Described herein are features of surgical articles, surgical methods, and surgical tools, for use in the field of pelvic surgery, e.g., to install support devices for use in treating vaginal prolapse.
Medical conditions involving pelvic prolapse are conditions of great importance. An aging population can be prone to such conditions. Pelvic prolapse develops when intra-abdominal pressure, muscle failure, a surgical procedure such as a hysterectomy, or other factors, allow or cause a tissue of a pelvic organ such as the vagina to become displaced. Within the general category of pelvic organ prolapse, specific types include vault prolapse (apical); cystocele (anterior); rectocele and enterocele (posterior); and combinations of these.
Various techniques have been designed to correct or ameliorate prolapse and prolapse symptoms, with varying degrees of success. Nonsurgical treatments involve measures to improve the factors associated with prolapse, including treating chronic cough, obesity, and constipation. Other nonsurgical treatments may include pelvic muscle exercises or supplementation with estrogen.
A variety of surgical procedures have also been attempted for the treatment of prolapse. See for example U.S. patent application Ser. No. 10/834,943, entitled “Method and Apparatus for Treating Pelvic Organ Prolapse,” filed Apr. 30, 2004, and Ser. No. 10/306,179, entitled “Transobturator Surgical Articles and Methods,” filed Nov. 27, 2002, the entireties of each of these two patent applications being incorporated herein by reference. Such patent applications describe articles and methods for treating pelvic organ prolapse by use of a support member for supporting specific tissue. Application Ser. No. 10/834,943, for example, discusses a support member that includes a central tissue support portion and two end (extension) portions, and related methods for implantation. The central tissue support portion can be attached at tissue of a vaginal vault. The end portions of the support member are then positioned through respective tissue pathways extending to an external incision at the perirectal region, to place the support member in a therapeutic position.
Methods of supporting vaginal tissue to treat vaginal prolapse can be differentiated in terms of the location of implanted materials or anatomical tissue used to support the vaginal tissue. One current method of treating posterior vaginal tissue prolapse involves the use of an intravaginal slingplasty (“IVS”) tunneler device. Methods of treating prolapse using an IVS tunneler involve supporting vaginal tissue by attaching a portion of a surgical implant to vaginal tissue and passing another portion of the implant through the iliococcygeus muscle below the white line, for support. A different technique, known as sacrospinous ligament fixation, involves supporting vaginal tissue by attachment to the sacrospinous ligaments. Both of these methods have drawbacks, such as not providing completely correct anatomical support for the vagina. Attaching vaginal tissue to the sacrospinous ligaments can pull the vagina down toward the pelvic floor. The use of an IVS tunneler to pass an implant through the iliococcygeous muscle allows for support from a location higher up in the anatomy, but still not an anatomically correct location.
The invention relates to transvaginal methods of treating posterior vaginal prolapse, and surgical devices. Embodiments relate to methods, tools, and surgical systems useful for transvaginal placement of an implant (e.g., a synthetic mesh implant or an implant that contains a combination of synthetic and biologic materials) in a position to support posterior tissue of the vagina, wherein the implant passes bi-laterally through opposing tissue paths that each include passage at a region of the arcus tendineus, e.g., near the ischial spine.
Some embodiments of methods may involve an external incision at a perirectal region, to place an extension portion of an implant, while alternate embodiments to not require and can avoid an external incision. The implant can be introduced to the pelvic region transvaginally; transvaginally attached to tissue of the vaginal vault for support; and then distal ends of the implant can be passed bilaterally near a region of each arcus tendineus (e.g., near both of the patient's ischial spines), as described, using a transvaginal procedure.
The tissue path through a region of the arcus tendineus can result in benefits including proper anatomical positioning of the supported vaginal tissue, and fixation of the implant in tissue near the arcus tendineus due to tissue ingrowth. Additionally, exemplary transvaginal methods can allow for the location of extension portions to be adjusted by movement of the extension portion extending through the tissue path, e.g., through a tissue path that surrounds the arcus tendineus.
According to certain embodiments an implant can be used to treat vaginal vault prolapse. The support member can include a tissue support portion that can be attached to tissue of the vaginal vault and two end portions attached to the tissue support portion. The implant can be used to place vaginal tissue in a therapeutic position for treatment of vaginal vault prolapse by attaching the tissue support portion to tissue of the vaginal vault, and attaching the end portions to separate locations for positioning or supporting the prolapsed tissue.
Exemplary implants, methods, tools, and systems provide anatomical support to treat vaginal prolapse (e.g., vaginal vault prolapse, enterocele, and rectocele) by using a supportive implant attached to vaginal tissue, that passes from posterior vaginal tissue to a location in a region of the arcus tendineus (“white line”), e.g., near the ischial spine. The implant can pass from the point of attachment at the vaginal tissue, through a tissue path that includes passage through tissue at the immediately anterior edge of the ischial spine and at the level of the ischial spine near the connection of the ischial spine to the arcus tendineus, and above or below the arcus tendineus.
As used herein, the terminology that refers to positions “above” the white line refers to anatomy that includes the obturator internus muscle, and references to positions “below” the white line refer to anatomy that includes the iliococcygeus muscle. Stated differently, embodiments of the invention involve a tissue path that is defined to include a curved-rectangular-shaped area above and below the curved arcus tendineus. The region includes a specific region having a height extending from 2 inches above to 2 inches below the arcus tendineus, and a length starting at the ischial spine and extending 3 centimeters to the anterior of the ischial spine.
In one aspect, the invention relates to a method of supporting posterior vaginal tissue. The method includes: providing an implant comprising a tissue support portion and an extension portion extending from the tissue support portion, creating a vaginal incision, transvaginally contacting the support portion with posterior vaginal tissue, transvaginally producing a tissue path between the position of the tissue support portion and a region of the arcus tendineus, and transvaginally extending the extension portion through the tissue path.
In another aspect, the invention relates to a pelvic implant assembly that includes: an implant comprising supportive portions comprising a tissue support portion, and elongate extension portions extending from of the tissue support portion; and an insertion tool at a distal end of an extension portion, the insertion tool comprising a curved portion sized and shaped to be used in a transvaginal procedure to define a tissue path that exits the pelvic floor region in a region of the arcus tendineus, partially extends around an arcus tendineus, and re-enters the pelvic floor.
According the invention, surgical implants can be used to treat conditions of vaginal prolapse. Also contemplated herein are various features of surgical implants, surgical tools, systems that include implant and tool, and surgical methods. The implants and tools are useful for treating conditions of vaginal prolapse including vaginal vault prolapse, but will also be appreciated to be useful for treating other conditions of pelvic tissue prolapse.
In general, the invention relates to methods, tools, and systems useful for attaching one portion of a surgical implant to pelvic tissue such as vaginal tissue and passing another portion of the implant through a tissue path that includes tissue in the region of the arcus tendineus or “white line,” preferably near the ischial spine.
The location of this tissue path passing through a region of the arcus tendineus or “white line” can result in improved anatomical correctness of the position of supported vaginal tissue. The location in the region of the white line can provide a proper axis for supported vaginal tissue, higher than support provided by alternate methods of treating vaginal prolapse such as those that involve sacrospinous ligament fixation or use of the IVS tunneler, which alternate methods would typically produce a tissue path more directly through the buttocks. A location in the region of the arcus tendineus, e.g., above the arcus tendineus, does not cause vaginal tissue to be pulled down toward the pelvic floor as with attachment to the sacrospinous ligaments. Also, a better vaginal length can result compared to the use of an IVS tunneler, because the support is located closer to the ischial spine.
Also advantageously, a tissue path can be one that wraps around the outside portion (relative to the region of the pelvic floor) of the arcus tendineus, meaning that an extension portion of an implant exits the pelvic region near the arcus tendineus (either above or below the arcus tendineus), continues along a path that wraps or bends around the white line, then re-enters the pelvic region on the other side of the white line; i.e., below or above the arcus tendineus, whichever is opposite of the direction of entry. The tissue path can include a relatively sharp turning radius to place the extension portion near the arcus tendineus. By extending around the white line, the extension portion contacts tissue that surrounds the white line and can become ingrown into that tissue. This ingrowth can provide fixation of the extension portion into the tissue. During the procedure the placement of the extension portion and implant can be adjusted by manipulating the extension portion from the pelvic region side, after passing the extension portion around the arcus tendineus. Specifically, the extension portion will include two portions within the pelvic region, and those two portions can be manipulated to adjust the position of one or more of the extension portion, a central portion of an implant, and tissue attached to a central portion of the implant.
A preferred example of a region of the arcus tendineus, e.g., as illustrated as region 12, can be defined as a curved-rectangular-shaped area defined to include a region that extends 2 centimeters above and 2 centimeters below (e.g., 1 centimeter above and 1 centimeter below) the arcus tendineus and that has a length starting at the ischial spine and extending in an anterior direction along the arcus tendineus, e.g., a distance of up to about 3 centimeters anterior of the ischial spine (e.g., up to about 1 centimeter anterior to the ischial spine). A particularly preferred tissue path can be very near or as close as possible to the ischial spine and either above or below the arcus tendineus, such as through tissue at the immediately anterior edge of the ischial spine and at the level of the ischial spine near the connection of the ischial spine to the arcus tendineus; dimensions can be 0.5 or 1 centimeter above or below the arcus tendineus, and 0.5 or 1 centimeter anterior to the ischial spine along the arcus tendineus.
Alternately, a tissue path as illustrated in
As illustrated in
Referring to
Referring still to
The invention also relates to implants, tools, and kits, that may be used according to methods described herein, and that may also be useful for treating conditions other than vaginal prolapse, e.g., other types of pelvic tissue prolapse. In general, implants that may be useful according to methods described herein can include those types of implants known for use to treat vaginal prolapse, and similar implants. Exemplary implants can be in the form of a biocompatible mesh material such as a mesh strip made of a single uniform length of mesh, or, alternately, can be a multi-portion implant that includes a support portion for attachment to pelvic (e.g., vaginal) tissue connected to end portions or extensions. Embodiments include a length of mesh strip of generally uniform thickness and width, as well as implants having distinct or discernible sections of different sizes, materials, or mechanical properties. Other exemplary embodiments include a tissue support portion of a biologic material and extension portions of synthetic mesh material.
