Embodiments of the disclosure relate generally to methods and systems of producing solid carbon material. More specifically, embodiments of the disclosure relate to methods and systems of producing solid carbon materials utilizing thermal energy recovery and conversion.
U.S. Patent Publication No. 2012/0034150 A1, published Feb. 9, 2012, the disclosure of which is hereby incorporated herein in its entirety by this reference, discloses background information hereto.
Additional information is disclosed in the following documents, listing Dallas B. Noyes as inventor, the disclosure of each of which is hereby incorporated herein in its entirety by this reference:
Solid carbon has numerous commercial applications. These applications include longstanding uses such as uses of carbon black and carbon fibers as a filler material in tires, inks, etc., many uses for various forms of graphite (e.g. electrodes, pyrolytic graphite as heat shields) and innovative and emerging applications for buckminsterfullerene and carbon nanotubes. Conventional methods for the manufacture of various forms of solid carbon typically involve the pyrolysis of hydrocarbons in the presence of a suitable catalyst. The use of hydrocarbons as the carbon source is due to historically abundant availability and low cost of hydrocarbons. The use of carbon oxides as the carbon source in the production of solid carbon has largely been unexploited.
Carbon oxides, particularly carbon dioxide, are abundant gases that may be extracted from point source emissions such as the exhaust gases of hydrocarbon combustion or from some process off gases. Carbon dioxide may also be extracted from the air. Because point source emissions have much higher concentrations of carbon dioxide than air, they are often economical sources from which to harvest the carbon dioxide. However, the immediate availability of air may provide cost offsets by eliminating transportation costs through local manufacturing of the solid carbon products from carbon dioxide in air.
Carbon dioxide is increasingly available and inexpensive as a byproduct of power generation and chemical processes where an object may be to reduce or eliminate the emission of carbon dioxide into the atmosphere by capture and subsequent sequestration of the carbon dioxide (e.g., by injection into a geological formation). For example, the capture and sequestration of carbon dioxide is the basis for some “green” coal-fired power stations. In current practice, capture and sequestration of the carbon dioxide entails significant cost.
There are a limited number of ways that carbon, oxygen, and hydrogen can react. There is a spectrum of reactions involving these three elements wherein various equilibria have been identified. Hydrocarbon pyrolysis involves equilibria between hydrogen and carbon that favors solid carbon production, typically with little or no oxygen present. The Boudouard reaction, also called the “carbon monoxide disproportionation reaction,” is the range of equilibria between carbon and oxygen that favors solid carbon production, typically with little or no hydrogen present. The Bosch reaction is within a region of equilibria where all of carbon, oxygen, and hydrogen are present under reaction conditions that also favor solid carbon production.
The relationship between the hydrocarbon pyrolysis, Boudouard, and Bosch reactions may be understood in terms of a C—H—O equilibrium diagram, as shown in
U.S. Pat. No. 7,794,690 (Abatzoglou et al.) teaches a dry reforming process for sequestration of carbon from an organic material. Abatzoglou discloses a process utilizing a 2D carbon sequestration catalyst with, optionally, a 3D dry reforming catalyst. For example, Abatzoglou discloses a two-stage process for dry reformation of an organic material (e.g., methane, ethanol) and CO2 over a 3D catalyst to form syngas, in a first stage, followed by carbon sequestration of syngas over a 2D carbon steel catalyst to form CNTs and carbon nanofilaments. The 2D catalyst may be an active metal (e.g., Ni, Rh, Ru, Cu—Ni, Sn—Ni) on a nonporous metallic or ceramic support, or an iron-based catalyst (e.g., steel), on a monolith support. The 3D catalyst may be of similar composition, or may be a composite catalyst (e.g., Ni/ZrO2—Al2O3) over a similar support. Abatzoglou discloses preactivation of a 2D catalyst by passing an inert gas stream over a surface of the catalyst at a temperature beyond its eutectic point to transform the iron into its alpha phase. Abatzoglou teaches minimizing water in the two-stage process or introducing water in low concentrations (0 to 10 wt %) in a reactant gas mixture during the dry reformation first stage.
It would be desirable to have new methods and systems for forming solid carbon. It would further be desirable if the new methods and systems were energy efficient, cost efficient, and relatively simple in operation.
Embodiments described herein include methods and systems for producing solid carbon by reducing carbon oxides, and for recovering and converting thermal energy. For example, in accordance with one embodiment described herein, a method of thermal energy recovery from production of at least one solid carbon material comprises reacting at least one carbon oxide material and at least one gaseous reducing material at a temperature of greater than or equal to about 400° C., at a pressure of greater than or equal to about 1×105 pascal, and in the presence of at least one catalyst material to produce at least one solid carbon material and a gaseous effluent stream comprising water vapor. Thermal energy is extracted from the gaseous effluent stream.
In additional embodiments, a method of generating recoverable thermal energy comprises providing a source gas stream comprising at least one carbon oxide and at least one gaseous reducing material to a reactor having at least one catalyst material therein. The at least one carbon oxide and the at least one reducing agent are reacted in the presence of the at least one catalyst material to produce a reaction product stream comprising at least one solid carbon material and gaseous water. The at least one solid carbon material and the gaseous water are separated. Heat is extracted from at least the gaseous water.
In yet additional embodiments, a solid carbon production system having thermal energy recovery comprises a reactor configured to convert exothermically at least one carbon oxide and at least one reducing material in the presence of at least one catalyst material to at least one solid carbon material and a gaseous reaction product stream, and at least one heat exchanger positioned and configured to recover thermal energy from at least the gaseous reaction product stream.
In yet still additional embodiments, a solid carbon production method comprises exothermically reacting at least one carbon oxide with at least one reducing gas in the presence of a catalyst in a reaction zone to produce a solid carbon material and a gaseous reaction product. Thermal energy is extracted from the reaction zone.
Features and advantages of the disclosure will be apparent from reference to the following detailed description taken in conjunction with the accompanying drawings, in which:
The following description provides specific details, such as catalyst types, stream compositions, and processing conditions (e.g., temperatures, pressures, flow rates, etc.) in order to provide a thorough description of embodiments of the disclosure. However, a person of ordinary skill in the art will understand that the embodiments of the disclosure may be practiced without employing these specific details. Indeed, the embodiments of the disclosure may be practiced in conjunction with conventional systems and methods employed in the industry. In addition, only those process components and acts necessary to understand the embodiments of the disclosure are described in detail below. A person of ordinary skill in the art will understand that some process components (e.g., pipelines, line filters, valves, temperature detectors, flow detectors, pressure detectors, and the like) are inherently disclosed herein and that adding various conventional process components and acts would be in accord with the disclosure. The drawings accompanying the application are for illustrative purposes only, and are not meant to be actual views of any particular material, device, or system. Additionally, elements common between figures may retain the same numerical designation.
As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
As used herein, relational terms, such as “first,” “second,” “top,” “bottom,” “upper,” “lower,” “over,” “under,” etc., are used for clarity and convenience in understanding the disclosure and accompanying drawings and do not connote or depend on any specific preference, orientation, or order, except where the context clearly indicates otherwise.
As used herein, the term “substantially,” in reference to a given parameter, property, or condition, means to a degree that one of ordinary skill in the art would understand that the given parameter, property, or condition is met with a small degree of variance, such as within acceptable manufacturing tolerances.
Methods and systems of producing solid carbon utilizing thermal energy recovery and conversion are described. The methods and systems of the disclosure facilitate the energy efficient production of at least one solid carbon material by way of a reduction reaction between at least one carbon oxide (e.g., carbon monoxide, or carbon dioxide), and at least one reducing material (e.g., hydrogen, methane, etc.) in the presence of a catalyst. The methods and systems of the disclosure may be combined with conventional methods and systems for generating each of the carbon oxide and the reducing material. Reaction conditions (e.g., temperature, pressure, residence time) for the reduction reaction may be varied to achieve a desired morphology or configuration (e.g., shape, size) of the solid carbon material. The reduction reactions of the disclosure may occur within the interior region of the C—H—O phase diagram shown in
One embodiment of the disclosure will now be described with reference to
The source gas stream 101 may include at least one carbon oxide (e.g., carbon dioxide, carbon monoxide) and at least one gaseous reducing material. In at least some embodiments, the carbon oxide is a combination of carbon monoxide (CO) and carbon dioxide (CO2). The carbon oxide may be obtained from the combustion of a primary hydrocarbon, may be obtained from the atmosphere (e.g., air), or may be obtained from some other source. The gaseous reducing material may include a known reducing material that may undergo a chemical reaction with the carbon oxide in the presence of at least one catalyst within the reactor 106 to form the at least one solid carbon material, as described in further detail below. As a non-limiting example, the gaseous reducing material may be a hydrocarbon gas (e.g., a lower hydrocarbon alkane, such as methane, ethane, propane, butane, pentane, hexane, etc.), an alcohol (e.g., ethanol), or hydrogen (H2) gas. If utilized, hydrocarbon gas and/or alcohol may serve as both the gaseous reducing material and as a source of additional carbon material. In one or more embodiments, at least a portion of the source gas stream 101 may be synthesis gas (“syngas”). Syngas includes large amounts of CO and H2, as well as small amounts of other materials, such as CO2, and N2. In at least some embodiments, the gaseous reducing material is a combination of methane (CH4) and H2. In additional embodiments, the gaseous reducing material and the carbon oxide may be provided to the heat exchanger 102 in separate streams (e.g., a reducing material stream, and a carbon oxide stream). The source gas stream 101 may have any desired ratio of the carbon oxide to the reducing material.
The heat exchanger 102 may be any suitable apparatus or device known in the art for exchanging heat from one fluid or gas to another fluid or gas. For example, the heat exchanger 102 may be a recuperative heat exchanger (e.g., a tube-in-tube heat exchanger, a shell-and-tube heat exchanger, etc.), that functions to heat the source gas stream 101 while cooling a hot side stream 114 (described below). The heated source gas stream 105 exiting the heat exchanger 102 may have a temperature up to an operating temperature of the reactor 106, such as a temperature within a range of from about 300° C. to about 1,000° C., such as from about 350° C. to about 800° C. The heated source gas stream 105 may have a pressure within a range of from about 25 pounds per square inch (psi) (i.e., about 1.72×105 pascal) to about 1,000 psi (i.e., about 6.90×106 pascal), such as about 35 psi (i.e., about 2.41×105 pascal) to about 600 psi (i.e., about 4.14×106 pascal), or from about 45 psi (i.e., about 3.10×105 pascal) to about 100 psi (i.e., about 6.9×105 pascal). In at least some embodiments, the heated source gas stream 105 exiting the heat exchanger 102 has a temperature of about 800° C. and a pressure of about 48 psi (i.e., about 3.31×105 pascal). In further embodiments, additional processing equipment (e.g., compressors, a mass flow controllers, gas analyzers, etc.) may be provided upstream of the heat exchanger 102 to control the pressure and flow rate of the source gas stream 101.
The heat exchanger 102 may also be configured and operated to substantially reduce or eliminate metal dusting therein. As used herein, the term “metal dusting” refers to a corrosion phenomenon wherein structures formed of and including pure metals and metal alloys degrade (e.g., breakup) into powder or “dust” at temperatures within a range of from about 450° C. to about 850° C. in gaseous environments including carbon. The heat exchanger 102 may, for example, be formed of and include at least one of a metal and a metal alloy exhibiting enhanced resistance to metal dusting, such as alloys of iron, chromium, and aluminum (FeCrAl alloys), and alloys of nickel, chromium, and aluminum. Suitable metals and metal alloys are commercially available from numerous sources, including, but not limited to Sandvik AB (Amherst, N.Y.), under the Kanthal APM tradename, Special Materials Corporation (Huntington, W. Va.), under the INCONEL® alloy 693 tradename. In some embodiments, at least a portion (e.g., portions interacting with one or more of the source gas stream 101, and the hot side stream 114) of the heat exchanger 102 is formed of and includes at least one of Kanthal APM and INCONEL® alloy 693. In additional embodiments, at least a portion (e.g., portions interacting with one or more of the source gas stream 101, and the hot side stream 114) of the heat exchanger 102 is formed of and includes a ceramic material.
