The present specification generally relates to radiographic imaging systems. More specifically the present specification relates to systems and methods for concurrently generating X-ray beams having substantially similar characteristics using an adjustable collimator.
Stereoscopic X-ray imaging methods are used to separate, in an image, each object in a detection space, which are located at different depths. The principle of stereoscopic X-ray imaging is based on the ability to perceive depth of a three-dimensional structure using binocular vision. The binocular vision is simulated by splitting the X-ray beam from a single source into two beams. The single X-ray beam is typically formed by two collimation slits that may be provided in a beam controller section of the radiographic imaging device. The two beams may be either symmetric or asymmetric with an angle between them.
U.S. Pat. No. 9,763,630, titled “Stereoscopic imaging systems and methods” provides “a stereoscopic imaging system, comprising: an X-ray source configured to emit a plurality of X-ray fan beams; a plurality of columns of detectors, wherein each column of detectors is arranged at a preset angle with respect to the X-ray source, and configured to detect a strength value of a respective one of the X-ray fan beams penetrating an object under inspection, and each column of detectors is configured to form a respective transmission image, when the object intersects, or moves along a direction intersecting with, the X-ray fan beams, with the preset angle being unchanged; and a reconstruction apparatus configured to select two transmission images from the formed transmission images, use the selected images to calculate depth information regarding the object and reconstruct a 3D image of the object based on the calculated depth information.”
However, current stereoscopic imaging methods provide limited information about the material properties of an object that may be different from the material properties of another object in the same direction. The accurate identification of material properties is critical for security applications of the imaging systems.
Multi-energy imaging methods are used to distinguish different types of materials. Imaging systems using X-rays having multiple energies, are able to discriminate between materials of varying elemental composition. However, in cases where objects with differing compositions overlap each other, the properties of one object in the overlapping volume may dominate the attenuation absorption profile while the second object's attenuation characteristics may be difficult, if not impossible to identify.
Methods for combining binocular stereoscopic imaging and multi-energy transmission methods to identify material properties of objects that overlap in the direction of an X-ray beam are well-known. U.S. Pat. No. 8,194,953, titled “Method and system of material identification using binocular stereoscopic and multi-energy transmission images” provides “material identification and imaging method using binocular stereoscopic and multi-energy transmission images comprise the following steps: 1) causing two angled X-ray beams to penetrate through objects under examination so as to obtain data of left and right transmission images, segmenting said left and right transmission images and matching the results of said segmentation; 2) creating a depth plane along the depth direction of the transmission images; 3) repeating the above process on transmission images of variation energy to obtain a depth plane of each depth plane for the variation energy; 4) merging the depth planes for different energy levels at the same position to obtain a depth plane for each depth plane and energy of a predetermined group of energy levels; 5) identifying the material of the objects for each of which a grey reconstruction in said depth plane succeeds.”
However, current collimation systems that generate X-ray beams are unable to effectively generate multiple non-parallel X-ray beams from the same source having sufficiently similar beam characteristics further having minimized, yet similar, dose drop-offs at a given angle. As a result, these systems find limited application in security inspection systems, portals, baggage, and/or cargo inspection systems. Hence, there is need for collimation systems and methods that enable the generation of multiple non-parallel X-ray beams from the same source having sufficiently similar beam characteristics.
The following embodiments and aspects thereof are described and illustrated in conjunction with systems, tools and methods, which are meant to be exemplary and illustrative, and not limiting in scope. The present application discloses numerous embodiments.
In some embodiments, the present specification describes an adjustable collimator device adapted to collimate a beam of energy emitted from a radiation source, comprising: an elongated body with a front-end and a rear-end; a first plurality of emission apertures equally spaced around a longitudinal axis extending through a center of the elongated body, wherein the longitudinal axis defines a zero-degree position, wherein the first plurality of emission apertures is placed proximate the rear-end of the elongated body, and wherein the first plurality of emission apertures is configured to receive a beam of energy entering the adjustable collimator device and sample the beam of energy generated; and a second plurality of apertures placed proximate the front-end of the elongated body, wherein the second plurality of apertures are adjustable such that a first of the second plurality of apertures can be configured to have a first angular offset relative to the zero-axis and a second of the second plurality of apertures can be configured to have a second angular offset relative to the zero-axis, and wherein the first angular offset is equal to or different from the second angular offset.
Optionally, the adjustable collimator device is configured to collimate the beam of energy such that a first energy beam and a second energy beam, separate from the first energy beam, are concurrently emitted from the adjustable collimator device, wherein the first energy beam and the second energy beam have substantially similar characteristics.
Optionally, the adjustable collimator device and the radiation source are rotated around a position of the radiation source by half of an angle of separation between the first energy beam and the second energy beam, to bring either one of the first energy beam or the second energy beam perpendicular to an object being imaged by the adjustable collimator device.
Optionally, the beam of energy is an X-ray beam.
Optionally, the second plurality of emission apertures comprises first and second movable apertures.
Optionally, the first movable aperture comprises two adjustable jaws that, in combination, define the first movable aperture and are configured to adjust the first movable aperture to a plurality of different angular offsets relative to the zero axis and wherein the second movable aperture comprises two adjustable jaws that, in combination, define the second movable aperture and are configured to adjust the second movable aperture to a plurality of different angular offsets relative to the zero axis such that the first movable aperture and second movable aperture concurrently generate X-ray beams equally offset from the zero axis.
Optionally, the first plurality of emission apertures comprises third and fourth fixed apertures.
Optionally, the two adjustable jaws of each of the first and second movable apertures are positioned such that the adjustable jaws do not occlude the beam of energy.
Optionally, the substantially similar characteristics of the first energy beam and the second energy beam include dose and energy.
Optionally, the first angular offset is in a range of 5 degrees to 10 degrees.
Optionally, the second angular offset is in a range of 5 degrees to 10 degrees.
In some embodiments, the present specification describes a radiographic imaging method comprising: positioning an adjustable collimator device near a radiation source configured to generate an X-ray beam, wherein the adjustable collimator device includes a first et of collimators and a second set of collimators; collimating the X-ray beam, using the first set of collimators, to concurrently generate a first X-ray beam and a second X-ray beam, wherein the first X-ray beam and the second X-ray beam are not parallel; collimating the first X-ray beam, using a first of the second set of collimators, to generate a third X-ray beam, wherein the third X-ray beam emanates from the collimator device at a first angle of separation with respect to a central axis of the collimator device; and collimating the second X-ray beam, using a second of the second set of collimators, to generate a fourth X-ray beam, wherein the fourth X-ray beam emanates from the collimator device at a second angle of separation with respect to the central axis.
Optionally, the first angle of separation is equal to the second angle of separation.
Optionally, the first set of collimators define first and second apertures of fixed width, and wherein the first and second apertures are positioned equidistant from the central axis.
Optionally, the second set of collimators define third and fourth apertures, and wherein widths of the third and fourth apertures are adjustable.
Optionally, the third aperture is defined by first and second adjustable jaws and the fourth aperture is defined by third and fourth adjustable jaws, wherein the first and second adjustable jaws are configured to adjust the third aperture to a plurality of different angular offsets relative to the central axis, and wherein the third and fourth adjustable jaws are configured to adjust the fourth aperture to a plurality of different angular offsets relative to the central axis.
Optionally, the first and second adjustable jaws as well as the third and fourth adjustable jaws are positioned within the collimator device such that the first, second, third and fourth adjustable jaws do not occlude the first and second X-ray beams.
Optionally, the third and fourth X-ray beams have substantially similar dose and energy characteristics.
Optionally, the first angle of separation is in a range of 5 degrees to 10 degrees.
Optionally, the second angle of separation is in a range of 5 degrees to 10 degrees.
Optionally, the method further comprises generating first scan data by detecting the third X-ray beam after the third X-ray beam passes through an object being scanned; generating second scan data by detecting the fourth X-ray beam after the fourth X-ray beam passes through the object; generating first and second image data by processing the first and second scan data, respectively; and using the first and second image data, determining material composition and depth corresponding to contents of the object.
The present specification also discloses systems and methods for detecting X-ray radiation and generating an image of an object by utilizing two angled X-ray beams generated by an adjustable collimator system. In some embodiments, the adjustable collimator system for collimating a beam of energy emitted from a radiation source comprises a first plurality of emission apertures equally spaced around a zero-degree axis along an elongated plate-like body, the first plurality of emission apertures includes a fixed aperture and a movable aperture, wherein the movable aperture is provided with adjustable jaws to adjust the aperture at different angles to obtain concurrent generation of multiple collimated X-ray beams from a single radiation source. The X-ray beam from the radiation source passes through the first plurality of apertures, the first plurality of apertures samples the X-ray beam emitted from the radiation source and the two angled collimated beams exit through the second plurality of apertures at the rear-end of the adjustable collimator system. The collimated beams thus generated are concurrent with an angle of separation between them. Optionally, in an embodiment, the first plurality of emission apertures is made of materials such as but not limited to lead, tungsten, gold or uranium thereof. Moreover, the angle of separation between the two concurrent collimated beams generated by the adjustable collimator system is less than 10 degrees. Preferably the angle of separation between the two concurrent collimated beams generated by the adjustable collimator system is in the range of 5 degrees to 10 degrees.
The aforementioned and other embodiments of the present specification shall be described in greater depth in the drawings and detailed description provided below.
The accompanying drawings illustrate various embodiments of systems, methods, and embodiments of various other aspects of the disclosure. Any person with ordinary skills in the art will appreciate that the illustrated element boundaries (e.g. boxes, groups of boxes, or other shapes) in the figures represent one example of the boundaries. It may be that in some examples one element may be designed as multiple elements or that multiple elements may be designed as one element. In some examples, an element shown as an internal component of one element may be implemented as an external component in another and vice versa. Furthermore, elements may not be drawn to scale. Non-limiting and non-exhaustive descriptions are described with reference to the following drawings. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating principles.
The present specification is directed towards multiple embodiments. The following disclosure is provided in order to enable a person having ordinary skill in the art to practice the invention. Language used in this specification should not be interpreted as a general disavowal of any one specific embodiment or used to limit the claims beyond the meaning of the terms used therein. The general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the invention. Also, the terminology and phraseology used is for the purpose of describing exemplary embodiments and should not be considered limiting. Thus, the present invention is to be accorded the widest scope encompassing numerous alternatives, modifications and equivalents consistent with the principles and features disclosed. For purpose of clarity, details relating to technical material that is known in the technical fields related to the invention have not been described in detail so as not to unnecessarily obscure the present invention.
