Methods and systems for treating a pulmonary embolism

Information

  • Patent Grant
  • 11819228
  • Patent Number
    11,819,228
  • Date Filed
    Thursday, December 17, 2020
    3 years ago
  • Date Issued
    Tuesday, November 21, 2023
    5 months ago
Abstract
A large bore catheter has a guiding rail extending therethrough and an advance segment of the rail extends at least about 10 cm beyond the distal end of the catheter. The advance segment is advanced from the vena cava through the tricuspid and pulmonary valves of the heart into the central pulmonary artery while the distal end of the large bore catheter remains in the vena cava. The large bore catheter is thereafter distally advanced over the rail until the large bore catheter distal end is at least as far as the central pulmonary artery. The rail is thereafter proximally removed from the large bore catheter, and at least a portion of a clot is drawn from a pulmonary artery into the large bore catheter.
Description
BACKGROUND OF THE INVENTION

Thrombotic restrictions and occlusions within a patient's blood vessels are a significant medical problem and often require intervention to remove these restrictions and blockages to restore health to patients. While applicable to a wide range of vascular applications, the following background illuminates the problems through the example of patients suffering with Pulmonary Embolisms.


Venous thromboembolic disease (VTE) is a worldwide crisis. There are over 10 million cases of deep vein thrombosis (DVT) and pulmonary embolism (PE) diagnosed globally per year, with 1 million cases occurring in the United States and over 700,000 in France, Italy, Germany, Spain, Sweden, and the United Kingdom combined each year. There are approximately 60,000 to 100,000 deaths from PE in the United States each year. DVT and PE are part of the same continuum of disease, with over 95% of emboli originating in the lower extremities. When PE occurs, the severity depends on the embolic burden and its effect on the right ventricle as well as underlying cardiopulmonary comorbidities. Death can result from the acute increase in pulmonary artery (PA) pressure with increased right ventricular (RV) afterload and dysfunction.


Patients with high-risk pulmonary embolism (PE) were treated primarily with thrombolytic therapy delivered systemically or more locally through Catheter Directed Thrombolytics. These approaches result in multiple catheterization lab visits, lengthy hospital stays and often lead to bleeding complications. Newer approaches to PE treatment include single session thrombectomy treatments without the use of thrombolytics. These thrombectomy treatments include delivering a catheter into the PA to remove the thrombus through aspiration, and secondary tools may also macerate or disrupt the thrombus prior to aspiration. While thrombectomy results in fewer bleeding complications and reduced hospital stays compared to thrombolytics, there is much to be improved upon given the challenges of the procedure itself, including the ability to capture a broad spectrum of thrombus types and reduce the total volume of blood loss during the procedure.


The thrombectomy catheter is introduced through an introducer puncture in a large diameter vein. A flexible guide wire is passed through the introducer into the vein and the introducer is removed. The flexible guidewire provides a rail for a flexible guide catheter to be advanced through the right atrium into the right ventricle and into the pulmonary artery. The flexible guidewire is removed and replaced with a stiff guidewire. The large diameter thrombectomy catheter with support dilator is then advanced over the stiff guidewire to the pulmonary artery and the dilator is removed. If the large diameter thrombectomy catheter is not successful in accessing or aspirating thrombus in a more distal portion of the vessel, a smaller diameter catheter may be inserted through the large diameter catheter. This procedure, with multiple accessory devices and exchanges, is expensive, requires advanced catheter skills, results in a high volume of blood loss, and may not result in optimal patient outcomes.


SUMMARY

There is provided in accordance with one aspect of the invention, a system for advancing a large bore catheter to a remote site, such as a central pulmonary artery. The system comprises an elongate, flexible tubular catheter, having a proximal end, a distal end and a catheter hub on the proximal end, and an elongate, flexible rail, having a proximal end, a distal advance segment having a distal end and a rail hub on the proximal end. The distal end of the rail extends at least about 5 cm or 10 cm or 15 cm or more beyond the distal end of the catheter when the catheter hub is adjacent the rail hub.


The system may further comprise an engagement structure on the catheter hub, configured to releasably engage a complementary engagement structure on the rail hub. The rail may increase in flexibility in a distal direction, and may include a guidewire lumen. The guidewire lumen may be configured to accommodate a guidewire having a diameter of no greater than about 0.035″ and the rail has an outside diameter of no greater than about 0.025″ smaller than the inside diameter of the aspiration catheter. The catheter hub may comprise a hemostasis valve.


The wall thickness of the rail may be at least about 0.05 inches, or at least about 0.10 inches. The rail may comprise a proximal segment separated from the distal advance segment by a transition. The distal advance segment may have a greater flexibility than the proximal segment.


The access catheter may be at least about 8 French, or at least about 20 French. The access catheter hub may comprise a projection configured to snap fit into a complementary recess on the rail hub.


The system may further comprise a thrombus evacuation catheter configured to extend through the access catheter, and may comprise a thrombus engagement tool configured to extend through the thrombus evacuation catheter. The thrombus engagement tool may comprise an elongate flexible body having a thrombus engagement tip with a helical thread. The thread may extend from about two to about 10 revolutions around the elongate flexible body. The thread may have a maximum diameter that is no more than about 60% of an inside diameter of an adjacent portion of the thrombus evacuation catheter. The thrombus engagement tool may further comprise a handle on the proximal end, configured to permit manual rotation of the thrombus engagement tool.


In accordance with another aspect of the invention there is provided a method of advancing a catheter to a target vascular site. The method comprises the steps of providing a catheter having a guiding rail extending therethrough, the catheter having a catheter distal end and the rail having a rail distal end. With the rail distal end positioned at least about 10 cm distal to the catheter distal end, advancing the rail distal end to the target vascular site; and thereafter advancing the catheter along the guiding rail to the target vascular site. The advancing the rail step may be accomplished by advancing the rail over a guidewire. The advancing the rail step may be accomplished while the rail distal end is at least about 10 cm distal to the catheter distal end. The method may further comprise the step of unlocking the catheter from the guiding rail prior to the advancing the catheter along the guiding rail step.


The advancing the rail distal end step may comprise advancing the rail distal end from the vena cava through the tricuspid and pulmonary valves of the heart into the central pulmonary artery while the distal end of the catheter remains in the vena cava. The advancing the catheter step may comprise advancing the catheter distal end from the vena cava through the tricuspid and pulmonary valves of the heart into the central pulmonary artery over the guiding rail, following locating the distal end of the rail in the central pulmonary artery.


The advancing the rail distal end step may comprise advancing the rail distal end from the vena cava through the tricuspid valve before advancing the catheter along the rail.


The advancing the catheter step may be accomplished over a guidewire, and may be accomplished with a guidewire extending through a cannulation in the rail, or may be accomplished with a guidewire extending through the catheter. The catheter may be at least about 8 French, or at least about 24 French, and the rail may substantially fill (e.g., at least about 80% or 90% or more of the cross section of) the catheter lumen.


The advancing the rail distal end step may comprise advancing the rail distal end through at least one valve before advancing the catheter along the rail and through the valve. The advancing the rail distal end step may comprises advancing the rail distal end through a vascular obstruction before advancing the catheter along the rail and through the obstruction. The advancing the rail distal end step may comprise advancing the rail distal end through a tissue aperture before advancing the catheter along the rail and through the aperture.


The method may further comprise the step of removing the rail following the advancing the catheter step, and may further comprise the step of advancing a clot evacuation catheter through the lumen to the target vascular site. The method may further comprise the step of applying vacuum to the clot evacuation catheter, and may further comprise the step of advancing a thrombus engagement tool through the clot evacuation catheter. The thrombus engagement tool may be manually rotated to engage the thrombus.


In accordance with a further aspect of the invention, there is provided a method of removing a clot from a pulmonary artery to treat a pulmonary embolism. The method comprises the steps of providing a large bore catheter having a guiding rail extending therethrough, the large bore catheter having a large bore catheter distal end and the rail having a rail distal end. With the rail distal end at least about 15 cm distal to the large bore catheter distal end, the rail distal end is advanced from the vena cava through the tricuspid and pulmonary valves of the heart into the central pulmonary artery while the distal end of the large bore catheter remains in the vena cava. The large bore catheter is thereafter advanced distally over the rail until the large bore catheter distal end is at least as far as the central pulmonary artery. The rail is thereafter proximally removed from the large bore catheter, and at least a portion of a clot is drawn from a pulmonary artery into the large bore catheter. The drawing step may be accomplished using vacuum.


The method may further comprise the step of advancing a clot capture catheter through the large bore catheter following the proximally removing the rail step, and may further comprise the step of advancing a clot engagement tool through the clot capture catheter. The clot engagement tool may be manually rotated to engage the clot.


There is also provided a method of removing foreign material from the vascular system, comprising the steps of positioning the distal tip of a sensing catheter in proximity to a target foreign material; propagating a signal from the sensing catheter; receiving a return signal; and capturing and removing at least a portion of the foreign material when the return signal is indicative of a foreign material located within a capture zone. The capturing and removing steps may be accomplished by the sensing catheter. The method may further comprise removing the sensing catheter following the receiving a return signal step, and introducing a clot capture catheter to accomplish the capturing and removing steps.


The foreign material may be a clot, which may be in the venous system, such as a deep vein thrombosis or a pulmonary embolism.


The return signal may enable characterization of tissue within the capture zone, and may enable differentiation between clot and vessel wall within the capture zone. The propagating a signal step may comprise propagating an ultrasound signal or an electromagnetic signal such as in the UV-visible range. The electromagnetic signal may comprise multiple wavelengths.


The propagating a signal step may comprise propagating visible light through the sensing catheter and beyond the distal tip. The method may further comprise receiving the return signal using a sensor carried by the sensing catheter. A visible light pathway may be created through blood between the distal tip and the target foreign material. The step of creating a visible light pathway through blood between the distal tip and the target foreign material may comprise infusing an optically transparent medium to displace blood from the pathway. The method may further comprise the step of deploying a barrier to temporarily contain at least a portion of the optically transparent medium within the pathway. The barrier may be deployed from the sensing catheter or from the aspiration catheter.


The differentiation may be accomplished by a clinician, observing an image generated by the return signal. The differentiation may be accomplished by a processor configured to differentiate between return signals indicative of either a foreign material or a vessel wall. The processor may further be configured to generate an indicium in response to the differentiation between a foreign material and a vessel wall. The indicium may comprise an audio or visual signal. The sensing catheter may be axially reciprocally introduced through an access catheter. The method may further comprise the step of proximally retracting the sensing catheter through the access catheter following the receiving a return signal, and may further comprise the step of distally advancing a clot capture catheter through the access catheter and capturing and removing at least a portion of the foreign material using the clot capture catheter.


Any of the methods disclosed herein may further comprise the step of deflecting the tip laterally in response to detecting vessel wall within the capture zone, prior to the capturing and removing steps.


In accordance with a further aspect of the invention, there is provided a dual dilator access system, comprising a large diameter access catheter, having an elongate tubular body with a proximal end, a distal end and a central lumen extending axially therethrough. A small diameter catheter is axially movably slidable through the central lumen. A first dilator is extendable through the central lumen, in between the small diameter catheter and the large diameter catheter; and a second dilator extendable through the small diameter catheter. The large diameter catheter may be an aspiration catheter. The small diameter catheter may be a clot grabber catheter.


The system may further comprise a proximal coupling for interlocking the large diameter catheter and the small diameter catheter. The first dilator may have a tapered distal end. The large diameter access catheter may be at least about 14 French. The tapered distal end may be positionable beyond the distal end of the small diameter catheter. The clot grabber catheter may include a distal tip with a helical thread. The small diameter catheter may comprises an imaging catheter.


The first dilator may have a split line along which it can split for proximal retraction and removal. The split line may comprise a weakening in the wall or an axial scoring line.


The large diameter access catheter may comprise an inside surface defining the central lumen, and the inside surface comprises at least one surface discontinuity for influencing the behavior of material drawn into the central lumen. The surface discontinuity may comprise a ridge. A plurality of axially extending, circumferentially spaced apart ridges may be provided along at least a distal zone of the catheter. The distal zone may extend proximally from the distal end within the range of from about 1 to about 20 cm, and the discontinuity may extend all the way to the proximal end of the catheter. The ridge may be in a spiral configuration. The surface discontinuity may comprise at least one ramp and edge for permitting material to travel proximally in the central lumen and resisting distal travel of the material in the lumen. There may be a plurality of ramps which incline radially inwardly in the proximal direction and each terminate in a proximal edge. The central lumen may have a non circular transverse cross sectional configuration.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a schematic side elevational view of a thromboembolic imaging catheter.



FIG. 1B is a distal end view of the catheter of FIG. 1A.



FIG. 1C illustrates the catheter of FIG. 1A, extending through a lumen in an aspiration catheter.



FIG. 2A is a schematic side elevational view of a thromboembolic thermal sensing catheter.



FIG. 2B is a distal end view of the catheter of FIG. 2A.



FIG. 3A is a schematic side elevational view of a thromboembolic force sensing catheter.



FIG. 3B is a distal end view of the catheter of FIG. 3A.



FIG. 4A is a schematic side elevational view of a thromboembolic ultrasound catheter.



FIG. 4B is a distal end view of the catheter of FIG. 4A.



FIG. 5A is a schematic side elevational view of a thromboembolic electromagnetic spectrum imaging catheter.



FIG. 5B is a distal end view of the catheter of FIG. 5A.



FIG. 5C is a distal end view of a variation of the catheter of FIG. 5A.



FIG. 6 is a side elevational view of the components in a thromboembolic visualization and aspiration system.



FIG. 7A is a side elevational view of a catheter having an internal stop ring.



FIG. 7B is a longitudinal cross section through the catheter of FIG. 8A, and detail view of the stop ring.



FIG. 7C is a side elevational view of a thrombus engagement tool having a complementary limit for engaging the stop ring of FIGS. 7A and 7B.



FIG. 7D is a side elevational view of a distal portion of the thrombus engagement tool of FIG. 7C.



FIG. 7E is a longitudinal cross section through the thrombus engagement tool of FIG. 7D.



FIG. 7F is a perspective cut away view of a distal portion of the thrombus engagement tool of FIG. 7C.



FIG. 7G is a transverse cross section through a distal stopper carried by the thrombus engagement tool.



FIG. 7H is a transverse cross section through an alternative distal stopper.



FIGS. 8A-8C are side elevational and cross sectional views of tip profiles, showing proximal and distal tapers of the helical thread envelope.



FIG. 9 is an end elevational view of a helical tip having circumferentially varying major diameter creating a radially non-uniform separation from the catheter lumen wall.



FIG. 10 is an end perspective view of a cannulated helical tip element with a lumen for a guidewire or other devices or infusion or aspiration of fluids.



FIG. 11 is a schematic side elevational view of an over the wire helical tipped structure.



FIG. 12 is a schematic side elevational view of a helical tipped structure with a fixed guide wire tip.



FIG. 13 is a side elevational view of a large bore catheter.



FIG. 14 is a side elevational partial cross section of the catheter of FIG. 13, having a cannulated guide rail extending therethrough over a guidewire.



FIG. 15 is a cross sectional view through a dual dilator system such as that shown in FIG. 16.



FIG. 16 is a side elevational cross section of a distal portion of a dual dilator system of the present invention.



FIG. 17 is a cross section as in FIG. 16, with a distal tip formed by the tubular dilator.



FIG. 18 is a side elevational view of a portion of a tubular dilator having a separation line to allow longitudinal splitting of the sidewall during proximal retraction from the system.



FIG. 19A is a longitudinal cross-sectional view through a distal zone of a catheter, having axially extending surface structures on the inside surface of the catheter wall.



FIG. 19B is a longitudinal cross-sectional view as in FIG. 19A, having helical surface structures on the inside surface of the catheter wall.



FIG. 20 illustrates transverse cross-sectional views through the catheter of FIG. 19A, showing different ridge and groove configurations.



FIG. 21 illustrates an inside surface of a catheter wall having differential friction surface structures for facilitating proximal movement of thrombus and inhibiting distal movement of thrombus.