Exemplary implants may be a mesh strip such as mesh strips and multi-component implants illustrated in the accompanying figures. As illustrated, exemplary implants may consist of a strip of uniform thickness and width, as well as implants that include portions of different sizes, shapes, and materials, for connecting to tissue and for supporting tissue. A tissue support portion may be of a biologic material or a synthetic (e.g., mesh) material. Attached to a tissue support portion can be one, two, or more, extensions (or “extension portions” or “end portions”) shaped and sized to extend from the point of attachment with the support portion of the implant to another location of the anatomy. Each extension may be an elongate material that is biologic or synthetic, e.g., an elongate synthetic mesh attached directly to the support portion.
Various implant products are available commercially for treating prolapse conditions, e.g., from American Medical Systems Inc., of Minnetonka Minn. Examples of such products include: the line of PERIGEE™ products for treatment of cystocele, from American Medical Systems, Inc.; the APOGEE™ product for treating enterocele, rectocele, and vaginal vault prolapse, also available from American Medical Systems Inc.; as well as products for CAPS procedures (combined-prolapse-repair-with sling) for treating cystocele and stress urinary incontinence.
Examples of implants that can be used or modified for use according to the present description are described, e.g., in US application number 2004/0039453, “Pelvic Health Implants and Methods,” (describing implants useful for treating multiple pelvic disorders) having Ser. No. 10/423,662, and filed on Apr. 25, 2003; US application number 2005/0245787, “Method and Apparatus for Treating Pelvic Organ Prolapse,” having Ser. No. 10/834,943, and filed on Apr. 30, 2004; U.S. patent application Ser. No. 11/347,063, filed Feb. 3, 2006, entitled ”Pelvic Implants and Related Methods; U.S. patent application Ser. No. 11/398,368, filed Apr. 5, 2006, entitled “Articles, Devices, and Methods for Pelvic Surgery”; and U.S. patent application Ser. No. 11/243,802, filed Oct. 5, 2005, entitled “Method for Supporting Vaginal Cuff” the entireties of each of these being incorporated herein by reference.
Exemplary implants can include a tissue support portion for placing in contact with tissue to be supported, and one or more “extension” portions (or “end portions”), the tissue support portion being useful to support pelvic tissue such as vaginal tissue (anterior, posterior, apical, etc). The tissue support portion can be sized and shaped to contact the desired tissue when installed. A tissue support portion that is located between two or more extension or end portions is sometimes referred to herein as a “central support portion.”
Dimensions of an implant or a portion of an implant can be as desired and useful for any particular installation procedure, treatment, or combination of treatments, and to support a specific tissue, type of tissue, or multiple tissues (e.g., bladder, vagina, urethra, etc.). Exemplary dimensions can be sufficient to allow the tissue support portion to contact tissue to be supported and to allow one or more extension portion to extend from the tissue support portion to a desired anatomical location, e.g., through a tissue path through a region of the arcus tendineus, as described.
A tissue support portion can be sized and shaped to an overall area for contacting tissue being supported, and can depend on the condition being treated, e.g., vault prolapse, enterocele, rectocele, or a combination of these. The tissue support portion is of sufficient size and shape to at least partially surround or otherwise be in contact to support prolapsed tissue. A tissue support portion can optionally be of a width that is greater than a width of an extension portion. An increased width of a tissue support portion may take the form of one or two lateral extensions that extend the width of the tissue support portion in at least one direction, beyond the width of an extension portion. The shape of the tissue support portion can also be varied, depending on the intended application and treated condition, and may be square, rounded, angled, rectangular, etc. Exemplary widths of a tissue support portion, measured laterally (i.e., perpendicular to lengths of extension portions), can be in the range from 1 to 8 centimeters, such as from 2 to 6 centimeters. Generally, exemplary lengths of a tissue support portion can be up to 8 centimeters, such up to about 4 centimeters.
Extension portions are elongate pieces of material that extend from the tissue support portion and are integral with or connected to the tissue support portion. Extension portions are useful to attach to other anatomical features and thereby provide support for the tissue support portion and the supported tissue. One or multiple (e.g., one, two, or four) extension portions can extend from the tissue support portion as elongate “ends,” “arms,” or “extensions,” that are used to attach to other anatomy. Extension portions extending from a tissue support portion in contact with posterior vaginal tissue, can be extended through a tissue path as described herein, passing through a region of the arcus tendineus such as above the arcus tendineus.
A width of an extension portion can be a width useful for implanting the implant and for providing desired strength and fixation properties during and after implantation and optional tensioning of the sling. Typical widths of an extension portion can be in the range from 0.5 to 3 centimeters, e.g., from 0.8 to 2 centimeters, such as from 0.8 to 1.5 centimeters. Extension portions can typically have a uniform or substantially uniform width along the length, normally not varying by more than about 25 percent of the average width along the length of the installed portion of the extension portion. A length of an extension portion can be as desired to extend from a tissue support portion installed at a desired pelvic tissue location, through a tissue path of a desired length, e.g., from a tissue support portion installed at a vaginal tissue, to a region above the arcus tendineus, optionally back into the pelvic cavity, and optionally further passing through the buttock to an exterior incision external to the buttock.
An example of a particular type of pelvic implant is the type that includes supportive portions including or consisting of a central support portion and two elongate extension portions extending from the central support portion. The term “supportive portions” refers to portions of an implant that function to support tissue after the implant has been implanted, and specifically includes extension portions and a tissue support portion, and does not include optional or appurtenant features of an implant such as a sheath, dilator, attached or engaged insertion tool, or other connected tools or implantation aids.
According to certain embodiments of implants, various features can be incorporated into a useful implant to facilitate installation of a device during a surgical procedure. For instance, a suture may be attached to an implant, along a length of an extension portion, for use in adding tension or in positioning the implant or a portion (e.g., extension) of the implant. Alternately or in addition an exemplary implant may include a removable sheath such as a flexible plastic, transparent elongate tube that can cover extension portions of an implant to allow a surgeon to apply tension or pressure on the sheath to indirectly apply pressure or tension to the extension portion, for placing or adjusting the location of the implant.
An implant can be installed according to the present description by use of standard surgical instruments, or by use of instruments that are designed or particularly useful for placing an extension portion through a tissue path as described, e.g., in a region of the arcus tendineus, such as above the arcus tendineus. Generally, an insertion tool may include a portion for creating a tissue path, that portion being curved or straight, with exemplary embodiments including a curved portion of a sized and shaped (e.g., length and curvature) that will be useful to form a tissue path as described herein, in a region of the arcus tendineus and preferably wrapping around the arcus tendineus, to lead a distal end of an extension portion at least partially through a tissue path that wraps around the arcus tendineus. An exemplary length (measured as the circumferential arclength of the curved portion) of a curved portion can be from 3 to 5 centimeters, and an exemplary radius of curvature of a curved portion may be, e.g., in the range from 0.5 to 1.5 centimeters.
Exemplary geometric forms of a curved portion can be a form of a partial circle, such as a half circle. The partial circle is arranged to be in a plane that does not include a line defined by a longitudinal axis of a shaft. With this configuration, the curved portion can be located to define a partial circle having the shaft of the tool (and a longitudinal axis of the shaft) as a center of the circle. The curved portion can then engage tissue and be rotated around the shaft and longitudinal axis by rotation of the handle about the longitudinal axis, to cause the curved portion to define a circular tissue path. The partial circle can have a relatively uniform radius of curvature, such in the range from 0.5 to 1.5 centimeters (e.g., from 0.7 to 1.2 centimeters), extending over an arclength that traverses from 90 to 270 degrees, e.g., from 170 to 190 degrees, about 180 degrees. This arclength, when measured as the circumference of the partial circle, can be, e.g., from 3 to 5 centimeters.
An example of a useful insertion tool is a small curved needle attached at a distal end of an extension portion, which can be manipulated using a surgical instrument such as a forceps or pliers. The small curved needle can consist of a single length of curved needle material, e.g., metal or plastic, attached at a distal end of the extension portion. The needle may be considered to be a two-dimensional form, in that it the curvature of the needle can define a two-dimensional plane. The small curved needle may be manipulated transvaginally and passed through tissue in a region of the arcus tendineus, preferably near the ischial spine. The needle is curved to exit the pelvic region, wrap around the ischial spine, and then lead the extension portion back into the pelvic region to cause the extension portion to follow a tissue path that wraps around the arcus tendineus. The needle may then be removed by cutting the extension portion and the position of the extension portion may be adjusted by manipulation of portions of the extension portions that are located within the region of the pelvic floor.
Another example of a tool useful for placing an end portion of an implant transvaginally is a small three-dimensional looped needle such as a Deschamps needle or a similar needle that can be introduced transvaginally and that can then be used to pass an end portion of an implant through a tissue path in a region of the arcus tendineus, e.g., at the level of the ischial spine. The tool can be considered to include a shaft and curved end portion that exist in three dimensions, with the shaft defining a longitudinal axis and the curved end portion originating from that axis and extending in two additional directions. In use, an end portion of an implant may be attached to a tip of a curved distal portion of the tool and passed through tissue of a region of the arcus tendineus using the curved tip, transvaginally. For example, the curved distal end portion can be inserted transvaginally, and the handle can be rotated to rotate the curved distal end portion to define a circular tissue path. The needle is curved to exit the pelvic region, wrap around the arcus tendineus, and then lead the extension portion back into the pelvic region to cause the extension portion to follow a tissue path that wraps around the arcus tendineus. Optionally, according to certain exemplary methods, an additional surgical tool such as a tunneler (e.g., the IVS Tunneler device available commercially from Tyco) can be inserted through an external incision (e.g., in a perirectal region) into the pelvic region, attached to a distal end of the extension portion, and then removed to lead the extension portion of the implant from the pelvic region to an external location.