In the description and claims of the application, each of the words “comprise” “include” and “have”, and forms thereof, are not necessarily limited to members in a list with which the words may be associated. Thus, they are intended to be equivalent in meaning and be open-ended in that an item or items following any one of these words is not meant to be an exhaustive listing of such item or items, or meant to be limited to only the listed item or items. It should be noted herein that any feature or component described in association with a specific embodiment may be used and implemented with any other embodiment unless clearly indicated otherwise.
It must also be noted that as used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural references unless the context dictates otherwise. Although any systems and methods similar or equivalent to those described herein can be used in the practice or testing of embodiments of the present disclosure, the preferred, systems and methods are now described.
In some embodiments, the present specification describes systems and methods for generating an image of an object by employing two angled X-ray beams generated by a radiographic imaging system. According to an aspect, the radiographic imaging system comprises positioning an adjustable collimator system near a radiation source with a LINAC target emitting radiation, collimating the radiation emitted from the LINAC target using the adjustable collimator system, thus generating two concurrent collimated beams simultaneously with a predefined, yet customizable, angle of separation between them, with each beam having beam characteristics substantially similar to each other. The emitted collimated beams of X-ray are poly-energetic and consists of a wide range of energies (ranging from 0 eV up to a maximum output of the LINAC), having a short wavelength and high frequencies. Furthermore, the radiographic imaging method consists of detecting the radiation that passes through the adjustable collimator system using a radiation detection module and processing an image recorded by the radiation detection module, using an image acquisition system and producing a desired image using a computer processing system thereby determining the material depth which aids in composition calculation of one or more objects in a detection space.
In some embodiments, the present specification is also directed toward systems and methods for detecting an image of an object by employing two angled X-ray beams generated by a radiographic imaging system. According to an aspect, the radiographic imaging method comprises the steps of generating two X-ray beams having an angle therebetween, using an adjustable collimation system, and directing the two angled X-ray beams to penetrate through the object under inspection in order to obtain transmission data. The transmission data is then analyzed to determine the material depth and composition of the object being inspected.
The collimator system 100 includes a first set of fixed collimating jaws 125a, 125b positioned proximate the rear-end 106 and that extend between the first and second side-plates 110a, 110b. The first set of collimating jaws 125a, 125b define first and second slits, apertures or openings 127a, 127b that serve to simultaneously or concurrently generate first and second non-parallel X-ray fan beams 132, 134. In some embodiments, the first and second slits, apertures or openings 127a, 127b are positioned equidistant from the central axis 122. In some embodiments, a width of the first and second slits, apertures or openings 127a, 127b is predefined and fixed. In some embodiments, the first and second slits, apertures or opening 127a, 127b are made of materials such as, but not limited to, lead, tungsten, gold or uranium.
It should be appreciated that the first set of collimating jaws 125a, 125b provide a “crude” collimation, mainly also catching scatter off the surface of the LINAC shielding.
The collimator system 100 further includes a second set of adjustable collimating jaws 140, 150. The collimating jaws 140 are coupled to the first side-plate 110a and include two displaceable diaphragm plates or jaws 140a, 140b defining a third slit. The collimating jaws 150 are coupled to the second side-plate 110b and include two displaceable diaphragm plates or jaws 150a, 150b defining a fourth slit. The diaphragm plates or jaws 140a, 140b and 150a, 150b of the respective collimators 140, 150 are movable relative to one another to modulate and achieve desired widths of the third and fourth slit openings. In some embodiments, the diaphragm plates or jaws 140a, 140b, 150a, 150b are offset along a direction of X-ray emission to allow for location of adjustment rods 133 (that connect the collimating jaws 140 and 150 to the sides 110a, 110b of the secondary collimator assembly 100) to not occlude the X-ray beam path.
It should be appreciated that the second set of collimating jaws 140, 150 collimate the respective X-ray beams 132, 134 down so that they only impinge on the front of the crystals on respective detector arrays.
During operation, the first X-ray fan beam 132 is collimated by the collimating jaws 140 while the second X-ray fan beam 134 is collimated by the collimating jaws 150 so that the first and second X-ray fan beams 132, 134 emanate from the system 100 at desired angles of separation with respect to the central axis 122 before entering a scan tunnel. In various embodiments, the third and fourth slits defined by the second set of collimating jaws 140, 150 are spatially separated from each other so that the first and second X-ray fan beams 132, 134 have the desired angles of separation with reference to the central axis 122.
In accordance with some aspects of the present specification, the first and second X-ray fan beams 132, 134 exiting the adjustable collimator system 100 possess substantially similar beam characteristics referred to as dose and energy, accounting for a symmetric “roll-off” in both dose and energy at equal angular displacements from the central axis 122 of X-ray generation. It should be appreciated that the spatial separation of the third and fourth slits has a bearing on changes in the X-ray spectrum of the first and second X-ray fan beams 132, 134 when measured at different angles of emission. Accordingly, in some embodiments, the spatial position (within the collimator system 100) and relative separation of the third and fourth slits is achieved so as to offset the first X-ray fan beam 132 by a first angle of separation ‘A1’ from the central axis 122 and the second X-ray fan beam 134 by a second angle of separation ‘A2’ from the central axis 122.
In some embodiments, the relative location of the two points of X-ray emission from the LINAC can be configured to minimize differences in energy and dose. In some embodiments, the first angle of separation is equal to the second angle of separation and each of the first and second angles of separation ranges from 1 degree to 5 degrees from the central axis 122. In some embodiments, a sum of the first and second angles of separation (that is, A1+A2) is in a range of 5 degrees to 10 degrees. In some embodiments, a sum of the first and second angles of separation (that is, A1+A2) is not greater than 10 degrees. In some embodiments, a sum of the first and second angles of separation (that is, A1+A2) is in a range of 1 degree to 20 degrees, or any numerical increment therein.
In embodiments where both first and second X-ray fan beams 132, 134 are offset from the central axis 122, the radiation source 120 and the collimator assembly 100 are rotated so that one of the first and second X-ray beams 132, 134 is imaging an object under inspection, such as, for example, cargo, at 90 degrees. This results in first and second scanned images, corresponding to the first and second X-ray beams 132, 134, that are substantially similar in performance (such as, but not limited to, intensity, contrast, sharpness) since dose and energy (of the first and second X-ray beams 132, 134) is substantially symmetrical around the 0 degree central axis 122.
In some embodiments, the primary X-ray beam is sampled by the first set of fixed collimating jaws 125a, 125b to emit both the first X-ray fan beam 132 substantially along the central axis 122 (and more specifically, at a 0-degree angle) and the second X-ray fan beam 134. The first X-ray fan beam 132 is further collimated by the collimating jaws 140 for shaping the width of the beam and the second X-ray fan beam 134 is further collimated by the collimating jaws 150 and eventually emitted at an offset or angle of separation from the central axis 122. Thus, in such embodiments, the first aperture 127a is along the central axis 122 while the second aperture 127b is at a distance from the central axis 122 (so that the first X-ray beam 132 is now emitted along the central axis 122 and is collimated by the jaws 140 for shaping the width of the beam 132). Consequently, the first X-ray fan beam 132 yields the highest dose and highest energy while the second X-ray fan beam 134 has a drop off in energy and dose resulting in a corresponding off-axis scan image having performance capabilities different from the scan image corresponding to the first X-ray fan beam 132.
As described earlier with reference to
During a scanning operation, a primary X-ray beam generated by the radiation source 220 is split by two slits or apertures of the first set of fixed collimating jaws into concurrent first and second X-ray fan beams. Further, the first X-ray fan beam is collimated by the adjustable collimating jaws 240 to exit the front-end 204 at a first angle of separation from a central longitudinal axis (identified as axis 122 in
According to one embodiment of the present invention,
According to one embodiment of the present specification,
Target detector collimators 410a, 410b help reduce the scattering of X-ray beams 422, 427 and cross-talk. A radiation detection module includes a first detector array 412a to receive the X-ray beam 422 after transmission through an object 408 and a second detector array 412b to receive the X-ray beam 427 after transmission through the object 408. The first and second detector arrays 412a, 412b generate corresponding first and second scan signals that are transmitted to corresponding image acquisition systems that generate corresponding first and second image data. Thereafter, a computer processing system 435 carries out processing of the first and second image data in order to determine the material depth which aids in composition calculation of various materials or content of the object (or detection space).
According to another embodiment of the present specification,
According to one embodiment of the present invention,
Moreover, the radiation detection module 500 directly faces the two angled X-ray beams emitted from the adjustable collimator system. Hence, the detection module 500 scans and examines the object under inspection in a symmetric fashion and transmits the scan signals to a corresponding image acquisition system.
According to one embodiment of the present invention,
Changes in the X-ray spectrum measured at different angles of emission are referred to as dose and energy roll off. The embodiments of the present invention consider three different scenarios of splitting an X-ray beam emitted by the radiation source. With reference to
A second option with reference to
A third option with reference to
In some embodiments, the first set of collimators define first and second apertures of fixed width, and wherein the first and second apertures are positioned equidistant from a central axis of the collimator device. In some embodiments, the second set of collimators define third and fourth apertures, and wherein widths of the third and fourth apertures are adjustable. In some embodiments, the third aperture is defined by first and second adjustable jaws and the fourth aperture is defined by third and fourth adjustable jaws, wherein the first and second adjustable jaws are configured to adjust the third aperture to a plurality of different angular offsets relative to the central axis, and wherein the third and fourth adjustable jaws are configured to adjust the fourth aperture to a plurality of different angular offsets relative to the central axis.
In some embodiments, the first and second adjustable jaws as well as the third and fourth adjustable jaws are positioned within the collimator device such that the first, second, third and fourth adjustable jaws do not occlude the first and second X-ray beams.
At step 704, the X-ray beam is collimated, using the first set of collimators, to concurrently generate first and second non-parallel X-ray beams.
At step 706, the first X-ray beam is collimated, using a first of the second set of collimators, to generate a third X-ray beam, wherein the third X-ray beam emanates from the collimator device at a first angle of separation with respect to the central axis of the collimator device. At step 708, the second X-ray beam is collimated, using a second of the second set of collimators, to generate a fourth X-ray beam, wherein the fourth X-ray beam emanates from the collimator device at a second angle of separation with respect to the central axis.
In some embodiments, the first angle of separation is equal to the second angle of separation. In some embodiments, the first angle of separation is in a range of 5 degrees to 10 degrees. In some embodiments, the second angle of separation is in a range of 5 degrees to 10 degrees.
In some embodiments, the third and fourth X-ray beams have substantially similar dose and energy characteristics.