FIG. 22 shows an angled distal catheter tip.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The devices and systems of the present invention include catheter-based technology that enables accessing and retrieving a vascular obstruction. In some implementations of the system, a separate facilitator maybe provided for advancing through an aspiration catheter to facilitate engagement of the obstruction. In other implementations of the system, sensors are provided which provide the clinician with information about the presence, amount, and characteristics of tissue in front of the catheter. This enables valuable diagnostic information such as the identity of tissue within a clot capture zone adjacent and beyond the distal tip of the catheter, e.g., whether the catheter is aimed at clot or at the vessel wall, and potentially assists in developing an appropriate treatment strategy. As used herein, terms like clot, thrombus, embolization, foreign matter and the like will be considered synonymous unless otherwise described.


For instance, when planning to remove a pulmonary embolism from a pulmonary artery, it may be valuable to differentiate thrombus from vascular tissue and confirm 1) the presence and location of the thrombus, 2) the size and shape of the thrombus, and 3) the morphology and composition of the thrombus. All of these can be accomplished utilizing the single, low profile catheter in accordance with the present invention. The present sensing catheter described in further detail below includes, but is not limited to one or more sensors of the following modalities: CMOS imaging (or CCD) to enable visualization; thermal sensing; force sensing; ultrasound imaging; infrared imaging; spectroscopy tomography; or electrochemical sensing.


The sensing catheter is thus enabled to provide clinical data of the following types: Location of target obstruction; thrombus versus tissue wall; size and shape; mechanical properties like hardness/stiffness; temperature differences; or morphology/age.


Although primarily described in the context of a pulmonary artery embolectomy catheter with a target tissue characterization feature, catheters of the present invention can readily be adapted for use in removal of deep vein thrombosis or other vascular (e.g., neurovascular, other peripheral vascular, coronary), emboli or obstructions as will be understood in the art. Any of the devices disclosed herein can also be modified to incorporate additional structures, such as clot grabbing and retrieval features, partial length or full length guidewire lumen for over the wire or rapid exchange guidance, permanent or removable column strength enhancing mandrels, two or more lumens such as to permit drug, contrast or irrigant or optical field clearing infusion or to supply inflation media to an inflatable balloon carried by the catheter.


Any of the catheters disclosed herein may have a deflectable or preshaped curved or angled distal steering zone. At least one and optionally two or three or more pull wires may axially extend through corresponding pull wire lumen(s), to enable lateral deflection of the distal tip of the catheter. A single pull wire can provide deflection in a single direction and plane, to cooperate with rotation of the catheter to achieve 360 degree manuverability. Two or three or more pull wires, typically spaced equidistantly around the circumference of the catheter body, enable greater steerability without the need for catheter rotation. Deflection or preshaped curvature or angulation of the distal tip enables redirection of the tissue capture zone away from a first target tissue (e.g., healthy vessel wall) to a second target tissue (e.g., a clot). Catheters of the present invention can include any combination of the foregoing features, depending upon the intended clinical application and desired functionality as will be readily apparent to one of skill in the art in view of the disclosure herein.


In addition, the present invention will be described primarily in the context of removing obstructive material from the pulmonary artery but may have applicability for use throughout the body wherever it may be desirable to characterize a target tissue to support a clinical decision to remove or treat a first target tissue or redirect the catheter to a different, second target tissue. For example, sensing catheter shafts in accordance with the present invention may be dimensioned for use throughout the coronary, peripheral, and neurovasculature, both arterial and venous, the gastrointestinal tract, the urethra, ureters, Fallopian tubes and other lumens and potential lumens, as well. The sensing catheter of the present invention may also be used to provide minimally invasive percutaneous tissue access, such as for diagnostic or therapeutic access to a solid tissue target (e.g., breast or liver or brain biopsy or tissue excision), access to bones such as the spine for surface characterization and other applications.


Referring to FIGS. 1A and 1B, a sensing catheter generally comprises an elongated flexible tubular body 10 extending between a proximal end 12 and a distal functional end 14. The length of the tubular body depends upon the desired application. For example, catheter lengths from about 120 cm to about 150 cm or more are typical for use in femoral access percutaneous transluminal coronary applications. Intracranial or other applications may call for a different catheter shaft length depending upon the vascular access site, as will be understood in the art.


In certain embodiments intended to treat pulmonary embolism via a femoral vein access site, the catheter 10 will generally have an axial length within the range of from about 80 cm to about 110 cm for a primary treatment catheter and from about 130 cm to about 150 cm for a secondary catheter intended to advance through a primary catheter. Outside diameters may be within the range of from about 8 F to about 32 F depending upon the procedure and intended clinical performance.


The distal end 14 of catheter 10 is provided with at least one sensor 16 for characterizing the clot, vessel wall, or other target tissue. In an embodiment intended for optical visualization, an optical sensor such as a CMOS or CCD chip may be located at the distal end of the catheter, or in a proximal handpiece or module, and optically coupled to a fiber optic element extending axially throughout the length of the catheter. A light source such as an LED is also provided, either at the distal end of the catheter, or at the proximal end of the catheter and optically coupled to a fiber optic light guide extending through the catheter body.


The catheter 10 may additionally be provided with a guide wire lumen 17 extending between a guide wire port on the distal end 14 of the catheter 10 and a proximal guide wire port. The proximal guide wire port may be through a sidewall of the catheter 10 in a rapid exchange implementation, or may be provided on the hub 27 in an over the wire configuration. One or two or more additional ports or electrical connectors may be provided on the proximal hub 27, depending upon the functionality of the catheter.


The catheter is provided with at least one infusion lumen 18, and two in the illustrated embodiment, extending from a proximal infusion port 22 on a proximal hub 27 to a corresponding exit port on the distal end 14 of the catheter. A deflection mechanism may be provided, for laterally deflecting a distal steering zone on the catheter 10. In one implementation, a pull wire lumen 19 extends from a proximal deflection control (not illustrated) carried by the hub 27 and extending distally to the deflection mechanism. The proximal control may comprise a rotatable control such as a ring that may be rotatable about the longitudinal axis of the catheter, or a rotatable knob, a slider switch, or other suitable control for placing a control wire under tension or compression. The deflection mechanism may form a deflection zone on a distal portion of the catheter 10, in which an axial length of the catheter sidewall is provided on a first side with a plurality of transverse slots, leaving an opposing spine side with relatively higher column strength. The deflection wire may be attached to the side wall distally of the slots. Proximal retraction of the deflection wire causes axial compression of the slotted side of the tubular body thereby deflecting the axis away from the spine side and towards the slotted side of the tubular body.


In use, a fluid media, optically transparent in the visible range (e.g., water or saline) is infused from a source 33 and through lumen 18 to displace blood in a visualization and capture zone 21 in front of the catheter and create an optical path between the sensor and target tissue. A temporary barrier such as a hood 20 may be desirable to lengthen the dwell time of the optically transmissive media within the optical path, before it is replaced with blood and become optically opaque in the visual range.


In the illustrated embodiment, the barrier is in the form of an imaging hood 20 such as a self expandable cone, to protect the viewing area from blood flow. The barrier is carried by the distal end of the sensing catheter and may be self expanding upon release from a restraint such as the outer access catheter which may also be an aspiration catheter.


Alternatively, referring to FIG. 1C, the imaging hood 20 or other barrier may be carried by the aspiration catheter 26. In this implementation, the sensing catheter 10 may be advanced distally through a lumen 24 in the aspiration catheter 22, and the imaging hood 20 utilized as described to facilitate establishment of an optical path between the sensor and target tissue. The ID of the lumen 24 may be at least about 0.005″ and in some implementations at least about 0.010″ or 0.015″ or more greater than the OD of the imaging catheter 10 to provide an aspiration lumen while the imaging catheter 10 is in place, and also accommodate a guidewire 28.


Following confirmation by the sensing catheter 10 that the aspiration catheter 26 is positioned at the desired site, the sensing catheter 10 may be proximally retracted and the central lumen 24 can be used for direct aspiration or to receive a clot capture catheter (discussed below) therethrough. At this point, the imaging hood 20 can perform the additional and distinct function of helping advance the clot proximally into the aspiration catheter.


Image data from the image sensor is carried proximally through the catheter by one or more conductors, to a connector 30, and via cable 32 into a processor 25 for converting into a visual image or other visual and/or audible indicium of characterization of the target tissue. The image can be displayed on a conventional display such as a laptop, tablet, wall hung display or wearable display.


As an alternative to direct visualization in the visible light range, a variety of other characterizing modalities may be used to characterize target tissue. For example, referring to FIGS. 2A-2B, in a given environment, the foreign material and healthy wall may have different surface temperatures. In this situation, a thermal sensing catheter 34 may be provided with one or two or more distal temperature sensors 36. Intravascular thermal sensors are described, for example, in U.S. Pat. No. 9,420,955 entitled “Intravascular temperature Monitoring System and Method”, the disclosure of which is hereby incorporated by reference in its entirety herein.


Alternatively, hemoglobin reflectivity measurement and optional simultaneous optical coherence tomography imaging capabilities may be added to the catheter, as described in US published patent application No. 2011/0077528 to Kemp et al, entitled Method and Apparatus for Simultaneous Hemoglobin Reflectivity Measurement and OCT Measurement, Thrombus Detection and Treatment, and OCT Flushing, published Mar. 31, 2011, which is hereby incorporated in its entirety herein by reference. Hemoglobin reflectivity measurement enables differentiation between ‘red’ thrombus and ‘white’ thrombus, which differ largely in the concentration of red blood cells.


Alternatively, a chemistry-based sensor may be used which uses the chemical compostion of the tissue to create a signal which can differentiate between the foreign body and non-target tissue, or characterize different tissue types. For example, Fibrinogen has been reported to have been detected using an electrochemical impedance biosensor (EIB) formed by draping an erythrocyte membrane (EM) configured for the detection of fibrinogen. Measurements with the FIB may reveal that the specific (selective) adsorption of fibrinogen onto the EM causes a clear rise in the value of interfacial charge transfer resistance. The sensing ability of the EIB for fibrinogen detection may show a wide linear range from 0.0001 to 5 mg/mL, with a limit of detection of 49 ng/mL (144 pM).


Preferably the sensors in general detect a relatively high level of hemoglobin, or fibrinogen, or prothrombin, or other clotting pathway factors which would not be as abundant in vascular wall tissues.


The clot and native vessel wall may also vary in physical properties such as compressibility or hardness. Referring to FIGS. 3A-3B, this may be measured by one or two or more force, pressure, or displacement sensors 28 carried by the distal end 14 of a force sensing catheter 40.


In certain embodiments it may be desirable to interrogate tissue within the capture zone with a first signal, and then capture reflected or rebounded signal for comparison to characterize the target tissue. For example, referring to FIGS. 4A-4B, unitrasound catheter 44 may be provided with ultrasound transmitter and receiver chips 46 which may be carried by the catheter 44 to interrogate tissue in the capture zone.


Depending upon the nature of the target tissue and adjacent healthy tissue, any of a variety of other signals in the electromagnetic spectrum may be propagated from an EMS imaging catheter 50 with reflected signal captured by the catheter to identify and define matter in front of catheter. See, e.g. FIGS. 5A-5C.


EMS imaging catheter 50 may comprise one or two or more transmitters 52 for transmitting EMS imaging signals to target tissue and one or two or more receivers 53 for sensing reflected EMS signals. Aspiration lumen 54 may be provided, if aspiration is desired. One or more working channels or delivery channels 56 may be provided, depending upon the desired functionality.


The number and orientation of lumen, electrical conductors and other structures within the catheter body can be varied widely depending upon the desired functionality of the catheter. For example, FIG. 5C illustrates an alternate configuration for the catheter of FIG. 5A, in which a guide wire lumen 17 has been provided along with a pull wire lumen 19 in a steerable implementation. An EMS sensor or sensor/receiver array 58 may be provided, along with one or two fluid lumen 18 such as for the delivery of saline and/or drug delivery and/or aspiration.


Intravascular sensing systems that may be adapted into the catheters of the present invention for characterizing material within the capture zone 21 as native vascular wall or foreign material are disclosed, for example, in U.S. Pat. No. 10,534,129, issued Jan. 14, 2020 and entitled “System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque”; U.S. Pat. No. 7,473,230, issued Jan. 6, 2009 and entitled “Instrumented catheter with distance compensation to sense vulnerable plaque”; and U.S. Pat. No. 7,450,241, issued Nov. 11, 2008 and entitles “Detecting vulnerable plaque”, the disclosures of which are hereby incorporated in their entireties herein by reference.


In general, the distal end 14 of the sensing catheter 10 may be provided with at least one signal transmitting surface and at least one signal receiving surface. The transmitting surface is adapted to transmit a signal from the distal end of the catheter and generally in the distal direction with respect to the longitudinal axis of the catheter. The receiving surface is adapted for receiving a reflected return signal with at least a component of the signal traveling in a generally proximal direction with respect to the distal end of the catheter. In one embodiment, the transmitting surface comprises the distal end of a fiber optic or fiber optic bundle, a distal light source, or a transparent window which may be a lens positioned at the distal end of a fiber optic or fiber optic bundle or distal light source. Similarly, the receiving surface may comprise a distal end of a receiving fiber optic or a distal sensor, a transparent window which may be a lens positioned distally of the receiving fiber optic or sensor. In one embodiment, two transmitting surfaces and two receiving surfaces may be provided each communicating with a spectrometer via unique communication lines.


Electrical signals from the sensors may be transmitted to a spectrometer or other device suitable for the sensed signal, which remains outside of the patient. The construction and use of spectrometers such as to measure RGB and other UV, visible and IR wavelengths is well understood in the pulse oximetry art, among others, and will not be disclosed in detail herein. In general, a transmitter/detector may be able to transmit multiple wavelengths of light, which propagate beyond the transmit surface and into a target beyond the distal end of the sensing catheter. Some of the transmitted light is absorbed in the target, while other transmitted light is reflected back and received at the receiving surface. The reflected light is thereafter propagated for processing. The optical absorption/reflection characteristics of the clot compared to healthy vessel wall enable differentiation of the target tissue types.


Any of the foregoing sensing catheters may be utilized in the image-guided PE or DVT thrombectomy system and procedure in accordance with the present invention.


Referring to FIG. 6, the system for accessing and retrieving thrombo-emboli in accordance with the present invention generally comprises an access catheter 40 such as a large bore (e.g. 24 Fr) catheter, an aspiration or evacuation catheter 62, optionally an imaging functionality, which may be a separate sensing catheter 64, and a clot retrieval tool 66 configured to be extendable through the evacuation catheter 62.


One example of the method and use of the system is described below.


Femoral vein or internal jugular vein access is achieved using conventional techniques.


An access catheter 60 such as a 24 Fr catheter is advanced through the right heart chambers and into the Pulmonary Artery.


Aspiration may be applied to the access catheter for clot removal in the proximal pulmonary artery. If that fails, a mechanical facilitator device such as clot retrieval tool 66 may be advanced through the access catheter 60 to assist with clot removal. If that fails, the evacuation catheter 62 may be advanced through the 24 Fr access catheter 40 and advanced to the thrombus.


If desired, the imaging catheter 64 may be advanced through the evacuation catheter 62 to identify and verify thrombus. Alternatively, when the imaging and evacuation catheters have been integrated, only one catheter with both imaging elements and an evacuation lumen would need to be advanced through the 24 Fr access catheter 40 at this stage.


Aspiration is turned on to hold thrombus in place at the evacuation collection funnel 20 while exchanging Imaging Catheter 64 for the clot retrieval catheter 62.


The thrombus engagement tool 66 may be advanced into the thrombus for thrombus engagement.


The thrombus engagement tool 66, evacuation catheter 62 and engaged thrombus are proximally retracted through the 24 Fr catheter 60. Retraction may be accomplished under optional aspiration to maintain attachment of the thrombus.


Optionally, the imaging catheter 64 may be reintroduced to confirm target thrombus removal and identify additional thrombus to remove.


Aspiration, exchange, engage, extract, re-image may be repeated as desired.


Following aspiration, all catheters may be removed.