The heater 104 may be a known device or apparatus configured and operated to increase the temperature of a gaseous material. By way of non-limiting example, the heater 104 may be at least one of a combustion heater, an electrical resistance heater, an inductive heater, and an electromagnetic heater. The heater 104 may receive the heated source gas stream 105 and may increase the temperature of the heated source gas stream 105 to a pre-determined set point. The pre-determined set point may depend on operating parameters of the reactor 106, as described in further detail below. For example, the pre-heater 104 may increase the temperature of the heated source gas stream 105 up to an operating temperature of the reactor 106, such as up to a temperature of about 1000° C. In yet further embodiments, such as where the heat exchanger 102 is sufficient to heat the source gas stream 101 up to an operating temperature of the reactor 106, the heater 104 may be omitted. In addition, similar to the heat exchanger 102, the heater 104 may be formed of and include at least one of a metal and a metal alloy exhibiting enhanced resistance to metal dusting. In some embodiments, at least a portion (e.g., portions interacting with the heated source gas stream 105) of the heater 102 is formed of and includes at least one of Kanthal APM and INCONEL® alloy 693.
The heated source gas stream 105 may exit the heater 104, and may be directed into the reactor 106. The reactor 106 may be any suitable device or apparatus configured and operated to form a reaction product stream 108 from components or reactants (e.g., the carbon oxide, and the gaseous reducing material) of the heated source gas stream 105. The reaction product stream 108 may include at least one solid carbon material (e.g., graphite, graphene, carbon black, soot, fibrous carbon, buckminsterfullerenes, single-wall CNTs, multi-walled CNTs, diamonds, etc.) and at least one additional material (e.g., one or more additional reaction products, such as water; unreacted components of the heat source gas stream 205, such as carbon dioxide, carbon monoxide, and hydrogen; a catalyst material; etc.).
For example, the reactor 106 may be configured and operated to form solid carbon and water (H2O) from a Bosch reaction between CO2 and H2, according to the equation:
CO2+2H2C(s)+H2O(g) (1).
The Bosch reaction may be exothermic. As a non-limiting example, if used to form CNTs, the Bosch reaction may facilitate a thermal energy output of about 24.9 kcal/mol at 650° C. (i.e., a heat of formation (ΔH) of about −24.9 kcal/mol). As another non-limiting example, if used to form graphite, the Bosch reaction may facilitate a thermal energy output of about 23.8 kcal/mol at 650° C. (i.e., a ΔH of about −23.8 kcal/mol). As yet still another non-limiting example, if used to form buckminsterfullerenes, the Bosch reaction may facilitate a thermal energy output of about 13.6 kcal/mol at 650° C. (i.e., a ΔH of about −13.6 kcal/mol). The formation of carbon lamp black in the Bosch reaction is endothermic, consuming approximately 147.5 kcal/mol at 650° C. (i.e., ΔH is +147.5 kcal/mol). The formation of carbon lamp black in the Bosch reaction is endothermic, utilizing a thermal energy input of about 147.5 kcal/mol at 650° C. (i.e., a ΔH of about +147.5 kcal/mol). The Bosch reaction of Equation 1 may be broken up into two steps, according to the equations:
CO2+H2CO+H2O (2)
CO+H2C(s)+H2O (3).
In the first step of the Bosch reaction, shown in Equation 2, CO2 reacts with H2 to create CO and H2O in an endothermic reaction. The endothermic reaction may utilize a thermal energy input of about 8.47 kcal/mol at 650° C. In the second step of the Bosch reaction, shown in Equation 3, CO reacts with H2 to form solid carbon and H2O in an exothermic reaction. By way of non-limiting example, if used to form CNTs, the exothermic reaction may facilitate a thermal energy output of about 33.4 kcal/mol (1.16×104 joules/gram of C(s)) at 650° C. ΔH values for other solid carbon products (e.g., graphite, graphene, carbon black, fibrous carbon, buckminsterfullerenes, etc) may be determined by the difference between the ΔH value for Equation 1 for a particular solid carbon product and the ΔH value for Equation 2. The exothermic reaction may occur with stoichiometric amounts of reactants, or with an excess amount of one of CO2 and H2.
In some embodiments, the formation of solid carbon by way of the Bosch reaction may be augmented by a disproportionation of at least a portion of the CO into solid carbon and CO2 by way of a Boudouard reaction (i.e., a reduction-oxidation reaction), according to the equation:
2COCO2+C(5) (4).
The Boudouard reaction may be exothermic at temperatures less than or equal to about 700° C. As a non-limiting example, if used to form CNTs, the Boudouard reaction may facilitate a thermal energy output of about 41.9 kcal/mol at 650° C. (i.e., a heat of formation (ΔH) of about −41.9 kcal/mol). As another non-limiting example, if used to form graphite, the Boudouard reaction may facilitate a thermal energy output of about 40.8 kcal/mol at 650° C. (i.e., a ΔH of about −40.8 kcal/mol). As yet still another non-limiting example, if used to form buckminsterfullerenes, the Boudouard reaction may facilitate a thermal energy output of about 30.5 kcal/mol at 650° C. (i.e., a ΔH of about −30.5 kcal/mol). At low temperatures, the Boudouard reaction may have a negative Gibbs free energy (ΔG), and the production of solid carbon and CO2 may be spontaneous. At higher temperatures, ΔG for the Boudouard Reaction may be positive, such that the reverse reaction is spontaneous. The temperature at which ΔG is zero (i.e., the temperature above which the reverse Boudouard reaction is spontaneous, and below which the forward Boudouard reaction is spontaneous) may depend on the form of carbon produced. As a non-limiting example, ΔG may equal zero at about 450° C. for buckminsterfullerenes, or at about 700° C. for CNTs. Accordingly, reaction conditions may be tailored to facilitate the forward Boudouard reaction (e.g., temperatures may be maintained below about 700° C.).
In additional embodiments, the reactor 106 may be configured and operated to form solid carbon and H2O from a reduction reaction between CO2 and methane (CH4), according to the equation:
CO2+CH42C(s)+2H2O (5).
Equation 5 may be exothermic, and may facilitate a thermal energy output of about 3.65 kcal/mol at standard conditions (25° C.). One or more of the reactions shown in Equations 1 through 5 above may occur in a reaction zone, for example, of the reactor 106.
The reactor 106 may include at least one catalyst material. As used herein, the term “catalyst material” means and includes any material catalyzing the formation of the solid carbon material from two or more components of the heated source gas stream 105. The catalyst material may accelerate a reaction rate of at least one of Equations 2, 3, 4, and 5. Faster reaction rates may enable the solid carbon material to have a smaller size (e.g., smaller diameter CNTs), while slower reaction rates may enable the solid carbon material to have larger size (e.g., larger diameter CNTs). The catalyst material may also enable the reactor 106 to be operated at lower temperatures. The catalyst material may be utilized with or without special preparation (e.g., acid washing).
As a non-limiting example, the catalyst material may comprise an element of Group 2 (e.g., beryllium, magnesium, calcium, strontium, barium), Group 3 (e.g., scandium, yttrium, lanthanide, actinide), Group 4 (e.g., titanium, zirconium, hafnium), Group 5 (e.g., vanadium, niobium, tantalum), Group 6 (e.g., chromium, molybdenum, tungsten), Group 7 (e.g., manganese, rhenium), Group 8 (e.g., iron, ruthenium, osmium), Group 9 (e.g., cobalt, rhodium, iridium), Group 10 (e.g., nickel, palladium, platinum), Group 11 (e.g., copper, silver, gold), Group 12 (e.g., zinc, cadmium), Group 13 (e.g., boron, aluminium, gallium, indium, thallium), Group 14 (e.g., silicon, germanium, tin, lead), or Group 15 (e.g., arsenic, anotimony, bismuth) of the Periodic Table of Elements, oxides thereof, carbides thereof, alloys thereof, or combinations thereof. The catalyst material may, for example, comprise a metal known to be subject to metal dusting. In some embodiments, the catalyst material comprises at least one element selected from Groups 5 through 10 of the Periodic Table of Elements.
Various grades of the catalyst material may be used. The catalyst material may, for example, be a grade of an iron-, chromium-, molybdenum-, cobalt-, tungsten-, or nickel-containing alloy or superalloy. Such materials commercially available from numerous sources, such as from Special Metals Corp., of New Hartford, N.Y., under the trade name INCONEL®, or from Haynes, Int'l, Inc., of Kokomo, Ind., under the trade name HASTELLOY® (e.g., HASTELLOY® B-2, HASTELLOY® B-3, HASTELLOY® C-4, HASTELLOY® C-2000, HASTELLOY® C-22, HASTELLOY® C-276, HASTELLOY® G-30, HASTELLOY® N, or HASTELLOY® W). Iron alloys, including steel, may contain various allotropes of iron, including alpha-iron (austenite), gamma iron, and delta-iron. In some embodiments, the catalyst material comprises an iron-containing alloy, wherein the iron is not in an alpha phase.
As a non-limiting example, the catalyst material may comprise at least one of a low chromium stainless steel, steel, and cast iron (e.g., white cast iron). The catalyst material may comprise less than or equal to about 22 percent by weight (wt %) chromium, and less than or equal to about 14 wt % nickel (e.g., such as less than or equal to about 8 wt % nickel). In some embodiments, the catalyst material comprises 316L stainless steel. 316L stainless steel comprises from about 16 wt % chromium to about 18.5 wt % chromium, and from about 10 wt % nickel to about 14 wt % nickel. 316L stainless steel may achieve relatively high reaction rates as compared to other types of stainless steel, such as 304 stainless steel. The use of 316L stainless steel may facilitate the formation of multiple morphologies of solid carbon (e.g., graphite, graphene, carbon black, soot, fibrous carbon, buckminsterfullerenes, single-wall CNTs, multi-walled CNTs, diamonds, etc.). Reaction conditions (e.g., temperature, pressure, etc.) may be controlled to form one or more desired morphologies of solid carbon. Grades of stainless steel exhibiting relatively lower solid carbon formation rates (e.g., a lower CNT formation rate), such as 304 stainless steel, may be utilized in the reactor 106 (and/or other components of solid carbon production system 100) for another purpose, such as a construction material of the reactor 106.
In some embodiments, the catalyst material may comprise an at least partially oxidized metal material (e.g., a rusted metal, such as rusted steel). The oxidized metal may be formed through a reduction reaction before and/or during the formation of the solid carbon through at least one of Equations 1, 4, and 5 above. Without being bound to a particular theory, it is believed that removal of oxides leaves voids or irregularities in a surface of the catalyst material, and increases the overall surface area of the catalyst material.
The catalyst material may be provided within the reactor 106 (e.g., within a reaction zone of the reactor 106) as at least one of a solid structure (e.g., a wafer, cylinder, plate, sheet, foil, powder, shot, grit, wool, chopped wool, sphere, pellet, fiber, etc.) and at least a partial coating on another structure (e.g., particles of the catalyst material deposited on an inert substrate structure, such as a wafer, cylinder, plate, sheet, foil, powder, shot, grit, wool, chopped wool, sphere, pellet, fiber, etc., within the reactor 106). The catalyst material may, optionally, be provided within the reactor 106 without the use of a solid support structure (e.g., a ceramic support structure, a metallic support structure, etc.). Providing the catalyst material within the reactor without the use of a solid support structure may, for example, simplify the setup of the reactor 106 and reduce costs.
In some embodiments, the catalyst material may be provided within the reactor 106 as a plurality of nanoparticles. As used herein, the term “nanoparticle” means and includes any particle having an average particle diameter of about 500 nm or less. Nanoparticles include grains of the catalyst material having an average grain size of about 500 nm or less. The nanoparticles of the catalyst material may be configured to increase the surface area of the catalyst material in contact with the carbon oxide and the reducing material as the reducing reaction (e.g., the Bosch reaction) proceeds. The catalyst material may be stationary (e.g., bound to at least one surface within the reactor 106) or mobile (unbound to surfaces within the reactor 106) within the reactor 106. In some embodiments, a portion of the catalyst material may be mobile within the reactor 106 and another portion of the catalyst material may be stationary with the reactor 106.
The catalyst material may, for example, be provided within the reactor 106 by introducing (e.g., injecting, spraying through a atomizing nozzle, electrostatic spraying, dispersing from a surface of a rotating fixture) a catalyst solution including the catalyst material and at least one solvent (e.g., water) into the reactor 106 (e.g., by way of an atomization nozzle), and heating the catalyst solution to evaporate the solvent and form the catalyst material. In additional embodiments, the catalyst material may be provided within the reactor 106 by way of decomposition of at least one catalyst precursor. The catalyst precursor may be selected such that a decomposition temperature of the catalyst precursor is below a temperature within the reactor 106.