At step 710, first scan data is generated by detecting the third X-ray beam after the third X-ray beam passes through an object being scanned. At step 712, second scan data is generated by detecting the fourth X-ray beam after the fourth X-ray beam passes through the object. At step 714, first and second image data is generated by processing the first and second scan data, respectively. Finally, at step 716, the first and second image data are used to determine material composition and depth corresponding to contents of the object.
In accordance with some embodiments, the collimator insert 800 is a complementary modification (albeit the collimator insert will differ with different LINAC shielding configurations from different LINAC vendors) that allows for the generation of the first and second beams 815, 820 directly after the LINAC target where the X-ray beams are generated.
The foregoing description of the specific embodiments will so fully reveal the general nature of the embodiments herein that others can, by applying current knowledge, readily modify and/or adapt for various applications such specific embodiments without departing from the generic concept, and, therefore, such adaptations and modifications should and are intended to be comprehended within the meaning and range of equivalents of the disclosed embodiments.
It is to be understood that the phraseology or terminology employed herein is for the purpose of description and not of limitation. Therefore, while the embodiments herein have been described in terms of preferred embodiments, those skilled in the art will recognize that the embodiments herein can be practiced with modifications.
The above examples are merely illustrative of the many applications of the systems and methods of present specification. Although only a few embodiments of the present invention have been described herein, it should be understood that the present invention might be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention may be modified within the scope of the appended claims.
The present application relies on U.S. Patent Provisional Application No. 63/261,991, titled “Methods and Systems for the Concurrent Generation of Multiple Substantially Similar X-Ray Beams” and filed on Oct. 1, 2021, for priority, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2331586 | Wasisco | Oct 1943 | A |
2831123 | Daly | Apr 1958 | A |
2972430 | Johnson | Feb 1961 | A |
3140397 | Henry | Jul 1964 | A |
3151245 | Wilson, Jr. | Sep 1964 | A |
3275831 | Martin | Sep 1966 | A |
3603793 | Warren | Sep 1971 | A |
3766387 | Heffan | Oct 1973 | A |
3780291 | Stein | Dec 1973 | A |
3784837 | Holmstrom | Jan 1974 | A |
3898463 | Noakes | Aug 1975 | A |
3961186 | Leunbach | Jun 1976 | A |
3971948 | Pfeiler | Jul 1976 | A |
4031401 | Jacob | Jun 1977 | A |
4031545 | Stein | Jun 1977 | A |
4045672 | Watanabe | Aug 1977 | A |
4047035 | Dennhoven | Sep 1977 | A |
4064440 | Roder | Dec 1977 | A |
4139771 | Dennhoven | Feb 1979 | A |
4143273 | Richey | Mar 1979 | A |
4160165 | Mccombs | Jul 1979 | A |
4180737 | Kingsley | Dec 1979 | A |
4200800 | Swift | Apr 1980 | A |
4203036 | Tschunt | May 1980 | A |
4210811 | Dennhoven | Jul 1980 | A |
4216499 | Manfred | Aug 1980 | A |
4228357 | Annis | Oct 1980 | A |
4242583 | Annis | Dec 1980 | A |
4242588 | Huang | Dec 1980 | A |
4259582 | Albert | Mar 1981 | A |
4260898 | Annis | Apr 1981 | A |
4267446 | Brown | May 1981 | A |
4315146 | Rudin | Feb 1982 | A |
4342914 | Bjorkholm | Aug 1982 | A |
4366382 | Kotowski | Dec 1982 | A |
4380817 | Harding | Apr 1983 | A |
4389729 | Stein | Jun 1983 | A |
4420182 | Kaneshiro | Dec 1983 | A |
4430568 | Yoshida | Feb 1984 | A |
4472822 | Swift | Sep 1984 | A |
4494001 | Peck | Jan 1985 | A |
4497062 | Mistretta | Jan 1985 | A |
4497768 | Caldwell | Feb 1985 | A |
4503332 | Annis | Mar 1985 | A |
4511799 | Bjorkholm | Apr 1985 | A |
4525854 | Molbert | Jun 1985 | A |
4566113 | Gerhard | Jan 1986 | A |
4599740 | Cable | Jul 1986 | A |
4620099 | Schoenig | Oct 1986 | A |
4641330 | Herwig | Feb 1987 | A |
4646339 | Rice | Feb 1987 | A |
4667107 | Wang | May 1987 | A |
4691332 | Burstein | Sep 1987 | A |
4692937 | Sashin | Sep 1987 | A |
4718075 | Horn | Jan 1988 | A |
4736401 | Donges | Apr 1988 | A |
4754469 | Harding | Jun 1988 | A |
4788436 | Koechner | Nov 1988 | A |
4788704 | Donges | Nov 1988 | A |
4789930 | Sones | Dec 1988 | A |
4799247 | Annis | Jan 1989 | A |
4807637 | Bjorkholm | Feb 1989 | A |
4809312 | Annis | Feb 1989 | A |
4825454 | Annis | Apr 1989 | A |
4839913 | Annis | Jun 1989 | A |
4864142 | Gomberg | Sep 1989 | A |
4870670 | Geus | Sep 1989 | A |
4884289 | Glockmann | Nov 1989 | A |
4897550 | Bernard | Jan 1990 | A |
4899283 | Annis | Feb 1990 | A |
4953189 | Wang | Aug 1990 | A |
4956856 | Harding | Sep 1990 | A |
4979202 | Siczek | Dec 1990 | A |
4991189 | Boomgaarden | Feb 1991 | A |
5006299 | Gozani | Apr 1991 | A |
5007072 | Jenkins | Apr 1991 | A |
5008911 | Harding | Apr 1991 | A |
5022062 | Annis | Jun 1991 | A |
5056129 | Steinmeyer | Oct 1991 | A |
5065418 | Bermbach | Nov 1991 | A |
5068883 | DeHaan | Nov 1991 | A |
5076993 | Sawa | Dec 1991 | A |
5077771 | Skillicorn | Dec 1991 | A |
5078952 | Gozani | Jan 1992 | A |
5091924 | Bermbach | Feb 1992 | A |
5098640 | Gozani | Mar 1992 | A |
5102506 | Tanielian | Apr 1992 | A |
5103099 | Bourdinaud | Apr 1992 | A |
5114662 | Gozani | May 1992 | A |
5127030 | Annis | Jun 1992 | A |
5153439 | Gozani | Oct 1992 | A |
5162096 | Gozani | Nov 1992 | A |
5179581 | Annis | Jan 1993 | A |
5181234 | Smith | Jan 1993 | A |
5182764 | Peschmann | Jan 1993 | A |
5224144 | Annis | Jun 1993 | A |
5237598 | Albert | Aug 1993 | A |
5247561 | Kotowski | Sep 1993 | A |
5253283 | Annis | Oct 1993 | A |
5263075 | McGann | Nov 1993 | A |
5265144 | Harding | Nov 1993 | A |
5281820 | Groh | Jan 1994 | A |
5289510 | Mihalczo | Feb 1994 | A |
5302817 | Yokota | Apr 1994 | A |
5313511 | Annis | May 1994 | A |
5319547 | Krug | Jun 1994 | A |
5338927 | De Groot | Aug 1994 | A |
5343046 | Smith | Aug 1994 | A |
5367552 | Peschmann | Nov 1994 | A |
5376795 | Hasegawa | Dec 1994 | A |
5379334 | Zimmer | Jan 1995 | A |
5388128 | Gozani | Feb 1995 | A |
5391878 | Petroff | Feb 1995 | A |
5394454 | Harding | Feb 1995 | A |
5420905 | Bertozzi | May 1995 | A |
5420959 | Walker | May 1995 | A |
5430787 | Norton | Jul 1995 | A |
5446288 | Tumer | Aug 1995 | A |
5493596 | Annis | Feb 1996 | A |
5524133 | Neale | Jun 1996 | A |
5528656 | Annis | Jun 1996 | A |
5548123 | Perez-Mendez | Aug 1996 | A |
5550380 | Sugawara | Aug 1996 | A |
5600144 | Worstell | Feb 1997 | A |
5600303 | Husseiny | Feb 1997 | A |
5600700 | Krug | Feb 1997 | A |
5629515 | Maekawa | May 1997 | A |
5629523 | Ngo | May 1997 | A |
5638420 | Armistead | Jun 1997 | A |
5642393 | Krug | Jun 1997 | A |
5642394 | Rothschild | Jun 1997 | A |
5665969 | Beusch | Sep 1997 | A |
5666393 | Annis | Sep 1997 | A |
5687210 | Maitrejean | Nov 1997 | A |
5692028 | Geus | Nov 1997 | A |
5692029 | Husseiny | Nov 1997 | A |
5696806 | Grodzins | Dec 1997 | A |
5734166 | Czirr | Mar 1998 | A |
5745543 | De Bokx | Apr 1998 | A |
5751837 | Watanabe | May 1998 | A |
5763886 | Schulte | Jun 1998 | A |
5764683 | Swift | Jun 1998 | A |
5768334 | Maitrejean | Jun 1998 | A |
5783829 | Sealock | Jul 1998 | A |
5784507 | Holm-Kennedy | Jul 1998 | A |
5787145 | Geus | Jul 1998 | A |
5805660 | Perion | Sep 1998 | A |
5812720 | Dannoux | Sep 1998 | A |
5838759 | Armistead | Nov 1998 | A |
5856673 | Ikegami | Jan 1999 | A |
5866907 | Drukier | Feb 1999 | A |
5903623 | Swift | May 1999 | A |
5910973 | Grodzins | Jun 1999 | A |
5930326 | Rothschild | Jul 1999 | A |