Additional details of the devices useful in the methods and systems of the present invention are discussed below.


Referring to FIGS. 7A and 7B, any of the aspiration catheters disclosed herein may be provided with an axial restraint for cooperating with a complementary stopper on a thrombus engagement tool 2401 (FIG. 7C) to permit rotation of the thrombus engagement tool 2401 but limit the distal axial range of travel of the thrombus engagement tool 2401.


The method of limiting distal advance of the core wire and helical tip element may be achieved by a limit attached to the core wire or torque member in sliding contact with an internal stop as described above, or in sliding contact with a stop surface carried on any of a variety of accessories or devices attached to the proximal end of the catheter in which the helical member assembly is contained. This includes a Tuohey-Borst or other hemostasis valve accessory.


In the illustrated implementation, the restraint comprises at least one projection extending radially inwardly through the sidewall or from the inside surface of the tubular body, configured to restrict the inside diameter of the aspiration lumen and engage a distal face carried by the thrombus engagement tool. The restraint may comprise one or two or three or four or more projections such as tabs, or, as illustrated, may comprise an annular ring providing a continuous annular proximally facing restraint surface. In the illustrated implementation, the restraint is positioned in a distal location in the catheter e.g., within about 20 cm or 10 cm or less from the distal end. This allows precise positioning of the distal thrombus engagement tool tip with respect to the distal end of the catheter, decoupled from bending of the catheter shaft, and prevent the distal tip from extending beyond a preset position such as the distal end of the catheter.


In other implementations, the restraint may be located at the proximal end of the catheter such as at the proximal hub, or even external to the catheter, such as on the proximal end of the hub. For example, the thrombus engagement tool 66 may be provided with a handle 70 as illustrated in FIG. 6. Handle 70 comprise an axially elongate body 72 configured to be twirled about its longitudinal axis between two or three fingers of a single hand. Surface friction enhancing structures such as a plurality of axially extending flats or ridges 74 may be provided on an exterior surface of the body 72. Distal end 76 may be configured to rotatably slide against a proximal surface 78 on the hub 27 for evacuation catheter 62.


In certain clinical applications, it may be desirable for the helical tip to be able to advance beyond the tip of the surrounding catheter, thus an axial limit system may be omitted, or may be configured to permit the desired axial orientation. For example, distal extension of the distal end of the helical tip beyond the distal end of the catheter may be limited to no more than about 5 mm or 3 mm or 1.5 mm or 1.0 mm or less.


The limit on distal advance of the helical tip may include a first configuration in which distal advance is limited to a first position proximate the distal end of the evacuation catheter to prevent injury to the vascular wall. Upon a user initiated adjustment, the helical tip may be advanced to a second position out of the distal end of the catheter for inspection and cleaning purposes. This adjustment of the limiting mechanism may be locked out following cleaning or inspection, to limit distal travel to the first position to prevent an undesired degree of exposure of the helical tip element when the system is within the patient's vasculature.


In the illustrated embodiment, the restraint may be a metal (e.g., nitinol, stainless steel, aluminum, etc.) circular band or ring or protrusion 2402 mounted on or built into a sidewall 2403 of the catheter near the proximal hub, on the proximal hub on the proximal end of the catheter shaft or near the distal tip. The restriction element 2402 extends into the ID of the catheter. Further, the restriction element 2402 may be radiopaque for visibility under fluoroscopy. The restriction element 2402 carries a proximally facing surface 2405 for example an annular circumferential bearing surface that extends into the inner diameter of the catheter to provide a sliding interface with a stopper such as distal stopper 2414 (FIG. 7C) on the rotating core assembly. For example, the stopper 2414 may be a radially outwardly extending feature on the rotating assembly which interfaces with the restriction element 2402 of the catheter to permit rotation but limit the distal advancement and prevent distal tip displacement beyond a desired relationship with the catheter distal tip.


In one implementation, in its relaxed form prior to securing within the catheter lumen, the ring 2402 is a C-shaped or cylinder shaped with an axially extending slit to form a split ring. The ring 2402 is compressed using a fixture that collapses the ring to a closed circle shape, allowing it to slide inside the (e.g., 0.071″) catheter. When the ring is released from the fixture, the ring expands radially to the largest diameter permitted by the inside diameter of the catheter. The radial force of the ring engages the insider surface of the catheter and resists axial displacement under the intended use applied forces. In another implementation, the ring is a fully closed, continuous annular structure (like a typical marker band) and its distal end is slightly flared in a radially outwardly direction to create a locking edge. The ring is inserted into the catheter from the distal end. The flared section with the locking edge keeps the ring in place when axial force is applied from the proximal side.


Referring to FIGS. 7D and 7F, distal segment 2407 of the rotatable core wire comprises a torque coil 2412 surrounding a core wire 2410. The illustrated torque coil 2412 comprises an outer coil 2413 concentrically surrounding an inner coil 2415 having windings in opposite directions.


Alternatively, for an over-the-wire embodiment (e.g., FIG. 11) alternative torqueable structures may be utilized, including a polymeric tube with an embedded metallic wire braid intended to be entirely inserted over and rotated around a central guidewire. Additionally, the geometry of the lumen of the torqueing member may minimize the space between the lumen inner diameter and the guidewire so as to minimize fluid or airflow and virtually eliminate blood flow out of the lumen under biologically typical pressures or air leakage to significantly reduce vacuum pressures when a vacuum pump is used to create a vacuum through the aspiration catheter (60) near the distal end of the elongate structure.


Although the coil 2412 is shown in FIGS. 7D, 7E and 7F as having a constant diameter, this leaves an internal entrapped space between the coil and the core wire, as a result of the tapering core wire 2410. When the area of the aspiration lumen between the coil and the inside wall of the corresponding catheter is optimally maximized, the diameter of the coil 2412 can taper smaller in the distal direction to track the taper of the core wire. This may be accomplished by winding the coil onto the core wire which functions as a tapered mandrel, or using other techniques known in the art. In this execution, the OD of the core wire tapers smaller in the distal direction, while the area of the aspiration lumen tapers larger in the distal direction.


As illustrated further in FIGS. 7D and 7E, the torque coil 2412 extends between a proximal end 2430 and a distal end 2432. The proximal end 430 is secured to a tapered portion of the core wire 2410. As illustrated in FIG. 7E, the core wire 2410 tapers from a larger diameter in a proximal zone to a smaller diameter in a distal zone 2434 with a distal transition 436 between the tapered section and the distal zone 2434 which may have a substantially constant diameter throughout. The inside diameter of the inner coil 2415 is complementary to (approximately the same as) the outside diameter at the proximal end 2430 of the core wire 2410. The tapered section of the core wire 2410 extends proximally from the distal transition 436 to a proximal transition (not illustrated) proximal to which the core wire 2410 has a constant diameter.


The torque coil 2412 may additionally be provided with a proximal radiopaque marker and/or connector such as a solder joint 2438. In the illustrated implementation, the proximal connector 2438 is in the form of an annular silver solder band, surrounding the inner coil 2415 and abutting a proximal end of the outer coil 2413.


The axial length of the torque coil 2412 may be within the range of from about 10 mm to about 50 mm and in some embodiments within the range of from about 20 mm to about 40 mm. The distal transition 2436 may be positioned within the range of from about 5 mm to about 20 mm and in some implementations within the range of from about 8 mm to about 12 mm from the proximal end of the distal cap 2420.


Referring to FIGS. 7E and 7F, the distal stopper 2414 may be provided with one or two or three or more spokes 440, extending radially outwardly from the outer coil 2413, and optionally supported by an annular hub 442 carried by the torque coil 2412. The spoke 440 may support a slider 441 having a peripheral surface 443, configured for a sliding fit within the inside diameter of the delivery catheter lumen. Preferably at least three or four or five or more spokes 440 are provided, circumferentially spaced apart equidistantly to provide rotational balance. In the illustrated embodiment, three spokes 440 are provided, spaced at approximately 120° intervals around the circumference of the torque coil 2412.


The distal stopper 2414 carries a plurality of distal surfaces 446, such as on the slider 441. The distal surface 446 is configured to slidably engage a proximal surface of a stop on the inside diameter of the delivery catheter, such as a proximally facing surface 2405 on a radially inwardly extending annular flange or ring 2402. See FIG. 7B discussed previously. This creates an interference fit with a bearing surface so that the distal stopper 2414 can rotate within the delivery catheter, and travel in an axial distal direction no farther than when distal surface 446 slideably engages the proximal surface 2405 on the stop ring 2402.


Referring to FIG. 7E, the distal end 432 of the torque coil 2412 is provided with a distal cap 2420. Distal cap 2420 may comprise an annular band such as a radiopaque marker band, bonded to the outside surface of the inner coil 2415, and axially distally adjacent or overlapping a distal end of the outer coil 2413. A proximally extending attachment such as an annular flange 2417 may be provided on the thrombus engagement tool tip 2416, for bonding to the distal cap 2420 and in the illustrated embodiment to the outer coil 2413. The distal cap 2420 may also be directly or indirectly bonded to a distal end of the core wire 2410.


The thrombus engagement tool tip 2416 is provided with a distal end 450, and a clot engagement element such as a plurality of proximally and/or radially facing engagement surfaces. In the illustrated implementation, the clot engagement element comprises a helical flange 452 that increases in diameter in the proximal direction. The flange may extend at least about one full revolution and generally less than about five or four or three revolutions about an extension of the longitudinal axis of the core wire 2410. The helical flange may be provided with a rounded, blunt edge 454, configured for slidably rotating within the tubular delivery catheter. Additional tip configurations are discussed in connection with FIGS. 8 and 9, below.


The maximum OD for the tip 2416 is generally at least about 0.005 inches and preferably at least about 0.01 inches or 0.015 inches or more smaller than the ID of the catheter aspiration lumen through which the embolism treatment system 2401 is intended to advance, measured at the axial operating location of the tip 2416 when the stopper 2414 is engaged with the stop ring. For example, a tip having a maximum OD in the range of from about 0.050-0.056 inches will be positioned within a catheter having a distal ID within the range of from about 0.068 to about 0.073 inches, and in one embodiment about 0.071 inches. With the tip centered in the lumen of the delivery (aspiration) catheter, the tip is spaced from the inside wall of the catheter by a distance in all directions of at least about 0.005 inches and in some embodiments at least about 0.007 inches or 0.010 inches or more.


Thus an unimpeded flow path is created in the annular (if centered) space between the maximum OD of the tip, and the ID of the catheter lumen. This annular flow path cooperates with the vacuum and helical tip to grab and pull obstructive material into the catheter under rotation and vacuum. The annular flow path is significantly greater than any flow path created by manufacturing tolerances in a tip configured to shear embolic material between the tip and the catheter wall.


Additional aspiration volume is obtained as a result of the helical channel defined between each two adjacent threads of the tip. A cross sectional area of the helical flow path of a tip having a maximum OD in the range of from about 0.050 to about 0.056 inches will generally be at least about 0.0003 square inches, and in some embodiments at least about 0.00035 or at least about 0.000375 inches. The total aspiration flow path across the helical tip is therefore the sum of the helical flow path through the tip and the annular flow path defined between the OD of the tip and the ID of the catheter lumen.


The combination of a rounded edge 454 on the thread 452 and space between the thread 452 and catheter inside wall enables aspiration both through the helical channel formed between adjacent helical threads as well as around the outside of the tip 2416 such that the assembly is configured for engaging and capturing embolic material but not shearing it between a sharp edge and the inside wall of the catheter. The axial length of the tip 2416 including the attachment sleeve 2417 is generally less than about 6 mm, and preferably less than about 4 mm or 3 mm or 2.5 mm or less depending upon desired performance.


The pitch of the thread 452 may vary generally within the range of from about 25 degrees to about 80 degrees, depending upon desired performance. Thread pitches within the range of from about 40-50 degrees may work best for hard clots, while pitches within the range of from about 50 to 70 degrees may work best for soft clots. For some implementations the pitch will be within the range of from about 40-65 degrees or about 40-50 degrees.


The tip 2416 may additionally be provided with a feature for attracting and/or enhancing adhesion of the clot to the tip. For example, a texture such as a microporous, microparticulate, nanoporous or nanoparticulate surface may be provided on the tip, either by treating the material of the tip or applying a coating. A coating of a clot attracting moiety such as a polymer or drug may be applied to the surface of the tip. For example, a roughened Polyurathane (Tecothane, Tecoflex) coating may be applied to the surface of at least the threads and optionally to the entire tip. The polyurethane may desirably be roughened such as by a solvent treatment after coating, and adhesion of the coating to the tip may be enhanced by roughening the surface of the tip prior to coating. The entire tip may comprise a homogeneous construct of any of the materials described above, or other polymeric materials, rather than just the coating.


Alternatively, the core wire 2410 may be provided with an insulating coating to allow propagation of a negative electric charge to be delivered to the tip to attract thrombus. Two conductors may extend throughout the length of the body, such as in a coaxial configuration, or a single conductor and an external grounding electrode may be used. Energy parameters and considerations are disclosed in U.S. Pat. No. 10,028,782 to Orion and US patent publication No. 2018/0116717 to Taff et al., the disclosures of each of which are hereby expressly incorporated by reference in their entireties herein. As a further alternative, the tip 2416 can be cooled to cryogenic temperatures to produce a small frozen adhesion between the tip and the thrombus. Considerations for forming small cryogenic tips for intravascular catheters are disclosed in US patent publication Nos. 2015/0112195 to Berger et al., and 2018/0116704 to Ryba et al., the disclosures of each of which are hereby expressly incorporated by reference in their entireties herein.


Referring to FIG. 7G, there is illustrated a cross section through a distal stopper 2414 in which the slider 441 is a continuous circumferential wall having a continuous peripheral bearing surface 442. Three struts 440 are spaced apart to define three flow passageways 443 extending axially therethrough. The sum of the surface areas of the leading edges of the struts 440 is preferably minimized as a percentage of the sum of the surface areas of the open flow passageways 443. This allows maximum area for aspiration while still providing adequate support axially for the distal surface 446 (see FIG. 7F) to engage the complementary stop surface on the inside wall of the catheter and prevent the tip 2416 from advancing distally beyond a preset relationship with the catheter. The sum of the leading (distal facing) surface area of the struts is generally less than about 45% and typically is less than about 30% or 25% or 20% of the sum of the areas of the flow passageways 443.


In an embodiment having a torque coil 2412 with an OD of about 0.028 inches, the OD of the stopper 2414 is about 0.068 inches. The wall thickness of the struts is generally less than about 0.015 inches and typically less than about 0.010 inches and in some implementations less than about 0.008 inches or 0.005 inches or less. The struts 440 have a length in the catheter axial direction that is sufficient to support the assembly against distal travel beyond the catheter stop ring, and may be at least about 50% of the OD of the stopper 2414. In a stopper 2414 having an OD of about 0.68 inches, the struts 2440 have an axial length of at least about 0.75 mm or 0.95 mm.


Referring to FIG. 7H, there is illustrated a stopper 2414 having three distinct sliders 441 each supported by a unique strut 440. The sum of the circumference of the three peripheral surfaces is preferably no more than about 75% and in some implementations no more than about 50% or 40% of the full circumference of a continuous circumferential peripheral surface 442 as in FIG. 7G. This further increases the cross sectional area of the flow paths 443. In a catheter having an ID of no more than about 0.07 inches, an OD of the hub 443 of at least about 0.026 or 0.028 or 0.030 or more, the sum of the flow paths 443 is at least about 0.0015 inches, and preferably at least about 0.020 or 0.022 inches or more. The area of the leading edges of the struts 440 and sliders 441 is preferably less than about 0.003 inches, and preferably less than about 0.001 inches or 0.0008 inches or less. In the catheter axial direction, the length of the struts 440 is at least about 0.50 mm or 0.75 mm, and in one embodiment the length of the struts 440 and sliders 441 is about 1 mm.