Upon introduction to the reactor 106, the catalyst precursor may decompose to form the catalyst material. As a non-limiting example, the catalyst precursor may be dissolved in a solvent (e.g., water) to form a catalyst precursor solution. The catalyst precursor solution may supplied (e.g., sprayed into) into the reactor 106 and heated to the decomposition temperature to form the catalyst material. Forming the catalyst material in situ may control a size of the catalyst material (e.g., particles or grains of the catalyst material may be kept to a small and uniform size).
In yet additional embodiments, the catalyst material may be entrained in powder form in a carrier gas and introduced into the reactor 106. The powder may be formed from a pulverization and sieving process of the catalyst material, which may enhance a size uniformity of grains (e.g., nanoparticles) of the catalyst material. If desired, the catalyst material may be provided on at least one surface within the reactor 106 by sufficiently heating the surface such that the catalyst material bonds or couples thereto. The surface may be integral with the reactor 106 or may be distinct from the reactor 106. The surface may, for example, include surface of at least one structure (e.g., plate, cylinder, pellet, sphere, etc.) within the reactor 106. In one or more embodiments, the catalyst material may be formed on the surface within the reactor 106 by way of a vacuum deposition process at high negative pressures (e.g., from about 1.33×10−4 pascal to about 1.33×10−6 pascal) and high temperatures (e.g., from about 900° C. to about 1300° C.).
The composition, average grain size, and average grain boundary shape of the catalyst material may be tailored to achieve desired morphologies (e.g., shapes and sizes) of the solid carbon material. The solid carbon material (e.g., CNTs) may grow from grains of the catalyst material (e.g., the grains of the catalyst material may serve as nucleation sites). Morphologies of the solid carbon material may, therefore, be related to each of the average grain size and the average grain boundary shape of the catalyst material. A ratio between the grain size of the catalyst material and a diameter of a formed CNT may be within a range of from about 1.2 to about 1.6.
Without being bound to a particular theory, a possible theoretical basis for the correlation of catalyst material grain size and CNT diameter has been disclosed in Nasibulin et al., Correlation between catalyst particle and single-walled carbon nanotube diameters, 43 C
The grains of the catalyst material may be monodisperse, wherein all of the grains are of substantially the same size, or may be polydisperse, wherein the grains have a range of sizes and are averaged. In addition, the grains of the catalyst material each have substantially the same grain boundary shape, or at least some of the grains of the catalyst material may have a substantially different grain boundary shape. A grain distribution of the catalyst material, including grain sizes and the grain boundary shapes, may be controlled by methods known in the art. For example, grain size may be controlled by controlling the nucleation of the catalyst material, such as by grain refinement or inoculation.
Inoculants for promoting nucleation may include titanium, boron, aluminum titanium (Al3Ti), titanium diboride (TiB2), etc. Nucleation of the catalyst material may also be promoted using pulsed laser light, such as by passing pulses through the catalyst (and through the catalyst precursor, if present). The use of pulsed laser light may enhance a grain size uniformity of the least one catalyst material.
A grain structure of the catalyst material may be modified by conventional methods, which are not described in detail herein. As a non-limiting example, the least one catalyst material may be heated to a temperature sufficient to recrystallize the least one catalyst material to form randomly oriented multiple grains. As used herein, the term “recrystallization” means and includes a process in which the catalyst material (e.g., a metal structure) may be plastically deformed, annealed, or otherwise heat-treated to affect grain growth of the least one catalyst material.
The catalyst material may also be annealed to change at least one of the grain boundary shape and the grain size of the catalyst material. As a non-limiting example, the catalyst material may be annealed by heating the catalyst material to a temperature above a recrystallization temperature thereof, maintaining the temperature for a period of time, then cooling the catalyst material. The size of the resulting grain structure may at least depend upon a recrystallization temperature of the catalyst material and an amount of time the catalyst material is exposed to a temperature greater than or equal to the recystallization temperature. In addition, a rapid cooling rate from the recrystallization temperature may facilitate increased maximum undercooling and increased nucleation sites, enabling smaller grain sizes of the catalyst material.
The catalyst material within the reactor 106 may be preconditioned prior to exposure to the heated source gas stream 105. By way of non-limiting example, the catalyst material may be heated in an inert carrier gas. Heating the catalyst material in an inert carrier gas may, for example, promote the growth of specific chiralities of single wall CNTs (e.g., helium is known to promote the growth of chiralities with metallic properties).
A wide variety of reactor configurations may facilitate the formation of the solid carbon material from the components of the heated source gas stream 105. The reactor 106 may be configured and operated as to increase the exposed surface area of the catalyst material to the carbon oxide and the reducing material. The reactor 106 may also be configured so as to enable the elutriation or sloughing off of the solid carbon material from the catalyst material, facilitating a substantially continuous operation of the reactor 106. The reactor 106 may be a batch reactor or may be a continuous reactor. By way of non-limiting example, the reactor 106 may be one of an aerosol reactor and a fluidized bed reactor.
If, for example, the reactor 106 is an aerosol reactor, the reactor 106 may be configured and operated such that the catalyst material described above is distributed within the reactor 106 in gas phase and/or such that the catalyst material is deposited on at least one surface within the reactor 106. Electrospraying may be an effective way to introduce the catalyst material into the aerosol reactor. Electrospraying may use coulombic forces to separate a catalyst material solution into small droplets from which individual particles of the catalyst material may form. Electrospraying may facilitate sustained particle separation and may also charge the subsequently formed solid carbon material such that the solid carbon material is easier to harvest (e.g., using a electrostatic precipitator). The distribution of the catalyst material within the aerosol reactor may facilitate both a growth the solid carbon material one the catalyst material and a subsequent transport of the solid carbon material from the reactor 106.
If, for example, the reactor 106 is a fluidized bed reactor, the reactor 106 may be configured and operated such that the catalyst material described above is distributed within the reactor 106 as particles of the catalyst material or as a coating of the catalyst material on other particles (e.g., steel spheres) within into the fluidized bed reactor. The solid carbon material may, for example, be grown on the catalyst material, elutriated in the fluidized bed reactor, and transported out of the fluidized bed reactor entrained in reaction gases. The fluidized bed reactor may retain the catalyst material while enabling the solid carbon material to be entrained in the reaction gas and to be lofted out of the fluidized bed reactor upon reaching a desired size (e.g. a desired CNT length). Such control may be achieved through at least one of the shape of the fluidized bed reactor and a control of gaseous flow rates through the fluidized bed reactor. In additional embodiments, the particles of the catalyst material and/or the other particles coated with the catalyst material may be removed from the fluidized bed reactor, and the solid carbon material may be subsequently removed from the catalyst material.
In one or more embodiments, particles within the fluidized bed reactor (e.g., particles of the catalyst material, or particles of another material coated with the catalyst material) may be of a substantially uniform diameter. The diameter of the particles may be selected based on at least one of the configuration of the fluidized bed reactor, the flow rate of gases through the reactor, and chemical properties (e.g., density) of one of more of the catalyst material, the components of the heated source gas stream 105, and any inert carrier gases utilized. The diameter of the particles may be chosen so as to prevent entrainment of the catalyst material with the reaction gases and also so as to avoid channeling of the components of the heated source gas stream 105 through the particles of the fluidized bed reactor. A diffuser or sparger may be employed through which the components of the heated source gas stream 105 may pass to provide a uniform flow pattern through the particles to assist in preventing channeling through the particles.
When using a solid structure of the catalyst material, such as a solid wafer of the catalyst material, the solid carbon material may grow in a series of generations. By way of non-limiting example, CNTs may form clumps, pillows, forests, fibers, piles, etc., as described in U.S. patent application Ser. No. 13/263,311, entitled “Method for Producing Solid Carbon by Reducing Carbon Oxides,” previously incorporated herein in its entirety by reference. In addition, when the catalyst material is coated on an object of manufacture (i.e., another structure), an entire surface of the object of manufacture need not be uniformly covered by with the solid carbon material. For example, formation of the solid carbon material may be limited to one or more regions along the surface of the object of manufacture by masking, or by selectively depositing the at least on catalyst material on object of manufacture to promote the formation of the solid carbon material select locations along the surface of the object of manufacture.
The physical properties of the solid carbon material formed by the reaction of the carbon oxide and the reducing material in the presence of the catalyst material may, optionally, be modified prior to removing the solid carbon material from the reactor 106. By way of non-limiting example, if desired, at least one modifying agent (e.g., ammonia, thiophene, nitrogen gas, and/or surplus hydrogen) may be introduced to the reactor 106 during the formation of the solid carbon material to modify the physical properties of the solid carbon material. For example, surplus hydrogen may result in the hydrogenation of the solid carbon material, resulting in a significant yield of semiconductor species of the solid carbon material. In addition, small amounts of other modifying agents (e.g., sulfur) may serve as catalyst promoters that accelerate the growth of the solid carbon material on the catalyst material. Such catalyst promoters may be introduced into the reactor 106 using a variety of compounds.
For example, if sulfur is selected as a catalyst promoter for an iron-based catalyst material, the sulfur may be introduced into the reactor 106 as a thiophene gas, or as thiophene droplets. Examples of sulfur-containing catalyst promoters include thiophene, hydrogen sulfide, heterocyclic sulfide, and inorganic sulfide. Other promoters include lead compounds and bismuth. The modifying agent may, for example, be introduced into the reactor 106 by delivering a separate stream (not shown) containing the modifying agent into the reactor 106. The modifying agent may also be introduced into the reactor 106 as a component of the heated source gas stream 105.
An operating temperature of reactor 106 may at least partially depend on the composition of the catalyst material and the average grain size of the catalyst material. For example, catalyst materials having small particle sizes generally exhibit optimum reaction temperatures at lower temperatures than the same catalyst materials having larger particle sizes. As a non-limiting example, the Bosch reaction may occur at temperatures within a range of from about 400° C. to about 800° C. for iron-based catalysts, depending on the grain size and composition of the iron-based catalyst used, and the desired form of the solid carbon material. In general, graphite and amorphous solid carbon form at lower temperatures, and CNTs form at higher temperatures. CNTs may form at temperatures above about 680° C. In at least some embodiments, the operating temperature of the reactor 106 is greater than or equal to about 650° C.
The reactor 106 may be maintained at a desired operating temperature by of the temperature of the heated source gas stream 105 entering the reactor 106 and one or more integrated heating devices (e.g., a flame ignited heater, an electrical resistance heater, an inductive heater, an electromagnetic heater, etc.). The heat exchanger 102 and the heater 104 may reduce the heating load necessary to maintain the reactor 106 at a selected operating temperature. In general, the reduction reaction to form the solid carbon material may proceed at a wide range of pressures, such as with of range from about 14 psi (i.e., about 1×105 pascal) to about 1.45×105 psi (i.e., about 1×109 pascal), or from about 14 psi (i.e., about 1×105 pascal) to about 600 psi (i.e., about 4.14×106 pascal). Increasing the pressure may increase the reaction rate. A residence time within the reactor 106 may be within a range of from about 1×10−4 seconds to about 1×104 seconds, such as from about 1×10−3 seconds to about 1000 seconds, or from about 0.01 seconds to about 500 second. The residence time in the reactor 106 may be at least partially controlled by one or more forces (e.g., gravitational forces, electromagnetic forces, centrifugal forces, etc.).
With continued reference to
In additional embodiments, at least one of water and steam may, optionally, be introduced into the reaction product stream 108 before directing the reaction product stream 108 into the separator 110. Introducing the at least one of water and steam into the reaction product stream 108 may cool the reaction product stream 108 and may reduce carbon activity so as to substantially reduce or eliminate metal dusting in the separator 110 and in components downstream of the separator (e.g., the heat exchanger 102, the heater 104, etc.).
If the reaction product stream 108 includes the catalyst material (e.g., a solid structure of the catalyst material, particles of the catalyst material on another structure, or a combination thereof), the solid carbon material may be removed from (e.g., abraded, rinsed off) surfaces of the catalyst material. In at least some embodiments, the separator 110 is a cyclone separator. The solid carbon material may be removed from the reaction product stream 108 prior to substantial cooling. Removing the carbon material from the reaction product stream 108 prior to cooling may reduce the deposit or growth of undesirable morphologies on the carbon material. In additional embodiments, the reaction product stream 108 may pass through at least one heat exchanger (not shown) to recapture thermal energy prior to delivery into the separator 110. The solid carbon material may exit the separator 110 as solid carbon product stream 112, and may be utilized as desired.