An insertion tool or tools (e.g., Deschamps needle, or a small needle to be manipulated by a standard operating room tool such as a needle-driver) may engage a distal end of an extension portion of an implant by any useful engagement configuration. The engagement may be a permanent attachment or removable engagement, as desired.
According to certain embodiments of the invention, an insertion tool may be attached to the implant at a distal end of an extension portion. The term “attach,” when used with regard to an end portion attached to an insertion tool, will refer to engagement configurations that are not easily removable, such as in an a manner designed to be used during a surgical implantation method and that would normally be removed only by cutting the extension portion of the implant, as opposed to releasing (e.g., un-threading) the implant from the insertion tool. Examples of types of attachment mechanisms include attachment by adhesive such as a pressure sensitive adhesive, a structural adhesive, a two-part reactive adhesive such as an epoxy adhesive, etc.; a tight knot using thread or suture material that would not be easily untied during a surgical installation procedure; a non-removable mechanical interaction between the insertion tool and the implant portion such as by permanently threading the implant portion through an eye, eyelet, slot, or hole in the tool so the end portion is not easily removed; a metal or plastic mechanical attachment such as a metal crimp at the end of the insertion tool; a polymeric attachment such as the use of a heat-shrinkable polymeric sheath; attachment by a molding manufacturing process such as by injection molding or insert molding a plastic dilator or plastic needle to a distal end of an extension portion; or any other mechanical or adhesive type of permanent or semi-permanent attaching mechanism. In contrast to an attachment, examples of types of removable engagement mechanisms include use of a loose knot that is easily untied during a surgical implantation procedure; an threaded dilator that removably engages a threaded needle tip for easy engagement and dis-engagement by threading and un-threading; and threading a distal end of an extension portion through an aperture (e.g., eye or eyelet) of an insertion tool such as a needle or a curved distal portion of a tool.
Attaching an insertion tool (e.g., dilator, needle, etc.) to a distal end of an extension portion of an implant eliminates the need for a surgeon to make that connection, which reduces preparation of the implant before or during surgery. The term “pre-attached” refers to an implant that includes an insertion tool attached to the implant as the implant is commercially supplied to a surgeon. The pre-attached device can be manufactured for distribution and sale in a condition where only minimal preparation (if any at all) needs to be performed by the surgeon prior to surgical implantation. Minimal preparation may include modification to size or shape of a portion of an implant (e.g., by trimming), or removing loose material or loose pieces, but does not include a step of creating a direct attachment between a portion of the implant and an insertion tool that will allow the portion of the implant to be placed or led through a tissue path.
Thus, embodiments of optional features of implants include an insertion tool that is attached e.g., pre-attached, or alternately is removably engaged, at a far (i.e., distal) end of an extension portion of an implant, the tool being a structure that facilitates installation of the extension portion and implant by being of a size, shape, rigidity, and overall design, to be capable of being used transvaginally to create a tissue path that passes through tissue in a region of the arcus tendineus, optionally and preferably wrapping around the arcus tendineus. Examples of insertion tools that may be either attached or removably engaged to a distal end of an extension portion include: a tip (distal end) of an extension portion that includes an attached rigid tip or “dilator,” optionally designed to cooperate and removably engage an end of another insertion tool for use together to create a tissue path during installation of an implant; a distal end of an extension portion that is permanently attached to an insertion tool in the form of a curved distal needle portion and a shaft and proximal handle portion, or another tool that can be inserted transvaginally to manipulate an extension portion of an implant during installation; and a distal end of an extension portion that is permanently attached to an insertion tool such as a small needle that can be manipulated by a grasping tool such as a needle driver, a forceps, or a pliers, etc., to manipulate an extension portion of an implant during transvaginal installation.
As one exemplary design, an implant may include a rigid (e.g., plastic), pushable dilator attached at a distal end of an extension portion, the dilator including a sharp tip at a first end and an opening at an opposing end, the opening designed and adapted to fit and removably engage an end of an insertion tool such as a needle. The pushable dilator can be designed to fit the leading edge of an insertion tool such as a long needle having a handle and a distal portion with a tip adapted to fit and removably engage the pushable dilator. The dilator can engage the end of the insertion tool and may be pushed or pulled by the insertion tool through tissue to either follow or produce a path in the tissue, such as by rotating the handle to cause the distal portion to produce a curved tissue path. To produce a path in the tissue by pushing the dilator through the tissue, the pushable dilator can be sufficiently sharp and rigid to pass through tissue when pushed using the needle (e.g., by rotating the needle).
A dilator (whether or not sufficiently sharp and rigid to be “pushable”) may be straight, or, according to certain specific embodiments of the invention, may be curved in a manner that will improve manipulation of the dilator during a surgical procedure, e.g., in a manner that will facilitate pushing the dilator through tissue to either produce or follow a particular path of tissue. Optionally for use with methods described herein with a tissue path in the region of the arcus tendineus, e.g., that wraps around the arcus tendineus, the external size and shape of a dilator may be suited to produce a tissue path that curves around the arcus tendineus, e.g., to exit the pelvic region by passing through the obturator internus above the arcus tendineus, pass behind the arcus tendineus, and re-enter the pelvic region by passing through the levator ani at a location below the arcus tendineus. The curved dilator may be considered to be a two-dimensional form, in that it the curvature of the dilator can define a two-dimensional plane.
As exemplary dimensions, a curved dilator may include a curved portion that has a radius of curvature in the range from 0.5 to 1.5 centimeters and a length (measured as the arclength of the curved portion) of from 3 to 5 centimeters. Also optionally, a curved shape or radius of a curved dilator can approximate or match a curved shape or radius of an insertion tool (e.g., a curved distal portion of an insertion tool such as a curved distal needle), and the curves of both a dilator and a curved distal portion of an insertion tool (e.g., needle) may be shaped to mach a tissue path that exits the pelvic area at a location near the ischial spine and above the arcus tendineus by passing through the obturator internus muscle, continues around the arcus tendineus, and re-enters the pelvic region below the arcus tendineus by passing through the levator ani muscle. Thus, according to certain specific embodiments of the use of a curved dilator, a curved dilator may be used with a curved needle (or other insertion tool) designed to fit within an internal space at a hollow interior of the dilator, with the curved insertion tool and the curved dilator having a size and shape to define a tissue path passing around the arcus tendineus as described.
Further design features can relate to dilators and insertion tools that include anti-rotation or alignment features, in particular with the use of a curved needle insertion tool and a curved dilator. An anti-rotation or alignment feature may be in the form of opposing and coordinated structural features of the dilator and a tip of an insertion tool (e.g., needle) that together can: interconnect the dilator and tip of insertion tool to produce a desired alignment; prevent relative movement of the two pieces such as to prevent rotation of the dilator relative to the tool; or both. The alignment feature causes the dilator to be placed on the needle in a specific alignment, which if the needle and dilator are both curved as discussed above, causes the curve of the needle to be aligned with the curve of the dilator. An example of an alignment and anti-rotation feature is a keyed structure, as will be understood, that includes one or more inter-connecting surfaces and structures between the dilator and the needle to allow the dilator to removably connect to the needle when the two are properly aligned, and then to also prevent rotation between the two when the two are connected. Other mechanical structures will also allow the dilator to be attached at an end of a needle in a manner to produce a desired alignment and to prevent rotation of the dilator relative to the needle.
An example of an implant having a curved (two dimensional) dilator adapted to removably engage a three dimensional insertion tool that includes a curved (two dimensionally curved) distal end, is illustrated at
Still referring to
According to other embodiments of implants, distal ends of extension portions can be attached or engaged with an insertion tool in the form of a needle or in the form a tool comprising a distal curved portion (e.g., needle) with attached shaft and handle, the former needle being capable of being manipulated using a separate tool such as a needle-driver, forceps, or surgical pliers, the latter type of needle being capable of being manipulated using the handle, which will be external to the patient during a transvaginal surgical procedure. Thus, exemplary insertion tools include a small two-dimensional needle that can be manipulated during a transvaginal installation by another surgical tool; a tool having a distal portion comprising a curved needle (including a needle tip), shaft, and handle, that can be used directly to install the implant; a dilator; or another type of tool that can be used to allow ends of an extension portion of an implant to be transvaginally installed in tissue as desired.
A specific example of an attached insertion tool can be a small needle that can be securely attached at distal end of an extension portion of an implant. The needle can be straight or curved (e.g., in two dimensions), and may preferably be sized to be manipulated using a standard surgical grasping instrument such as a pliers, forceps, or needle-passer, and can be can be shaped and sized as desired, such as with a curve and length that facilitate passing the needle through a tissue path that wraps around an arcus tendineus. For example, pre-attached small, two-dimensional curved needle may include a curved portion that has a radius of curvature in the range from 0.5 to 1.5 centimeters and a length (measured as the arclength of the curved portion) of from 3 to 5 centimeters. A distal end of an extension portion of an implant may be attached at a trailing end of the needle. (Attachment at trailing end of a needle or at a leading end of a needle refers to attachment that is within a distance of an end of a needle of 25 percent of the total needle length.) The attached insertion tool (e.g., needle) can optionally include useful features that allow manipulation and placement of the needle as desired to place the implant in a useful position. For example, a needle may include flat portions that allow easy grasping and manipulation with a standard needle-driver, forceps, or pliers. The needle may be plastic or metal. The curve and sizing of the needle can be shaped to match a tissue path that exits the pelvic area at a region of the arcus tendineus, wraps around an arcus tendineus, and re-enters the pelvic region.