Referring to FIG. 8A, a modified distal tip 50 includes a helical thread 52 extending from a distal tip 54 to a proximal end 56 and supported by a core wire 58. The axial length of the distal tip 50 is at least about 2 mm or 5 mm or 10 mm and in some embodiments no more than about 30 mm or 20 mm measured along the core wire 58. The helical thread 52 wraps around the axis at least about 1 or 2 or 4 or more full revolutions, but in some embodiments no more than about 10 or 6 revolutions. In some embodiments the axial length along the threaded portion of the tip is within the range of from about 1 to about 8 revolutions.


The helical thread 52 on this implementation may have a constant pitch throughout its length. The pitch may be within the range of from about 10 to about 20 threads per inch, or about 5 to about 10 threads per inch depending upon desired performance. Alternatively, the thread may have multiple pitches designed to engage, transport and grasp thrombus within the catheter lumen. A distal pitch may be less than a proximal pitch. The pitch may vary continuously along the length of the thread, or may step from a first, constant pitch in a proximal zone to a second, different pitch in a distal zone of the thread. The thread 52 may comprise a continuous single helical flange, or may have a plurality of discontinuities to produce a plurality of teeth or serrations, arranged helically around the core wire.


The side elevational profile or envelope scribed by the distal tip as it rotates may have a linear or nonlinear taper on one or both ends which provide varying diameter and thus clearance along its length from the generally cylindrical ID of the catheter lumen. The maximum outer diameter 60 of the envelope (Max OD) is defined by the major diameter of the thread, and the tapers may be optimized for improved thrombus engagement and/or thrombus clearance as the helical thread element is rotated in the catheter.


Referring to FIG. 8A, the Max OD 60 in a first zone may be up to the diameter of a sliding fit within the catheter lumen, and may generally be at least about 0.015 inches or 0.010 inches smaller than the catheter lumen ID. In some implementations, the Max OD of the tip may be significantly less than the inside diameter of the catheter lumen to allow more space for the thrombus, but still create significant grasping force via engagement of the helical threads with the thrombus. In one implementation, the maximum helical thread diameter is about 0.110 inches and the catheter lumen ID is about 0.275 inches (24 F) (a 0.165 inch gap between the helical threads and catheter wall.


In the illustrated embodiment, the side elevational view profile of the helical thread OD tapers down in a proximal direction in a second zone, and tapers down in a distal direction in a third zone, such that the Max OD occurs with the central 30% or 20% or 10% of the axial length between distal tip 54 and proximal end 56.


The radial depth of the threads from the core 58 (minor diameter) to the outermost free edge 53 of the thread elements (major diameter) can be varied by varying either the major diameter as described above, as well as by varying the minor diameter (by varying the diameter of the core). The core may have a constant diameter throughout its length, or may taper, typically smaller in the distal direction as seen in FIG. 8.


The profile of the tip 50 viewed along the axis of rotation may be circular, or may vary to create a non circular pattern around the axis of rotation as seen in FIG. 9. The tip as seen in an end elevational view thus exhibits a major diameter 62 and a minor diameter 64. The minor diameter may be no more than about 95% or 90% or 80% or 70% of the major diameter, depending upon desired performance.


In certain applications, the Max OD of the tip is no more than about 35% or about 50% or about 60% of the ID of the catheter, to leave a substantial tip bypass flow path. Since this implementation does not have any centering structures, the tip will normally be pushed to one side of the aspiration lumen. When a clot becomes lodged between the tip and the opposing wall of the catheter, manual rotation of the tip can engage the clot like a worm gear and either grasp the clot (e.g., by pinning it against the opposing catheter sidewall) for retraction or facilitate freeing the blockage and aid in ingestion of the clot into the catheter.


A variation of the distal tip 50 is illustrated in FIGS. 8B and 8C. The illustrated tip 50 includes a distal advance segment 55 extending between an atraumatic distal tip at 54 and a transition 57. Helical thread 52 extends proximally from transition 57 to a proximal end 56 of the helical thread 52. A trailing segment 59 extends between the proximal end 56 of the thread and the proximal end of the tip. The thread may be inclined in a proximal direction, to produce a proximally facing undercut and a distal surface that inclines radially outwardly in a proximal direction.


The axial length of the advance segment 55 may be at least about 1 cm or 2 cm and in some implementations is within the range of from about 2 cm to about 4 cm. The axial length of the helical thread 52 along the longitudinal axis is typically within the range of from about 1 cm to about 5 cm and in certain implementations between about 2 cm and 3 cm.


The outside diameter of the advance segment 55 at distal tip 54 is generally less than about 0.024 inches, or less than about 0.020 inches and, in one implementation, is about 0.018 inches. The maximum outside diameter of the advance segment 55 and helical thread 52 may be within the range from about 0.020 to about 0.050 inches, and, in one implementation, is less than about 0.040 inches, such as about 0.035 inches. The advance segment, helical thread and trailing segment of the tip 50 may be molded over the core wire 58 using any of a variety of polymers known in the catheter arts.


Referring to FIG. 8C, a first radiopaque marker 63 may be carried on the core wire 58 beneath the advance segment 55. A second radiopaque marker 65 may be carried on the core wire 58 within the trailing segment 59. Each radiopaque marker may comprise a coil of radiopaque wire such as a platinum iridium alloy wire having a diameter about 0.002 inches, and wrapped around the core wire 58 and soldered to the core wire 58 to produce an RO coil having an outside coil diameter of less than about 0.020 inches, such as about 0.012 inches. The radiopaque markers may also function as an axial interference fit between the core wire 58 and the molded advance segment 55 and trailing segment 59 to resist core wire pull out from the tip 50.


In one implementation, the maximum OD of the thread 52 exceeds the maximum OD of the advance segment 55 by at least about 15% or 25% or 30% or more of the OD of the advance segment 55, to facilitate crossing the clot with the advance segment 55 and engaging the clot with the thread. The thread pitch may be within the range of from about 0.75 to about 0.30, or within the range of from about 0.10 and about 0.20, such as about 0.14 inches.


Preferably, the maximum OD of the tip 50 is less than about 60% or 50% of the aspiration catheter ID, and may be within the range of from about 35% to about 55% of the catheter ID. In certain implementations, the maximum OD of the tip 50 may be within the range of from about 0.044 inches to about 0.050 inches within a catheter having an ID within the range from about 0.068 inches to about 0.073 inches.


For this configuration of the tip 50, the distal stop on the proximal end of the core wire 58 is configured to permit distal advance of the tip 50 such that the distal end 54 may be advanced at least about 2 to 3 cm and preferably as much as 4 to 8 cm beyond the distal end of the catheter. In one implementation, the distal stop limits distal advance of the tip 50 so that the proximal end is within two or within one or than 0.5 cm in either the distal or proximal direction from the distal end of the aspiration catheter.


Referring to FIG. 10, the helical tip element may be part of an over-the-wire structure which can be moved over a guide wire. This structure allows the guide wire to be positioned and the helical tipped structure can be inserted with a surrounding catheter, or independently into a surrounding catheter which is already in place and over the guidewire. The helical tip structure can be rotated freely around the guide wire. The lumen 66 may be used for a guide wire or other devices or fluids to communicate from proximal end of the torque member through the distal tip of the helical tip element.



FIG. 11 illustrates one embodiment of an over-the-wire helical tipped engagement wire 46 with a central lumen having guidewire 70 extending therethrough. Similar to other helical tip structures disclosed therein, this is intended to operate within a coaxial surrounding catheter as has been previously discussed. As with implementations discussed elsewhere herein, engagement wire 46 includes an elongate flexible body configured to transmit torque between a proximal hub or handle 70 and the distal tip 50. The body may comprise a torque coil construction as disclosed elsewhere herein, having two or more concentric coils typically wound in a reverse direction from the adjacent coil. The engagement wire 46 optionally includes an axially extending longitudinal stabilizer 82. Preferably, the torque coil is enclosed within a polymeric jacket such as a shrink wrap tube.


The helical tip may alternatively have a fixed guide wire 72 distal advance segment extending from the distal end of the helical tip (See FIG. 12) or a polymeric distal extension to provide an atraumatic tip (See FIG. 8B). This fixed guide wire advance segment is typically easily bent when interacting with the patient's anatomy to avoid injuring tissue. The fixed guide wire advance segment may be between about 1 cm and about 10 cm but may be shorter or longer depending on the application.


In accordance with another aspect of the invention, a catheter dilator sheath assembly is provided to enable easy, safe, and efficient tracking of a large diameter catheter or catheter system from insertion into a large peripheral blood vessel and advanced to the target location of interest. The large diameter catheter, such as for aspiration or other mechanical means of removal of embolus or thrombus from large vessels, has a diameter within the range from about 8 F (0.105″) to about 24 F (0.315″).


Referring to FIGS. 6 and 13, one implementation of the catheter 60 includes an elongate flexible tubular body 50, having a proximal end 52, a distal end 54 and a side wall 56 defining a central lumen 58. Referring to FIG. 14, an elongate flexible cannulated rail or dilator 61 is shown extending over the guidewire 70 and occupying the space between the guidewire 70 and the large inside diameter of the central lumen 58 of the large diameter catheter 60 to provide support to the catheter and/or an atraumatic tip during delivery.


This catheter-cannulated rail-guidewire assembly is intended to easily track through anatomical challenges more easily than the catheter. The catheter-rail-guidewire assembly then acts as a first stage of the catheter delivery system and enables the large diameter catheter or catheter system to be inserted and independently advanced over this first stage into a blood vessel (e.g. the femoral vein) percutaneously over a guidewire and advanced through potentially tortuous vasculature to the remote target location of interest without requiring advanced skills or causing kinking of the catheter.


The cannulated rail 61 may comprise a soft flexible cylindrical body having a guidewire lumen with a diameter of no more than about 0.040″ and an outside diameter no greater than about 0.025″ or about 0.010″ smaller than the inner diameter of the large diameter catheter. Thus the wall thickness of the cannulated rail 61 is typically at least about 0.010″ less than the radius of the large diameter catheter and in some implementations at least about 0.120″ or more, depending upon the size of the annular space between the inside diameter of the catheter and the outside diameter of the guidewire. Depending upon the ID of the access catheter, the rail 61 may have a wall thickness of at least about 0.05 inches, at least about 0.075 inches, at least about 0.100 inches and in some implementations at least about 0.12 inches. The wall thickness of the rail may exceed the inside diameter of the guidewire lumen.


The cannulated rail 61 may have an elongated advance segment having a tapered distal tip 62 that may project beyond the distal end 54 of the catheter 60. The thick sidewall of the cannulated rail 61 may comprise one or more flexible polymers, and may have one or more embedded column strength enhancing features such as axially extending wires, metal or polymeric woven or braided sleeve or a metal tube, depending upon the desired pushability and tracking performance along the length of the dilator.


Optionally, the proximal segment of the rail or dilator which is not intended to extend out of the distal end of the catheter may be a structure which is not coaxial with the guidewire, but is instead a control wire which extends alongside the guidewire in the catheter and allows the distal tubular telescoping segment of the rail or dilator to be retracted or extended. (analogous to rapid exchange catheters) without the entire length of the rail structure being over the wire. This allows removal or insertion of the rail or dilator over a shorter guidewire because of the shorter coaxial segment tracking over the guidewire. The distal tubular segment may have a length of no more than about 40 cm or 30 cm or less, carried by a proximally extending control wire.


Catheter 60 may be provided with a proximal hub 120, having a port for axially movably receiving the rail 61 therethrough. The hub 120 may be provided with an engagement structure such as a first connector 122 for releasably engaging a second complementary connector 124 on a hub 126 on the proximal end of the rail 61. First connector 122 may comprise an interference structure such as at least one radially moveable projection 130, for releasably engaging a complementary engagement structure such as a recess 132 (e.g., an annular ridge or groove) on the hub 126. Distal advance of the rail 61 into the catheter 60 causes the projection 130 to snap fit into the recess 132, axially locking the catheter 60 and rail 61 together so that they may be manipulated as a unit.


The dilator is inserted through the hemostasis valve in the hub 120 of a large bore (e.g., 24 F) catheter 60 and advanced through the catheter until the retention clip on the dilator hub 126 or catheter hub 120 snaps into the complementary recess on the other hub. In this engaged configuration, the flexible distal end of the 24 F rail dilator 61 will extend at least about 5 cm or 10 cm, and in some implementations at least about 15 cm or 20 cm beyond the distal end 54 of the 24 F catheter 60. The rail dilator and 24 F catheter system are thereafter distally advanced over a previously placed guidewire and into the introducer sheath.


The dilator and catheter combination of the present invention differentiate over prior systems both because of the flexibility of a distal zone of the dilator and greater length of the dilator than the corresponding catheter. Typically, a dilator is a uniform stiffness and length-matched to its catheter, with only a short atraumatic tip of the dilator extending beyond the distal end of the catheter. The dilator of the present invention has a supportive proximal end and a flexible distal end, with a total dilator length much longer than the catheter 60 to enable, as an example, the following procedure.


In use, a guidewire 70 such as an 0.035″ guidewire is advanced under fluoroscopy using conventional techniques into a selected vessel. The cannulated rail 61, optionally with the catheter 60 mounted thereon, is loaded over the proximal end of the guidewire 70 and advanced distally over the wire until the distal end of the rail is in position at the target site.


The 24 F catheter 60 is thereafter unlocked from the rail 61 and advanced over the rail 61 to the desired site, supported by the rail 61 and guidewire 70 combination. Because the uncovered advance section of the rail has already traversed the challenging tortuosity through the heart, the catheter 61 now just slides over the advance section of the rail for easy passage to the final target location. The supportive proximal zone and flexible distal advance section of the rail enables ease of delivery through the most challenging anatomy in, for example, a PE procedure going from the vena cava through the tricuspid and pulmonary valves of the heart into the central pulmonary artery without concern about damaging the tissue (atraumatic, flexible tip) or damaging the dilator (high kink resistance due to flexible, high wall thickness “solid” dilator construction.


The cannulated rail 61, or the cannulated rail 61 and the guidewire 70 combination, may thereafter be proximally withdrawn, leaving the large bore catheter 60 in position to direct a procedure catheter such as any of the aspiration catheters disclosed elsewhere herein to the target site.


Referring to FIG. 15, the large diameter (LD) catheter 60 may in some situations have a smaller diameter (SD) catheter though its central lumen for the purposes of introducing an additional functionality (e.g., clot grabber catheter 62, imaging catheter 10, or mechanical thrombectomy tool 66) and/or telescoping the SD catheter to more distal locations in the anatomy. In order to enable delivery of the LD catheter 60 and SD catheter as a single system, the SD catheter may have a core dilator 68 for support, and the gap between the outer diameter of the SD catheter and inner diameter of the LD catheter 60 may be maintained or supported by a second, tubular dilator 71. The tubular dilator 71 may have a shaped distal tip 72 for a smooth tapered transition from the SD catheter 41 to the LD catheter 40. The distal end 34 of the core dilator may be provided with a complementary taper to the distal taper of the thin wall SD dilator (FIG. 16) or may end at the distal end of the LD catheter (FIG. 17).


The core dilator 68 inside the SD catheter 41 and tubular dilator 70 between the two catheters may have an interlocking feature to create a single (SD+LD) catheter+(core+tubular) dilator system. For example, complementary connectors may be provided on hubs on the proximal ends of the system components.


Referring to FIG. 17, the tip of the tubular dilator 70 may be configured to taper to the guidewire lumen 76, thus covering and extending distally beyond the small diameter catheter 41 if it is in place. The tip of the tubular dilator 70 may be provided with a longitudinally extending slit 78, scored or perforated one or more times to allow the tip to split longitudinally and be pulled back into the space between the LD and SD catheters and fully expose the distal end of the small diameter catheter 41. See FIG. 18.