The additional materials may exit the separator 110 as hot side stream 114, and may be directed into the heat exchanger 102. As described above, within the heat exchanger 102 the hot side stream 114 may transfer heat to the source gas stream 101 to form the heated source gas stream 105. A cooled side stream 116 including liquid H2O and one or more of the additional materials (e.g., gaseous H2O, CO2, CO, H2) may exit the heat exchanger 102, and may be utilized or disposed of as desired. In some embodiments, at least a portion of at least one of the cooled side stream 116 and the hot side stream 114 may be recycled into at least one of the source gas stream 101, the heated source gas stream 105, and the reactor 106. Recycling at least a portion of at least one of the cooled side stream 116 and the hot side stream 114 may, for example, be used to control partial pressure of water within the reactor 106.
The partial pressure of water within the reactor 106 may be controlled to form solid carbon of a desired morphology (e.g., graphite, graphene, carbon black, soot, fibrous carbon, buckminsterfullerenes, single-wall CNTs, multi-walled CNTs, diamonds, etc.) within the reactor 106, and to control the kinetics of solid carbon formation. For example, changing the partial pressure of water within the reactor 106 may change carbon activity (Ac) within the reactor 106. Without being bound to any particular theory, carbon activity (Ac) is believed to be a metric for determining which allotrope of solid carbon will be formed under particular reaction conditions (e.g., temperature, pressure, reactants, concentrations). For example, higher carbon activity may result in the formation of CNTs, and lower carbon activity may result in the formation of graphitic forms of solid carbon. Carbon activity for a reaction forming solid carbon from gaseous reactants can be defined as the reaction equilibrium constant times the partial pressure of gaseous products, divided by the partial pressure of reactants. For example, in the reaction, CO(g)+H2(g)⇄C(s)+H2O(g), with a reaction equilibrium constant of K, the carbon activity Ac is defined as K.(PCO.PH2/PH2O). Thus, Ac is directly proportional to the partial pressures of CO and H2, and inversely proportional to the partial pressure of H2O. Higher PH2O may inhibit CNT formation. The carbon activity of this reaction may also be expressed in terms of mole fractions and total pressure: Ac=K.PT(YCO.YH2/YH2O), where PT is the total pressure and Y is the mole fraction of a species. Carbon activity may vary with temperature because reaction equilibrium constants vary generally with temperature. Carbon activity also varies with total pressure for reactions in which a different number of moles of gas are produced than are consumed. Mixtures of solid carbon allotropes and morphologies thereof can be achieved by varying the catalyst material and the carbon activity of the reaction gases in the reactor 106.
In additional embodiments, at least one additional heat exchanger (e.g., condenser) may be provided downstream of the heat exchanger 102 to further control the temperature of the cooled side stream 116 (e.g., to condense any remaining gaseous H2O in the cooled side stream 116 into liquid H2O). In additional embodiments, at least one flow control device (not shown) may be positioned proximate at least one of an inlet and an outlet of the heat exchanger 102 to control a flow rate of at least one of the hot side stream 114 and the source gas stream 101 and to regulate heat exchange rates thereof. Delivering the hot side stream 114 into the heat exchanger 102 facilitates the recovery of thermal energy input into (e.g., by way of the heated source gas stream 105 and/or the one or more integrated heating devices) and generated within (e.g., by way of one of more of the exothermic reducing reactions of Equations 3, 4, and 5 described above) the reactor 106, increasing process efficiency and/or reducing operational costs. In further embodiments, the hot side stream 114 may be passed through at least one filtration unit (not shown), such as a high temperature (e.g., ceramic) filter, to substantially reduce any particulate levels in the hot side stream 114 prior to delivery into the heat exchanger 102.
Another embodiment of the disclosure will now be described with reference to
The expansion turbine 202 (e.g., steam turbine) may use the hot side stream 114 to produce work (i.e., mechanical power) to drive a generator 204. Electrical power generated by the generator 204 may be coupled to a power bus 206. The electrical power from the power bus 206 may be utilized as desired, such as to at least partially power one or more devices or apparatuses (e.g., various pumps, various compressors, the reactor 106, the heater 104 if the heater 104 is an electrical heater, etc.) of the solid carbon production system 200. In additional embodiments, the expansion turbine 202 may be mechanically coupled to directly drive at least one other device or apparatus of the solid carbon production system 200 (e.g., at least one pump, at least one compressor, etc.).
Expansion turbine exhaust 208 may exit the expansion turbine 202 and may be directed into the heat exchanger 102. Within the heat exchanger 102, the expansion turbine exhaust 208 may transfer heat to the source gas stream 101 to form the cooled side stream 116 and the heated source gas stream 105. In additional embodiments, at least one flow control device (not shown) may be positioned proximate at least one of an inlet and an outlet of the heat exchanger 102 to control a flow rate of at least one of the expansion turbine exhaust 208 and the source gas stream 101 and to regulate heat exchange rates thereof. In additional embodiments, such as where generated electrical power delivered to the heater 104 from the power bus 206 is sufficient to enable the heater 104 to increase the temperature of the source gas stream to a predetermined temperature, the heat exchanger 102 may be omitted.
Another embodiment of the disclosure will now be described with reference to
The deionized water 312 may exit the deionizer 310 and may, optionally, be directed into at least one pre-heater 316. The optional pre-heater 316 (e.g., a combustion heater, an electrical resistance heater, an inductive heater, an electromagnetic heater, etc.) may increase the temperature of the deionized water 312 to a predetermined temperature based on a desired operating temperature of an electrolyzer 318. Increasing the temperature of the deionized water 312 may decrease the electrical load requirements of the electrolyzer 318. If a combustion heater is used as the optional pre-heater 316, fuel (e.g., H2, O2) for the preheater may be provided by the subsequent electrolysis of water, as described in further detail below. If an electrical resistance heater is used as the optional pre-heater 316, the electrical power to run the electric heater may be at least partially supplied from the power bus 206. A heated deionized water stream 314 (or the deionized water 312 if the pre-heater 316 is omitted, or the water stream 308 if both the deionizer 310 and the pre-heater 316 are omitted) may be directed out of the pre-heater 316 and into the electrolyzer 318.
The electrolyzer 318 may regenerate the heated deionized water stream 314 into a hydrogen gas stream 320 and an oxygen gas stream 322. The hydrogen gas stream 320 may exit the electrolyzer 318 and may be compressed and delivered into a hydrogen storage vessel 324. The hydrogen storage vessel 324 may be any storage vessel configured and operated to store a desired amount of hydrogen and sustain a desired pressure, such as a pressure greater than that of the mixer 330. The oxygen gas stream 322 may exit the electrolyzer 318 and may, optionally, be compressed and delivered into an oxygen storage vessel 326. The oxygen storage vessel 326 may be any storage vessel configured and operated to store a desired amount of oxygen and sustain a desired pressure. In additional embodiments, the hydrogen gas stream 320 and the oxygen gas stream 322 may be delivered into a single storage vessel (not shown). The electrical power to run at least one of the electrolyzer 318 and at least one compressor (not shown) used to compress one or more of the hydrogen gas stream 320 and the oxygen gas stream 322 may be at least partially supplied from the power bus 206.
Hydrogen in the hydrogen storage vessel 324 and oxygen in the oxygen storage vessel 144 may be utilized as desired. By way of non-limiting example, at least a portion of the hydrogen in the hydrogen storage vessel 324 may be used as a reducing material in the source gas stream 101. For instance, as depicted in
In yet additional embodiments, at least one of the hydrogen in the hydrogen storage vessel 324 and the oxygen in the oxygen storage vessel 326 may be utilized to heat at least one stream of the solid carbon production system 300. By way of non-limiting example, as shown in
Another embodiment of the disclosure will now be described with reference to
The first heat exchanger 402 may be any suitable apparatus or device known in the art for exchanging heat from one fluid or gas to another fluid. By way of non-limiting example, the first heat exchanger 402 may be a recuperative heat exchanger (e.g., a shell-and-tube heat exchanger) that functions to cool the hot side stream 114 while vaporizing exchange fluid 404 to produce high-pressure vapor 406. The exchange fluid 404 may be selected such that heat is efficiently recovered from the hot side stream 114, and the expansion turbine 408 may be operated efficiently.
In at least some embodiments, the exchange fluid 404 is liquid H2O (i.e., water), and the high-pressure vapor 406 is high-pressure gaseous H2O (i.e., high-pressure steam). The high-pressure vapor 406 exiting an outlet of the first heat exchanger 402 may have a temperature of greater than or equal to about 300° C. The high-pressure vapor 406 may be delivered into the expansion turbine 408, as described below. In additional embodiments, the exchange fluid 404 may remain in a substantially liquid phase (e.g., as a hot, high pressure exchange fluid) following heating in the first heat exchanger 402, and may flash into the high-pressure vapor 406 upon delivery into the expansion turbine 408. An exchange fluid cooled side stream 410 may exit another outlet of the first heat exchanger 402 and may be directed into second heat exchanger 412. In additional embodiments, such as where the exchange fluid cooled side stream 410 includes solid material (e.g., suspended particles of the catalyst material), the the exchange fluid cooled side stream 410 may be passed through at least one additional separation device, prior to being delivered into the second heat exchanger 412.
The second heat exchanger 412 may be substantially similar to the heat exchanger 102 described above in reference to
The expansion turbine 408 (e.g., steam turbine) may receive the high-pressure vapor 406 from the first heat exchanger 402 and may use the high-pressure vapor 406 to produce work (i.e., mechanical power) to drive a generator 414. Electrical power generated by the generator 414 may be coupled to a power bus 416. The electrical power from the power bus 416 may be utilized as desired, such as to at least partially power one or more devices or apparatuses (e.g., various pumps, various compressors, the reactor 106, the heater 104 if the heater 104 is an electrical resistance heater, etc.) of the solid carbon production system 400. In additional embodiments, the expansion turbine 408 may be mechanically coupled to directly drive at least one other device or apparatus of the solid carbon production system 400 (e.g., at least one pump, at least one compressor, etc.). An expansion turbine exhaust 418 may be condensed in at least one condenser 420 to again form the exchange fluid 404. The exchange fluid 404 may be pressurized in pump 422 and may be directed into the first heat exchanger 402 to facilitate additional thermal energy recovery. A composition of the exchange fluid 404 may, optionally, be modified in response to changes in at least one of the temperature of the hot side stream 114 and the temperature of expansion turbine exhaust 418 (e.g., to sustain the heat-recovery efficiency of the solid carbon production system 400).
Another embodiment of the disclosure will now be described with reference to
The deionized water 512 exits the deionizer 510 and may, optionally, be directed into at least one pre-heater 516. The optional pre-heater 516 (e.g., a combustion heater, an electrical resistance heater, an inductive heater, an electromagnetic heater, etc.) may increase the temperature of the deionized water 512 to a predetermined temperature based on a desired operating temperature of an electrolyzer 518. Increasing the temperature of the deionized water 512 may decrease the electrical load requirements of the electrolyzer 518.
If a combustion heater is used as the optional pre-heater 516, at least a portion of the fuel and oxygen (e.g., H2, O2) for the preheater may be provided by the subsequent electrolysis of water, as described in further detail below. If an electrical resistance heater is used as the optional pre-heater 516, the electrical power to run the electric heater may be at least partially supplied from the power bus 416. A heated deionized water stream 514 (or the deionized water 512 if the pre-heater 516 is omitted, or the water stream 508 if both the deionizer 510 and the pre-heater 516 are omitted) may be directed out of the pre-heater 516 and into the electrolyzer 518.
The electrolyzer 518 may regenerate the heated deionized water stream 514 into a hydrogen gas stream 520 and an oxygen gas stream 522. The hydrogen gas stream 520 may exit the electrolyzer 518 and may be compressed and delivered into a hydrogen storage vessel 524. The hydrogen storage vessel 524 may be any storage vessel configured and operated to store a desired amount of hydrogen and sustain a desired pressure. The oxygen gas stream 522 may exit the electrolyzer 518 and may, optionally, be compressed and delivered into an oxygen storage vessel 526. The oxygen storage vessel 526 may be any storage vessel configured and operated to store a desired amount of oxygen and sustain a desired pressure. In additional embodiments, the hydrogen gas stream 520 and the oxygen gas stream 522 may be delivered into a single storage vessel (not shown). The electrical power to run at least one of the electrolyzer 518 and at least one compressor (not shown) used to compress one or more of the hydrogen gas stream 520 and the oxygen gas stream 522 may be at least partially supplied from the power bus 416.