Each tool 152 includes handle 154, shaft 152, curved needle end 158 at a distal end of shaft 152, and needle tip 160. Tips 160 are leading edges of curved needles 158, and each is attached to a distal end of an extension portion 144 or 148. With this design, a surgeon receives the implant product 142 with tools 152 attached; the surgeon installs implant 142, transvaginally, with support portion 150 being attached to vaginal tissue. The surgeon uses each of tools 152 to place ends of extension portions 146 and 148 bilaterally through tissue in the region of the arcus tendineus, e.g., near the ischial spine. Curved distal end 158 of each tool 152 allows the surgeon to lead a distal end of each extension portion 144 and 148 around the outside of the arcus tendineus and back into the pelvic region at a location below the arcus tendineus, e.g., through the iliococcygeous muscle. This placement can be performed by movement or each tool 152, the movement including rotation of handle 154 about an axis that includes shaft 156, to rotate curved distal end 158, also about the axis of shaft 156. This can pass tip 160 and a distal end of an extension portion around an arcus tendineus, with the distal end exiting and re-entering the pelvic region. The surgeon can then disconnect the end of each extension portion from each tip 160 by cutting the extension portions 144 and 148 near tip 160 of each tool 152. After cutting the end of each extension portion 144 and 148, the needle and tool can be removed from the pelvic region and each extension portion 144 and 148 can be manipulated to adjust and position the extension portion and implant 142 as desired to support vaginal tissue connected to support portion 150. This can optionally include producing another tissue path to an external location and leading the end of each extension portion 144 and 148 through that tissue path to the external location in the perirectal region such as is illustrated in
According to particular embodiments, a kit according to the invention can include an implant and a tool or multiple tools for installation, e.g., with the insertion tool being either removably enjoyable or attached (e.g., permanently) at a distal end of an extension portion of the implant. Referring to
Still referring to
The invention contemplates placement of an implant, as described, to treat a condition of vaginal tissue prolapse, by use of transvaginal surgical methods. The present description identifies certain combinations of implants, tools, and procedures, but as will be understood based on the present description, many different variations on the present methods, tools, and procedures will be useful, as will combination of implant, tool, and procedure.
According to one embodiment of the invention, using a curved Deschamps or similar needle, an extension portion of an implant can be inserted trough a vaginal incision and a central portion of the implant can be attached to vaginal tissue that is to be supported. Two opposing tissue paths are created from the vaginal tissue to regions of the arcus tendineus, e.g., above the arcus tendineus at a level of the ischial spine, one on each side of the pelvic region. Each end (“extension”) portion of the implant can then be extended through a tissue path and above or below the arcus tendineus, such as through the obturator internus muscle or iliococcygeus, optionally also as close to the ischial spine as possible, using the curved needle. The end portion of the implant is passed around the outside of the white line and passed back into the pelvic region either below or above the white line, either through obturator internus or the iliococcygeus muscle. This location of the mesh end is illustrated in
Methods of the invention can involve placement of an implant and extension portion using a system as shown in
Methods of the invention include variations that advantageously do not require any external incision such as two incisions perirectal incisions. Again entering the pelvic region transvaginally, e.g., using a curved Deschamps Needle (or alternately a small curved needle as shown in
This application is a continuation of U.S. application Ser. No. 14/025,988, filed Sep. 13, 2013, which is a continuation of U.S. application Ser. No. 11/989,256, filed Feb. 24, 2009, now U.S. Pat. No. 8,535,217, which claims the benefit from International No. PCT/US2006/028828, which was granted an International Filing date of Jul. 25, 2006, which in turns claims priority under 35 USC §119(e) from U.S. Provisional Patent Application Ser. No. 60/702,704, filed on Jul. 26, 2005, by James E. Cox and titled CONNECTORLESS IMPLANT SYSTEM; 60/702,705, filed on Jul. 26, 2005, by Guillermo Wiley Davila et al. and titled TRANSVAGINAL SYSTEM FOR APICAL SUPPORT; and 60/702,700, filed on Jul. 26, 2005, by James E. Cox et al. and titled METHODS AND SYSTEMS FOR TRANSVAGINAL TREATMENT OF PROLAPSE, which applications are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2738790 | Todt et al. | Mar 1956 | A |
3124136 | Usher | Mar 1964 | A |
3182662 | Shirodkar | May 1965 | A |
3311110 | Singerman et al. | Mar 1967 | A |
3384073 | Van Winkle, Jr. | May 1968 | A |
3472232 | Earl | Oct 1969 | A |
3580313 | McKnight | May 1971 | A |
3763860 | Clarke | Oct 1973 | A |
3789828 | Schulte | Feb 1974 | A |
3815576 | Balaban | Jun 1974 | A |
3858783 | Kapitanov et al. | Jan 1975 | A |
3924633 | Cook et al. | Dec 1975 | A |
3995619 | Glatzer | Dec 1976 | A |
4019499 | Fitzgerald | Apr 1977 | A |
4037603 | Wendorff | Jul 1977 | A |
4128100 | Wendorff | Dec 1978 | A |
4172458 | Pereyra | Oct 1979 | A |
4235238 | Ogiu et al. | Nov 1980 | A |
4246660 | Wevers | Jan 1981 | A |
4441497 | Paudler | Apr 1984 | A |
4509516 | Richmond | Apr 1985 | A |
4548202 | Duncan | Oct 1985 | A |
4632100 | Somers et al. | Dec 1986 | A |
4775380 | Seedhom et al. | Oct 1988 | A |
4857041 | Annis et al. | Aug 1989 | A |
4865031 | O'Keeffe | Sep 1989 | A |
4873976 | Schreiber | Oct 1989 | A |
4920986 | Biswas | May 1990 | A |
4932962 | Yoon et al. | Jun 1990 | A |
4938760 | Burton et al. | Jul 1990 | A |
4969892 | Burton et al. | Nov 1990 | A |
5007894 | Enhorning | Apr 1991 | A |
5012822 | Schwarz | May 1991 | A |
5013292 | Lemay | May 1991 | A |
5013316 | Goble et al. | May 1991 | A |
5019032 | Robertson | May 1991 | A |
5032508 | Naughton et al. | Jul 1991 | A |
5036867 | Biswas | Aug 1991 | A |
5053043 | Gottesman et al. | Oct 1991 | A |
5085661 | Moss | Feb 1992 | A |
5112344 | Petros | May 1992 | A |
5123428 | Schwarz | Jun 1992 | A |
5141520 | Goble et al. | Aug 1992 | A |
5149329 | Richardson | Sep 1992 | A |
5188636 | Fedotov | Feb 1993 | A |
5209756 | Seedhom et al. | May 1993 | A |
5250033 | Evans et al. | Oct 1993 | A |
5256133 | Spitz | Oct 1993 | A |
5269783 | Sander | Dec 1993 | A |
5281237 | Gimpelson | Jan 1994 | A |
5328077 | Lou | Jul 1994 | A |
5337736 | Reddy | Aug 1994 | A |
5362294 | Seitzinger | Nov 1994 | A |
5368595 | Lewis | Nov 1994 | A |
5370650 | Tovey et al. | Dec 1994 | A |
5370662 | Stone et al. | Dec 1994 | A |
5376097 | Phillips | Dec 1994 | A |
5383904 | Totakura et al. | Jan 1995 | A |
5386836 | Biswas | Feb 1995 | A |
5403328 | Shallman | Apr 1995 | A |
5413598 | Moreland | May 1995 | A |
5439467 | Benderev et al. | Aug 1995 | A |
5474518 | Farrer Velazquez | Dec 1995 | A |
5474543 | McKay | Dec 1995 | A |
5518504 | Polyak | May 1996 | A |
5520700 | Beyar et al. | May 1996 | A |
5520703 | Essig | May 1996 | A |
5527342 | Pietrzak et al. | Jun 1996 | A |
5544664 | Benderev et al. | Aug 1996 | A |
5562689 | Green et al. | Oct 1996 | A |
5571139 | Jenkins, Jr. | Nov 1996 | A |
5582188 | Benderev et al. | Dec 1996 | A |
5591163 | Thompson | Jan 1997 | A |