5936240 | Dudar | Aug 1999 | A |
5940468 | Huang | Aug 1999 | A |
5968425 | Bross | Oct 1999 | A |
5974111 | Krug | Oct 1999 | A |
6018562 | Willson | Jan 2000 | A |
6031890 | Bermbach | Feb 2000 | A |
6054712 | Komardin | Apr 2000 | A |
6055111 | Nomura | Apr 2000 | A |
6058158 | Eiler | May 2000 | A |
6067344 | Grodzins | May 2000 | A |
6078052 | Difilippo | Jun 2000 | A |
6081580 | Grodzins | Jun 2000 | A |
6094472 | Smith | Jul 2000 | A |
6118850 | Mayo | Sep 2000 | A |
6128365 | Bechwati | Oct 2000 | A |
6151381 | Grodzins | Nov 2000 | A |
6188747 | Geus | Feb 2001 | B1 |
6192101 | Grodzins | Feb 2001 | B1 |
6192104 | Adams | Feb 2001 | B1 |
6195413 | Geus | Feb 2001 | B1 |
6198795 | Naumann | Mar 2001 | B1 |
6203846 | Ellingson | Mar 2001 | B1 |
6212251 | Tomura | Apr 2001 | B1 |
6218943 | Ellenbogexn | Apr 2001 | B1 |
6236709 | Perry | May 2001 | B1 |
6249567 | Rothschild | Jun 2001 | B1 |
6252929 | Swift | Jun 2001 | B1 |
6256369 | Lai | Jul 2001 | B1 |
6278115 | Annis | Aug 2001 | B1 |
6282260 | Grodzins | Aug 2001 | B1 |
6292533 | Swift | Sep 2001 | B1 |
6301326 | Bjorkholm | Oct 2001 | B2 |
6320933 | Grodzins | Nov 2001 | B1 |
6327339 | Chung | Dec 2001 | B1 |
6333502 | Sumita | Dec 2001 | B1 |
6356620 | Rothschild | Mar 2002 | B1 |
6407392 | Tsuyuki | Jun 2002 | B1 |
6421420 | Grodzins | Jul 2002 | B1 |
6424695 | Grodzins | Jul 2002 | B1 |
6434219 | Rothschild | Aug 2002 | B1 |
6435715 | Betz | Aug 2002 | B1 |
6442233 | Grodzins | Aug 2002 | B1 |
6445765 | Frank | Sep 2002 | B1 |
6453003 | Springer | Sep 2002 | B1 |
6453007 | Adams | Sep 2002 | B2 |
6456684 | Mun | Sep 2002 | B1 |
6459761 | Grodzins | Oct 2002 | B1 |
6459764 | Chalmers | Oct 2002 | B1 |
6473487 | Le | Oct 2002 | B1 |
RE37899 | Grodzins | Nov 2002 | E |
6483894 | Hartick | Nov 2002 | B2 |
6507025 | Verbinski | Jan 2003 | B1 |
6532276 | Hartick | Mar 2003 | B1 |
6542574 | Grodzins | Apr 2003 | B2 |
6542578 | Ries | Apr 2003 | B2 |
6542580 | Carver | Apr 2003 | B1 |
6542754 | Sayers | Apr 2003 | B1 |
6543599 | Jasinetzky | Apr 2003 | B2 |
6546072 | Chalmers | Apr 2003 | B1 |
6552346 | Verbinski | Apr 2003 | B2 |
6556653 | Hussein | Apr 2003 | B2 |
6563903 | Kang | May 2003 | B2 |
6567496 | Sychev | May 2003 | B1 |
6580778 | Meder | Jun 2003 | B2 |
6584170 | Aust | Jun 2003 | B2 |
6597760 | Beneke | Jul 2003 | B2 |
6606516 | Levine | Aug 2003 | B2 |
6621888 | Grodzins | Sep 2003 | B2 |
6628745 | Annis | Sep 2003 | B1 |
6636581 | Sorenson | Oct 2003 | B2 |
6637266 | Froom | Oct 2003 | B1 |
6645656 | Chen | Nov 2003 | B1 |
6645657 | Huang | Nov 2003 | B2 |
6653588 | Gillard-Hickman | Nov 2003 | B1 |
6658087 | Chalmers | Dec 2003 | B2 |
6663280 | Doenges | Dec 2003 | B2 |
6665373 | Kotowski | Dec 2003 | B1 |
6665433 | Roder | Dec 2003 | B2 |
6687326 | Bechwati | Feb 2004 | B1 |
6702459 | Barnes | Mar 2004 | B2 |
6747705 | Peters | Jun 2004 | B2 |
6763635 | Lowman | Jul 2004 | B1 |
6785357 | Bernardi | Aug 2004 | B2 |
6798863 | Sato | Sep 2004 | B2 |
6812426 | Kotowski | Nov 2004 | B1 |
6816571 | Bijjani | Nov 2004 | B2 |
6837422 | Meder | Jan 2005 | B1 |
6839403 | Kotowski | Jan 2005 | B1 |
6843599 | Le | Jan 2005 | B2 |
6859607 | Sugihara | Feb 2005 | B2 |
6876719 | Ozaki | Apr 2005 | B2 |
6879657 | Hoffman | Apr 2005 | B2 |
6909770 | Schramm | Jun 2005 | B2 |
6911251 | Duclos | Jun 2005 | B2 |
6920197 | Kang | Jul 2005 | B2 |
6922457 | Nagata | Jul 2005 | B2 |
6922460 | Skatter | Jul 2005 | B2 |
6928141 | Carver | Aug 2005 | B2 |
6965662 | Eppler | Nov 2005 | B2 |
7010094 | Grodzins | Mar 2006 | B2 |
7039159 | Muenchau | May 2006 | B2 |
7067079 | Bross | Jun 2006 | B2 |
7072440 | Mario | Jul 2006 | B2 |
7092485 | Kravis | Aug 2006 | B2 |
7099434 | Adams | Aug 2006 | B2 |
7103137 | Seppi | Sep 2006 | B2 |
7106830 | Rosner | Sep 2006 | B2 |
7110493 | Kotowski | Sep 2006 | B1 |
7115875 | Worstell | Oct 2006 | B1 |
RE39396 | Swift | Nov 2006 | E |
7162005 | Bjorkholm | Jan 2007 | B2 |
7190758 | Hagiwara | Mar 2007 | B2 |
7203276 | Arsenault | Apr 2007 | B2 |
7207713 | Lowman | Apr 2007 | B2 |
7215737 | Li | May 2007 | B2 |
7217929 | Hirai | May 2007 | B2 |
7218704 | Adams | May 2007 | B1 |
7233645 | Feda | Jun 2007 | B2 |
7253727 | Jenkins | Aug 2007 | B2 |
7308076 | Studer | Dec 2007 | B2 |
7322745 | Agrawal | Jan 2008 | B2 |
7326933 | Katagiri | Feb 2008 | B2 |
7333587 | De Man | Feb 2008 | B2 |
7333588 | Mistretta | Feb 2008 | B2 |
7366282 | Peschmann | Apr 2008 | B2 |
7369463 | Van Dullemen | May 2008 | B1 |
7369643 | Kotowski | May 2008 | B2 |
7379530 | Hoff | May 2008 | B2 |
7400701 | Cason | Jul 2008 | B1 |
7403588 | Bruder | Jul 2008 | B2 |
7409033 | Zhu | Aug 2008 | B1 |
7409042 | Bertozzi | Aug 2008 | B2 |
7417440 | Peschmann | Aug 2008 | B2 |
7423273 | Clayton | Sep 2008 | B2 |
7486768 | Allman | Feb 2009 | B2 |
7496178 | Turner | Feb 2009 | B2 |
7505556 | Chalmers | Mar 2009 | B2 |
7505562 | Dinca | Mar 2009 | B2 |
7508910 | Safai | Mar 2009 | B2 |
7517149 | Agrawal | Apr 2009 | B2 |
7519148 | Kotowski | Apr 2009 | B2 |
7538325 | Mishin | May 2009 | B2 |
7551714 | Rothschild | Jun 2009 | B2 |
7551715 | Rothschild | Jun 2009 | B2 |
7551718 | Rothschild | Jun 2009 | B2 |
7555099 | Rothschild | Jun 2009 | B2 |
7579845 | Peschmann | Aug 2009 | B2 |
7583779 | Tkaczyk | Sep 2009 | B2 |
7593506 | Cason | Sep 2009 | B2 |
7593510 | Rothschild | Sep 2009 | B2 |
7609807 | Leue | Oct 2009 | B2 |
7629588 | Bell | Dec 2009 | B1 |
7630472 | Tsuyuki | Dec 2009 | B2 |
7672422 | Seppi | Mar 2010 | B2 |
7711090 | Schweizer | May 2010 | B2 |
7720195 | Allman | May 2010 | B2 |
7742557 | Brunner | Jun 2010 | B2 |
7742568 | Smith | Jun 2010 | B2 |
7783004 | Kotowski | Aug 2010 | B2 |
7783005 | Kaval | Aug 2010 | B2 |
7796733 | Hughes | Sep 2010 | B2 |
7796734 | Mastronardi | Sep 2010 | B2 |
7809109 | Mastronardi | Oct 2010 | B2 |
7817776 | Agrawal | Oct 2010 | B2 |
7848480 | Nakanishi | Dec 2010 | B2 |
7856079 | Nielsen | Dec 2010 | B2 |
7856081 | Peschmann | Dec 2010 | B2 |
7864920 | Rothschild | Jan 2011 | B2 |
7876880 | Kotowski | Jan 2011 | B2 |
7924979 | Rothschild | Apr 2011 | B2 |
7963695 | Kotowski | Jun 2011 | B2 |
7995705 | Allman | Aug 2011 | B2 |
7995707 | Rothschild | Aug 2011 | B2 |
7999236 | Mcdevitt | Aug 2011 | B2 |
8000436 | Seppi | Aug 2011 | B2 |
8045781 | Nakanishi | Oct 2011 | B2 |
8054938 | Kaval | Nov 2011 | B2 |
8059781 | Agrawal | Nov 2011 | B2 |
8073099 | Niu | Dec 2011 | B2 |
8094774 | Noshi | Jan 2012 | B2 |
8135110 | Morton | Mar 2012 | B2 |
8135112 | Hughes | Mar 2012 | B2 |
8138770 | Peschmann | Mar 2012 | B2 |
8148693 | Ryge | Apr 2012 | B2 |
8194822 | Rothschild | Jun 2012 | B2 |
8199996 | Hughes | Jun 2012 | B2 |
8275091 | Morton | Sep 2012 | B2 |
8275092 | Zhang | Sep 2012 | B1 |
8275093 | Rothschild | Sep 2012 | B2 |
8300763 | Shedlock | Oct 2012 | B2 |
8325871 | Grodzins | Dec 2012 | B2 |
8331535 | Morton | Dec 2012 | B2 |
8345819 | Mastronardi | Jan 2013 | B2 |
8389942 | Morton | Mar 2013 | B2 |
8401147 | Ryge | Mar 2013 | B2 |
8428217 | Peschmann | Apr 2013 | B2 |
8433036 | Morton | Apr 2013 | B2 |
8439565 | Mastronardi | May 2013 | B2 |
8442186 | Rothschild | May 2013 | B2 |
8451974 | Morton | May 2013 | B2 |
8457274 | Arodzero | Jun 2013 | B2 |
8467499 | Furth | Jun 2013 | B2 |
8483356 | Bendahan | Jul 2013 | B2 |
8491189 | Kotowski | Jul 2013 | B2 |
8503605 | Morton | Aug 2013 | B2 |
8503606 | Rothschild | Aug 2013 | B2 |
8532823 | Mcelroy | Sep 2013 | B2 |
8576982 | Gray | Nov 2013 | B2 |
8582720 | Morton | Nov 2013 | B2 |
8605859 | Mastronardi | Dec 2013 | B2 |
8638904 | Gray | Jan 2014 | B2 |
8654922 | Bendahan | Feb 2014 | B2 |
8668386 | Morton | Mar 2014 | B2 |
8674706 | Peschmann | Mar 2014 | B2 |
8690427 | Mastronardi | Apr 2014 | B2 |