Hydrogen in the hydrogen storage vessel 524 and oxygen in the oxygen storage vessel 544 may be utilized as desired. By way of non-limiting example, at least a portion of the hydrogen in the hydrogen storage vessel 524 may be used as a reducing material in the source gas stream 101. For instance, as depicted in
In yet additional embodiments, at least one of the hydrogen in the hydrogen storage vessel 524 and the oxygen in the oxygen storage vessel 526 may be utilized to heat at least one stream of the solid carbon production system 500. By way of non-limiting example, as shown in
Another embodiment of the disclosure will now be described with reference to
The internal heat exchanger 604 may be an apparatus or device configured and operated to transfer heat (e.g., such as heat generated by the exothermic reduction reaction described above) from hot reaction gases within the reactor 602 (e.g., the reaction product stream 108 within the reactor 602) to a first exchange fluid 606. By way of non-limiting example, the internal heat exchanger 604 may be a shell-and-tube heat exchanger, a plate heat exchanger, a plate-fin heat exchanger, a spiral heat exchanger, or any other type of heat transfer apparatus. The internal heat exchanger 604 may, for example, include tubes (not shown) oriented transversely or axially to a longitudinal axis (not shown) of the reactor 602, such that the hot reaction gases flow across or along the lengths of the tubes.
In at least some embodiments, the internal heat exchanger 604 is a plate-fin heat exchanger. The internal heat exchanger 604 may be formed of and include a material (e.g., metal) suitable for temperatures, pressures, and materials within the reactor 602. By way of non-limiting example, the internal heat exchanger 604 may be formed of and include a high chromium stainless steel. Some stainless steels may provide an active catalytic surface for the carbon oxide reduction reactions (e.g., the Bosch reaction) previously described herein, so components of the internal heat exchanger 604 in contact with the reaction gases in the reactor 602 may be formed of and include at least one of a metal and a metal alloy exhibiting enhanced resistance to metal dusting. In some embodiments, at least a portion (e.g., portions interacting with the heated source gas stream 105) of the internal heat exchanger 604 is formed of and includes at least one of Kanthal APM and INCONEL® alloy 693. In one or more embodiments, at least one flow control device (not shown) may be positioned proximate at least one of an inlet and an outlet of the internal heat exchanger 604 to control a flow rate of the first exchange fluid 606 and regulate heat exchange rate between the hot reaction gases within the reactor 602 and the first exchange fluid 606.
The first exchange fluid 606 may be a material suitable for receiving heat from the hot reaction gases within the reactor 602. The first exchange fluid 606 may, for example, be selected to enable the internal heat exchanger 604 to be operated at low pressures, such as at or near atmospheric pressure. The first exchange fluid 606 may have a high heat capacity and a high heat transfer coefficient. As a non-limiting example, the first exchange fluid 606 may be a molten salt (e.g., molten NaNO3, a molten mixture of NaNO3 and KNO3, a molten mixture of LiF and BeF2, etc.) or helium. An operating temperature of the first exchange fluid 606 may be maintained below a maximum operating temperature of the first exchange fluid 606 at least partially by the flow rate of the first exchange fluid 606 through the internal heat exchanger 604. A heated first exchange fluid 608 may exit the internal heat exchanger 604 and may be directed into an external heat exchanger 610.
The external heat exchanger 610 may be any suitable apparatus or device known in the art for exchanging heat from one fluid or gas to another fluid. By way of non-limiting example, the external heat exchanger 610 may be a recuperative heat exchanger (e.g., a shell-and-tube heat exchanger) that functions to cool the heated first exchange fluid 608 while vaporizing a second exchange fluid 612 to produce high-pressure vapor 614. The second exchange fluid 612 may be selected such that heat is efficiently recovered from the heated first exchange fluid 608, and such that a expansion turbine 616 may be operated efficiently, as described below. In at least some embodiments, the second exchange fluid 612 is water, and the high-pressure vapor 614 is high-pressure steam.
The high-pressure vapor 614 exiting an outlet of the external heat exchanger 610 may have a temperature of greater than or equal to about 300° C. The high-pressure vapor 614 may be delivered into the expansion turbine 616, as described below. In additional embodiments, the second exchange fluid 612 may remain in a substantially liquid phase (e.g., as a hot, high pressure exchange fluid) following heating in the external heat exchanger 610, and may flash into the high-pressure vapor 614 upon delivery into the expansion turbine 616.
The first exchange fluid 606 exiting another outlet of the external heat exchanger 610 may be directed (e.g., pumped) back into the internal heat exchanger 604 to facilitate another pass therethrough. In additional embodiments, one or more heat exchangers may be provided downstream of the external heat exchanger 610 to further control the temperature of the first exchange fluid 606 entering the internal heat exchanger 604. In additional embodiments, at least one flow control device (not shown) may be positioned proximate at least one of an inlet and an outlet of the external heat exchanger 610 to control a flow rate of at least one of the first exchange fluid 606 and the second exchange fluid 612 and to regulate the heat exchange rates thereof.
In additional embodiments, the external heat exchanger 610, the first exchange fluid 606, and the heated first exchange fluid 608 may, optionally, be omitted such that the second exchange fluid 612 is flowed directly through the internal heat exchanger 604 and is heated therein to produce the high-pressure vapor 614.
The expansion turbine 616 (e.g., steam turbine) may receive the high-pressure vapor 614 from the external heat exchanger 610 and may use the high-pressure vapor 614 to produce work (i.e., mechanical power) to drive a generator 618. Electrical power generated by the generator 618 may be coupled to a power bus 620. The electrical power from the power bus 620 may be utilized as desired, such as to at least partially power one or more devices or apparatuses (e.g., various pumps, various compressors, the reactor 602, the heater 104 if the heater 104 is an electrical resistance heater, etc.) of the solid carbon production system 600. In additional embodiments, the expansion turbine 616 may be mechanically coupled to directly drive at least one other device or apparatus of the solid carbon production system 600 (e.g., at least one pump, at least one compressor, etc.). Expansion turbine exhaust 622 may be condensed in at least one condenser 624 to again form the second exchange fluid 612. The second exchange fluid 612 may be pressurized in pump 626 and may be directed into the external heat exchanger 610 to facilitate additional thermal energy recovery. A composition of the second exchange fluid 612 may, optionally, be modified in response to changes in at least one of the temperature of the heated first exchange fluid 608 and the temperature of expansion turbine exhaust 622 (e.g., to sustain the heat-recovery efficiency of the solid carbon production system 600).
In additional embodiments, a solid carbon production system may be configured and operated to include a series of reactors. Such a solid carbon production system is described in U.S. Provisional Patent Application No. 61/624,723, filed on Apr. 16, 2012, previously incorporated by reference in its entirety herein. If, for example, the series of reactors includes at least one reactor facilitating an endothermic reaction (e.g., a first reactor primarily facilitating a reaction according to Equation 2 above) and at least one other reactor facilitating an exothermic reaction (e.g., a second reactor, located downstream of the first reactor, primarily facilitating a reaction according to at least one of Equations 3 and 4 above), thermal energy may be extracted from one or more of the at least one other reactor and an effluent stream thereof using one or more of the methods and systems described above.
The following example serves to explain an embodiments of the disclosure in more detail. The example is not to be construed as being exhaustive or exclusive as to the scope of the disclosure.
Simulations were performed for the solid carbon production systems depicted in each of
The simulation results indicate that the solid carbon production systems and methods of the disclosure result in energy savings as compared to solid carbon production systems not including thermal energy recovery and conversion modifications. For example, simulation 1 (i.e., for the solid carbon production system 100 of
While the disclosure is susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, the disclosure is not intended to be limited to the particular forms disclosed. Rather, the disclosure is to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the following appended claims and their legal equivalents. For example, elements and features disclosed in relation to one embodiment may be combined with elements and features disclosed in relation to other embodiments of the disclosure.
This application claims the benefit of the filing date of U.S. Provisional Patent Application Ser. No. 61/624,573, filed Apr. 16, 2012, for “Methods and Systems for Thermal Energy Recovery from Production of Solid Carbon Materials by Reducing Carbon Oxides,” the disclosure of which is hereby incorporated herein in its entirety by this reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/000076 | 3/15/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/158159 | 10/24/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1478730 | Brownlee | Dec 1923 | A |