5591206 | Moufarrege | Jan 1997 | A |
5611515 | Benderev et al. | Mar 1997 | A |
5628756 | Barker, Jr. et al. | May 1997 | A |
5633286 | Chen | May 1997 | A |
5643320 | Lower et al. | Jul 1997 | A |
5669935 | Rosenman et al. | Sep 1997 | A |
5683349 | Makower et al. | Nov 1997 | A |
5697931 | Thompson | Dec 1997 | A |
5709708 | Thal | Jan 1998 | A |
5725541 | Anspach, III et al. | Mar 1998 | A |
5741282 | Anspach, III et al. | Apr 1998 | A |
5782916 | Pintauro et al. | Jul 1998 | A |
5785640 | Kresch et al. | Jul 1998 | A |
5807403 | Beyar et al. | Sep 1998 | A |
5836314 | Benderev et al. | Nov 1998 | A |
5836315 | Benderev et al. | Nov 1998 | A |
5840011 | Landgrebe et al. | Nov 1998 | A |
5842478 | Benderev et al. | Dec 1998 | A |
5860425 | Benderev et al. | Jan 1999 | A |
5899909 | Claren et al. | May 1999 | A |
5919232 | Chaffringeon et al. | Jul 1999 | A |
5922026 | Chin | Jul 1999 | A |
5925047 | Errico et al. | Jul 1999 | A |
5934283 | Willem et al. | Aug 1999 | A |
5935122 | Fourkas et al. | Aug 1999 | A |
5944732 | Raulerson et al. | Aug 1999 | A |
5954057 | Li | Sep 1999 | A |
5972000 | Beyar et al. | Oct 1999 | A |
5980558 | Wiley | Nov 1999 | A |
5984927 | Wenstrom, Jr. | Nov 1999 | A |
5988171 | Sohn et al. | Nov 1999 | A |
5997554 | Thompson | Dec 1999 | A |
6010447 | Kardjian | Jan 2000 | A |
6027523 | Schmieding | Feb 2000 | A |
6030393 | Corlew | Feb 2000 | A |
6031148 | Hayes et al. | Feb 2000 | A |
6036701 | Rosenman | Mar 2000 | A |
6039686 | Kovac | Mar 2000 | A |
6042534 | Gellman et al. | Mar 2000 | A |
6042536 | Tihon et al. | Mar 2000 | A |
6042583 | Thompson et al. | Mar 2000 | A |
6048351 | Gordon et al. | Apr 2000 | A |
6050937 | Benderev | Apr 2000 | A |
6053935 | Brenneman et al. | Apr 2000 | A |
6056688 | Benderev et al. | May 2000 | A |
6068591 | Bruckner et al. | May 2000 | A |
6071290 | Compton | Jun 2000 | A |
6074341 | Anderson et al. | Jun 2000 | A |
6077216 | Benderev et al. | Jun 2000 | A |
6099538 | Moses | Aug 2000 | A |
6099551 | Gabbay | Aug 2000 | A |
6099552 | Adams | Aug 2000 | A |
6106545 | Egan | Aug 2000 | A |
6110101 | Tihon et al. | Aug 2000 | A |
6117067 | Gil-Vernet | Sep 2000 | A |
6127597 | Beyar et al. | Oct 2000 | A |
6168611 | Risvi | Jan 2001 | B1 |
6200330 | Benderev et al. | Mar 2001 | B1 |
6221005 | Bruckner et al. | Apr 2001 | B1 |
6241736 | Sater et al. | Jun 2001 | B1 |
6264676 | Gellman et al. | Jul 2001 | B1 |
6273852 | Lehe et al. | Aug 2001 | B1 |
6302840 | Benderev | Oct 2001 | B1 |
6306079 | Trabucco | Oct 2001 | B1 |
6322492 | Kovac | Nov 2001 | B1 |
6328686 | Kovac | Dec 2001 | B1 |
6328744 | Harari et al. | Dec 2001 | B1 |
6334446 | Beyar | Jan 2002 | B1 |
6352553 | van de Burg et al. | Mar 2002 | B1 |
6382214 | Raz et al. | May 2002 | B1 |
6387041 | Harari et al. | May 2002 | B1 |
6406423 | Scetbon | Jun 2002 | B1 |
6406480 | Beyar et al. | Jun 2002 | B1 |
6414179 | Banville | Jul 2002 | B1 |
6423080 | Gellman et al. | Jul 2002 | B1 |
6451024 | Thompson et al. | Sep 2002 | B1 |
6475139 | Miller | Nov 2002 | B1 |
6478727 | Scetbon | Nov 2002 | B2 |
6482214 | Sidor, Jr. et al. | Nov 2002 | B1 |
6491703 | Ulmsten | Dec 2002 | B1 |
6494906 | Owens | Dec 2002 | B1 |
6502578 | Raz et al. | Jan 2003 | B2 |
6506190 | Walshe | Jan 2003 | B1 |
6530943 | Hoepffner et al. | Mar 2003 | B1 |
6575897 | Ory | Jun 2003 | B1 |
6582443 | Cabak et al. | Jun 2003 | B2 |
6592515 | Thierfelder | Jul 2003 | B2 |
6592610 | Beyar | Jul 2003 | B2 |
6596001 | Stormby et al. | Jul 2003 | B2 |
6599235 | Kovac | Jul 2003 | B2 |
6599323 | Melican et al. | Jul 2003 | B2 |
6602260 | Harari et al. | Aug 2003 | B2 |
6612977 | Staskin | Sep 2003 | B2 |
6638210 | Berger | Oct 2003 | B2 |
6638211 | Suslian et al. | Oct 2003 | B2 |
6638284 | Rousseau et al. | Oct 2003 | B1 |
6641524 | Kovac | Nov 2003 | B2 |
6641525 | Rocheleau | Nov 2003 | B2 |
6648921 | Anderson | Nov 2003 | B2 |
6652450 | Neisz et al. | Nov 2003 | B2 |
6673010 | Skiba et al. | Jan 2004 | B2 |
6685629 | Therin | Feb 2004 | B2 |
6689047 | Gellman et al. | Feb 2004 | B2 |
6691711 | Raz | Feb 2004 | B2 |
6699175 | Miller | Mar 2004 | B2 |
6702827 | Lund | Mar 2004 | B1 |
6752814 | Gellman et al. | Jun 2004 | B2 |
6755781 | Gellman | Jun 2004 | B2 |
6802807 | Anderson | Oct 2004 | B2 |
6830052 | Carter et al. | Dec 2004 | B2 |
6881184 | Zappala | Apr 2005 | B2 |
6884212 | Thierfelder et al. | Apr 2005 | B2 |
6908425 | Luscombe | Jun 2005 | B2 |
6908473 | Skiba et al. | Jun 2005 | B2 |
6911002 | Fierro | Jun 2005 | B2 |
6911003 | Anderson et al. | Jun 2005 | B2 |
6932759 | Kammerer | Aug 2005 | B2 |
6936052 | Gellman et al. | Aug 2005 | B2 |
6953428 | Gellman et al. | Oct 2005 | B2 |
6960160 | Browning | Nov 2005 | B2 |
6971986 | Staskin et al. | Dec 2005 | B2 |
6974462 | Sater | Dec 2005 | B2 |
1111111 | Rosenblatt et al. | Jan 2006 | A1 |
6981944 | Jamiolkowski | Jan 2006 | B2 |
6991597 | Gellman et al. | Jan 2006 | B2 |
7014607 | Gellman | Mar 2006 | B2 |
7025063 | Snitkin | Apr 2006 | B2 |
7025772 | Gellman et al. | Apr 2006 | B2 |
7037255 | Inman | May 2006 | B2 |
7048682 | Neisz et al. | May 2006 | B2 |
7056333 | Walshe | Jun 2006 | B2 |
7070556 | Anderson | Jul 2006 | B2 |
7070558 | Gellman et al. | Jul 2006 | B2 |
7083568 | Neisz et al. | Aug 2006 | B2 |
7083637 | Tannhauser | Aug 2006 | B1 |
7087065 | Ulmsten et al. | Aug 2006 | B2 |
7112171 | Rocheleau et al. | Sep 2006 | B2 |
7112210 | Ulmsten et al. | Sep 2006 | B2 |
7121997 | Kammerer et al. | Oct 2006 | B2 |
7131943 | Kammerer | Nov 2006 | B2 |
7131944 | Jaquetin | Nov 2006 | B2 |
7175591 | Kaladelfos | Feb 2007 | B2 |
7198597 | Siegel et al. | Apr 2007 | B2 |
7223229 | Inman et al. | May 2007 | B2 |
7226407 | Kammerer | Jun 2007 | B2 |
7226408 | Harai et al. | Jun 2007 | B2 |
7229404 | Bouffier | Jun 2007 | B2 |
7229453 | Anderson | Jun 2007 | B2 |
7235043 | Gellman et al. | Jun 2007 | B2 |
7261723 | Smith et al. | Aug 2007 | B2 |
7267645 | Anderson et al. | Sep 2007 | B2 |
7291104 | Neisz et al. | Nov 2007 | B2 |
7297102 | Smith et al. | Nov 2007 | B2 |
7299803 | Kovac | Nov 2007 | B2 |
7303525 | Watschke et al. | Dec 2007 | B2 |
7326213 | Benderev et al. | Feb 2008 | B2 |
7347812 | Mellier | Mar 2008 | B2 |
7351197 | Montpetit et al. | Apr 2008 | B2 |
7357773 | Watschke | Apr 2008 | B2 |
7364541 | Chu et al. | Apr 2008 | B2 |
7371245 | Evans et al. | May 2008 | B2 |
7387634 | Benderev | Jun 2008 | B2 |
7393320 | Montpetit et al. | Jul 2008 | B2 |
7407480 | Staskin | Aug 2008 | B2 |
7410460 | Benderev | Aug 2008 | B2 |
7413540 | Gellman et al. | Aug 2008 | B2 |
7422557 | Arnal | Sep 2008 | B2 |
7431690 | Merade et al. | Oct 2008 | B2 |
7494495 | Delorme et al. | Feb 2009 | B2 |
7500945 | Cox | Mar 2009 | B2 |
7513865 | Bourne et al. | Apr 2009 | B2 |
7527588 | Zaddem et al. | May 2009 | B2 |
7588598 | Delorme et al. | Sep 2009 | B2 |
7601118 | Smith et al. | Oct 2009 | B2 |
7611454 | De Leval | Nov 2009 | B2 |
7621864 | Suslian et al. | Nov 2009 | B2 |
7637860 | MacLean | Dec 2009 | B2 |
7645227 | Smith et al. | Jan 2010 | B2 |
7686759 | Sater | Mar 2010 | B2 |
7686760 | Anderson et al. | Mar 2010 | B2 |
7691050 | Gellman et al. | Apr 2010 | B2 |
7722527 | Bouchier et al. | May 2010 | B2 |
7722528 | Arnal et al. | May 2010 | B2 |
7740576 | Hodroff | Jun 2010 | B2 |
7753839 | Siegel et al. | Jul 2010 | B2 |
7762942 | Neisz et al. | Jul 2010 | B2 |
7766926 | Bosley et al. | Aug 2010 | B2 |
7789821 | Browning | Sep 2010 | B2 |
7794385 | Rosenblatt | Sep 2010 | B2 |
7811223 | Hadroff et al. | Oct 2010 | B2 |
20010049467 | Lehe et al. | Dec 2001 | A1 |
20020007222 | Desai | Jan 2002 | A1 |
20020028980 | Thierfelder et al. | Mar 2002 | A1 |
20020103542 | Bilbo | Aug 2002 | A1 |
20020128670 | Ulmsten et al. | Sep 2002 | A1 |
