portion.
Moreover, in the exemplary embodiment, flange 340 is coupled 430 to rail 110 generally along the X-axis 120. More specifically, in the exemplary embodiment, a respective coupling mechanism 370 is received within each opening 360 to facilitate coupling 430 flange 340 to rail 110. In the exemplary embodiment, battery support 130 is molded 410 such that flange 340 extends generally laterally from spine 240 in a direction opposite rib 330 and/or the cantilevered portion of base 170.
In the exemplary embodiment, battery 150 is positioned 440 on upper surface 180. Accordingly, in the exemplary embodiment, battery 150 is supported by battery support 130 in an automobile environment.
The subject matter described herein enables a battery to be supported within an automobile in a unique manner. More specifically, the battery support described herein is a molded, open structure that is lightweight relative to at least some conventional battery supports of a similar size while maintaining a strength, durability, and/or robustness sufficient to support a battery in an automobile environment. Moreover, the battery support described herein is configured to have more vertical and lateral strength, durability, and/or robustness relative to at least some conventional battery supports.
Exemplary embodiments of methods and systems for supporting a battery are described above in detail. The systems and methods are not limited to the specific embodiments described herein, but rather, components of systems and/or steps of the method may be utilized independently and separately from other components and/or steps described herein. Each component and each method step may also be used in combination with other components and/or method steps. Although specific features of various embodiments may be shown in some drawings and not in others, this is for convenience only. Any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
This written description uses examples to disclose the embodiments, including the best mode, and also to enable any person skilled in the art to practice the embodiments, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
This application is a divisional application of U.S. patent application Ser. No. 13/483,233, filed May 30, 2012, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2993603 | Fohn | Jul 1961 | A |
D234066 | Wallace | Jan 1975 | S |
4573588 | Cohen | Mar 1986 | A |
5086860 | Francis et al. | Feb 1992 | A |
5547036 | Gawaskar et al. | Aug 1996 | A |
5636701 | Norman et al. | Jun 1997 | A |
6040080 | Minami et al. | Mar 2000 | A |
6439329 | Vaishnav | Aug 2002 | B1 |
7026377 | Grant | Apr 2006 | B1 |
7469763 | Dupuis et al. | Dec 2008 | B2 |
7610978 | Takasaki et al. | Nov 2009 | B2 |
7632445 | Porter et al. | Dec 2009 | B2 |
7836989 | Reed et al. | Nov 2010 | B2 |
7836990 | Reed et al. | Nov 2010 | B2 |
20050224683 | Hirayu | Oct 2005 | A1 |
20070017720 | Fujii et al. | Jan 2007 | A1 |
20110036654 | Rinderlin et al. | Feb 2011 | A1 |
Number | Date | Country |
---|---|---|
2002029336 | Jan 2002 | JP |
Entry |
---|
Battery Storage; http://www.noco-usa.com/pdf/Noco-Catalog—Battery-Storage.pdf; Jul. 27, 2011; pp. 30-43. |
DIY Replacement Battery Tray—Quick and Dirty Install; http://www.grobe.us/Jeep/Tech/Electrical/BatteryTray/qnd-install.htm; Jul. 27, 2011; 2 pages. |
Installation Instructions for Volkswagen Golf; http://www.aemintakes.com/AEM-21-494—inst.pdf; 2004; pp. 1-9. |
Number | Date | Country | |
---|---|---|---|
20140356680 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13483233 | May 2012 | US |
Child | 14463218 | US |