The single (SD+LD) catheter+(core+tubular) dilator system may be pre-assembled and detachably interlocked at the proximal hub. Additional tubular dilators having a series of outside diameters and wall thicknesses may be provided such that the SD catheter may be used in combination with different diameter LD catheters. A LD catheter may be used with different SD catheters by providing tubular dilators having the same OD but a series of different inside diameters. The core+tubular dilators may simply be pulled proximally to withdraw both dilators as a single system, or the tubular dilator may be configured with a tab or handle at the proximal end and a slit, scoring, perforation or other mechanism so as to split, peel, or tear it along the longitudinal axis during withdrawal to allow the tubular dilator to peel from the SD catheter as it slides proximally out of the space between the LD and SD catheters. (FIG. 18)


Any of the thrombectomy catheters disclosed herein may be provided with a surface configuration on the inside surface of the central lumen to affect the behavior of clot drawn into the lumen. In general, the catheter, with diameter within the range from about 8 F (0.105″) to about 24 F (0.315″), includes an elongate flexible tubular body, having a proximal end, a distal end and a side wall defining a central lumen. The access or evacuation catheters may also include a rotatable core wire or other apparatus that extends though the catheter lumen for the purposes of engaging thrombus at the distal end of the catheter as has been discussed.


The central lumen 90 is defined by an inside surface 100 of the tubular body 104, which in some embodiments is a smooth cylindrical surface. However, referring to FIGS. 19A and 19B, the inner surface 100 of at least a distal zone 102 of the tubular body 104 may be provided with a surface configuration to engage thrombus and limit unrestricted sliding of the thrombus along the inner surface 100. The distal zone 102 may have an axial length within the range of from about 0.5″ to about 12″ or more, depending upon desired performance and/or manufacturing technique.


For example, referring to FIG. 19A, at least one or five or ten or more axially extending surface structures such as radially inwardly extending ridges 106 separated by grooves 108 may be provided to facilitate proximal ingestion of the thrombus and/or to engage thrombus and resist rotation of the thrombus within the lumen when the core wire or other thrombus grabbing apparatus is rotated within the lumen.


The corrugation pattern may also increase the transport of the thrombus proximally by decreasing the surface area of contact between the thrombus and the inside surface of the tubular body. The spacing circumferentially may be regular or irregular, and the crest and trough pattern, dimensions and distribution may be varied. Examples of trough cross sections include the illustrated rectangular, semicircular or triangular, among others.


In one implementation illustrated in FIG. 19B, the surface discontinuity, i.e. grooves or ridges, may extend in a circumferential (e.g. helical) configuration having a constant or variable pitch along the length of the distal zone 102. The helical guide may spiral in a first direction in order to oppose rotation of the core wire or other apparatus in a second direction, or in the same direction to cooperate with the rotation of the core wire in order to facilitate thrombus ingestion proximally into the catheter. The grooves or ridges may have a curved profile or generally rectilinear, having generally flat or cylindrical side walls.


In another embodiment, the inner surface 100 of the distal zone 102 of the tubular body 104 may have a three-dimensional pattern that reduce friction of the thrombus moving proximally in the catheter and create resistance to the thrombus moving distally in the catheter after it has been ingested into the catheter. This pattern may be regular throughout or in the distal end of the tubular body, or irregular and decrease gradually and progressively in density, pattern, or geometry along the length of the catheter or the distal section. This pattern may also be provided in combination with lubricious coatings or surfaces.


The three-dimensional differential friction pattern may be defined by a regular or irregular pattern of protuberances 110 or depressions on the inner surface of the catheter, each of which presents an exposed face 112 inclined radially inwardly in the proximal direction, with each inclined exposed face 112 terminating proximally in a proximally facing engagement surface such as a dropoff edge 114, which may be curved in an axial direction as shown in FIG. 21 to provide a ratchet or fish scale type of configuration.


The scales may flex, hinge or pivot at the distal end, which will not impact the proximal ingestion of the thrombus, but will create additional resistance to the thrombus moving distally in the catheter after it has been ingested into the catheter.


In alternative embodiments, the differential friction surface structures on the inner surface of the distal zone may be relatively shallow convex or concave “dimples” or other regular or irregular surface discontinuities that are generally triangular, oval, oblong arcs, serpentine shapes or a plurality of angled fibers that incline radially inwardly in a proximal direction.


Referring to FIG. 22, the lumen 116 of the tubular body may be non-cylindrical and instead be oval or other geometry lacking rotational symmetry and containing a minor axis which is less than a major axis due to one or more longitudinal deformations of the lumen. These longitudinal deformations of at least the inner surface of the tubular body serve as structures to increase the rotational resistance to thrombus or embolic matter in the lumen. These deformations may contain their own lumens within the wall of the tubular body for pull wires of a steerable tip or to deliver fluids or to measure pressure or to transmit a vacuum or other functions.


The distal end 118 of the tubular body may be angled such that the distal face of the catheter resides on a plane or a curve with an end to end secant that crosses the longitudinal axis of the tubular body at an angle within the range from about 30 degrees to about 60 degrees. The distal face of the angled tip may be non-planar and may include one or two or more inflection points or curves. This angled tip may improve catheter navigation and thrombus ingestion by providing more surface area for engagement between the catheter and the thrombus. (see, e.g., FIG. 31D and associated description in US publication No. 2020/0001046 A1 to Yang, et al., which is hereby incorporated in its entirety herein by reference.)


The opening at the distal end of the tubular body may be expandable from a first inside diameter for transluminal navigation to a second, larger inside diameter providing a funnel like tip with an enlarged distal opening to facilitate aspiration of thrombus into the lumen. The diameter at the distal opening of the fully open funnel exceeds the diameter of the cylindrical distal end of the tubular body by at least about 5% or 10% or more. (see FIGS. 4A-4I and associated description in U.S. Pat. No. 10,441,745 to Yang, et al., which is hereby incorporated in its entirety herein by reference.)


The distal end of the catheter may have an increasing inner diameter while maintaining a constant outer diameter, representing a tapered distal wall, or the inner and outer diameters may both increase, representing a conical funnel like tip.


The funnel tip is may be made of a material that is rigid enough to maintain structural integrity under aspiration and flexible enough that it may deform to accommodate and enable thrombus across a range of size, shape, and maturity to be aspirated into the catheter lumen.


The funnel tip may telescope out of the thrombectomy catheter. A hollow cylindrical structure at the end of a long, flexible hypo tube or at the end of two or more stiff wires may be advanced through the catheter, and when the hollow cylindrical structure extends beyond the distal catheter tip and its associated circumferential constraint, the structure expands into a conical funnel shape. Additional details of these features may be found in U.S. Pat. No. 10,441,745 to Yang, et al., previously incorporated in its entirety herein by reference.)


The thrombectomy catheter with inner lumen features to enhance the extraction of thrombus and/or distal end features may enable easier, more efficient removal of a broad spectrum of thrombus size, shapes, and maturity from vascular conduits including the pulmonary arteries, resulting in shorter procedure times and a lower total volume of blood loss. This is achieved by promoting proximal movement of the thrombus while creating resistance to the thrombus moving distally in the catheter after it has been ingested into the distal catheter.


The foregoing inventions and improvements will enable the engagement and capture of a very wide range of thrombus, from acute to mature in nature, thus enabling the extraction of the thrombus from the blood vessel in which it may be impeding blood flow. Additionally, the configurations described above enhance safety by reducing the risk of vascular tissue injury due to mechanical engagement of the helical tip element and/or catheter tip with the vessel wall.


In the foregoing description, similar features in different drawings are sometimes identified by slightly differing terminology. This is not intended to imply differences that do not exist. Slightly different features are illustrated in different drawings, and those of skill in the art will recognize that any of the features disclosed here in can be re-combined with any of the catheters or other structures disclosed here in.

Claims
  • 1. A method of treating a pulmonary embolism, comprising the steps of: providing a large bore catheter having a guiding rail extending therethrough, the large bore catheter having a large bore catheter distal end and the rail having a rail distal end;with the rail distal end at least about 10 cm distal to the large bore catheter distal end, advancing the rail distal end from a vena cava through tricuspid and pulmonary valves of a heart and into a central pulmonary artery while the distal end of the large bore catheter remains in the vena cava;advancing the large bore catheter over the rail until the large bore catheter distal end is at least as far as the central pulmonary artery;proximally removing the rail from the large bore catheter; anddrawing at least a portion of a clot from a pulmonary artery into the large bore catheter.
  • 2. The method of claim 1, wherein the advancing step is accomplished while the rail distal end is at least about 15 cm distal to the catheter distal end.
  • 3. The method of claim 1, further comprising the step of unlocking the large bore catheter from the rail prior to the advancing the catheter along the rail step.
  • 4. The method of claim 1, wherein the advancing the catheter step is accomplished over a guidewire.
  • 5. The method of claim 4, wherein the advancing the catheter step is accomplished with the guidewire extending through a cannulation in the rail.
  • 6. The method of claim 4, wherein the advancing the catheter step is accomplished with the guidewire extending through the catheter.
  • 7. The method of claim 4, wherein the advancing a catheter step comprises advancing a 24 French catheter over a cannulated rail having a wall thickness of at least about 0.10 inches.
  • 8. The method of claim 7, wherein the rail is advanced over a 0.035 inch guidewire.
  • 9. The method of claim 1, wherein the catheter is at least about 8 French.
  • 10. The method of claim 9, wherein the catheter is at least about 20 French.
  • 11. The method of claim 10, wherein the rail substantially fills a lumen in the large bore catheter.
  • 12. The method of claim 1, further comprising the step of removing the rail following the advancing the large bore catheter step.
  • 13. The method of claim 12, further comprising the step of advancing a clot evacuation catheter through the lumen to a target vascular site.
  • 14. The method of claim 13, further comprising the step of applying vacuum to the clot evacuation catheter.
  • 15. The method of claim 13, further comprising the step of advancing a thrombus engagement tool through the clot evacuation catheter.
  • 16. The method of claim 15, further comprising the step of manually rotating the thrombus engagement tool.
  • 17. The method of claim 16, wherein the thrombus engagement tool comprises an elongate flexible body having a thrombus engagement tip with a helical thread.
  • 18. The method of claim 17, wherein the thread extends from about two to about 10 revolutions around the elongate flexible body.
  • 19. The method of claim 18, wherein the thread has a maximum diameter that is no more than about 60% of an inside diameter of an adjacent portion of the thrombus evacuation catheter, and the drawing step draws at least a portion of the clot in between the thrombus engagement tip and a sidewall of the clot evacuation catheter.
  • 20. The method of claim 1, wherein the advancing the rail distal end step is accomplished while the large bore catheter is releasably locked to the rail.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the priority benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application No. 62/950,058, filed Dec. 18, 2019 and U.S. Provisional Patent Application No. 63/064,273, filed Aug. 11, 2020, the entirety of each of which is hereby incorporated by reference herein.