1735925 | Jaeger | Nov 1929 | A |
1746464 | Fischer et al. | Feb 1930 | A |
1964744 | Odell | Jul 1934 | A |
2404869 | Sorrentino | Jul 1946 | A |
2429980 | Allinson | Nov 1947 | A |
2440424 | Wiegand et al. | Apr 1948 | A |
2745973 | Rappaport | May 1956 | A |
2796331 | Kauffman et al. | Jun 1957 | A |
2800616 | Becker | Jul 1957 | A |
2811653 | Moore | Oct 1957 | A |
2819414 | Sherwood et al. | Jan 1958 | A |
2837666 | Linder | Jun 1958 | A |
2976433 | Rappaport et al. | Mar 1961 | A |
3094634 | Rappaport | Jun 1963 | A |
3172774 | Diefendorf | Mar 1965 | A |
3249830 | Adany | May 1966 | A |
3378345 | Bourdeau et al. | Apr 1968 | A |
3634999 | Howard et al. | Jan 1972 | A |
3714474 | Hoff | Jan 1973 | A |
3846478 | Cummins | Nov 1974 | A |
3905748 | Cairo et al. | Sep 1975 | A |
4024420 | Anthony et al. | May 1977 | A |
4126000 | Funk | Nov 1978 | A |
4197281 | Muenger | Apr 1980 | A |
4200554 | Lauder | Apr 1980 | A |
4235855 | Cleveland | Nov 1980 | A |
4602477 | Lucadamo et al. | Jul 1986 | A |
4628143 | Brotz | Dec 1986 | A |
4663230 | Tennent | May 1987 | A |
4710483 | Burk et al. | Dec 1987 | A |
4725346 | Joshi | Feb 1988 | A |
4727207 | Paparizos et al. | Feb 1988 | A |
4746458 | Brotz | May 1988 | A |
4855091 | Geus et al. | Aug 1989 | A |
4900368 | Brotz | Feb 1990 | A |
5008579 | Conley et al. | Apr 1991 | A |
5021139 | Hartig et al. | Jun 1991 | A |
5082505 | Cota et al. | Jan 1992 | A |
5122332 | Russell | Jun 1992 | A |
5133190 | Abdelmalek | Jul 1992 | A |
5149584 | Baker et al. | Sep 1992 | A |
5187030 | Firmin et al. | Feb 1993 | A |
5260621 | Little et al. | Nov 1993 | A |
5396141 | Jantz | Mar 1995 | A |
5413866 | Baker et al. | May 1995 | A |
5456897 | Moy et al. | Oct 1995 | A |
5526374 | Uebber | Jun 1996 | A |
5531424 | Whipp | Jul 1996 | A |
5569635 | Moy et al. | Oct 1996 | A |
5572544 | Mathur et al. | Nov 1996 | A |
5578543 | Tennent et al. | Nov 1996 | A |
5589152 | Tennent et al. | Dec 1996 | A |
5624542 | Shen et al. | Apr 1997 | A |
5641466 | Ebbesen et al. | Jun 1997 | A |
5648056 | Tanaka | Jul 1997 | A |
5650370 | Tennent et al. | Jul 1997 | A |
5691054 | Tennent et al. | Nov 1997 | A |
5707916 | Snyder et al. | Jan 1998 | A |
5726116 | Moy et al. | Mar 1998 | A |
5747161 | Iijima | May 1998 | A |
5780101 | Nolan et al. | Jul 1998 | A |
5859484 | Mannik et al. | Jan 1999 | A |
5877110 | Snyder et al. | Mar 1999 | A |
5910238 | Cable et al. | Jun 1999 | A |
5965267 | Nolan et al. | Oct 1999 | A |
5997832 | Lieber et al. | Dec 1999 | A |
6099965 | Tennent et al. | Aug 2000 | A |
6159892 | Moy et al. | Dec 2000 | A |
6183714 | Smalley et al. | Feb 2001 | B1 |
6203814 | Fisher et al. | Mar 2001 | B1 |
6221330 | Moy et al. | Apr 2001 | B1 |
6232706 | Dai et al. | May 2001 | B1 |
6239057 | Ichikawa et al. | May 2001 | B1 |
6261532 | Ono | Jul 2001 | B1 |
6262129 | Murray et al. | Jul 2001 | B1 |
6294144 | Moy et al. | Sep 2001 | B1 |
6333016 | Resasco et al. | Dec 2001 | B1 |
6346189 | Dai et al. | Feb 2002 | B1 |
6361861 | Gao | Mar 2002 | B2 |
6375917 | Mandeville et al. | Apr 2002 | B1 |
6413487 | Resasco et al. | Jul 2002 | B1 |
6423288 | Mandeville et al. | Jul 2002 | B2 |
6426442 | Ichikawa et al. | Jul 2002 | B1 |
6465813 | Ihm | Oct 2002 | B2 |
6518218 | Sun et al. | Feb 2003 | B1 |
6596101 | Weihs et al. | Jul 2003 | B2 |
6645455 | Margrave et al. | Nov 2003 | B2 |
6683783 | Liu et al. | Jan 2004 | B1 |
6686311 | Sun et al. | Feb 2004 | B2 |
6692717 | Smalley et al. | Feb 2004 | B1 |
6713519 | Wang et al. | Mar 2004 | B2 |
6749827 | Smalley et al. | Jun 2004 | B2 |
6761870 | Smalley et al. | Jul 2004 | B1 |
6790425 | Smalley et al. | Sep 2004 | B1 |
6800369 | Gimzewski et al. | Oct 2004 | B2 |
6827918 | Margrave et al. | Dec 2004 | B2 |
6827919 | Moy et al. | Dec 2004 | B1 |
6835330 | Nishino et al. | Dec 2004 | B2 |
6835366 | Margrave et al. | Dec 2004 | B1 |
6841139 | Liu et al. | Jan 2005 | B2 |
6843843 | Takahashi et al. | Jan 2005 | B2 |
6855301 | Rich et al. | Feb 2005 | B1 |
6855593 | Andoh | Feb 2005 | B2 |
6875412 | Margrave et al. | Apr 2005 | B2 |
6890986 | Pruett | May 2005 | B2 |
6899945 | Smalley et al. | May 2005 | B2 |
6905544 | Setoguchi et al. | Jun 2005 | B2 |
6913740 | Polverejan et al. | Jul 2005 | B2 |
6913789 | Smalley et al. | Jul 2005 | B2 |
6916434 | Nishino et al. | Jul 2005 | B2 |
6919064 | Resasco et al. | Jul 2005 | B2 |
6936233 | Smalley et al. | Aug 2005 | B2 |
6949237 | Smalley et al. | Sep 2005 | B2 |
6955800 | Resasco et al. | Oct 2005 | B2 |
6960389 | Tennent et al. | Nov 2005 | B2 |
6962685 | Sun | Nov 2005 | B2 |
6979709 | Smalley et al. | Dec 2005 | B2 |
6986876 | Smalley et al. | Jan 2006 | B2 |
6998358 | French et al. | Feb 2006 | B2 |
7011771 | Gao et al. | Mar 2006 | B2 |
7041620 | Smalley et al. | May 2006 | B2 |
7045108 | Jiang et al. | May 2006 | B2 |
7048999 | Smalley et al. | May 2006 | B2 |
7052668 | Smalley et al. | May 2006 | B2 |
7067098 | Colbert et al. | Jun 2006 | B2 |
7071406 | Smalley et al. | Jul 2006 | B2 |
7074379 | Moy et al. | Jul 2006 | B2 |
7094385 | Beguin et al. | Aug 2006 | B2 |
7094386 | Resasco et al. | Aug 2006 | B2 |
7094679 | Li et al. | Aug 2006 | B1 |
7097820 | Colbert et al. | Aug 2006 | B2 |
7105596 | Smalley et al. | Sep 2006 | B2 |
7125534 | Smalley et al. | Oct 2006 | B1 |
7132062 | Howard | Nov 2006 | B1 |
7135159 | Shaffer et al. | Nov 2006 | B2 |
7135160 | Yang et al. | Nov 2006 | B2 |
7150864 | Smalley et al. | Dec 2006 | B1 |
7157068 | Li et al. | Jan 2007 | B2 |
7160532 | Liu et al. | Jan 2007 | B2 |
7169329 | Wong et al. | Jan 2007 | B2 |
7201887 | Smalley et al. | Apr 2007 | B2 |
7204970 | Smalley et al. | Apr 2007 | B2 |
7205069 | Smalley et al. | Apr 2007 | B2 |
7212147 | Messano | May 2007 | B2 |
7214360 | Chen et al. | May 2007 | B2 |
7250148 | Yang et al. | Jul 2007 | B2 |
7270795 | Kawakami et al. | Sep 2007 | B2 |
7291318 | Sakurabayashi et al. | Nov 2007 | B2 |
7338648 | Harutyunyan et al. | Mar 2008 | B2 |
7365289 | Wilkes et al. | Apr 2008 | B2 |
7374793 | Furukawa et al. | May 2008 | B2 |
7390477 | Smalley et al. | Jun 2008 | B2 |
7396798 | Ma et al. | Jul 2008 | B2 |
7408186 | Merkulov et al. | Aug 2008 | B2 |
7410628 | Bening et al. | Aug 2008 | B2 |
7413723 | Niu et al. | Aug 2008 | B2 |
7452828 | Hirakata et al. | Nov 2008 | B2 |
7459137 | Tour et al. | Dec 2008 | B2 |
7459138 | Resasco et al. | Dec 2008 | B2 |
7473873 | Biris et al. | Jan 2009 | B2 |
7510695 | Smalley et al. | Mar 2009 | B2 |
7527780 | Margrave et al. | May 2009 | B2 |
7563427 | Wei et al. | Jul 2009 | B2 |
7563428 | Resasco et al. | Jul 2009 | B2 |
7569203 | Fridman et al. | Aug 2009 | B2 |
7572426 | Strano et al. | Aug 2009 | B2 |
7585483 | Edwin et al. | Sep 2009 | B2 |
7601322 | Huang | Oct 2009 | B2 |
7611579 | Lashmore et al. | Nov 2009 | B2 |
7615204 | Ajayan et al. | Nov 2009 | B2 |
7618599 | Kim et al. | Nov 2009 | B2 |
7622059 | Bordere et al. | Nov 2009 | B2 |
7632569 | Smalley et al. | Dec 2009 | B2 |
7645933 | Narkis et al. | Jan 2010 | B2 |
7655302 | Smalley et al. | Feb 2010 | B2 |
7670510 | Wong et al. | Mar 2010 | B2 |
7700065 | Fujioka et al. | Apr 2010 | B2 |
7704481 | Higashi et al. | Apr 2010 | B2 |
7718283 | Raffaelle et al. | May 2010 | B2 |
7719265 | Harutyunyan et al. | May 2010 | B2 |
7731930 | Taki et al. | Jun 2010 | B2 |
7736741 | Maruyama et al. | Jun 2010 | B2 |
7740825 | Tohji et al. | Jun 2010 | B2 |
7749477 | Jiang et al. | Jul 2010 | B2 |
7754182 | Jiang et al. | Jul 2010 | B2 |
7772447 | Iaccino et al. | Aug 2010 | B2 |
7780939 | Margrave et al. | Aug 2010 | B2 |
7785558 | Hikata | Aug 2010 | B2 |
7790228 | Suekane et al. | Sep 2010 | B2 |
7794690 | Abatzoglou et al. | Sep 2010 | B2 |
7794797 | Vasenkov | Sep 2010 | B2 |
7799246 | Bordere et al. | Sep 2010 | B2 |
7811542 | McElrath et al. | Oct 2010 | B1 |
7824648 | Jiang et al. | Nov 2010 | B2 |
7837968 | Chang et al. | Nov 2010 | B2 |
7838843 | Kawakami et al. | Nov 2010 | B2 |
7842271 | Petrik | Nov 2010 | B2 |
7854945 | Fischer et al. | Dec 2010 | B2 |
7854991 | Hata et al. | Dec 2010 | B2 |
7858648 | Bianco et al. | Dec 2010 | B2 |
7871591 | Harutyunyan et al. | Jan 2011 | B2 |
7883995 | Mitchell et al. | Feb 2011 | B2 |
7887774 | Strano et al. | Feb 2011 | B2 |
7888543 | Iaccino et al. | Feb 2011 | B2 |
7897209 | Shibuya et al. | Mar 2011 | B2 |
7901654 | Harutyunyan | Mar 2011 | B2 |
7906095 | Kawabata | Mar 2011 | B2 |
7919065 | Pedersen et al. | Apr 2011 | B2 |
7923403 | Ma et al. | Apr 2011 | B2 |
7923615 | Silvy et al. | Apr 2011 | B2 |
7932419 | Liu et al. | Apr 2011 | B2 |
7947245 | Tada et al. | May 2011 | B2 |
7951351 | Ma et al. | May 2011 | B2 |
7964174 | Dubin et al. | Jun 2011 | B2 |
7981396 | Harutyunyan | Jul 2011 | B2 |
7988861 | Pham-Huu et al. | Aug 2011 | B2 |
7993594 | Wei et al. | Aug 2011 | B2 |
8012447 | Harutyunyan et al. | Sep 2011 | B2 |
8017282 | Choi et al. | Sep 2011 | B2 |
8017892 | Biris et al. | Sep 2011 | B2 |
8038908 | Hirai et al. | Oct 2011 | B2 |
8114518 | Hata et al. | Feb 2012 | B2 |
8138384 | Iaccino et al. | Mar 2012 | B2 |
8173096 | Chang et al. | May 2012 | B2 |
8178049 | Shiraki et al. | May 2012 | B2 |
8226902 | Jang et al. | Jul 2012 | B2 |
8314044 | Jangbarwala | Nov 2012 | B2 |
8679444 | Noyes | Mar 2014 | B2 |
20010009119 | Murray et al. | Jul 2001 | A1 |
20020009637 | Murakami et al. | Jan 2002 | A1 |
20020054849 | Baker et al. | May 2002 | A1 |
20020102193 | Smalley et al. | Aug 2002 | A1 |
20020102196 | Smalley et al. | Aug 2002 | A1 |
20020127169 | Smalley et al. | Sep 2002 | A1 |
20020127170 | Hong et al. | Sep 2002 | A1 |
20020172767 | Grigorian et al. | Nov 2002 | A1 |
20030059364 | Prilutskiy | Mar 2003 | A1 |
20030147802 | Smalley et al. | Aug 2003 | A1 |
20040053440 | Lai et al. | Mar 2004 | A1 |
20040070009 | Resasco et al. | Apr 2004 | A1 |
20040105807 | Fan et al. | Jun 2004 | A1 |
20040111968 | Day et al. | Jun 2004 | A1 |