8731137 | Arroyo, Jr. | May 2014 | B2 |
8735833 | Morton | May 2014 | B2 |
8750452 | Kaval | Jun 2014 | B2 |
8750454 | Gozani | Jun 2014 | B2 |
8774357 | Morton | Jul 2014 | B2 |
8774362 | Hughes | Jul 2014 | B2 |
8798232 | Bendahan | Aug 2014 | B2 |
8804899 | Morton | Aug 2014 | B2 |
8824632 | Mastronardi | Sep 2014 | B2 |
8831176 | Morton | Sep 2014 | B2 |
8842808 | Rothschild | Sep 2014 | B2 |
8861684 | Al-Kofahi | Oct 2014 | B2 |
8884236 | Rothschild | Nov 2014 | B2 |
8885794 | Morton | Nov 2014 | B2 |
8903045 | Schubert | Dec 2014 | B2 |
8903046 | Morton | Dec 2014 | B2 |
8908831 | Bendahan | Dec 2014 | B2 |
8923481 | Schubert | Dec 2014 | B2 |
8929509 | Morton | Jan 2015 | B2 |
8958526 | Morton | Feb 2015 | B2 |
8971487 | Mastronardi | Mar 2015 | B2 |
8993970 | Morton | Mar 2015 | B2 |
8995619 | Gray | Mar 2015 | B2 |
9014339 | Grodzins | Apr 2015 | B2 |
9020100 | Mastronardi | Apr 2015 | B2 |
9020103 | Grodzins | Apr 2015 | B2 |
9025731 | Kotowski | May 2015 | B2 |
9036779 | Morton | May 2015 | B2 |
9042511 | Peschmann | May 2015 | B2 |
9052271 | Grodzins | Jun 2015 | B2 |
9052403 | Morton | Jun 2015 | B2 |
9057679 | Morton | Jun 2015 | B2 |
9069084 | Frank | Jun 2015 | B2 |
9069101 | Arroyo, Jr. | Jun 2015 | B2 |
9099279 | Rommel | Aug 2015 | B2 |
9117564 | Rommel | Aug 2015 | B2 |
9121958 | Morton | Sep 2015 | B2 |
9123519 | Bendahan | Sep 2015 | B2 |
9128198 | Morton | Sep 2015 | B2 |
9146201 | Schubert | Sep 2015 | B2 |
9158030 | Morton | Oct 2015 | B2 |
9182516 | Gray | Nov 2015 | B2 |
9183647 | Morton | Nov 2015 | B2 |
9194828 | Turner | Nov 2015 | B2 |
9207195 | Gozani | Dec 2015 | B2 |
9208988 | Morton | Dec 2015 | B2 |
9223050 | Kaval | Dec 2015 | B2 |
9251915 | Lai | Feb 2016 | B2 |
9257208 | Rommel | Feb 2016 | B2 |
9268058 | Peschmann | Feb 2016 | B2 |
9274065 | Morton | Mar 2016 | B2 |
9285325 | Gray | Mar 2016 | B2 |
9285488 | Arodzero | Mar 2016 | B2 |
9291582 | Grodzins | Mar 2016 | B2 |
9291741 | Gray | Mar 2016 | B2 |
9306673 | Macrae | Apr 2016 | B1 |
9316760 | Bendahan | Apr 2016 | B2 |
9417060 | Schubert | Aug 2016 | B1 |
9435752 | Morton | Sep 2016 | B2 |
9442083 | Turner | Sep 2016 | B2 |
9465135 | Morton | Oct 2016 | B2 |
9466456 | Rommel | Oct 2016 | B2 |
9535019 | Rothschild | Jan 2017 | B1 |
9541510 | Arodzero | Jan 2017 | B2 |
9562866 | Morton | Feb 2017 | B2 |
9576766 | Morton | Feb 2017 | B2 |
9606245 | Czarnecki | Mar 2017 | B1 |
9606259 | Morton | Mar 2017 | B2 |
9618630 | Kross | Apr 2017 | B2 |
9632205 | Morton | Apr 2017 | B2 |
9651684 | Kusner | May 2017 | B1 |
9658343 | Arodzero | May 2017 | B2 |
9791590 | Morton | Oct 2017 | B2 |
9823201 | Morton | Nov 2017 | B2 |
9835756 | Morton | Dec 2017 | B2 |
9841386 | Grodzins | Dec 2017 | B2 |
9915752 | Peschmann | Mar 2018 | B2 |
9958569 | Morton | May 2018 | B2 |
10134254 | Jarvi | Nov 2018 | B2 |
10168445 | Morton | Jan 2019 | B2 |
10209372 | Arodzero | Feb 2019 | B2 |
10228487 | Mastronardi | Mar 2019 | B2 |
10266999 | Rothschild | Apr 2019 | B2 |
10295483 | Morton | May 2019 | B2 |
10393915 | Gozani | Aug 2019 | B2 |
10408967 | Morton | Sep 2019 | B2 |
10535491 | Rommel | Jan 2020 | B2 |
10670740 | Couture | Jun 2020 | B2 |
10698128 | Morton | Jun 2020 | B2 |
10712293 | Couture | Jul 2020 | B2 |
10720300 | Rommel | Jul 2020 | B2 |
10724192 | Rothschild | Jul 2020 | B2 |
10746674 | Morton | Aug 2020 | B2 |
10754057 | Bendahan | Aug 2020 | B2 |
10762998 | Rothschild | Sep 2020 | B2 |
10770195 | Rothschild | Sep 2020 | B2 |
10794843 | Rothschild | Oct 2020 | B2 |
10830911 | Couture | Nov 2020 | B2 |
10901113 | Morton | Jan 2021 | B2 |
10955367 | Couture | Mar 2021 | B2 |
10976465 | Morton | Apr 2021 | B2 |
11119245 | Morton | Sep 2021 | B2 |
11143783 | Morton | Oct 2021 | B2 |
11300703 | Morton | Apr 2022 | B2 |
11340361 | Couture | May 2022 | B1 |
11371948 | Morton | Jun 2022 | B2 |
11397276 | Bendahan | Jul 2022 | B2 |
11448606 | Rothschild | Sep 2022 | B2 |
11525930 | Couture | Dec 2022 | B2 |
11561320 | Morton | Jan 2023 | B2 |
11726218 | Couture | Aug 2023 | B2 |
11822041 | Morton | Nov 2023 | B2 |
20010016028 | Adams | Aug 2001 | A1 |
20010046275 | Hussein | Nov 2001 | A1 |
20020082492 | Grzeszczuk | Jun 2002 | A1 |
20020085674 | Price | Jul 2002 | A1 |
20020117625 | Pandelisev | Aug 2002 | A1 |
20020121604 | Katagiri | Sep 2002 | A1 |
20030002628 | Wilson | Jan 2003 | A1 |
20030108146 | Malamud | Jun 2003 | A1 |
20030223549 | Winsor | Dec 2003 | A1 |
20040004482 | Bouabdo | Jan 2004 | A1 |
20040057554 | Bjorkholm | Mar 2004 | A1 |
20040086078 | Adams | May 2004 | A1 |
20040104347 | Bross | Jun 2004 | A1 |
20040109653 | Kerr | Jun 2004 | A1 |
20040136493 | Konno | Jul 2004 | A1 |
20040140431 | Schmand | Jul 2004 | A1 |
20040141584 | Bernardi | Jul 2004 | A1 |
20040218714 | Faust | Nov 2004 | A1 |
20040251415 | Verbinski | Dec 2004 | A1 |
20040256565 | Adams | Dec 2004 | A1 |
20050018814 | Kerschner | Jan 2005 | A1 |
20050053199 | Miles | Mar 2005 | A1 |
20050058242 | Peschmann | Mar 2005 | A1 |
20050069081 | Kokubun | Mar 2005 | A1 |
20050073740 | Phillips | Apr 2005 | A1 |
20050078793 | Ikeda | Apr 2005 | A1 |
20050100124 | Hsieh | May 2005 | A1 |
20050105665 | Grodzins | May 2005 | A1 |
20050117700 | Peschmann | Jun 2005 | A1 |
20050135560 | Dafni | Jun 2005 | A1 |
20050180542 | Leue | Aug 2005 | A1 |
20050185757 | Kresse | Aug 2005 | A1 |
20050190878 | De Man | Sep 2005 | A1 |
20050226371 | Kautzer | Oct 2005 | A1 |
20050236577 | Katagiri | Oct 2005 | A1 |
20060067480 | Juschka | Mar 2006 | A1 |
20060078091 | Lasiuk | Apr 2006 | A1 |
20060188060 | Bertozzi | Aug 2006 | A1 |
20060251211 | Grodzins | Nov 2006 | A1 |
20070009088 | Edic | Jan 2007 | A1 |
20070019781 | Haras | Jan 2007 | A1 |
20070029493 | Kniss | Feb 2007 | A1 |
20070053495 | Morton | Mar 2007 | A1 |
20070064875 | Li | Mar 2007 | A1 |
20070098142 | Rothschild | May 2007 | A1 |
20070187608 | Beer | Aug 2007 | A1 |
20070206726 | Lu | Sep 2007 | A1 |
20070222981 | Ponsardin | Sep 2007 | A1 |
20070235655 | Rhiger | Oct 2007 | A1 |
20070237294 | Hoff | Oct 2007 | A1 |
20070258562 | Dinca | Nov 2007 | A1 |
20070280417 | Kang | Dec 2007 | A1 |
20080002806 | Nishide | Jan 2008 | A1 |
20080037707 | Rothschild | Feb 2008 | A1 |
20080043913 | Annis | Feb 2008 | A1 |
20080099692 | Poreira | May 2008 | A1 |
20080152081 | Cason | Jun 2008 | A1 |
20080175351 | Norman | Jul 2008 | A1 |
20080181357 | Bendahan | Jul 2008 | A1 |
20080191140 | Mcdevitt | Aug 2008 | A1 |
20080197279 | Kang | Aug 2008 | A1 |
20080198970 | Kirshner | Aug 2008 | A1 |
20080219804 | Chattey | Sep 2008 | A1 |
20080273652 | Arnold | Nov 2008 | A1 |
20090041197 | Clayton | Feb 2009 | A1 |
20090067575 | Seppi | Mar 2009 | A1 |
20090086907 | Smith | Apr 2009 | A1 |
20090103686 | Rothschild | Apr 2009 | A1 |
20090116617 | Mastronardi | May 2009 | A1 |
20090175412 | Grodzins | Jul 2009 | A1 |
20090188379 | Hiza | Jul 2009 | A1 |
20090213989 | Harding | Aug 2009 | A1 |
20090230295 | Waring | Sep 2009 | A1 |
20090230925 | Nathan | Sep 2009 | A1 |
20090257555 | Chalmers | Oct 2009 | A1 |
20090268871 | Rothschild | Oct 2009 | A1 |
20090274270 | Kotowski | Nov 2009 | A1 |
20090283690 | Bendahan | Nov 2009 | A1 |
20090309034 | Yoshida | Dec 2009 | A1 |
20100061509 | D Ambrosio | Mar 2010 | A1 |
20100069721 | Webler | Mar 2010 | A1 |
20100072398 | Fruehauf | Mar 2010 | A1 |
20100108859 | Andressen | May 2010 | A1 |
20100119033 | Li | May 2010 | A1 |
20100270462 | Nelson | Oct 2010 | A1 |
20100276602 | Clothier | Nov 2010 | A1 |
20100314546 | Ronda | Dec 2010 | A1 |
20100327174 | Edwards | Dec 2010 | A1 |
20110019799 | Shedlock | Jan 2011 | A1 |
20110064192 | Morton | Mar 2011 | A1 |
20110079726 | Kusner | Apr 2011 | A1 |