US Referenced Citations (775)
Number Name Date Kind
3605750 Sheridan et al. Sep 1971 A
3884242 Bazell et al. May 1975 A
3890976 Bazell et al. Jun 1975 A
3965901 Penny et al. Jun 1976 A
4030503 Clark, III Jun 1977 A
4319580 Colley et al. Mar 1982 A
4611594 Grayhack et al. Sep 1986 A
4617019 Fecht et al. Oct 1986 A
4619274 Morrison et al. Oct 1986 A
4628168 Nebergall et al. Dec 1986 A
4762129 Bonzel Aug 1988 A
4762130 Fogarty et al. Aug 1988 A
4767399 Bollish Aug 1988 A
4810582 Gould et al. Mar 1989 A
4844064 Thimsen et al. Jul 1989 A
4898575 Fischell et al. Feb 1990 A
4923462 Stevens May 1990 A
5011488 Ginsburg Apr 1991 A
5040548 Yock Aug 1991 A
5103827 Smith Apr 1992 A
5120323 Shockey et al. Jun 1992 A
5217705 Reno et al. Jun 1993 A
5226909 Evans et al. Jul 1993 A
5234416 Macaulay et al. Aug 1993 A
5243997 Uflacker Sep 1993 A
5261916 Engelson et al. Nov 1993 A
5279596 Castaneda et al. Jan 1994 A
5290247 Crittenden Mar 1994 A
5308327 Heaven et al. May 1994 A
5328472 Steinke et al. Jul 1994 A
5413560 Solar May 1995 A
5417697 Wilk May 1995 A
5423846 Fischell Jun 1995 A
5439445 Kontos Aug 1995 A
5441051 Hileman et al. Aug 1995 A
5454795 Samson Oct 1995 A
5466222 Ressemann et al. Nov 1995 A
5474563 Myler et al. Dec 1995 A
5527292 Adams et al. Jun 1996 A
5536242 Willard et al. Jul 1996 A
5549119 Solar Aug 1996 A
5569178 Henley Oct 1996 A
5569277 Evans et al. Oct 1996 A
5591187 Dekel Jan 1997 A
5643254 Scheldrup et al. Jul 1997 A
5658263 Dang et al. Aug 1997 A
5662622 Gore et al. Sep 1997 A
5690613 Verbeek Nov 1997 A
5695483 Samson Dec 1997 A
5702373 Samson Dec 1997 A
5713848 Dubrul et al. Feb 1998 A
5766191 Trerotola Jun 1998 A
5776141 Klein et al. Jul 1998 A
5792124 Horrigan et al. Aug 1998 A
5827242 Follmer Oct 1998 A
5843103 Wulfman Dec 1998 A
5873882 Straub et al. Feb 1999 A
5876414 Straub Mar 1999 A
5885209 Green Mar 1999 A
5891114 Chien et al. Apr 1999 A
5895398 Wensel Apr 1999 A
5899892 Mortier et al. May 1999 A
5916192 Nita et al. Jun 1999 A
5935112 Stevens Aug 1999 A
5938645 Gordon Aug 1999 A
5951539 Nita Sep 1999 A
6007530 Dornhofer et al. Dec 1999 A
6056837 Lieber et al. May 2000 A
6059745 Gelbfish May 2000 A
6090118 McGuckin, Jr. Jul 2000 A
6143009 Shiber Nov 2000 A
6152909 Bagaoisan et al. Nov 2000 A
6159230 Samuels Dec 2000 A
6165163 Chien et al. Dec 2000 A
6165199 Barbut Dec 2000 A
6171295 Garabedian et al. Jan 2001 B1
6179859 Bates Jan 2001 B1
6197014 Samson et al. Mar 2001 B1
6206852 Lee Mar 2001 B1
6217557 Hakansson et al. Apr 2001 B1
6221038 Brisken Apr 2001 B1
6228046 Brisken May 2001 B1
6258052 Milo Jul 2001 B1
6267783 Letendre et al. Jul 2001 B1
6285903 Rosenthal Sep 2001 B1
6322534 Shkolnik Nov 2001 B1
6355027 Le et al. Mar 2002 B1
6394976 Winston et al. May 2002 B1
6451036 Heitzmann Jun 2002 B1
6451005 Saitou et al. Sep 2002 B1
6458139 Palmer et al. Oct 2002 B1
6468219 Njemanze Oct 2002 B1
6482217 Pintor et al. Nov 2002 B1
6511492 Rosenbluth Jan 2003 B1
6524303 Garibaldi et al. Feb 2003 B1
6520934 Lee Mar 2003 B1
6533751 Cragg Mar 2003 B2
6554820 Wendlandt Apr 2003 B1
6554827 Chandrasekaran et al. Apr 2003 B2
6558377 Lee et al. May 2003 B2
6569148 Bagaoisan et al. May 2003 B2
6579246 Jacobsen et al. Jun 2003 B2
6582440 Brumbach Jun 2003 B1
6591472 Noone et al. Jul 2003 B1
6638268 Niazi Oct 2003 B2
6663613 Evans et al. Dec 2003 B1
6666874 Heitzmann Dec 2003 B2
6669670 Muni et al. Dec 2003 B1
6719717 Johnson et al. Apr 2004 B1
6776770 Trerotola Aug 2004 B1
6796976 Chin et al. Sep 2004 B1
6805692 Muni et al. Oct 2004 B2
6824550 Pintor et al. Nov 2004 B1
6824553 Samson et al. Nov 2004 B1
6929633 Evans et al. Aug 2005 B2
6936025 Evans et al. Aug 2005 B1
6977068 Nair et al. Dec 2005 B1
7004954 Voss et al. Feb 2006 B1
7008434 Kurz et al. Mar 2006 B2
7029482 Vargas Apr 2006 B1
7037267 Lipson et al. May 2006 B1
7104979 Jansen et al. Sep 2006 B2
7112298 Kampa et al. Sep 2006 B2
7172572 Diamond et al. Feb 2007 B2
7172620 Gilson Feb 2007 B2
7175653 Gaber Feb 2007 B2
7207980 Christian et al. Apr 2007 B2
7223274 Vargas May 2007 B2
7229461 Chin et al. Jun 2007 B2
7232452 Adams et al. Jun 2007 B2
7235088 Pintor et al. Jun 2007 B2
7250042 Kataishi et al. Jul 2007 B2
7306585 Ross Dec 2007 B2
7309334 von Hoffmann Dec 2007 B2
7335216 Bender Feb 2008 B2
7491210 Dubrul et al. Feb 2009 B2
7507229 Hewitt et al. Mar 2009 B2
7537568 Moehring May 2009 B2
7558622 Tran Jul 2009 B2
7601138 Goebel et al. Oct 2009 B2
7678100 Chin et al. Mar 2010 B2
7713227 Wholey et al. May 2010 B2
7763196 Goebel et al. Jul 2010 B2
7771358 Moehring et al. Aug 2010 B2
7803136 Schatz Sep 2010 B2
7837692 Mulholland et al. Nov 2010 B2
7842055 Pintor et al. Nov 2010 B2
7850623 Griffin Dec 2010 B2
7905891 Self Mar 2011 B2
7931659 Bose et al. Apr 2011 B2
7938820 Webster et al. May 2011 B2
7947012 Spurchise et al. May 2011 B2
7988646 Taber Aug 2011 B2
8021351 Boldenow et al. Sep 2011 B2
8048032 Root et al. Nov 2011 B2
8057497 Raju et al. Nov 2011 B1
8062316 Patel Nov 2011 B2
8070694 Galdonik et al. Dec 2011 B2
8084246 Hoon et al. Dec 2011 B2
8114106 Straub Feb 2012 B2
8142413 Root et al. Mar 2012 B2
8114032 Ferry et al. Apr 2012 B2
8157792 Dolliver et al. Apr 2012 B2
8211023 Swan et al. Jul 2012 B2
8235968 Tremaglio Aug 2012 B2
8246641 Osborne et al. Aug 2012 B2
8292850 Root et al. Oct 2012 B2
8298591 Srivastava et al. Oct 2012 B2
8308655 Grigoryants Nov 2012 B2
8361095 Osborne Jan 2013 B2
8366735 Bose et al. Feb 2013 B2
8382739 Walak et al. Feb 2013 B2
8394078 Torrance et al. Mar 2013 B2
8403912 McFerran et al. Mar 2013 B2
8460312 Bose et al. Jun 2013 B2
8485969 Grayzel et al. Jul 2013 B2
8517955 Keast Aug 2013 B2
8535293 Faherty et al. Sep 2013 B2
8568432 Straub Oct 2013 B2
8608754 Wensel et al. Dec 2013 B2
8609426 Silver Dec 2013 B2
8663259 Levine et al. Mar 2014 B2
8682411 Kassab et al. Mar 2014 B2
8684963 Qiu et al. Apr 2014 B2
8690907 Janardhan et al. Apr 2014 B1
8696698 Chomas Apr 2014 B2
8702680 Jimenez et al. Apr 2014 B2
8725249 Bar-Yoseph et al. May 2014 B2
8734374 Aklog et al. May 2014 B2
8758325 Webster et al. Jun 2014 B2
8764779 Levine et al. Jul 2014 B2
8814892 Galdonik et al. Aug 2014 B2
8864792 Eckhouse Oct 2014 B2
8876854 Christiansen et al. Nov 2014 B2
8900179 Jenson et al. Dec 2014 B2
8900257 Straub et al. Dec 2014 B2
8932320 Janardhan et al. Jan 2015 B1
RE45380 Root et al. Feb 2015 E
8968383 Johnson et al. Mar 2015 B1
8974411 McKinnon Mar 2015 B2
8992506 Gulachenski Mar 2015 B2
8996095 Anderson et al. Mar 2015 B2
8998946 Morero et al. Apr 2015 B2
9014786 Carmeli et al. Apr 2015 B2
9017309 Tanikawa et al. Apr 2015 B2
9023070 Levine et al. May 2015 B2
9039715 Diamant et al. May 2015 B2
9079000 Hanson et al. Jul 2015 B2
9107691 Fojtik Aug 2015 B2
9119625 Bachman et al. Sep 2015 B2
9119656 Bose et al. Sep 2015 B2
9144383 Zharov Sep 2015 B2
9144662 DiCaprio et al. Sep 2015 B2
RE45760 Root et al. Oct 2015 E
RE45776 Root et al. Oct 2015 E
9199064 Morero Dec 2015 B2
9220878 Kajii Dec 2015 B2
9238124 Grayzel et al. Jan 2016 B2
9241699 Kume et al. Jan 2016 B1
9259215 Chou et al. Feb 2016 B2
9259228 Cruise et al. Feb 2016 B2
9265512 Garrison et al. Feb 2016 B2
9278201 Rapaport et al. Mar 2016 B2
9282992 Levine et al. Mar 2016 B2
9295817 Chang Mar 2016 B2
9314268 Cahill Apr 2016 B2
9345856 Witte May 2016 B2
9351993 Cruise et al. May 2016 B2
9370639 Plassman et al. Jun 2016 B2
9375223 Wallace Jun 2016 B2
9381278 Constant et al. Jul 2016 B2
9399118 Kume et al. Jul 2016 B2
RE46116 Root et al. Aug 2016 E
9408916 Cruise et al. Aug 2016 B2
9414819 Fitz et al. Aug 2016 B2
9421328 Brueckner et al. Aug 2016 B2
9439791 Vong et al. Sep 2016 B2
9440018 Levin et al. Sep 2016 B2
9446216 Olesky et al. Sep 2016 B2
9451884 Palovich Sep 2016 B2
9451963 Cruise et al. Sep 2016 B2
9463006 Forde et al. Oct 2016 B2
9480813 Fukuoka et al. Nov 2016 B2
9486221 Cruise et al. Nov 2016 B2
9492637 Garrison et al. Nov 2016 B2
9504476 Gulachenski Nov 2016 B2
9510854 Mallaby Dec 2016 B2
9510855 Rapaport et al. Dec 2016 B2
9526504 Chang Dec 2016 B2
9526505 Marks et al. Dec 2016 B2
9532792 Galdonik et al. Jan 2017 B2
9533344 Monetti et al. Jan 2017 B2
9539022 Bowman Jan 2017 B2
9539122 Burke et al. Jan 2017 B2
9546236 Cruise et al. Jan 2017 B2
9561121 Sudin et al. Feb 2017 B2
9561125 Bowman et al. Feb 2017 B2
9561345 Garrison et al. Feb 2017 B2
9597101 Galdonik et al. Mar 2017 B2
9597212 Thompson et al. Mar 2017 B2
9615832 Bose et al. Mar 2017 B2
9622753 Cox Apr 2017 B2
9623228 Ryan et al. Apr 2017 B2
9655633 Leynov et al. May 2017 B2
9655755 Chou et al. May 2017 B2
9655989 Cruise et al. May 2017 B2
9662118 Chang May 2017 B2
9662129 Galdonik et al. May 2017 B2
9662137 Jenson et al. May 2017 B2
9662480 Kume et al. May 2017 B2
9669183 Chang Jun 2017 B2
9669191 Chou et al. Jun 2017 B2
9681882 Garrison et al. Jun 2017 B2
9688788 Plotkin et al. Jun 2017 B2
9693789 Garrison et al. Jul 2017 B2
9693852 Lam et al. Jul 2017 B2
9707380 Qiu et al. Jul 2017 B2
9717500 Tieu et al. Aug 2017 B2
9724103 Cruise et al. Aug 2017 B2
9724491 Solar et al. Aug 2017 B2
9764111 Gulachenski Sep 2017 B2
9770251 Bowman et al. Sep 2017 B2
9775730 Waltzman Oct 2017 B1
9789242 Criado et al. Oct 2017 B2
9789283 Richter et al. Oct 2017 B2
9801643 Hansen et al. Oct 2017 B2
9803043 Cruise et al. Oct 2017 B2
9808610 Li et al. Nov 2017 B2
9820761 Garrison et al. Nov 2017 B2
9827047 Fudaba et al. Nov 2017 B2
9855072 Moberg et al. Jan 2018 B2
9861783 Garrison et al. Jan 2018 B2
9877731 Cruise et al. Jan 2018 B2
9878076 Gulcher et al. Jan 2018 B2
9883885 Hendrick et al. Feb 2018 B2
9907880 Cruise et al. Mar 2018 B2
9913960 Blanchard et al. Mar 2018 B2
9987028 Lowinger et al. Jun 2018 B2
9999355 Kirenko Jun 2018 B2
10010698 Watanabe et al. Jul 2018 B2
10028854 Tatalovich et al. Jul 2018 B2
10039906 Kume et al. Aug 2018 B2
10070878 Ma Sep 2018 B2
10086169 Grayzel et al. Oct 2018 B2
10105154 Green Oct 2018 B1
10179224 Yang et al. Jan 2019 B2
10183145 Yang et al. Jan 2019 B2
10183146 Yang et al. Jan 2019 B2
10183147 Yang et al. Jan 2019 B2
10207077 Griggin et al. Feb 2019 B2
10213582 Garrison et al. Feb 2019 B2
10219814 Feltyberger et al. Mar 2019 B2
10226277 Smith et al. Mar 2019 B2
10238833 Christian et al. Mar 2019 B2
10258452 Eckhouse et al. Apr 2019 B2
10265086 Vale et al. Apr 2019 B2
10271864 Greenhalgh et al. Apr 2019 B2
10278678 Peliks May 2019 B2
10278816 Miller et al. May 2019 B2
10327790 Garrison et al. Jun 2019 B2
10335186 Rosenbluth et al. Jul 2019 B2
10342570 Richter et al. Jul 2019 B2
10383691 Hendrick et al. Aug 2019 B2
10384034 Garrison et al. Aug 2019 B2
10420581 Hehrlein et al. Sep 2019 B2
10441745 Yang et al. Oct 2019 B2
10456552 Goyal Oct 2019 B2
10471233 Garrison et al. Nov 2019 B2
10478535 Ogle Nov 2019 B2
10499944 Mallaby Dec 2019 B2
10524814 Chang et al. Jan 2020 B2
10531883 Deville et al. Jan 2020 B1
10537706 Kanemasa et al. Jan 2020 B2
10569049 Garrison et al. Feb 2020 B2
10610668 Burkholz et al. Apr 2020 B2
10646239 Garrison et al. May 2020 B2
10653426 Yang et al. May 2020 B2
10653434 Yang et al. May 2020 B1
10661053 Yang et al. May 2020 B2
10668192 Raney et al. Jun 2020 B2
10695159 Hauser Jun 2020 B2
10716583 Look et al. Jul 2020 B2
10716880 Culbert et al. Jul 2020 B2
10716915 Ogle et al. Jul 2020 B2
10722251 Garrison et al. Jul 2020 B2
10722253 Deville et al. Jul 2020 B2
10722683 Solar et al. Jul 2020 B2
10743893 Garrison et al. Aug 2020 B2
10786270 Yang Sep 2020 B2
10835272 Yang Nov 2020 B2
10835711 Yang et al. Nov 2020 B2
10856898 Matsushita et al. Dec 2020 B2
10864351 Garrison et al. Dec 2020 B2
10888280 Newberry Jan 2021 B2
10905850 Christian et al. Feb 2021 B2
11020030 Tao et al. Jun 2021 B2
11065018 Buck et al. Jul 2021 B2
11076876 Vale Aug 2021 B2
11096712 Teigen et al. Aug 2021 B2
11197683 Teigen et al. Dec 2021 B1
11207096 To et al. Dec 2021 B2
11207497 Yee et al. Dec 2021 B1
11234723 Ogle Feb 2022 B2
11259821 Buck et al. Mar 2022 B2
11318282 Garrison et al. May 2022 B2
11337712 Teigen et al. May 2022 B2
11406402 Deville et al. Aug 2022 B2
11464528 Brady et al. Oct 2022 B2
11490909 Look et al. Nov 2022 B2
11553935 Buck et al. Jan 2023 B2
11633272 Buck et al. Apr 2023 B2
11638637 Buck et al. Jun 2023 B2
20010031980 Wensel et al. Oct 2001 A1
20010031981 Evans Oct 2001 A1
20010049486 Evans et al. Dec 2001 A1
20020016565 Zadno-Azizi et al. Feb 2002 A1
20020026145 Bagaoisan et al. Feb 2002 A1
20020074276 Nakashima Jun 2002 A1
20020091372 Cragg Jul 2002 A1
20020156459 Ye et al. Oct 2002 A1
20020156460 Ye Oct 2002 A1
20020169467 Heitzmann Nov 2002 A1
20020173812 McGuckin et al. Nov 2002 A1
20020177800 Bagaoisan et al. Nov 2002 A1
20020177899 Eum et al. Nov 2002 A1
20020188314 Anderson et al. Dec 2002 A1
20030071285 Tsukernik Apr 2003 A1
20030088266 Bowlin May 2003 A1