20040151654 | Wei et al. | Aug 2004 | A1 |
20040194705 | Dai et al. | Oct 2004 | A1 |
20040197260 | Resasco et al. | Oct 2004 | A1 |
20040202603 | Fischer et al. | Oct 2004 | A1 |
20040234445 | Serp et al. | Nov 2004 | A1 |
20040247503 | Hyeon | Dec 2004 | A1 |
20040265212 | Varadan et al. | Dec 2004 | A1 |
20050002850 | Niu et al. | Jan 2005 | A1 |
20050002851 | McElrath et al. | Jan 2005 | A1 |
20050025695 | Pradhan | Feb 2005 | A1 |
20050042162 | Resasco et al. | Feb 2005 | A1 |
20050046322 | Kim et al. | Mar 2005 | A1 |
20050074392 | Yang et al. | Apr 2005 | A1 |
20050079118 | Maruyama et al. | Apr 2005 | A1 |
20050100499 | Oya et al. | May 2005 | A1 |
20050176990 | Coleman et al. | Aug 2005 | A1 |
20050220695 | Abatzoglou et al. | Oct 2005 | A1 |
20050244325 | Nam et al. | Nov 2005 | A1 |
20050276743 | Lacombe et al. | Dec 2005 | A1 |
20060013757 | Edwin et al. | Jan 2006 | A1 |
20060032330 | Sato | Feb 2006 | A1 |
20060045837 | Nishimura | Mar 2006 | A1 |
20060078489 | Harutyunyan et al. | Apr 2006 | A1 |
20060104884 | Shaffer et al. | May 2006 | A1 |
20060104886 | Wilson | May 2006 | A1 |
20060104887 | Fujioka et al. | May 2006 | A1 |
20060133990 | Hyeon et al. | Jun 2006 | A1 |
20060141346 | Gordon et al. | Jun 2006 | A1 |
20060165988 | Chiang et al. | Jul 2006 | A1 |
20060191835 | Petrik et al. | Aug 2006 | A1 |
20060199770 | Bianco et al. | Sep 2006 | A1 |
20060204426 | Akins et al. | Sep 2006 | A1 |
20060225534 | Swihart et al. | Oct 2006 | A1 |
20060239890 | Chang et al. | Oct 2006 | A1 |
20060239891 | Niu et al. | Oct 2006 | A1 |
20060245996 | Xie et al. | Nov 2006 | A1 |
20060275956 | Konesky | Dec 2006 | A1 |
20070003470 | Smalley et al. | Jan 2007 | A1 |
20070020168 | Asmussen et al. | Jan 2007 | A1 |
20070031320 | Jiang et al. | Feb 2007 | A1 |
20070080605 | Chandrashekhar et al. | Apr 2007 | A1 |
20070116631 | Li et al. | May 2007 | A1 |
20070148962 | Kauppinen et al. | Jun 2007 | A1 |
20070149392 | Ku et al. | Jun 2007 | A1 |
20070154382 | Edwin et al. | Jul 2007 | A1 |
20070183959 | Charlier et al. | Aug 2007 | A1 |
20070189953 | Bai et al. | Aug 2007 | A1 |
20070207318 | Jin et al. | Sep 2007 | A1 |
20070209093 | Tohji et al. | Sep 2007 | A1 |
20070253886 | Abatzoglou et al. | Nov 2007 | A1 |
20070264187 | Harutyunyan et al. | Nov 2007 | A1 |
20070280876 | Tour et al. | Dec 2007 | A1 |
20070281087 | Harutyunyan et al. | Dec 2007 | A1 |
20080003170 | Buchholz et al. | Jan 2008 | A1 |
20080003182 | Wilson et al. | Jan 2008 | A1 |
20080008760 | Bianco et al. | Jan 2008 | A1 |
20080014654 | Weisman et al. | Jan 2008 | A1 |
20080095695 | Shanov et al. | Apr 2008 | A1 |
20080118426 | Li et al. | May 2008 | A1 |
20080160312 | Furukawa et al. | Jul 2008 | A1 |
20080169061 | Tour et al. | Jul 2008 | A1 |
20080175785 | Mitra et al. | Jul 2008 | A1 |
20080176069 | Ma et al. | Jul 2008 | A1 |
20080182155 | Choi et al. | Jul 2008 | A1 |
20080193367 | Kalck et al. | Aug 2008 | A1 |
20080217588 | Arnold et al. | Sep 2008 | A1 |
20080226538 | Rumpf et al. | Sep 2008 | A1 |
20080233402 | Carlson et al. | Sep 2008 | A1 |
20080260618 | Kawabata | Oct 2008 | A1 |
20080274277 | Rashidi et al. | Nov 2008 | A1 |
20080279753 | Harutyunyan | Nov 2008 | A1 |
20080280136 | Zachariah et al. | Nov 2008 | A1 |
20080296537 | Gordon et al. | Dec 2008 | A1 |
20080299029 | Grosboll et al. | Dec 2008 | A1 |
20080305028 | McKeigue et al. | Dec 2008 | A1 |
20080305029 | McKeigue et al. | Dec 2008 | A1 |
20080305030 | McKeigue et al. | Dec 2008 | A1 |
20080318357 | Raffaelle et al. | Dec 2008 | A1 |
20090001326 | Sato et al. | Jan 2009 | A1 |
20090004075 | Chung et al. | Jan 2009 | A1 |
20090011128 | Oshima et al. | Jan 2009 | A1 |
20090035569 | Gonzalez Moral et al. | Feb 2009 | A1 |
20090053115 | Jacques et al. | Feb 2009 | A1 |
20090056802 | Rabani | Mar 2009 | A1 |
20090074634 | Tada et al. | Mar 2009 | A1 |
20090081454 | Axmann et al. | Mar 2009 | A1 |
20090087371 | Jang et al. | Apr 2009 | A1 |
20090087622 | Busnaina et al. | Apr 2009 | A1 |
20090124705 | Meyer et al. | May 2009 | A1 |
20090134363 | Bordere et al. | May 2009 | A1 |
20090136413 | Li et al. | May 2009 | A1 |
20090140215 | Buchholz et al. | Jun 2009 | A1 |
20090186223 | Saito et al. | Jul 2009 | A1 |
20090191352 | Dufaux et al. | Jul 2009 | A1 |
20090203519 | Abatzoglou et al. | Aug 2009 | A1 |
20090208388 | McKeigue et al. | Aug 2009 | A1 |
20090208708 | Wei et al. | Aug 2009 | A1 |
20090220392 | McKeigue et al. | Sep 2009 | A1 |
20090226704 | Kauppinen et al. | Sep 2009 | A1 |
20090257945 | Biris et al. | Oct 2009 | A1 |
20090286084 | Tennent et al. | Nov 2009 | A1 |
20090286675 | Wei et al. | Nov 2009 | A1 |
20090294753 | Hauge et al. | Dec 2009 | A1 |
20090297846 | Hata et al. | Dec 2009 | A1 |
20090297847 | Kim et al. | Dec 2009 | A1 |
20090301349 | Afzali-Ardakani et al. | Dec 2009 | A1 |
20100004468 | Wong et al. | Jan 2010 | A1 |
20100009204 | Noguchi et al. | Jan 2010 | A1 |
20100028735 | Basset et al. | Feb 2010 | A1 |
20100034725 | Harutyunyan | Feb 2010 | A1 |
20100062229 | Hata et al. | Mar 2010 | A1 |
20100065776 | Han et al. | Mar 2010 | A1 |
20100074811 | McKeigue et al. | Mar 2010 | A1 |
20100081568 | Bedworth | Apr 2010 | A1 |
20100104808 | Fan et al. | Apr 2010 | A1 |
20100129654 | Jiang et al. | May 2010 | A1 |
20100132259 | Haque | Jun 2010 | A1 |
20100132883 | Burke et al. | Jun 2010 | A1 |
20100150810 | Yoshida et al. | Jun 2010 | A1 |
20100158788 | Kim et al. | Jun 2010 | A1 |
20100159222 | Hata et al. | Jun 2010 | A1 |
20100160155 | Liang | Jun 2010 | A1 |
20100167053 | Sung et al. | Jul 2010 | A1 |
20100173037 | Jiang et al. | Jul 2010 | A1 |
20100173153 | Hata et al. | Jul 2010 | A1 |
20100196249 | Hata et al. | Aug 2010 | A1 |
20100196600 | Shibuya et al. | Aug 2010 | A1 |
20100209696 | Seals et al. | Aug 2010 | A1 |
20100213419 | Jiang et al. | Aug 2010 | A1 |
20100221173 | Tennent et al. | Sep 2010 | A1 |
20100222432 | Hua | Sep 2010 | A1 |
20100226848 | Nakayama et al. | Sep 2010 | A1 |
20100230642 | Kim et al. | Sep 2010 | A1 |
20100239489 | Harutyunyan et al. | Sep 2010 | A1 |
20100254860 | Shiraki et al. | Oct 2010 | A1 |
20100254886 | McElrath et al. | Oct 2010 | A1 |
20100260927 | Gordon et al. | Oct 2010 | A1 |
20100278717 | Suzuki et al. | Nov 2010 | A1 |
20100298125 | Kim et al. | Nov 2010 | A1 |
20100301278 | Hirai et al. | Dec 2010 | A1 |
20100303675 | Suekane et al. | Dec 2010 | A1 |
20100316556 | Wei et al. | Dec 2010 | A1 |
20100316562 | Carruthers et al. | Dec 2010 | A1 |
20100317790 | Jang et al. | Dec 2010 | A1 |
20100320437 | Gordon et al. | Dec 2010 | A1 |
20110008617 | Hata et al. | Jan 2011 | A1 |
20110014368 | Vasenkov | Jan 2011 | A1 |
20110020211 | Jayatissa | Jan 2011 | A1 |
20110024697 | Biris et al. | Feb 2011 | A1 |
20110027162 | Steiner, III et al. | Feb 2011 | A1 |
20110027163 | Shinohara et al. | Feb 2011 | A1 |
20110033367 | Riehl et al. | Feb 2011 | A1 |
20110039124 | Ikeuchi et al. | Feb 2011 | A1 |
20110053020 | Norton et al. | Mar 2011 | A1 |
20110053050 | Lim et al. | Mar 2011 | A1 |
20110060087 | Noguchi et al. | Mar 2011 | A1 |
20110085961 | Noda et al. | Apr 2011 | A1 |
20110110842 | Haddon | May 2011 | A1 |
20110117365 | Hata et al. | May 2011 | A1 |
20110120138 | Gaiffi et al. | May 2011 | A1 |
20110150746 | Khodadadi et al. | Jun 2011 | A1 |
20110155964 | Arnold et al. | Jun 2011 | A1 |
20110158892 | Yamaki | Jun 2011 | A1 |
20110171109 | Petrik | Jul 2011 | A1 |
20110174145 | Ogrin et al. | Jul 2011 | A1 |
20110206469 | Furuyama et al. | Aug 2011 | A1 |
20110298071 | Spencer et al. | Dec 2011 | A9 |
20120034150 | Noyes | Feb 2012 | A1 |
20120083408 | Sato et al. | Apr 2012 | A1 |
20120107610 | Moravsky et al. | May 2012 | A1 |
20120137664 | Shawabkeh et al. | Jun 2012 | A1 |
20120148476 | Hata et al. | Jun 2012 | A1 |
20130154438 | Tan Xing Haw | Jun 2013 | A1 |
20140021827 | Noyes | Jan 2014 | A1 |
20140141248 | Noyes | May 2014 | A1 |
20140348739 | Denton et al. | Nov 2014 | A1 |
20150059527 | Noyes | Mar 2015 | A1 |
20150059571 | Denton et al. | Mar 2015 | A1 |
20150064092 | Noyes | Mar 2015 | A1 |
20150064096 | Noyes | Mar 2015 | A1 |
20150064097 | Noyes | Mar 2015 | A1 |
20150071846 | Noyes | Mar 2015 | A1 |
20150071848 | Denton et al. | Mar 2015 | A1 |
20150078982 | Noyes | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
1344740 | Apr 2002 | CN |
0945402 | Sep 1999 | EP |
2186931 | May 2010 | EP |
2404869 | Jan 2012 | EP |
61239019 | Oct 1986 | JP |
10037024 | Feb 1998 | JP |
11322315 | Nov 1999 | JP |
11335106 | Dec 1999 | JP |
2000264601 | Sep 2000 | JP |
2001087627 | Apr 2001 | JP |
2001137691 | May 2001 | JP |
2001187334 | Jul 2001 | JP |
2001288625 | Oct 2001 | JP |
2002146634 | May 2002 | JP |
2002201013 | Jul 2002 | JP |
2002211909 | Jul 2002 | JP |
2002526361 | Aug 2002 | JP |
2002531625 | Sep 2002 | JP |
339339 | Oct 2002 | JP |
3339339 | Oct 2002 | JP |
2004019018 | Jan 2004 | JP |
2004517789 | Jun 2004 | JP |
2004360099 | Dec 2004 | JP |
2005075725 | Mar 2005 | JP |
2005081519 | Mar 2005 | JP |
2005162567 | Jun 2005 | JP |
2005532976 | Nov 2005 | JP |
2006027949 | Feb 2006 | JP |
2006152490 | Jun 2006 | JP |
2007180546 | Jul 2007 | JP |
2007191840 | Aug 2007 | JP |
2012524015 | Oct 2012 | JP |
1020050072056 | Jul 2005 | KR |
0230816 | Apr 2002 | WO |
03018474 | Mar 2003 | WO |
2004096704 | Nov 2005 | WO |
2005103348 | Nov 2005 | WO |
2006003482 | Aug 2006 | WO |
2007086909 | Nov 2007 | WO |
2007139097 | Dec 2007 | WO |
2007126412 | Jun 2008 | WO |
2009011984 | Jan 2009 | WO |
2006130150 | Apr 2009 | WO |
2009122139 | Oct 2009 | WO |
2009145959 | Dec 2009 | WO |
2010047439 | Apr 2010 | WO |
2010087903 | Aug 2010 | WO |
2010092787 | Aug 2010 | WO |
2010120581 | Oct 2010 | WO |
2010146169 | Dec 2010 | WO |
2011009071 | Jan 2011 | WO |
2011020568 | Feb 2011 | WO |
2011029144 | Mar 2011 | WO |
2010146169 | Apr 2011 | WO |
2010124258 | May 2011 | WO |
2011053192 | May 2011 | WO |
2013090274 | Jun 2013 | WO |
2013158155 | Oct 2013 | WO |
2013158155 | Oct 2013 | WO |
2013158156 | Oct 2013 | WO |
2013158156 | Oct 2013 | WO |