20110110490 | Samant | May 2011 | A1 |
20110116597 | Agrawal | May 2011 | A1 |
20110204243 | Bendahan | Aug 2011 | A1 |
20110206179 | Bendahan | Aug 2011 | A1 |
20110215222 | Eminoglu | Sep 2011 | A1 |
20110228896 | Peschmann | Sep 2011 | A1 |
20110309253 | Rothschild | Dec 2011 | A1 |
20110309257 | Menge | Dec 2011 | A1 |
20120033791 | Mastronardi | Feb 2012 | A1 |
20120043482 | Prince | Feb 2012 | A1 |
20120061575 | Dunleavy | Mar 2012 | A1 |
20120076257 | Star-Lack | Mar 2012 | A1 |
20120104265 | Workman | May 2012 | A1 |
20120147987 | Calderbank | Jun 2012 | A1 |
20120148020 | Arroyo, Jr. | Jun 2012 | A1 |
20120155592 | Gozani | Jun 2012 | A1 |
20120199753 | Chuang | Aug 2012 | A1 |
20120241628 | Hesser | Sep 2012 | A1 |
20120280132 | Nakamura | Nov 2012 | A1 |
20120298864 | Morishita | Nov 2012 | A1 |
20130039463 | Mastronardi | Feb 2013 | A1 |
20130156156 | Roe | Jun 2013 | A1 |
20130188779 | Chao | Jul 2013 | A1 |
20130195248 | Rothschild | Aug 2013 | A1 |
20130202089 | Schubert | Aug 2013 | A1 |
20130208857 | Arodzero | Aug 2013 | A1 |
20130315368 | Turner | Nov 2013 | A1 |
20130315369 | Turner | Nov 2013 | A1 |
20140105367 | Horvarth | Apr 2014 | A1 |
20140133631 | Wood | May 2014 | A1 |
20140182373 | Sbihli | Jul 2014 | A1 |
20140239204 | Orton | Aug 2014 | A1 |
20140270034 | Clayton | Sep 2014 | A1 |
20150016794 | Mori | Jan 2015 | A1 |
20150055751 | Funk | Feb 2015 | A1 |
20150060673 | Zimdars | Mar 2015 | A1 |
20150168589 | Morton | Jun 2015 | A1 |
20150185166 | Tang | Jul 2015 | A1 |
20150377803 | Turner | Dec 2015 | A1 |
20160025888 | Peschmann | Jan 2016 | A1 |
20160025889 | Morton | Jan 2016 | A1 |
20160033426 | Georgeson | Feb 2016 | A1 |
20160106384 | Park | Apr 2016 | A1 |
20160170044 | Arodzero | Jun 2016 | A1 |
20160170077 | Morton | Jun 2016 | A1 |
20160223706 | Franco | Aug 2016 | A1 |
20170023695 | Zhang | Jan 2017 | A1 |
20170045630 | Simon | Feb 2017 | A1 |
20170059739 | Mastronardi | Mar 2017 | A1 |
20170184516 | Chen | Jun 2017 | A1 |
20170245819 | Rothschild | Aug 2017 | A1 |
20170299526 | Morton | Oct 2017 | A1 |
20170299764 | Morton | Oct 2017 | A1 |
20170315242 | Arodzero | Nov 2017 | A1 |
20170358380 | Rothschild | Dec 2017 | A1 |
20180038969 | Mccollough | Feb 2018 | A1 |
20180038988 | Morton | Feb 2018 | A1 |
20180128935 | Morton | May 2018 | A1 |
20180136340 | Nelson | May 2018 | A1 |
20180252841 | Grodzins | Sep 2018 | A1 |
20180284316 | Morton | Oct 2018 | A1 |
20180286624 | Rommel | Oct 2018 | A1 |
20180294066 | Rothschild | Oct 2018 | A1 |
20180313770 | Morton | Nov 2018 | A1 |
20180328861 | Grodzins | Nov 2018 | A1 |
20190139385 | Jarvi | May 2019 | A1 |
20190242834 | Rothschild | Aug 2019 | A1 |
20190293810 | Couture | Sep 2019 | A1 |
20190336795 | Zhou | Nov 2019 | A1 |
20190346382 | Rothschild | Nov 2019 | A1 |
20190383953 | Arodzero | Dec 2019 | A1 |
20190391280 | Couture | Dec 2019 | A1 |
20200025955 | Gozani | Jan 2020 | A1 |
20200033274 | Couture | Jan 2020 | A1 |
20200073008 | Parikh | Mar 2020 | A1 |
20200103357 | Morton | Apr 2020 | A1 |
20200103547 | Morton | Apr 2020 | A1 |
20200158908 | Morton | May 2020 | A1 |
20200191991 | Morton | Jun 2020 | A1 |
20200233100 | Rothschild | Jul 2020 | A1 |
20200326291 | Rothschild | Oct 2020 | A1 |
20200326436 | Couture | Oct 2020 | A1 |
20200355631 | Yu | Nov 2020 | A1 |
20200355632 | Morton | Nov 2020 | A1 |
20200381211 | Ren | Dec 2020 | A1 |
20210018650 | Morton | Jan 2021 | A1 |
20210132239 | Couture | May 2021 | A1 |
20210215846 | Morton | Jul 2021 | A1 |
20220003693 | Rothschild | Jan 2022 | A1 |
20220091054 | Rothschild | Mar 2022 | A1 |
Number | Date | Country |
---|---|---|
1270318 | Oct 2000 | CN |
1493176 | Apr 2004 | CN |
1745296 | Mar 2006 | CN |
1947001 | Apr 2007 | CN |
101142497 | Mar 2008 | CN |
101166469 | Apr 2008 | CN |
101578534 | Nov 2009 | CN |
102519988 | Jun 2012 | CN |
104204854 | Dec 2014 | CN |
107193034 | Sep 2017 | CN |
107209282 | Sep 2017 | CN |
2639631 | Mar 1978 | DE |
4017100 | Dec 1990 | DE |
102013102749 | Oct 2013 | DE |
113291 | Jul 1984 | EP |
0261984 | Mar 1988 | EP |
0813692 | Dec 1997 | EP |
0864884 | Sep 1998 | EP |
0971215 | Jan 2000 | EP |
1113291 | Jul 2001 | EP |
1135700 | Sep 2001 | EP |
1168249 | Jan 2002 | EP |
1254384 | Nov 2002 | EP |
1733213 | Dec 2006 | EP |
2049888 | Apr 2009 | EP |
2054741 | May 2009 | EP |
2663885 | Dec 2014 | EP |
3271709 | Jan 2018 | EP |
2492159 | Apr 1982 | FR |
1505498 | Mar 1978 | GB |
2084829 | Apr 1982 | GB |
2150526 | Jul 1985 | GB |
2277013 | Oct 1994 | GB |
2299251 | Sep 1996 | GB |
2400480 | Oct 2004 | GB |
2463550 | Mar 2010 | GB |
2482024 | Jan 2012 | GB |
58103678 | Jun 1983 | JP |
62147349 | Jul 1987 | JP |
S63299100 | Dec 1988 | JP |
10232284 | Feb 1997 | JP |
H09318757 | Dec 1997 | JP |
H10185842 | Jul 1998 | JP |
H10232284 | Sep 1998 | JP |
2000515629 | Nov 2000 | JP |
2002071816 | Mar 2002 | JP |
2004045250 | Feb 2004 | JP |
2006505805 | Feb 2006 | JP |
2007532876 | Nov 2007 | JP |
2013205122 | Oct 2013 | JP |
3195776 | Feb 2015 | JP |
102006132990 | Dec 2006 | KR |
9701089 | Jan 1997 | WO |
1997001089 | Jan 1997 | WO |
9802763 | Jan 1998 | WO |
1998003889 | Jan 1998 | WO |
9805946 | Feb 1998 | WO |
1998020366 | May 1998 | WO |
9913323 | Mar 1999 | WO |
9939189 | Aug 1999 | WO |
2000033060 | Jun 2000 | WO |
2000037928 | Jun 2000 | WO |
0159485 | Aug 2001 | WO |
0173415 | Oct 2001 | WO |
02091023 | Nov 2002 | WO |
03075037 | Sep 2003 | WO |
2004010127 | Jan 2004 | WO |
2004043740 | May 2004 | WO |
2004097889 | Nov 2004 | WO |
2005079437 | Sep 2005 | WO |
2005098400 | Oct 2005 | WO |
2005103759 | Nov 2005 | WO |
2006111323 | Oct 2006 | WO |
2006137932 | Dec 2006 | WO |
2007051092 | May 2007 | WO |
2008021807 | Feb 2008 | WO |
2008024825 | Feb 2008 | WO |
2008063695 | May 2008 | WO |
2008105782 | Sep 2008 | WO |
2009027667 | Mar 2009 | WO |
2009067394 | May 2009 | WO |
2009129816 | Oct 2009 | WO |
2009137985 | Nov 2009 | WO |
2010129926 | Nov 2010 | WO |
2011008718 | Jan 2011 | WO |
2011011583 | Jan 2011 | WO |
2011014445 | Feb 2011 | WO |
2011053972 | May 2011 | WO |
2011149566 | Dec 2011 | WO |
2011163108 | Dec 2011 | WO |
2012058207 | May 2012 | WO |
2012109307 | Aug 2012 | WO |
2012142453 | Oct 2012 | WO |
2012142456 | Oct 2012 | WO |
2012174265 | Dec 2012 | WO |
2013112819 | Aug 2013 | WO |
2013116058 | Aug 2013 | WO |
2013116549 | Aug 2013 | WO |
2013122763 | Aug 2013 | WO |
2014058495 | Apr 2014 | WO |
2015020710 | Feb 2015 | WO |
2016003547 | Jan 2016 | WO |
2016081881 | May 2016 | WO |
2018064434 | Apr 2018 | WO |
2019217596 | Nov 2019 | WO |
2020041161 | Feb 2020 | WO |
Entry |
---|
International Search Report for PCT/US22/75829, Jan. 10, 2023. |
Written Opinion of the International Searching Authority for PCT/US22/75829, Jan. 10, 2023. |
“Linac based photofission inspection system employing novel detection concepts”, Nuclear Instruments and Methods (2011), vol. 653, Stevenson et al., pp. 124-128. |
“Multileaf collimators: modern beam shaping,” http://medphys365.blogspot.com/2012/04/multileaf-collimators.html (Year: 2012). |
Accatino M R et al, “The nuclear car wash: a scanner to detect illicit special nuclear material in cargo containers”, IEEE Sensors Journal, IEEE Service Center, NY, US, vol. 5, No. 4, Aug. 1, 2005, pp. 560-564, XP011136145. |
American Science & Engineering, Inc. v. Viken Detection Corp., U.S.D.C. (D. Mass.) Case No. 1:20-cv-11883-LTS, Joint Proposed Scheduling Order (Doc. 63), filed Oct. 12, 2021. |
American Science and Engineering, Inc. 2002 Annual Report. |
Appendix C—U.S. Pat. No. 7,505,562 Invalidity Claim Chart. |
Appendix D—U.S. Pat. No. 8,300,763 Claim Charts. |