20030135193 Hilgers et al. Jul 2003 A1
20030135198 Berhow et al. Jul 2003 A1
20030153847 Sandler et al. Aug 2003 A1
20030153874 Tal Aug 2003 A1
20030195467 Mickley Oct 2003 A1
20030195546 Solar et al. Oct 2003 A1
20030212384 Hayden Nov 2003 A1
20030225336 Callister et al. Dec 2003 A1
20040006306 Evans et al. Jan 2004 A1
20040010280 Adams et al. Jan 2004 A1
20040019322 Hoffmann Jan 2004 A1
20040059290 Palasis Mar 2004 A1
20040138693 Eskuri Jul 2004 A1
20040153049 Hewitt et al. Aug 2004 A1
20040199201 Kellett Oct 2004 A1
20040236215 Mihara et al. Nov 2004 A1
20040243102 Berg et al. Dec 2004 A1
20050004523 Osborne et al. Jan 2005 A1
20050004553 Douk Jan 2005 A1
20050021002 Deckman et al. Jan 2005 A1
20050055047 Greenhalgh Mar 2005 A1
20050059957 Campbell Mar 2005 A1
20050080400 Corcoran et al. Apr 2005 A1
20050103332 Gingles et al. May 2005 A1
20050124985 Takayama et al. Jun 2005 A1
20050137680 Ortiz et al. Jun 2005 A1
20050182386 Aggerholm Aug 2005 A1
20050187570 Nguyen et al. Aug 2005 A1
20060030835 Sherman et al. Feb 2006 A1
20060064036 Osborne et al. Mar 2006 A1
20060074401 Ross Apr 2006 A1
20060089618 McFerran et al. Apr 2006 A1
20060095062 Stephens May 2006 A1
20060100530 Kliot et al. May 2006 A1
20060111649 Zhou May 2006 A1
20060124212 Zhou Jun 2006 A1
20060149355 Mitelberg et al. Jul 2006 A1
20060184108 Honebrink Aug 2006 A1
20060217664 Hattier et al. Sep 2006 A1
20060247755 Pal et al. Nov 2006 A1
20060264759 Moehring et al. Nov 2006 A1
20070016132 Oepen et al. Jan 2007 A1
20070038225 Osborne et al. Feb 2007 A1
20070043333 Kampa et al. Feb 2007 A1
20070060888 Goff et al. Mar 2007 A1
20070185521 Bui Aug 2007 A1
20070197956 Le et al. Aug 2007 A1
20070225614 Naghavi et al. Sep 2007 A1
20080064984 Pflueger et al. Mar 2008 A1
20080086051 Voegele Apr 2008 A1
20080086110 Galdonik et al. Apr 2008 A1
20080097251 Babaev et al. Apr 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080234715 Pesce Sep 2008 A1
20080262350 Unger Oct 2008 A1
20080262471 Warnock Oct 2008 A1
20080300544 Palm et al. Dec 2008 A1
20080312639 Weber Dec 2008 A1
20090030400 Bose et al. Jan 2009 A1
20090043330 To Feb 2009 A1
20090182370 Volobuyev et al. Jul 2009 A1
20090187143 Vreeman Jul 2009 A1
20090209857 Secretain et al. Aug 2009 A1
20090210048 Amplatz et al. Aug 2009 A1
20090227992 Nir et al. Sep 2009 A1
20090234321 Shapland et al. Sep 2009 A1
20090264865 Kawai Oct 2009 A1
20090270800 Spurchise et al. Oct 2009 A1
20090270888 Patel Oct 2009 A1
20090275974 Marchand et al. Nov 2009 A1
20090287190 Shippert Nov 2009 A1
20090312699 Pudelko Dec 2009 A1
20100023033 Mauch et al. Jan 2010 A1
20100030256 Dubrul et al. Feb 2010 A1
20100049168 Parker et al. Feb 2010 A1
20100057051 Howat et al. Mar 2010 A1
20100114017 Lenker et al. May 2010 A1
20100125253 Olson et al. May 2010 A1
20100204712 Mallaby Aug 2010 A1
20100217235 Thorstenson et al. Aug 2010 A1
20100217276 Garrison et al. Aug 2010 A1
20100312141 Keast et al. Dec 2010 A1
20110009875 Grandfield et al. Jan 2011 A1
20110034986 Chou Feb 2011 A1
20110054504 Porter Mar 2011 A1
20110077620 deBeer Mar 2011 A1
20110082373 Gurley et al. Apr 2011 A1
20110106200 Ziegler May 2011 A1
20110112567 Lenker et al. May 2011 A1
20110137399 Chomas et al. Jun 2011 A1
20110152998 Berez et al. Jun 2011 A1
20110172700 Bose et al. Jul 2011 A1
20110178418 Avidor et al. Jul 2011 A1
20110230859 Galdonik et al. Sep 2011 A1
20110238041 Lim et al. Sep 2011 A1
20110295217 Tanaka et al. Dec 2011 A1
20120040858 Ford et al. Feb 2012 A1
20120041474 Eckhouse Feb 2012 A1
20120065479 Lahiji et al. Mar 2012 A1
20120065490 Zharov et al. Mar 2012 A1
20120078140 Nita Mar 2012 A1
20120083868 Shrivastava et al. Apr 2012 A1
20120123327 Miller May 2012 A1
20120143237 Cam et al. Jun 2012 A1
20120150147 Leynov et al. Jun 2012 A1
20120179032 Bromander et al. Jul 2012 A1
20120277845 Bowe Nov 2012 A1
20120290067 Cam et al. Nov 2012 A1
20120330196 Nita Dec 2012 A1
20130006225 Cucin Jan 2013 A1
20130012924 Davis et al. Jan 2013 A1
20130018318 Ravichandran et al. Jan 2013 A1
20130018359 Coyle Jan 2013 A1
20130030461 Marks et al. Jan 2013 A1
20130035628 Garrison et al. Feb 2013 A1
20130046285 Griffin et al. Feb 2013 A1
20130046374 Jones-McMeans Feb 2013 A1
20130096551 Govari et al. Apr 2013 A1
20130116701 Wang et al. May 2013 A1
20130131499 Chan et al. May 2013 A1
20130131641 Jimenez et al. May 2013 A1
20130131710 Carmeli May 2013 A1
20130144328 Weber et al. Jun 2013 A1
20130158511 Aggerholm et al. Jun 2013 A1
20130158578 Ghodke et al. Jun 2013 A1
20130172851 Shimada et al. Jul 2013 A1
20140025043 Wang et al. Jan 2014 A1
20140039461 Anderson et al. Feb 2014 A1
20140046243 Ray et al. Feb 2014 A1
20140046244 Ray et al. Feb 2014 A1
20140074144 Shrivastava et al. Mar 2014 A1
20140100531 Ankrum et al. Apr 2014 A1
20140114287 Beasley et al. Apr 2014 A1
20140121746 Kusleika et al. May 2014 A1
20140155932 Bose et al. Jun 2014 A1
20140155980 Turjman et al. Jun 2014 A1
20140163367 Eskuri Jun 2014 A1
20140200608 Brady et al. Jul 2014 A1
20140228808 Webster et al. Aug 2014 A1
20140243882 Ma Aug 2014 A1
20140249508 Wang et al. Sep 2014 A1
20140271718 Alvarez Sep 2014 A1
20140273920 Smith Sep 2014 A1
20140275832 Muehlsteff et al. Sep 2014 A1
20140275852 Hong et al. Sep 2014 A1
20140276167 Dasgupta et al. Sep 2014 A1
20140276618 Di Caprio Sep 2014 A1
20140276920 Hendrick et al. Sep 2014 A1
20140276923 Miller Sep 2014 A1
20140288525 Fudaba et al. Sep 2014 A1
20140296889 Avneri et al. Oct 2014 A1
20140309533 Yamashita et al. Oct 2014 A1
20140330286 Wallace Nov 2014 A1
20140343537 Eversull et al. Nov 2014 A1
20140350645 Diller et al. Nov 2014 A1
20140358123 Ueda Dec 2014 A1
20140371718 Alvarez et al. Dec 2014 A1
20150005704 Heisei et al. Jan 2015 A1
20150046148 Oh et al. Feb 2015 A1
20150105729 Valeti et al. Apr 2015 A1
20150119859 Cajamarca et al. Apr 2015 A1
20150126861 Gambhir et al. May 2015 A1
20150133978 Paul, Jr. May 2015 A1
20150157220 Fish et al. Jun 2015 A1
20150157772 Li et al. Jun 2015 A1
20150173782 Garrison et al. Jun 2015 A1
20150174363 Sutermeister et al. Jun 2015 A1
20150174368 Garrison et al. Jun 2015 A1
20150257659 Broers et al. Sep 2015 A1
20150269825 Tran Sep 2015 A1
20150290390 Ring et al. Oct 2015 A1
20150335288 Toth et al. Nov 2015 A1
20150335857 Ishikawa Nov 2015 A1
20150359547 Vale et al. Dec 2015 A1
20150366518 Sampson Dec 2015 A1
20160000443 Lilburn et al. Jan 2016 A1
20160008572 Di Caprio Jan 2016 A1
20160030079 Cohen Feb 2016 A1
20160038174 Bruzzi et al. Feb 2016 A1
20160051386 Haarmann-Theimann Feb 2016 A1
20160058459 Bowman Mar 2016 A1
20160058513 Giorgi Mar 2016 A1
20160081825 Sudin et al. Mar 2016 A1
20160100819 Tieu Apr 2016 A1
20160128688 Garrison et al. May 2016 A1
20160129221 Haverkost et al. May 2016 A1
20160135829 Holochwost et al. May 2016 A1
20160144157 Gulachenski et al. May 2016 A1
20160151010 Erez Jun 2016 A1
20160166265 Nita Jun 2016 A1
20160166266 Nita Jun 2016 A1
20160199204 Pung et al. Jul 2016 A1
20160199620 Pokorney Jul 2016 A1
20160206216 Kirenko Jul 2016 A1
20160206322 Fitz et al. Jul 2016 A1
20160213396 Dowell et al. Jul 2016 A1
20160220741 Garrison et al. Aug 2016 A1
20160242764 Garrison et al. Aug 2016 A1
20160242893 Joshi et al. Aug 2016 A1
20160243157 Cruise et al. Aug 2016 A1
20160256611 Fitz Sep 2016 A1
20160270806 Wallace Sep 2016 A1
20160271315 Chang Sep 2016 A1
20160296690 Kume et al. Oct 2016 A1
20160311990 Cruise et al. Oct 2016 A1
20160317156 Fitz et al. Nov 2016 A1
20160317288 Rogers et al. Nov 2016 A1
20160345904 Bowman Dec 2016 A1
20160346508 Williams et al. Dec 2016 A1
20160346515 Buller Dec 2016 A1
20160354532 Olesky et al. Dec 2016 A1
20160361180 Vong et al. Dec 2016 A1
20160361459 Baldwin Dec 2016 A1
20160367274 Wallace Dec 2016 A1
20160367275 Wallace Dec 2016 A1
20170000576 Zirps Jan 2017 A1
20170007264 Cruise et al. Jan 2017 A1
20170007277 Drapeau et al. Jan 2017 A1
20170020540 Chou et al. Jan 2017 A1
20170027604 Wallace Feb 2017 A1
20170028170 Ho Feb 2017 A1
20170035436 Morita Feb 2017 A1
20170035446 Rapaport et al. Feb 2017 A1
20170042548 Lam Feb 2017 A1
20170043124 Vreeman Feb 2017 A1
20170056061 Ogle et al. Mar 2017 A1
20170071624 McGuckin et al. Mar 2017 A1
20170072163 Lim et al. Mar 2017 A1
20170072165 Lim et al. Mar 2017 A1
20170072452 Monetti et al. Mar 2017 A1
20170079680 Bowman Mar 2017 A1
20170079812 Lam et al. Mar 2017 A1
20170079817 Sepetka et al. Mar 2017 A1
20170079819 Pung et al. Mar 2017 A1
20170079820 Lam et al. Mar 2017 A1
20170087340 Peralta et al. Mar 2017 A1
20170100126 Bowman et al. Apr 2017 A1
20170100142 Look et al. Apr 2017 A1
20170105743 Vale et al. Apr 2017 A1
20170143416 Guler et al. May 2017 A1
20170143938 Ogle et al. May 2017 A1
20170147765 Mehta May 2017 A1
20170164964 Galdonik et al. Jun 2017 A1
20170172581 Bose et al. Jun 2017 A1
20170172766 Vong et al. Jun 2017 A1
20170189033 Sepetka et al. Jul 2017 A1
20170209260 Garrison et al. Jul 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170216484 Cruise et al. Aug 2017 A1
20170224350 Shimizu et al. Aug 2017 A1
20170224355 Bowman et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170246014 Rapaport et al. Aug 2017 A1
20170252057 Bonnette et al. Sep 2017 A1
20170259037 Kern et al. Sep 2017 A1
20170265869 Cibulski et al. Sep 2017 A1
20170265983 Lam et al. Sep 2017 A1
20170274180 Garrison et al. Sep 2017 A1
20170281192 Tieu et al. Oct 2017 A1
20170281204 Garrison et al. Oct 2017 A1
20170283536 Cruise et al. Oct 2017 A1
20170303949 Jacobi et al. Oct 2017 A1
20170333000 Nystrom et al. Nov 2017 A1
20170340867 Accisano Nov 2017 A1
20170348514 Guyon et al. Dec 2017 A1
20170354421 Maguire et al. Dec 2017 A1
20170354523 Chou et al. Dec 2017 A1
20170354803 Kume et al. Dec 2017 A1
20170360450 Tompkins et al. Dec 2017 A1
20170361072 Chou Dec 2017 A1
20170367713 Green et al. Dec 2017 A1
20170367857 Bennett et al. Dec 2017 A1
20170368296 Chang Dec 2017 A1
20170368309 Garrison et al. Dec 2017 A1
20180008294 Garrison et al. Jan 2018 A1
20180008439 Tieu et al. Jan 2018 A9
20180014840 Paniam Jan 2018 A1
20180028205 Chou et al. Feb 2018 A1
20180028209 Sudin et al. Feb 2018 A1
20180036155 Tieu et al. Feb 2018 A1
20180042623 Batiste Feb 2018 A1
20180055364 Pierro Mar 2018 A1
20180055516 Bagaoisan et al. Mar 2018 A1
20180104390 Kilcran Apr 2018 A1
20180200478 Lorenzo et al. Jul 2018 A1
20180207395 Bulman et al. Jul 2018 A1
20180207399 Chou et al. Jul 2018 A1
20180228502 Shaffer Aug 2018 A1
20180242962 Walen et al. Aug 2018 A1
20180242980 Lubock Aug 2018 A1
20180242989 Nita Aug 2018 A1
20180242999 Thatipelli Aug 2018 A1
20180250013 Wallace et al. Sep 2018 A1
20180263632 Seifert et al. Sep 2018 A1
20180263642 Nita Sep 2018 A1
20180279965 Pandit et al. Oct 2018 A1
20180289340 Trindade Rodrigues et al. Oct 2018 A1
20180296236 Goldfarb Oct 2018 A1
20180304040 Jalgaonkar Oct 2018 A1
20180338770 Mogi et al. Nov 2018 A1
20180353194 Shaffer et al. Dec 2018 A1
20190022363 Grayzel et al. Jan 2019 A1
20190029825 Fitterer et al. Jan 2019 A1
20190070387 Goyal Mar 2019 A1
20190105477 Heilman Apr 2019 A1
20190105478 Malek Apr 2019 A1
20190108540 Look et al. Apr 2019 A1
20190167124 Verkruijsse et al. Jun 2019 A1
20190175030 Verkruijsse et al. Jun 2019 A1
20190183517 Ogle Jun 2019 A1
20190200871 De Haan Jul 2019 A1
20190239910 Brade et al. Aug 2019 A1
20190269368 Hauck et al. Sep 2019 A1
20190275290 Yamashita et al. Sep 2019 A1
20190290884 Kanemasa et al. Sep 2019 A1
20190329003 Watanabe Oct 2019 A1
20190336142 Torrie Nov 2019 A1
20190336727 Yang Nov 2019 A1
20190351182 Chou et al. Nov 2019 A1
20190366041 Yang Dec 2019 A1
20190381221 Ogle Dec 2019 A1
20190381223 Culbert et al. Dec 2019 A1
20200001046 Yang Jan 2020 A1
20200008820 Aboytes et al. Jan 2020 A1
20200009301 Yee Jan 2020 A1
20200009350 Goyal Jan 2020 A1
20200015840 Mallaby Jan 2020 A1
20200022712 Deville et al. Jan 2020 A1
20200023160 Chou et al. Jan 2020 A1
20200046368 Merritt et al. Feb 2020 A1
20200046937 Nakagawa et al. Feb 2020 A1
20200170521 Gupta et al. Jun 2020 A1
20200171276 Onozuka Jun 2020 A1
20200171277 Garrison et al. Jun 2020 A1
20200188630 Fujita et al. Jun 2020 A1
20200025845 Yang et al. Jul 2020 A1
20200205845 Yang et al. Jul 2020 A1
20200276411 Ogle et al. Sep 2020 A1
20200289136 Chou Sep 2020 A1
20200297362 Deville et al. Sep 2020 A1
20200297972 Yee Sep 2020 A1
20200306501 Yee Oct 2020 A1
20200323535 Yang Oct 2020 A1
20200337716 Garrison et al. Oct 2020 A1
20200345979 Loh et al. Nov 2020 A1
20200352494 Gable et al. Nov 2020 A1
20200368494 Parmar Nov 2020 A1
20200397957 Teigen et al. Dec 2020 A1
20210001141 Pfiffner et al. Jan 2021 A1
20210045622 Petroff et al. Feb 2021 A1
20210045758 Garrison et al. Feb 2021 A1
20210052296 Garrison Feb 2021 A1
20210068852 Spence Mar 2021 A1