20020147382 | Neisz et al. | Oct 2002 | A1 |
20020151909 | Gellman et al. | Oct 2002 | A1 |
20020161382 | Neisz | Oct 2002 | A1 |
20030004581 | Rousseau | Jan 2003 | A1 |
20030036676 | Scetbon | Feb 2003 | A1 |
20030065402 | Anderson et al. | Apr 2003 | A1 |
20030171644 | Anderson et al. | Sep 2003 | A1 |
20030176875 | Anderson | Sep 2003 | A1 |
20040015057 | Rocheleau et al. | Jan 2004 | A1 |
20040073235 | Lund | Apr 2004 | A1 |
20040225181 | Chu et al. | Nov 2004 | A1 |
20040267088 | Krammerer | Dec 2004 | A1 |
20050000523 | Beraud | Jan 2005 | A1 |
20050004427 | Cervigni | Jan 2005 | A1 |
20050004576 | Benderev | Jan 2005 | A1 |
20050008708 | Dai et al. | Jan 2005 | A1 |
20050038451 | Rao et al. | Feb 2005 | A1 |
20050055104 | Arnal et al. | Mar 2005 | A1 |
20050131391 | Chu et al. | Jun 2005 | A1 |
20050131393 | Chu et al. | Jun 2005 | A1 |
20050199249 | Karram | Sep 2005 | A1 |
20050245787 | Cox et al. | Nov 2005 | A1 |
20050256530 | Petros | Nov 2005 | A1 |
20050277806 | Cristalli | Dec 2005 | A1 |
20050278037 | Delorme et al. | Dec 2005 | A1 |
20050283189 | Rosenblatt et al. | Dec 2005 | A1 |
20060015010 | Jaffe et al. | Jan 2006 | A1 |
20060028828 | Phillips | Feb 2006 | A1 |
20060058575 | Zaddem et al. | Mar 2006 | A1 |
20060058578 | Browning | Mar 2006 | A1 |
20060089524 | Chu | Apr 2006 | A1 |
20060089525 | Mamo et al. | Apr 2006 | A1 |
20060122457 | Kovac | Jun 2006 | A1 |
20060173237 | Jacquetin | Aug 2006 | A1 |
20060195007 | Anderson | Aug 2006 | A1 |
20060195011 | Arnal | Aug 2006 | A1 |
20060217589 | Wan et al. | Sep 2006 | A1 |
20060229493 | Weiser et al. | Oct 2006 | A1 |
20060229596 | Weiser et al. | Oct 2006 | A1 |
20060252980 | Arnal et al. | Nov 2006 | A1 |
20060260618 | Hodroff et al. | Nov 2006 | A1 |
20060287571 | Gozzi | Dec 2006 | A1 |
20070015953 | MacLean | Jan 2007 | A1 |
20070078295 | Landgrebe | Apr 2007 | A1 |
20070173864 | Chu | Jul 2007 | A1 |
20080039678 | Montpetit et al. | Feb 2008 | A1 |
20080300607 | Meade et al. | Dec 2008 | A1 |
20090005634 | Rane | Jan 2009 | A1 |
20090012353 | Beyer | Jan 2009 | A1 |
20090221867 | Ogdahl et al. | Sep 2009 | A1 |
20090221868 | Evans | Sep 2009 | A1 |
20090259092 | Ogdahl et al. | Oct 2009 | A1 |
20100261950 | Lund et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
2002241673 | Nov 2005 | AU |
2404459 | Aug 2005 | CA |
2305815 | Feb 1973 | DE |
4220283 | May 1994 | DE |
19544162 | Apr 1997 | DE |
10211360 | Sep 2003 | DE |
20016866 | Mar 2007 | DE |
0470308 | Feb 1992 | EA |
1093758 | Apr 2001 | EM |
0248544 | Dec 1987 | EP |
0650703 | Jun 1994 | EP |
0643945 | Jul 1994 | EP |
0632999 | Jan 1995 | EP |
0941712 | Sep 1999 | EP |
1060714 | Sep 2002 | EP |
1342450 | Sep 2003 | EP |
1320336 | Jul 2005 | EP |
2787990 | Jul 2000 | FR |
2852813 | Jan 2004 | FR |
2268690 | Jan 1994 | GB |
2353220 | Oct 2000 | GB |
1299162 | Apr 1998 | IT |
1225547 | Apr 1986 | SU |
1342486 | Oct 1987 | SU |
WO02089704 | Nov 2002 | VN |
WO03096928 | Nov 2003 | VN |
WO9317635 | Sep 1993 | WO |
WO9319678 | Oct 1993 | WO |
WO9511631 | May 1995 | WO |
WO9525469 | Sep 1995 | WO |
WO9716121 | May 1997 | WO |
WO9730638 | Aug 1997 | WO |
WO9747244 | Dec 1997 | WO |
WO9819606 | May 1998 | WO |
WO9835606 | Aug 1998 | WO |
WO9835616 | Aug 1998 | WO |
WO9835632 | Aug 1998 | WO |
WO9842261 | Oct 1998 | WO |
WO9853746 | Dec 1998 | WO |
WO9916381 | Apr 1999 | WO |
WO9937217 | Jul 1999 | WO |
WO9952450 | Oct 1999 | WO |
WO9953844 | Oct 1999 | WO |
WO9959477 | Nov 1999 | WO |
WO0064370 | Feb 2000 | WO |
WO0013601 | Mar 2000 | WO |
WO0018319 | Apr 2000 | WO |
WO0027304 | May 2000 | WO |
WO0040158 | Jul 2000 | WO |
WO0057812 | Oct 2000 | WO |
WO0066030 | Nov 2000 | WO |
WO0074594 | Dec 2000 | WO |
WO0074613 | Dec 2000 | WO |
WO0074633 | Dec 2000 | WO |
WO0106951 | Feb 2001 | WO |
WO0126581 | Apr 2001 | WO |
WO0139670 | Jun 2001 | WO |
WO0145588 | Jun 2001 | WO |
WO0145589 | Jun 2001 | WO |
WO0156499 | Aug 2001 | WO |
WO0222184 | Mar 2002 | WO |
WO0228312 | Apr 2002 | WO |
WO0228315 | Apr 2002 | WO |
WO0230293 | Apr 2002 | WO |
WO0232284 | Apr 2002 | WO |
WO0234124 | May 2002 | WO |
WO0238079 | May 2002 | WO |
WO0239890 | May 2002 | WO |
WO02062237 | Aug 2002 | WO |
WO02068563 | Aug 2002 | WO |
WO02069781 | Sep 2002 | WO |
WO02071953 | Sep 2002 | WO |
WO02078552 | Oct 2002 | WO |
WO02091950 | Nov 2002 | WO |
WO03013392 | Feb 2003 | WO |
WO03017848 | Mar 2003 | WO |
WO03003778 | Apr 2003 | WO |
WO03028585 | Apr 2003 | WO |
WO03037215 | May 2003 | WO |
WO03041613 | May 2003 | WO |
WO03047435 | Jun 2003 | WO |
WO03047476 | Jun 2003 | WO |
WO03068107 | Aug 2003 | WO |
WO03073960 | Sep 2003 | WO |
WO03075792 | Sep 2003 | WO |
WO03086205 | Oct 2003 | WO |
WO03092546 | Nov 2003 | WO |
WO03096926 | Nov 2003 | WO |
WO2004012625 | Feb 2004 | WO |
WO2004016196 | Feb 2004 | WO |
WO2004017862 | Mar 2004 | WO |
WO2004034912 | Apr 2004 | WO |
WO2004041115 | May 2004 | WO |
WO2004045457 | Jun 2004 | WO |
WO2005004727 | Jan 2005 | WO |
WO2005037132 | Apr 2005 | WO |
WO2005046511 | May 2005 | WO |
WO2005048850 | Jun 2005 | WO |
WO2005079702 | Sep 2005 | WO |
WO2005087153 | Sep 2005 | WO |
WO2005094741 | Oct 2005 | WO |
WO2005112842 | Dec 2005 | WO |
WO2005122954 | Dec 2005 | WO |
WO2006007189 | Jan 2006 | WO |
WO2006007190 | Jan 2006 | WO |
WO2006015031 | Feb 2006 | WO |
WO2006031879 | Mar 2006 | WO |
WO 2006028828 | Jul 2006 | WO |
WO2006108145 | Oct 2006 | WO |
WO2007011341 | Jan 2007 | WO |
WO2007014241 | Feb 2007 | WO |
WO2007016083 | Feb 2007 | WO |
WO2007027592 | Mar 2007 | WO |
WO2007059199 | May 2007 | WO |
WO2007081955 | Jul 2007 | WO |
WO2007097994 | Aug 2007 | WO |
WO2007137226 | Nov 2007 | WO |
WO2007146784 | Dec 2007 | WO |
WO2007149348 | Dec 2007 | WO |
WO2007149555 | Dec 2007 | WO |
WO2008057261 | May 2008 | WO |
WO2008124056 | Oct 2008 | WO |
WO2009005714 | Jan 2009 | WO |
WO2009017680 | Feb 2009 | WO |
Entry |
---|
“We're staying ahead of the curve” Introducing the IVS Tunneller Device for Tension Free Procedures, Tyco Healthcare, 3 pages (2002). |
Advantage A/T™, Surgical Mesh Sling Kit, Boston Scientific, 6 pages (2002). |
Albert H. Aldridge, B.S., M.D., F.A.C.S., Transplantation of Fascia for Relief of Urinary Stress Incontinence, American Journal of Obstetrics and Gynecology, V. 44, pp. 398-411, (1948). |
Amundsen, Cindy L. et al., Anatomical Correction of Vaginal Vault Prolapse by Uterosacral Ligament Fixation in Women Who Also Require a Pubovaginal Sling, The Journal of Urology, vol. 169, pp. 1770-1774, (May 2003). |
Araki, Tohru at al., The Loop-Loosening Procedure for Urination Difficulties After Stamey Suspension of the Vesical Neck, The Journal of Urology, vol. 144, pp. 319-323 (Aug. 1990). |
Asmussen, M, et.al., Simultaneous Urethro-Cystometry With a New Technique, Scand J Urol Nephrol 10, p. 7-11 (1976). |
Beck, Peter R. et al., Treatment of Urinary Stress Incontinence With Anterior Colporrhaphy, Obstetrics and Gynecology, vol. 69 (No. 3), pp. 289-274 (Mar. 1982). |
Benderev, Theodore V., MD, A Modified Percutaneous Outpatient Bladder Neck Suspension System, Journal of Urology, vol. 152, pp. 2316-2320 (Dec. 1994). |
Benderev, Theodore V., MD, Anchor Fixation and Other Modifications of Endoscopic Bladder Neck Suspension, Urology, vol. 40, No. 5, pp. 409-418 (Nov. 1992). |
Bergman, Arieh et al., Three Surgical Procedures for Genuine Stress Incontinence: Five-Year Follow-Up of a Prospective Randomized Study, Am J Obstet Gynecol, vol. 173 No. 1, pp. 66-71 (Jul. 1995) |
Blaivas, Jerry at al., Pubovaginal Fascial Sling for the Treatment of Complicated Stress Urinary Incontinence, The Journal of Urology, vol. 145, pp. 1214-1218 (Jun. 1991). |
Blaivas, Jerry et al., Type III Stress Urinary Incontinence: Importance of Proper Diagnosis and Treatment, Surgical Forum, pp. 473-475, (1984). |