AS& E's Opposition to Viken's Motion for Rule 11 Sanctions, Dkt. 38, Case 1:20-cv-11883 (Dist. of Mass.), Feb. 26, 2021. |
AS&E pulls in $4.4M deal from U.S. agency, Apr. 27, 2009, downloaded from the following URL https://www.bizjournals.com/boston/blog/mass-high-tech/2009/04/ase-pulls-in-44m-deal-from-us-agency.html. |
AS&E v. Viken, Defendant Viken Detection Corp.'s Preliminary Patent Related DisclosuresCase No. 1:20-cv-11833-LTS, United States District Court for the District of Massachusetts, Jan. 7, 2022. |
Barnabe-Heider et al.: ‘Characterization of the Response of Superheated Droplet (Bubble) Detectors.’ Arxiv.org, [Online] Nov. 14, 2003, pp. 1-2 Retrieved from the Internet: <URL:http://arxiv.org/PS_cache/hep-ex/pdf/0311/0311034v1.pdf> [retrieved on Nov. 8, 2011]. |
Beznosko et al., “FNAL-NICADD Extruded Scintillator,” FERMILAB-CONF-04-216-E, pp. 1-4 (Sep. 2004). |
Case et al., “Wavelength-shifting fiber readout of LaC13 and LaBr3 scintillators,” Proc. of SPIE, vol. 5898, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIV, pp. 58980K-1-58980K-8 (2005). |
Chambers Dictionary of Science and Tech. (1999) (definition of “weighting observation”). |
Chapter 10, Ghilani, Adjustment Computations: Spatial Data Analysis, Sixth Edition, 2017 John Wiley & Sons, Inc. (“Weights of Observations”). |
Cheng et al, “Dynamic radiography using a carbonnanotube-based field emission x-ray source,” Review of Scientific Instruments, vol. 75, No. 10. Oct. 2004. |
Chou, C, “Fourier coded-aperture imaging in nuclear medicine”, IEEE Proc. Sci. Meas. Technol., vol. 141. No. 3, May 1994, pp. 179-184. |
Declaration of Richard C. Lanza, Ph.D., Case No. IPR2022-00027, U.S. Pat. No. 8,300,763, Oct. 20, 2021. |
Declaration of Richard C. Lanza, Ph.D.,, Case No. IPR2021-01585; U.S. Pat. No. 7,400,701, Sep. 29, 2021. |
Declaration of Richard Lanza, Ph.D., Case No. IPR2022-00028; U.S. Pat. No. 7,505,562, Oct. 28, 2021. |
Defense Dept. contracts for X-ray tech, Apr. 7, 2009 downloaded from the following URL https://www.upi.com/Defense-News/2009/04/07/Defense-Dept-contracts-for-X-ray-tech/61051239114877/. |
International Search Report and Written Opinion of the International Searching Authority, PCT/US2005/011382, Oct. 21, 2005. |
European Patent Office, International Search Report, International Application No. PCT/US99/28266, dated Sep. 6, 2000, 3 pages. |
Evans, R. D., The Atomic Nucleus, Ch. 23-25, & Appendix A, Tata McGraw-Hill, Bombay, New Delhi (1955). |
Gundiah, “Scintillation properties of Eu.sup.2+-activated barium fluoroiodide,” Lawrence Berkeley National Laboratory, pp. 1-10 (Feb. 2011). |
https://en.wikipedia.org/wiki/ISM_band#Common_non-ISM_uses., downloaded from Internet Nov. 23, 2020. |
Hutchinson et al., “Optical Readout for Imaging Neutron Scintillation Detectors,” Engineering Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 6 pages. (Nov. 2002). |
International Preliminary Report on Patentability, PCT/US2005/011382, dated Oct. 19, 2006, 7 pages. |
International Seach Report for PCT/US2008/083741, Oct. 30, 2009. |
International Search Report and Written Opinion for PCT/US2010/041757, Oct. 12, 2010. |
International Search Report for PCT/US01/09784, Jan. 28, 2002. |
International Search Report for PCT/US02/13595, Aug. 6, 2002. |
International Search Report for PCT/US03/05958, Jun. 27, 2003. |
International Search Report for PCT/US03/35232, Nov. 8, 2004. |
International Search Report for PCT/US11/23143, Nov. 25, 2011. |
International Search Report for PCT/US11/26369, Nov. 22, 2011. |
International Search Report for PCT/US14/37571, Mar. 16, 2015. |
International Search Report for PCT/US17/54211, Jan. 18, 2018. |
International Search Report for PCT/US20/61866, Feb. 11, 2021. |
International Search Report for PCT/US2005/011382, Oct. 21, 2005. |
International Search Report for PCT/US2006/060158, Jul. 5, 2007. |
International Search Report for PCT/US2007/075323, Feb. 5, 2008. |
International Search Report for PCT/US2007/076497, Jul. 28, 2008. |
International Search Report for PCT/US2010/043201, Oct. 29, 2010. |
International Search Report for PCT/US2011/041033, Feb. 17, 2012. |
International Search Report for PCT/US2012/024248, Jul. 9, 2012. |
International Search Report for PCT/US2012/033581, Oct. 31, 2012. |
International Search Report for PCT/US2012/033585, Nov. 29, 2012. |
International Search Report for PCT/US2013/022715, May 15, 2013. |
International Search Report for PCT/US2013/023125, May 15, 2013. |
International Search Report for PCT/US2013/024585, Jun. 2, 2013. |
International Search Report for PCT/US2015/031115, Jul. 29, 2015. |
International Search Report for PCT/US2016/023240, Jul. 12, 2016. |
International Search Report for PCT/US2019/027242, Jul. 17, 2019. |
International Search Report for PCT/US2019/027252, Aug. 2, 2019. |
International Search Report for PCT/US99/29185, Sep. 27, 2000. |
International Search Report, PCT/US1998/18642, dated Jul. 7, 1999, 4 pages. |
International Search Report, PCT/US1999/028035, dated Sep. 15, 2000, 6 pages. |
International Search Report, PCT/US2007/066936; dated: Sep. 30, 2008, 5 pages. |
Jae Yul Ahn, Authorized officer Korean Intellectual Property Office, International Search Report—Application No. PCT/US2013/024585, date of mailing Jun. 2, 2013, along with Written Opinion of the International Searchi . . . . |
Johns, H., & Cunningham J. R., “The Production and Properties of X Rays,” Chapter 2, The Physics of Radiology, Charles C. Thomas Publisher, Springfield, IL, 4th Ed. (1983). |
Jupiter, CP. and Parez, J. “A Study of the Scintillation Properties of Various Hydrogenous and Non-Hydrogenous Solutes Dissolved in Hexafluorobenzene” IEEE Transactions on Nuclear Science, Feb. 1966, pp. 692-703. |
Keizer, “The optimal cosmic ray detector for High-Schools,” 21 pages (2011). |
Knoll, G. F., Radiation Detection and Measurements, Ch. 2, 4, 8, & 9, Third Edition, John Wiley & Sons, Inc. New York (2000). |
Little, R.C.; Chadwick, M. B.; and Myers, W.L. “Detection of Highly Enriched Uranium Through Active Interrogation” Proceedings of the 11th International Conference on Nuclear Reaction Mechanics in Varenna, Italy, Jun. 2006. |
Maekawa et al., “Thin Beta-ray Detectors using Plastic Scintillator Combined with Wavelength-shifting Fibers for Surface Contamination Monitoring,” J. Nucl. Sci. Technol., vol. 35, No. 12, pp. 886-894 (Dec. 1998). |
Mertz, L.N., et al, “Rotational aperture synthesis for x rays”, Journal. Optical Society of America, vol. 3, Dec. 1986, pp. 2167-2170. |
Moiseev et al., “High-efficiency plastic scintillator detector with wavelength-shifting fiber readout for the GLAST Large Area Telescope,” Nucl. Instrum. Meth. Phys. Res. A, vol. 583, pp. 372-381 (2007). |
Motion Hearing Transcript, dated Aug. 16, 2021, Case 1:20-cv-11883 (Dist. of Mass.). |
Nishikido et al. “X-ray detector made of plastic scintillators and WLS fiber for real-time dose distribution monitoring in interventional radiology,” IEEE Nuclear Science Symposium and Medical Imaging Conference Reco, pp. 1272-1274 (2012). |
Nittoh et al., “Discriminated neutron and X-ray radiography using multi-color scintillation detector,” Nuclear Instruments and Methods in Physics Research A, vol. 428, pp. 583-588 (1999). |
Novikov, “A method for monitoring of Gd concentration in Gd-loaded scintillators,” Nuclear Instruments and Methods in Physics Research A, vol. 366, pp. 413-414 (1995). |
Osswald et al. “Injection Molding Handbook”, p. 394, Chemical Industry Press, Mar. 31, 2005. |
Pla-Dalmau et al., “Extruded Plastic Scintillator for Minerva,” FERMILAB-CONF-05-506-E, pp. 1298-1300 (2005). |
Roderick D. Swift, Roy P. Lindquist, “Medium energy x-ray examination of commercial trucks”, Proc. SPIE 2276, Cargo Inspection Technologies, (Oct. 6, 1994); doi: 10.1117/12.189174. |