20210069467 Garrison et al. Mar 2021 A1
20210093336 Roue Apr 2021 A1
20210106238 Strasser Apr 2021 A1
20210106792 Rafiee Apr 2021 A1
20210128182 Teigen et al. May 2021 A1
20210146094 Christian et al. May 2021 A1
20210153744 Pierro May 2021 A1
20210186537 Buck et al. Jun 2021 A1
20210186542 Buck et al. Jun 2021 A1
20210228844 Ogle Jul 2021 A1
20210315596 Buck et al. Oct 2021 A1
20210315598 Buck et al. Oct 2021 A1
20210316121 Buck et al. Oct 2021 A1
20210316127 Buck et al. Oct 2021 A1
20210353314 Porter et al. Nov 2021 A1
20210361366 Murphy et al. Nov 2021 A1
20210361909 Cottone et al. Nov 2021 A1
20210378527 Strasser et al. Dec 2021 A1
20210378696 Yang et al. Dec 2021 A1
20220047849 Yee et al. Feb 2022 A1
20220096104 Ogle Mar 2022 A1
20220151646 Dholakia et al. May 2022 A1
20220218365 Deville et al. Jul 2022 A1
20220218366 Deville et al. Jul 2022 A1
20220240959 Quick Aug 2022 A1
20220280753 Garrison et al. Sep 2022 A1
20220346814 Quick Nov 2022 A1
20230015259 Buck et al. Jan 2023 A1
20230061728 Davis et al. Mar 2023 A1
20230064188 Davis et al. Mar 2023 A1
20230069826 Keating et al. Mar 2023 A1
20230093602 Higgins et al. Mar 2023 A1
20230114375 Yee Apr 2023 A1
20230165596 Aboytes et al. Jun 2023 A1
Foreign Referenced Citations (75)
Number Date Country
101123918 Feb 2008 CN
101252958 Aug 2008 CN
101321552 Dec 2008 CN
101340849 Jan 2009 CN
101795631 Aug 2010 CN
201596219 Oct 2010 CN
102159146 Aug 2011 CN
102205161 Oct 2011 CN
102319097 Jan 2012 CN
102573701 Jul 2012 CN
102844071 Dec 2012 CN
102847220 Jan 2013 CN
203263993 Nov 2013 CN
103648574 Mar 2014 CN
103764214 Apr 2014 CN
204158457 Feb 2015 CN
104548316 Apr 2015 CN
104622538 May 2015 CN
104884117 Sep 2015 CN
104918578 Sep 2015 CN
105120776 Dec 2015 CN
105208945 Dec 2015 CN
105208951 Dec 2015 CN
204909516 Dec 2015 CN
107405159 Nov 2017 CN
110916768 Mar 2020 CN
8900059 May 1989 DE
10 2010 053111 Jun 2012 DE
10 2012 112732 Jun 2014 DE
0 330 843 Dec 1993 EP
0 582 533 Feb 1994 EP
0 309 471 Aug 1996 EP
1 349 486 Mar 2008 EP
2 069 528 Mar 2013 EP
2 937 108 Oct 2015 EP
2 928 360 Jan 2017 EP
2 211 732 May 2018 EP
3 539 486 Sep 2019 EP
3 698 740 Aug 2020 EP
2077132 Dec 1981 GB
2002-535049 Oct 2002 JP
2003-527925 Sep 2003 JP
2006-087643 Apr 2006 JP
2006-102222 Apr 2006 JP
2006-521881 Sep 2006 JP
2008-502378 Jan 2008 JP
2013-504388 Feb 2013 JP
2014-515670 Jul 2014 JP
2015-504327 Feb 2015 JP
WO 1995009659 Apr 1995 WO
WO 2000000100 Jan 2000 WO
WO 2004008974 Jan 2004 WO
WO 2006101170 Sep 2006 WO
WO 2009054968 Apr 2009 WO
WO 2009125575 Oct 2009 WO
WO 2009132218 Oct 2009 WO
WO 2010126786 Nov 2010 WO
WO 2011011493 Jan 2011 WO
WO 2012052159 Apr 2012 WO
WO 2014151209 Sep 2014 WO
WO 2014203336 Dec 2014 WO
WO 2016001712 Jan 2016 WO
WO 2016018781 Feb 2016 WO
WO 2017025775 Feb 2017 WO
WO 2018121363 Jul 2018 WO
WO 2018169032 Sep 2018 WO
WO 2019178165 Sep 2019 WO
WO 2019222518 Nov 2019 WO
WO 2019246583 Dec 2019 WO
WO 2020145928 Jul 2020 WO
WO 2021016213 Jan 2021 WO
WO 2021064955 Apr 2021 WO
WO 2021090821 May 2021 WO
WO 2021105658 Jun 2021 WO
WO 2021242734 Dec 2021 WO
Non-Patent Literature Citations (76)
Entry
U.S. Appl. No. 15/862,488 (U.S. Pat. No. 10,653,426), filed Jan. 4, 2018, Thromboresistant Coatings for Aneurysm Treatment Devices.
U.S. Appl. No. 16/863,723, filed Apr. 30, 2020, Thromboresistant Coatings for Aneurysm Treatment Devices.
U.S. Appl. No. 15/442,393 (U.S. Appl. No. 10,183,145), filed Feb. 24, 2017, Enhanced Flexibility Neurovascular Catheter.
U.S. Appl. No. 15/443,874 (U.S. Pat. No. 10,835,711), filed Feb. 27, 2017 (Nov. 17, 2020), Telescoping Neurovascular Catheter With Enlargeable Distal Opening.
U.S. Appl. No. 15/443 841 (U.S. Pat. No. 10,661,053), filed Feb. 27, 2017, Method of Pulsatile Neurovascular Aspiration With Telescoping Catheter.
U.S. Appl. No. 15/443,838 (U.S. Pat. No. 10,179,224), filed Feb. 27, 2017, Enhanced Flexibility Neurovascular Catheter With Tensile Support.
U.S. Appl. No. 15/443,877 (U.S. Pat. No. 10,183,146), filed Feb. 27, 2017, Method of Making an Enhanced Flexibility Neurovascular Catheter.
U.S. Appl. No. 15/443,948 (U.S. Pat. No. 10,441,745), filed Feb. 27, 2017, Neurovascular Catheter With Enlargeable Distal End.
U.S. Appl. No. 16/542,657, filed Aug. 16, 2019, Method of Making an Enhanced Flexibility Neurovascular Catheter.
U.S. Appl. No. 15/444,038 (U.S. Pat. No. 10,183,147), filed Feb. 27, 2017, Neurovascular Catheter Extension Segment.
U.S. Appl. No. 16/833,585, filed Mar. 28, 2020, Enhanced Flexibility Neurovascular Catheter.
U.S. Appl. No. 16/503,899, filed Jul. 5, 2019, Sealed Neurovascular Extendable Catheter.
U.S. Appl. No. 16/802,317, filed Feb. 26, 2020, Catheter With Seamless Flexibility Transitions.
U.S. Appl. No. 16/503,886, filed Jul. 5, 2019, Vacuum Transfer Tool for Extendable Catheter.
U.S. Appl. No. 16/398,626 (U.S. Pat. No. 10,835,272), filed Apr. 30, 2019 (Nov. 17, 2020), Devices and Methods for Removing Obstructive Material From an Intravascular Site.
U.S. Appl. No. 16/400,263, filed May 1, 2019, Neurovascular Catheter Having Atraumatic Angled Tip.
U.S. Appl. No. 16/570,084, filed Sep. 13, 2019, Enhanced Flexibility Neurovascular Catheter With Tensile Support.
U.S. Appl. No. 16/683,718 (U.S. Pat. No. 10,653,434), filed Nov. 14, 2019, Devices and Methods for Removing Obstructive Material From an Intravascular Site.
U.S. Appl. No. 16/704,330 (U.S. Pat. No. 10,786,270), filed Dec. 5, 2019 (Sep. 29, 2020), Neurovascular Aspiration Catheter With Elliptical Aspiration Port.
U.S. Appl. No. 16/589,563, filed Oct. 1, 2019, Devices and Methods for Removing Obstructive Material From an Intravascular Site.
U.S. Appl. No. 17/036,258, filed Sep. 29, 2020, Embolic Retrieval Catheter.
U.S. Appl. No. 17/070,832, filed Oct. 14, 2020, Systems and Methods for Multivariate Stroke Detection.
U.S. Appl. No. 16/728,469, filed Dec. 27, 2019, Neurovascular Access With Dynamic Assistance.
U.S. Appl. No. 17/125,723, filed Dec. 17, 2020, Methods and Systems for Advancing a Catheter to a Target Site.
U.S. Appl. No. 17/125,217, filed Dec. 17, 2020, Methods and Systems for Treating a Pulmonary Embolism.
U.S. Appl. No. 17/125,743, filed Dec. 17, 2020, Systems for Accessing a Central Pulmonary Artery.
U.S. Appl. No. 17/125,742, filed Dec. 17, 2020, Methods and Systems for Accessing and Retrieving Thrombo-Emboli.
U.S. Appl. No. 15/862,488 (U.S. Pat. No. 10,653,426), filed Jan. 4, 2018 (May 19, 2020), Thromboresistant Coatings for Aneurysm Treatment Devices.
U.S. Appl. No. 15/442,393 (U.S. Pat. No. 10,183,145), filed Feb. 24, 2017 (Jan. 22, 2019), Enhanced Flexibility Neurovascular Catheter.
U.S. Appl. No. 15/443,841 (U.S. Pat. No. 10,661,053), filed Feb. 27, 2017 (May 26, 2020), Method of Pulsatile Neurovascular Aspiration With Telescoping Catheter.
U.S. Appl. No. 15/443,838 (U.S. Pat. No. 10,179,224), filed Feb. 27, 2017 (Jan. 15, 2019), Enhanced Flexibility Neurovascular Catheter With Tensile Support.
U.S. Appl. No. 15/443,877 (U.S. Pat. No. 10,183,146), filed Feb. 27, 2017 (Jan. 22, 2019), Method of Making an Enhanced Flexibility Neurovascular Catheter.
U.S. Appl. No. 15/443,948 (U.S. Pat. No. 10,441,745), filed Feb. 27, 2017 (Oct. 15, 2019), Neurovascular Catheter With Enlargeable Distal End.
U.S. Appl. No. 15/444,038 (U.S. Pat. No. 10,183,147), filed Feb. 27, 2017 (Jan. 22, 2019), Neurovascular Catheter Extension Segment.
U.S. Appl. No. 16/683,718 (U.S. Pat. No. 10,653,434), filed Nov. 14, 2019 (May 19, 2020), Devices and Methods for Removing Obstructive Material From an Intravascular Site.
U.S. Appl. No. 17/125,723 (U.S. Pat. No. 11,065,018), filed Dec. 17, 2020 (Jul. 20, 2021), Methods and Systems for Advancing a Catheter to a Target Site.
U.S. Appl. No. 17/357,490, filed Jun. 24, 2021, Catheter System for Treating Thromboembolic Disease.
U.S. Appl. No. 17/357,558, filed Jun. 24, 2021, Aspiration System With Accelerated Response.
U.S. Appl. No. 17/357,643, filed Jun. 24, 2021, Hemostasis Valve.
U.S. Appl. No. 17/357,672, filed Jun. 24, 2021, Split Dilator Aspiration System.
U.S. Appl. No. 17/357,715, Jun. 24, 2021, Methods of Placing Large Bore Aspiration Catheters.
U.S. Appl. No. 17/343,004, Jun. 9, 2021, Catheter with Enhanced Tensile Strength.
U.S. Appl. No. 17/410,162, filed Aug. 24, 2021, Neurovascular Catheter Having Angled Tip.
U.S. Appl. No. 17/407,852, filed Aug. 20, 2021, Systems and Methods for Multivariate Stroke Detection.
U.S. Appl. No. 17/357,715, filed Jun. 24, 2021, Methods of Placing Large Bore Aspiration Catheters.
U.S. Appl. No. 17/343,004, filed Jun. 9, 2021, Catheter With Enhanced Tensile Strength.
U.S. Appl. No. 17/398,244, filed Aug. 10, 2021, Catheter With a Preset Curve.
U.S. Appl. No. 16/863,723 (U.S. Pat. No. 11,224,434), filed Apr. 30, 2020 (Jan. 18, 2022), Thromboresistant Coatings for Aneurysm Treatment Devices.
U.S. Appl. No. 17/574,907, filed Jan. 13, 2022, Thromboresistant Coatings for Aneurysm Treatment Devices.
U.S. Appl. No. 16/863,723 (U.S. Pat. No. 11,224,434), filed Apr. 30, 2020 (Jan. 18, 2022), Method of Pulsatile Neurovascular Aspiration With Telescoping Catheter.
U.S. Appl. No. 15/443,838 (U.S. Pat. No. 10,179,224), filed Feb. 27, 2017 (Jan. 1, 2019), Enhanced Flexibility Neurovascular Catheter With Tensile Support.
U.S. Appl. No. 16/542,657 (U.S. Pat. No. 11,147,949), filed Aug. 16, 2019 (Oct. 19, 2021), Method of Making an Enhanced Flexibility Neurovascular Catheter.
U.S. Appl. No. 17/502,389, filed Oct. 15, 2021, Neurovascular Catheter With Enlargeable Distal End.
U.S. Appl. No. 16/400,263 (U.S. Pat. No. 11,123,090), filed May 1, 2019 (Sep. 21, 2021), Neurovascular Catheter Having Atraumatic Angled Tip.
U.S. Appl. No. 16/570,084 (U.S. Pat. No. 11,311,303), filed Sep. 13, 2019 (Apr. 26, 2022), Enhanced Flexibility Neurovascular Catheter With Tensile Support.
U.S. Appl. No. 17/070,832 (U.S. Pat. No. 11,134,859), filed Oct. 14, 2020 (Oct. 5, 2021), Systems and Methods for Multivariate Stroke Detection.
U.S. Appl. No. 17/125,743 (U.S. Pat. No. 11,253,277), filed Dec. 17, 2020 (Feb. 22, 2022), Systems for Accessing a Central Pulmonary Artery.
U.S. Appl. No. 17/357,558 (U.S. Pat. No. 11,259,821), filed Jun. 24, 2021 (Mar. 1, 2022), Aspiration System With Accelerated Response.
U.S. Appl. No. 17/475,202, filed Sep. 14, 2021, Enhanced Flexibility Neurovascular Catheter.
U.S. Appl. No. 17/343,004 (U.S. Pat. No. 11,207,497), filed Jun. 9, 2021 (Dec. 28, 2021), Catheter With Enhanced Tensile Strength.
U.S. Appl. No. 29/811,884, filed Oct. 18, 2021, Inline Fluid Filter.
U.S. Appl. No. 17/527,393, filed Nov. 16, 2021, Catheter Drive System for Supra-Aortic Access.
U.S. Appl. No. 17/527,379, filed Nov. 16, 2021, Robotically Driven Interventional Device.
U.S. Appl. No. 17/527,460, filed Nov. 16, 2021, Sterile Packaging Assembly for Robotic Interventional Device.
U.S. Appl. No. 17/527,452, filed Nov. 16, 2021, Method of Robotically Performing a Neurovascular Procedure.
U.S. Appl. No. 17/527,456, filed Nov. 16, 2021, Multi Catheter Method of Performing a Robotic Neurovascular Procedure.
International Search Report and Written Opinion dated May 7, 2021 in application No. PCT/US20/65349.
Abay et al., 2014, Investigation of photoplethysmography and Near Infrared Spectroscopy for the assessment of tissue blood perfusion, 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, pp. 5361-5364, doi: 10.1109/EMBC.2014.6944837.
Invitation to Pay Additional Fees for International Application No. PCT/US20/65349 dated Feb. 24, 2021.
GUIDEZILLA Guide Extension Catheter, Boston Scientific 510k Submission, Feb. 20, 2017.
Merit Medical Systems Acquired Distal Access's SPINR Platform, Jul. 15, 2015, Digital Access, LLC; Merit Medical Systems, 5 pages.
Simon et al., Exploring the efficacy of cyclic vs. static aspiration in a cerebral thrombectomy model: an initial proof of concept study, J. NeuroIntervent Surg 2014, 6 pp. 677-683.
Simon et al., Hydrodynamic comparison of the Penumbra system and commonly available syringes in forced—suction thrombectomy, J. NeuroIntervent Surg 2014, 6, pp. 205-211.
Spiotta et al., Evolution of thrombectomy approaches and devices for acute stroke: a technical review, J. NeuroIntervent Surg 2015, 7, pp. 2-7.
Bernava et al., Sep. 23, 2019, Direct trhomboaspiration efficacy for mechanical thrombectomy is related to the angle of interaction between the catheter and the clot, J. NeuroIntervent Surg., 0:1-6, doi:10.1136/neurintsurg-2019-015113.
Korpelainen et al., 1995, Asymmetrical skin temperature in ischemic stroke, Stroke, 26(9):1543-1547.
Related Publications (1)
Number Date Country
20210187244 A1 Jun 2021 US
Provisional Applications (2)
Number Date Country
63064273 Aug 2020 US
62950058 Dec 2019 US