Blaivas, Jerry, Commentary: Pubovaginal Sling Procedure, Experience with Pubovaginal Slings, pp. 93-101 (1990). |
Boyles, Sarah Hamilton et al., Procedures for Urinary Incontinence in the United States, 1979-1997, Am J Obstet Gynecol, vol. 189, n. 1, pp. 70-75 (Jul. 2003). |
Bryans, Fred E., Marlex Gauze Hammock Sling Operation With Cooper's Ligament Attachment in the Management of Recurrent Urinary Stress Incontinence, American Journal of Obstetrics and Gynecology, vol. 133, pp. 292-294.(Feb. 1979). |
Burch, John C., Urethrovaginal Fixation to Cooper's Ligament for Correction of Stress Incontinence, Cystocele, and Prolapse, Am. J. Obst. & Gyn, vol. 31, pp. 281-290 (1961). |
Capio™ CL—Transvaginal Suture Capturing Device—Transvaginal Suture Fixation to Cooper's Ligament for Sling Procedures, Boston Scientific, Microvasive®, 8 pages, (2002). |
Cervigni, Mauro et al., The Use of Synthetics in the Treatment of Pelvic Organ Prolapse, Voiding Dysfunction and Female Urology, vol. 11, pp. 429-435 (2001). |
Choe, Jong M. et al., Gore-Tex Patch Sling: 7 Years Later, Urology, vol. 54, pp. 641-646 (1999). |
Cook/Ob Gyn®, Urogynecology, Copyright Cook Urological Inc., pp. 1-36 (1996). |
Dargent, D. et al., Insertion of a Suburethral Sling Through the Obturator Membrane in the Treatment of Female Urinary Incontinence, Gynecol Obstet Fertil, vol. 30 pp. 576-582. (2002). |
Das, Sakti et al., Laparoscopic Colpo-Suspension, The Journal of Urology, vol. 154, pp. 1119-11121 (Sep. 1995). |
Debodinance, Philipp et al., “Tolerance of Synthetic Tissues in Touch With Vaginal Scars: Review to the Point of 287 Cases”, Europeon Journal of Obstetrics & Gynecology and Reproductive Biology 87 (1999) pp. 23-30. |
Decter, Ross M., Use of the Fascial Sling for Neurogenic Incontinence: Lessons Learned, The Journal of Urology, vol. 150, pp. 683-686 (Aug. 1993). |
Delancey, John, MD, Structural Support of the Urethra as it Relates to Stress Urinary Incontinence: The Hammock Hypothesis, Am J Obstet Gynecol, vol. 170 No. 6, pp. 1713-1723 (Jun. 1994). |
Delorme, Emmanuel, Trans-Obturator Sling: A Minimal Invasive Procedure to Treat Female Stress Urinary Incontinence, Progres en Urologie, vol. 11, pp. 1306-1313 (2001) English Abstract attached. |
Diana, et al., Treatment of Vaginal Vault Prolapse With Abdominal Sacral Colpopexy Using Prolene Mesh, American Journal of Surgery, vol. 179, pp. 126-128, Feb. 2000. |
Eglin et al., Transobturator Subvesical Mesh. Tolerance and short-term results of a 103 case continuous series, Gynecologie Obstetrique & Fertilite, vol. 31, Issue 1, pp. 14-19 (Jan. 2003). |
Enzelsberger H. et el., Urodynamic and Radiologic Parameters Before and After Loop Surgery for Recurrent Urinary Stress Incontinence, Acta Obstet Gynecol Scand, 69, pp. 51-54 (1990). |
Eriksen, Bjarne C. et al., Long-Term Effectiveness of the Burch Colposuspension in Female Urinary Stress Incontinence, Acta Obstet Gynecol Scand, 69, pp. 45-50, (1990). |
Falconer, C. et al., Clinical Outcome and Changes in Connective Tissue Metabolism After Intravaginal Slingplasty in Stress Incontinence Women, International Urogynecology Journal, pp. 133-137, 1966. |
Falconer, C. et al., Influence of Different Sling Materials of Connective Tissue Metabolism in Stress Urinary Incontinent Women International Urogynecology Journal, Supp. 2, pp. S19-S23 (2001). |
Farnsworth, B.N., Posterior Intravaginal Slingplasty (Infracoccygeal Sacropexy) for Sever Posthysterectomy Vaginal Vault Prolapse—A Preliminary Report on Efficacy and Safety, Int Urogynecology J, vol. 13, pp. 4-8 (2002). |
Farquhar, Cynthia M. et al., Hysterectomy Rates in the United States 1990-1997, Obstetrics & Gynecology, vol. 99, n. 2, pp. 229-234 (Feb. 2002). |
Fidela, Marie R. et al., Pelvic Support Defects and Visceral and Sexual Function in Women Treated With Sacrospinous Ligament Suspension and Pelvic Reconstruction, Am J Obstet Gynecol, vol. 176, n. 6 (Dec. 1996). |
Flood, C.G. et al., Anterior Colporrhaphy Reinforce With Marlex Mesh for the Treatment of Cystoceles, International Urogynecology Journal, vol. 9, pp. 200-204 (1998). |
Gilja, Ivan et al., A Modified Raz Bladder Neck Suspension Operation (Transvaginal Burch), The Journal of Urology, vol. 153, pp. 1455-1457 (May 1995). |
Gittes, Ruben F. et al., No-Incision Pubovaginal Suspension for Stress Incontinence, The Journal of Urology vol. 138 (Sep. 1987). |
Guner, et al., Transvaginal Sacrospinous Colpopexy for Marked Uterovaginal and Vault Prolapse, Inter J of Gynec & Obstetrics, vol. 74, pp. 165-170 (2001). |
Gynecare TVT Tension-Free Support for Incontinence, The tension-free solution to female Incontinence, Gynecare Worldwlde, 6 pages, (2002). |
Handa, Victoria L. et al, Banked Human Fascia Lata for the Suburethral Sling Procedure: A Preliminary Report, Obstetrics & Gynecology, vol. 88 No. 6, 5 pages (Dec. 1996). |
Heit, Michael et al., Predicting Treatment Choice for Patients With Pelvic Organ Prolapse, Obstetrics & Gynecology, vol. 101, n. 6, pp. 1279-1284 (Jun. 2003). |
Henriksson, L. et al., A Urodynamic Evaluation of the Effects of Abdominal Urethrocystopexy and Vaginal Sling Urethroplasty in Women With Stress Incontinence, Am. J. Obstet. Gynecol. vol. 131, No. 1, pp. 77-82 (Mar. 1, 1978). |
Hodgkinson, C. Paul et.al., Urinary Stress Incontinence in the Female, Department of Gynecology and Obstetrics, Henry Ford Hospital, vol. 10, No. 5, p. 493-499, (Nov. 1957). |
Holschneider, C. H., et al., The Modified Pereyra Procedure in Recurrent Stress Urinary Incontinence; A 15-year Review, Obstetrics & Gynecology, vol. 83, No. 4, pp. 573-578 (Apr. 1994). |
Horbach, Nicollette S., et al., Instruments and Methods, A Suburethral Sling Procedure with Potytetrafluoroethylene for the Treatment of Genuine Stress Incontinence in Patients with Low Urethral Closure Pressure, Obstetrics & Gynecology, vol. 71, No. 4, pp. 646-652 (Apr. 1998). |
Ingelman-Sunberg, A. et al., Surgical Treatment of Female Urinary Stress Incontinence, Contr. Gynec. Obstet., vol. 10, pp. 51-69 (1983). |
IVS Tunneller—A Universal Instrument for anterior and posterior Intra-vaginal tape placement, Tyco Healthcare, 4 pages (Aug. 2002). |
IVS Tunneller—ein universelles Instrument fur die Intra Vaginal Schlingenplastik, Tyco Healthcare, 4 pages (2001). |
Jeffcoate, T.N.A. et al., The Results of the Aldridge Sling Operation for Stress Incontinence, Journal of Obstetrics and Gynaecology, pp. 36-39 (1956). |
Jones, N.H.J. Reay et al., Pelvic Connective Tissue Resilience Decreases With Vaginal Delivery, Menopause and Uterine Prolapse, Br J Surg, vol. 90, n. 4, pp. 466-472 (Apr. 2003). |
Julian, Thomas, The Efficacy of Marlex Mesh in the Repair of Sever, Recurrent Vaginal Prolapse of the Anterior Midvaginal Wall, Am J Obstet Gynecol, vol. 175, n. 6, pp. 1472-1475 (Dec. 1996). |
Karram, Mickey et al., Patch Procedure: Modified Transvaginal Fascia Lata Sling for Recurrent for Severe Stress Urinary Incontinence, vol. 75, pp. 461-463 (Mar. 1990). |
Karram, Mickey M. et al., Chapter 19 Surgical Treatment of Vaginal Vault Prolapse, Urogynecology and Reconstructive Pelvic Surgery, (Walters & Kerram eds.) pp. 235-256 (Mosby 1999). |
Kersey, J., The Gauze Hammock Sling Operation in the Treatment of Stress Incontintence, British Journal of Obstetrics and Gynaecology, vol. 90, pp. 945-949 (Oct. 1983). |
Klutke, Carl et al., The Anatomy of Stress Incontinence: Magentic Resonance Imaging of the Female Bladder Neck and Urethra, The Journal of Urology, vol. 143, pp. 563-566 (Mar. 1990). |
Klutke, John James et al., Transvaginal Bladder Neck Suspension to Cooper's Ligament: A Modified Pereyra Procedure, Obstetrics & Gynecology, vol. 88, No. 2, pp. 294-296 (Aug. 1996). |