2013158157 | Oct 2013 | WO |
2013158158 | Oct 2013 | WO |
2013158159 | Oct 2013 | WO |
2013158160 | Oct 2013 | WO |
2013158161 | Oct 2013 | WO |
2013158438 | Oct 2013 | WO |
2013158439 | Oct 2013 | WO |
2013158441 | Oct 2013 | WO |
2013162650 | Oct 2013 | WO |
2014011206 | Jan 2014 | WO |
2014011206 | Jan 2014 | WO |
2014011631 | Jan 2014 | WO |
2014011631 | Jan 2014 | WO |
2014085378 | Jun 2014 | WO |
Entry |
---|
International Preliminary Report on Patentability, for International Application No. PCT/US2013/000076, dated Oct. 21, 2014, 3 pages. |
Abatzoglou, Nicolas et al., “The use of catalytic reforming reactions for C02 sequestration as carbon nanotubes,” Proceedings of the 2006 IASME/WSEAS International Conference on Energy & Environmental Systems, Chalkida, Greece, May 8-10, 2006 (pp. 21-26) (available at: http://www.wseas.us/e-library/conferences/2006evia/papers/516-19 3.pdf). |
Abatzoglou, Nicolas et al., “Green Diesel from Fischer-Tropsch Synthesis: Challenges and Hurdles,” Proc. of the 3rd IASME/WSEAS Int. Conf. on Energy, Environment, Ecosystems and Sustainable Development, Agios Nikolaos, Greece, Jul. 24-26, 2007, pp. 223-232. |
Baker, B. A. and G. D. Smith “Metal Dusting in a Laboratory Environment—Alloying Addition Effects,” Special Metals Corporation, undated. |
Baker, B. A. and G. D. Smith, “Alloy Solutions to Metal Dusting Problems in the PetroChemical Industry,” Special Metals Corporation, undated. |
Bogue, Robert, Powering Tomorrow's Sensor: A Review of Technologies—Part 1, Sensor Review, 2010, pp. 182-86, vol. 30, No. 3. |
Cha, S. I., et al., “Mechanical and electrical properties of cross•linked carbon nanotubes,” Carbon 46 (2008) 482-488, Elsevier, Ltd. |
Cheng, H.M. et al., “Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons,” Applied Physics Letters 72:3282-3284, Jun. 22, 1998 (available at: http://carbon.imr.ac.cn/file/journai/1998/98—APL—72—3282-ChengH M.pdf). |
Chun, Changmin, and Ramanarayanan, Trikur A., “Metal Dusting Corrosion of Metals and Alloys,” 2007. |
Chung, U.C., and W.S. Chung, “Mechanism on Growth of Carbon Nanotubes Using CO—H2 Gas Mixture,” Materials Science Forum vols. 475-479 (2005) pp. 3551-3554. |
Dai, et al., “Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide,” Chemical Physics Letters 260 (1996) 471-475, Elsevier. |
Dresselhaus et al., Carbon Nanotubes Synthesis, Structure, Properties, and Applications. 2001, pp. 1-9, Springer. |
Garmirian, James Edwin, “Carbon Deposition in a Bosch Process Using a Cobalt and Nickel Catalyst,” PhD Dissertation, Massachusetts Institute of Technology, Mar. 1980, pp. 14-185. |
Grobert, Nicole, “Carbon nanotubes—becoming clean,” Materials Today, vol. 10, No. 1-2, Jan.-Feb. 2007, Elsevier, pp. 28-35. |
Hata, Kenji, “From Highly Efficient Impurity-Free CNT Synthesis to DWNT forests, CNTsolids and Super-Capacitors,” unknown date, unknown publisher, Research Center for Advanced Carbon Materials, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan, Feb. 27, 2007. |
Hiraoka, Tatsuki, et al., “Synthesis of Single- and Double-Walled Carbon Nanotube Forests on Conducting Metal Foils,” 9 J. Am. Chem. Soc. 2006, 128, 13338-13339. |
Holmes, et al.; A Carbon Dioxide Reduction Unit Using Bosch Reaction and Expendable Catalyst Cartridges; NASA; 1970; available at https://archive.org/details/nasa—techdoc—19710002858. |
Huang, Z.P., et al., “Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition,” Applied Physics Letters 73:3845-3847, Dec. 28, 1998. |
“INCONEL® alloy 693—Excellent Resistance to Metal Dusting and High Temperature Corrosion” Special Metals Product Sheet, 2005. |
Kavetsky et al., Chapter 2, Radioactive Materials, Ionizing Radiation Sources, and Radioluminescent Light Sources for Nuclear Batteries, Polymers, Phosphors, and Voltaics for Radioisotope Microbatteries, Edited by Bower et al., 2002, pp. 39-59, CRC Press. |
Krestinin, A. V., et al. “Kinetics of Growth of Carbon Fibers on an Iron Catalyst in Methane Pyrolysis: A Measurement Procedure with the Use of an Optical Microscope,” Kinetics and Catalysis, 2008, vol. 49, No. 1, pp. 68-78. |
Lal, Archit, “Effect of Gas Composition and Carbon Activity on the Growth of Carbon Nanotubes,” Masters Thesis, University of Florida, 2003. |
Manasse et al., Schottky Barrier Betavoltaic Battery, IEEE Transactions on Nuclear Science, vol. NS-23, No. 1, Feb. 1976, pp. 860-870. |
Manning, Michael Patrick, “An Investigation of the Bosch Process,” PhD Dissertation, Massachusetts Institute of Technology, Jan. 1976. |
Unknown author, “Metal Dusting,” unknown publisher, undated. |
Unknown author, “Metal Dusting of reducing gas furnace HK40 tube,” unknown publisher, undated. |
Muller-Lorenz and Grabke, Coking by metal dusting of steels, 1999, Materials and Corrosion 50, 614-621 (1999). |
Nasibulin, Albert G., et al., “An essential role of C02 and H20 during single-walled CNT synthesis from carbon monoxide,” Chemical Physics Letters 417 (2005) 179-184. |
Nasibulin, Albert G., et al., “Correlation between catalyst particle and single-walled carbon nanotube diameters,” Carbon 43 (2005) 2251-2257. |
Noordin, Mohamad and Kong Yong Liew, “Synthesis of Alumina Nanofibers and Composites,” in Nanofibers, pp. 405-418 (Ashok Kumar, ed., 2010) ISBN 978-953-7619-86-2 (available at http://www.intechopen.com/books/nanofibers/synthesis-of-alumina• nanofibers-and-composites). |
Pender, Mark J., et al., “Molecular and polymeric precursors to boron carbide nanofibers, nanocylinders, and nanoporous ceramics,” Pure Appl. Chem., vol. 75, No. 9, pp. 1287-1294, 2003. |
Ruckenstein, E. and H.Y. Wang, “Carbon Deposition and Catalytic Deactivation during C02 Reforming of CH4 over Co/?-Al203 Catalysts,” Journal of Catalysis, vol. 205, Issue 2, Jan. 25, 2002, pp. 289-293. |
Sacco, Albert Jr., “An Investigation of the Reactions of Carbon Dioxide, Carbon Monoxide, Methane, Hydrogen, and Water over Iron, Iron Carbides, and Iron Oxides,” PhD Dissertation, Massachusetts Institute of Technology, Jul. 1977, pp. 2, 15-234. |
SAE 820875 Utilization of Ruthenium and Ruthenium-Iron Alloys as Bosch Process Catalysts. Jul. 19-21, 1982. |
SAE 911451 Optimization of Bosch Reaction, Jul. 15-18, 1991. |
Singh, Jasprit, Semiconductor Devices, An Introduction, 1994, pp. 86-93, 253-269. |
Singh, Jasprit, Semiconductor Devices, Basic Principles, Chapter 6, Semiconductor Junctions with Metals and Insulators, 2001, pp. 224-244, Wiley. |
Skulason, Egill, Metallic and Semiconducting Properties of Carbon Nanotubes, Modern Physics, Nov. 2005, slide presentation, 21 slides, available at https://notendur.hi.is/egillsk/stuff/annad/Egiii.Slides2.pdf, last visited Apr. 28, 2014. |
Songsasen, Apisit and Paranchai Pairgreethaves, “Preparation of Carbon Nanotubes by Nickel Catalyzed Decomposition of Liquefied Petroleum Gas (LPG),” Kasetsart J. (Nat. Sci.) 35 : 354-359 (2001) (available at: http://kasetsartjournal.ku.ac.th/kuj—files/2008/A0804251023348734.pdf). |
Szakalos, P., “Mechanisms and driving forces of metal dusting,” Materials and Corrosion, 2003, 54, No. 10, pp. 752-762. |
Tsai, Heng-Yi, et al., “A feasibility study of preparing carbon nanotubes by using a metal dusting process,” Diamond & Related Materials 18 (2009) 324-327, Elsevier. |
Tse, Anthony N., Si—Au Schottky Barrier Nuclear Battery, A Thesis submitted to the Faculty in partial fulfillment of the requirement for the degree of Doctor of Engineering, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, Nov. 1972, pp. 31-57. |
Wilson, Richard B., “Fundamental Investigation of the Bosch Reaction,” PhD Dissertation, Massachusetts Institute of Technology, Jul. 1977, pp. 12,23, 37, 43, 44, 62, 70, 80, 83-88, 98. |
Wei, et al. “The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor: A multiscale space-time analysis,” Powder Technology 183 (2008) 10-20, Elsevier. |
XP-002719593 Thomson abstract, Sep. 30, 1987. |
Zeng, Z., and Natesan, K., Relationship between the Growth of Carbon Nanofilaments and Metal Dusting Corrosion, 2005, Chem. Mater. 2005, 17, 3794-3801. |
PCT International Search Report and Written Opinion, PCT/US2013/000076, dated Jul. 12, 2013. |
PCT International Search Report and Written Opinion, PCT/US2013/000076, dated Dec. 16, 2013. |
European Search Report for copending application EP 13778574.7 dated Sep. 28, 2015. |
Chinese Office Action for copending application filed into China; now serial No. 201380020423.3 dated Sep. 25, 2015 (including English translation). |
Japanese Patent Application Kokai Publication No. (JP-A) 2005-060137 (unexamined, published Japanese patent application. |
Japanese Patent Application Kohyo Publication No. (JP-A) 2005-537201 (unexamined Japanese national phase publication corresponding to a non-Japanese international publication). |
Japanese Patent Application Kokai Publication No. (JP-A) 2006-027948 (unexamined, published Japanese patent application. |
Japanese Patent Application Kohyo Publication No. (JP-A) 2006-511437 (unexamined Japanese national phase publication corresponding to a non-Japanese international publication). |
Japanese Patent Application Kokai Publication No. (JP-A) 2007-222803 (unexamined, published Japanese patent application. |
Japanese Patent ApplicationKohyo Publication No. (JP-A) 2010-511580 (unexamined Japanese national phase publication corresponding to a non-Japanese international publication). |
Japanese Patent Application Kohyo Publication No. (JP-A) 2010-528974 (unexamined Japanese national phase publication corresponding to a non-Japanese international publication). |
Japanese Patent Application Kokai Publication No. (JP-A) H11-335106 (unexamined, published Japanese patent application). |
Notice of Rejection received from the Japanese Patent Office, Mar. 2, 2017, Application No. JP2015-506977. |
Japanese Patent Application Kokai Publication No. (JP-A) S54-150388 (unexamined, published Japanese patent application). |
Number | Date | Country | |
---|---|---|---|
20150064096 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
61624573 | Apr 2012 | US |