Rose, Kathryn, “NuMI Off-Axis Experiment” Datasheet (online). University of Oxford & Rutherford Appleton Laboratory, 2003. <URL: https://slideplayer.com/slide/8765673/>. |
Tateno, Y., & Tanaka, H., “Low-Dosage X-Ray Imaging System Employing Flying Spot X-Ray Microbeam (Dynamic Scanner)1,” Radiation Physics, 121(1):189-195 (1976). |
Tsahi Gozani et al, “Neuron threshold activation detectors (TAD) for the detection of fissions”, Nuclear Instruments & methods in physics research, section A: Accelerators, Spectrometers, Detectors, and Associated Equipment, vol. 652, No. 1, Jan. 15, 2011, pp. 334-337, XP028291647, ISSN: 0168-9002. |
U.S. Pat. No. 7,505,562 Prosecution File History. |
U.S. Pat. No. 7,400,701 Prosecution File History. |
U.S. Pat. No. 8,300,763 Prosecution File History. |
U.S. Appl. No. 61/423,582 (“Gray '582”), filed Dec. 15, 2010. |
U.S. Appl. No. 60/737,471, filed Nov. 17, 2005. |
U.S. Appl. No. 60/787,810, filed Mar. 31, 2006. |
U.S. Appl. No. 61/228,335 (priority document for '763 Patent), filed Jul. 24, 2009. |
Viken Detection Corporation v. AS&E, Case No. IPR2021-01585, Petition for Inter Partes Review of U.S. Pat. No. 7,400,701, Sep. 30, 2021. |
Viken Detection Corporation v. AS&E, Case No. IPR2022-00028, Petition for Inter Partes Review of U.S. Pat. No. 7,505,562, Oct. 28, 2021. |
Viken Detection Corporation v. AS&E, Petition for Inter Partes Review, Case No. IPR2022-00027, U.S. Pat. No. 8,300,763, Oct. 20, 2021. |
Viken's Memorandum of Law in Support of Defendant's Motion for Rule 11 Sanctions, Dkt. 30, Case 1:20-cv-11883 (Dist. of Mass.), Feb. 8, 2021. |
Wait, G.D. “A Hexafluorobenzene Gamma Disimeter for Use in Mixed Neutron and Gamma Fields” Jan. 1968, AD0678658, Abstract. |
Waiver of the Service of Summons, Oct. 20, 2020; Dkt. 6, Case 1:20-cv-11883, (Dist. of Mass.). |
Williams et al.:“PET Detector Using Waveshifting Optical Fibers and Microchannel Plate PMT with Delay Line Readout”, IEEE Transactions on Nuclear Science, IEEE Service Center, New York, NY, US, vol. 45, No. 2, Apr. 1, 1998 (Apr. 1, 1998), pp. 195-205, XP011087844, ISSN: 0018-9499, DOI: 10.1109/23.664171. |
Wolf, A., Moreh, R., “Utilization of teflon-covered GE(Li) diodes for fast neutron detection,” Nuclear Instruments and Methods, 148, 1978, 195-197. |
Written Opinion of the International Searching Authority, PCT/US2007/066936, dated Sep. 30, 2008, 7 pages. |
Yoshiaki et al. “Development of ultra-high sensitivity bioluminescent enzyme immunoassay for prostate-specific antigen (PSA) using firefly luciferas”, Abstract, Luminescence, vol. 16, Issue 4, Jul. 31, 2001. |
Yoshimura et al., “Plastic scintillator produced by the injection-molding technique,” Nucl. Instr. Meth. Phys. Res. A, vol. 406, pp. 435-441 (1998). |
Z Portal for Trucks & Cargo, Multi-View, Multi-Technology, Cargo and Vehicle Screening System, 2022 downloaded from the following URL: https://www.rapiscan-ase.com/products/portal/z-portal-for-trucks-cargoscreening. |
Zhang et al, “A multi-beam x-ray imaging system based on carbon nanotube field emitters”, Proceedings of SPIE vol. 6142, 614204, (2006), doi: 10.1117/12.654006. |
Zhang et al., “A nanotube-based field emission x-ray source for microcomputed tomography”, Review of Scientific Instruments 76, 094301 (2005). |
Zhang et al., “Stationary scanning x-ray source based on carbon nanotube field emitters”, Applied Physics Letters 86, 184104 (2005). |
Notice of Allowance for U.S. Appl. No. 11/737,317, Sep. 9, 2008. |
Applicant Response to Non-Final Office Action for U.S. Appl. No. 11/737,317, Apr. 30, 2008. |
Non-Final Office Action for U.S. Appl. No. 11/097,092, May 15, 2006. |
Non-Final Office Action for U.S. Appl. No. 11/737,317, Mar. 25, 2008. |
Notice of Allowance for U.S. Appl. No. 11/097,092, Mar. 24, 2008. |
Certificate of Correction for U.S. Pat. No. 7,400,701, Jul. 15, 2008. |
Applicant Response to Non-Final Office Action for U.S. Appl. No. 11/097,092, Nov. 2, 2007. |
Non-Final Office Action for U.S. Appl. No. 11/097,092, Aug. 20, 2007. |
Applicant Response to Final Office Action and Advisory Action for U.S. Appl. No. 11/097,092, Jul. 3, 2007. |
Applicant Response to Final Office Action for U.S. Appl. No. 11/097,092, Jun. 18, 2007. |
Advisory Action Before the Filing of an Appeal Brief for U.S. Appl. No. 11/097,092, Jun. 21, 2007. |
Final Office Action for U.S. Appl. No. 11/097,092, Mar. 21, 2007. |
Non-Final Office Action for U.S. Appl. No. 11/097,092, Nov. 22, 2006. |
Applicant Response to Non-Final Office Action for U.S. Appl. No. 11/097,092, Mar. 13, 2007. |
Applicant Response to Non-Final Office Action for U.S. Appl. No. 11/097,092, Aug. 31, 2006. |
Notice of Allowance for U.S. Appl. No. 11/737,317, Nov. 20, 2008. |
Information Disclosure Statement for U.S. Appl. No. 11/737,317, Nov. 6, 2008. |
Plaintiff AS&E's Infringement Contentions Chart, U.S. Pat. No. 11,143,783, American Science & Engineering, Inc. v. Viken Detection Corp., C.A. 1:20-cv-11883, D. Mass. |
https://www.vikendetection.com/news/viken-introduces-under-vehicle-scanner-cbp-plans-evaluation, Nov. 12, 2019, downloaded from Internet on Jan. 9, 2023. |
Second Amended Complaint, American Science & Engineering, Inc. v. Viken Detection Corp., C.A. 1:20-cv-11883, Dkt. 91, D. Mass. (Apr. 1, 2022). |
U.S. Appl. No. 61/224,938, filed Jul. 13, 2009. |
Declaration of Richard C. Lanza, Ph.D.,, Case No. PGR2022-00047, U.S. Pat. No. 11,143,783, Jul. 11, 2022. |
Complaint, American Science & Engineering, Inc. v. Viken Detection Corp., C.A. 1:20-cv-11883, Dkt. 1, D. Mass. (Oct. 19, 2020). |
Denying Institution of Post-Grant Review for U.S. Pat. No. 11,143,783, Dec. 16, 2022. |
Post-Grant Review Petition of U.S. Pat. No. 11,143,783, Jul. 11, 2022. |
https://www.krgv.com/videos/cbp-to-enhance-scanning-technology-at-southern-border-land-ports/, downloaded from Internet on Jan. 9, 2023. |
https://www.foxnews.com/tech/border-technology-combat-illegal-smuggling, Jun. 16, 2020, downloaded from Internet on Jan. 9, 2023. |
https://www.businesswire.com/news/home/20200323005617/en/Viken-Detection-Issues-Statement-on-ASE-Lawsuit, Mar. 23, 2020, downloaded from Internet on Jan. 9, 2023. |
File History of U.S. Pat. No. 11,143,783—Part 1 of 6. |
File History of U.S. Pat. No. 11,143,783—Part 2 of 6. |
File History of U.S. Pat. No. 11,143,783—Part 3 of 6. |
File History of U.S. Pat. No. 11,143,783—Part 4 of 6. |
File History of U.S. Pat. No. 11,143,783—Part 5 of 6. |
File History of U.S. Pat. No. 11,143,783—Part 6 of 6. |
Non-Final Office Action for U.S. Appl. No. 17/195,505, May 17, 2021. |
Applicant Response to Non-Final Office Action for U.S. Appl. No. 17/195,505, Jun. 7, 2021. |
Notice of Allowance for U.S. Appl. No. 17/195,505, Jun. 29, 2021. |
Notice of Allowance for U.S. Appl. No. 17/195,505, Jul. 9, 2021. |
International Search Report for PCT/US13/24191, Rapiscan Systems Inc., mailed on Jun. 25, 2013. |
Hutchinson D P et al: “Wavelength-shifting fiber readout of scintillation detectors”, Jun. 30, 2001 (Jun. 30, 2001), pp. 1-14, XP93025861, Berlin; Retrieved from the Internet: URL:https://technicalreports.ornl.gov/cppr/y2001/pres/111170.pdf [retreived on Feb. 21, 2023]. |
McKnight et al: “The flexible embedded-fiber neutron detector”, Nuclear Instruments & Methods in Physics Research. Section A, Elsevier BV * North-Holland, NL, vol. 586, No. 2, Dec. 3, 2007 (Dec. 3, 2007), pp. 246-250, XP022457692, ISSN: 0168-9002, DOI: 10.1016/J.NIMA.2007.11.044. |
Number | Date | Country | |
---|---|---|---|
20230108499 A1 | Apr 2023 | US |
Number | Date | Country | |
---|---|---|---|
63261991 | Oct 2021 | US |