Klutke, John M.D. et al, The promise of tension-free vaginal tape for female SUI, Contemporary Urology, 7 pages (Oct. 2000). |
Korda, A. et al., Experience With Silastic Slings for Female Urinary Incontience, Aust NZ J. Obstet Gynaecol, vol. 29, pp. 150-154 (May 1989). |
Kovac, S. Robert, et al, Pubic Bone Suburethral Stabilization Sling for Recurrent Urinary Incontinence, Obstetrics & Gynecology, vol. 89, No. 4, pp. 624-627 (Apr. 1997). |
Kovac, S. Robert, et al, Pubic Bone Suburethral Stabilization Sling: A Long Term Cure for SUI?, Contemporary OB/GYN, 10 pages (Feb. 1998). |
Kovac, S. Robert, Follow-up of the Pubic Bone Suburethral Stabilization Sling Operation for Recurrent Urinary Incontinence (Kovac Procedure), Journal of Pelvic Surgery, pp. 156-160 (May 1999). |
Kovac, Stephen Robert, M.D., Cirriculum Vitae, pp. 1-33 (Jun. 18, 1999). |
Leach, Gary E., el al., Female Stress Urinary Incontinence Clinical Guidelines Panel Report on Surgical Management of Female Stress Urinary Incontinence, American Urological Association, vol. 158, pp. 875-880 (Sep. 1997). |
Leach, Gary E., MD, Bone Fixation Technique for Transvaginal Needle Suspension, Urology vol. XXXI, No. 5, pp. 388-390 (May 1988). |
Lichtenstein, Irving L. et al, The Tension Free Hernioplasty, The American Journal of Surgery, vol. 157 pp. 188-193 (Feb. 1989). |
Loughlin, Kevin R. et al., Review of an 8-Year Experience With Modifications of Endoscopic Suspension of the Bladder Neck for Female Stress Incontinence, The Journal of Uroloyg, vol. 143, pp. 44-45 (1990). |
Luber, Karl M. et al., The Demographics of Pelvic Floor Disorders; Current Observations and Future Projections, Am J Obstet Gynecol, vol. 184, n. 7, pp. 1496-1503 (Jun. 2001). |
Mage, Technique Chirurgicale, L'Interpostion D'Un Treillis Synthetique Dans La Cure Par Voie Vaginale Des Prolapsus Genitaux, J Gynecol Obstet Biol Reprod, vol. 28, pp. 825-829 (1999). |
Marchionni, Mauro et al., True Incidence of Vaginal Vault Prolapse—Thirteen Years of Experience, Journal of Reproductive Medicine, vol. 44 n. 8, pp. 679-684 (Aug. 199). |
Marinkovic, Serge Peter et al., Triple Compartment Prolapse: Sacrocolpopexy With Anterior and Posterior Mesh Extensions, Br J Obstet Gynaecol, vol. 110, pp. 323-326 (Mar. 2003). |
Marshall, Victor Fray et el. The Correction of Stress Incontinence by Simple Vesicourethral Suspension, Surgery, Gynecology and Obstetrics, vol. 86, pp. 509-518 (1949). |
McGuire, Edward J. et al., Pubovaginal Sling Procedure for Stress Incontinence, The Journal of Urology, vol. 119, pp. 82-84 (Jan. 1978). |
McGuire, Edward J. et al., Abdominal Procedures for Stress Incontinence, Urologic Clinics of North America, pp. 285-290, vol. 12, No. 2 May 1985. |
McGuire, Edward J. et al., Experience With Pubovaginal Slings for Urinary Incontinence at the University of Michigan, Journal of Urology, vol. 138, pp. 90-93(1987). |
McGuire, Edwared J. et al., Abdominal Fascial Slings, Slings, Raz Female Urology, p. 369-375 (1996). |
McGuire™ Suture Buide, The McGuire™ Suture Guide, a single use instrument designed for the placement of a suburethral sling, Bard, 2 pages (2001). |
McIndoe, G. A. et al., The Aldridge Sling Procedure in the Treatment of Urinary Stress Incontinence, Aust. N Z Journal of Obstet Gynecology, pp. 238-239 (Aug. 1987). |
McKiel, Charles F. Jr.,et al, Marshall-Marchetti Procedure Modification, vol. 96, pp. 737-739 (Nov. 1966). |
Migliari, Roberto et al., Tension-Free Vaginal Mesh Repair for Anterior Vaginal Wall Prolapse, Eur Urol, vol. 38, pp. 151-155 (Oct. 1999). |
Migliari, Roberto at al., Treatment Results Using a Mixed Fiber Mesh in Patients With Grade IV Cystocele, Journal of Urology, vol. 161, pp. 1255-1258 (Apr. 1999). |
Moir, J. Chesser et.al., The Gauze-Hammock Operation, The Journal of Obstetrics and Gynaecology of British Commonwealth, vol. 75 No. 1, pp. 1-9 (Jan. 1968). |
Morgan, J. E., A Sling Operation, Using Marlex Polypropylene Mesh, for the Treatment of Recurrent Stress Incontinence, Am. J. Obst. & Gynecol, pp. 369-377 (Feb. 1970). |
Morgan, J. E. et al., The Marlex Sling Operation for the Treatment of Recurrent Stress Urinary Incontinence: A 16-Year Review, American Obstetrics Gynecology, vol. 151, No. 2, pp. 224-226 (Jan. 1998). |
Morley, George W. et al., Sacrospinous Ligament Fixations for Eversion of the Vagina, Am J Obstet Gyn, vol. 158, n. 4, pp. 872-881 (Apr. 1988). |
Narik, G. et.al., A Simplified Sling Operation Suitable for Routine Use, Gynecological and Obstetrical Clinic, University of Vienna, vol. 84, No. 3 p. 400-405, (Aug. 1, 1962). |
Natale, F. et al., Tension Free Cystocele Repair (TCR): Long-Term Follow-Up, International Urogynecology Journal, vol. 11, supp. 1, p. S51 (Oct. 2004). |
Nichols, David H., The Mersilene Mesh Gauze-Hammock for Severe Urinary Stress Incontinence, Obstetrics and Gynecology, vol. 41, pp. 88-93 (Jan. 1973). |
Nicita, Giulio, A New Operation for Genitourinary Prolapse, Journal of Urology, vol. 160, pp. 741-745 (Sep. 1998). |
Niknejad, Kathleen et al., Autologous and Synthetic Urethral Slings for Female Incontinence, Urol Clin N Am, vol. 29, pp. 597-611 (2002). |
Norris, Jeffrey P. et al., Use of Synthetic Material in Sling Surgery: A Minimally Invasive Approach, Journal of Endourology, vol. 10, pp. 227-230 (Jun. 1996). |
O'Donnell, Pat, Combined Raz Urethral Suspension and McGuire Pubovaginal Sling for Treatment of Complicated Stress Urinary Incontinence, Journal Arkansas Medical Society, vol. 88, pp. 389-392 (Jan. 1992). |
Ostergard, Donald R. et al., Urogynecology and Urodynamics Theory and Practice, pp. 569-579 (1996). |
Paraiso et al., Laparoscopic Surgery for Enterocele, Vaginal Apex Prolapse and Rectocele, Int. Urogynecol J, vol. 10, pp. 223-229 (1999). |
Parra, R. O., et al., Experience With a Simplified Technique for the Treatment of Female Stress Urinary Incontinence, British Journal of Urology, pp. 615-617 (1990). |
Pelosi, Marco Antonio III et al., Pubic Bone Suburethral Stabilization Sling: Laparoscopic Assessment of a Transvaginal Operation for the Treatment of Stress Urinary Incontinence, Journal of Laparoendoscopic & Advaned Surgical Techniques, vol. 9, No. 1 pp. 45-50 (1999). |
Pereyra, Armand J. et al, Pubourethral Supports in Perspective: Modified Pereyra Procedure for Urinary Incontinence, Obstetrics and Gynecology, vol. 59, No. 5, pp. 643-648 (May 1982). |
Pereyra, Armand J., M.D., F.A.C.S., A Simplified Surgical Procedure for Correction of Stress Incontinence in Women, West.J.Surg., Obst. & Gynec, p. 223-226, (Jul.-Aug. 1959). |
Peter E. Papa Petros et al., Cure of Stress Incontinence by Repair of External Anal Sphincter, Acta Obstet Gynecol Scand, vol. 69; Sup. 153, p. 75 (1990). |
Peter Petros et al., Anchoring the Midurethra Restores Bladder-Neck Anatomy and Continence, The Lancet, vol. 354, pp. 997-998 (Sep. 18, 1999). |
Petros, Peter E. Papa et al., An Anatomical Basis for Success and Failure of Female Incontinence Surgery, Scandinavian Journal of Neurourology and Urodynamics, Sup. 153, pp. 55-60 (1993). |
Petros, Peter E. Papa et al., An Analysis of Rapid Pad Testing and the History for the Diagnosis of Stress Incontinence, Acta Obstet Gynecol Scand, vol. 71, pp. 529-536 (1992). |
Petros, Peter E. Papa et al., An Integral Therory of Female Urinary Incontinence, Acta Obstetrlcia et Gynecologica Scandinavica, vol. 69 Sup. 153, pp. 7-31 (1990). |
Petros, Peter E. Papa et al., Bladder Instability in Women: A Premature Activation of the Micturition Reflex, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 235-239 (1993). |
Petros, Peter E. Papa et al., Cough Transmission Ratio: An Indicator of Suburethral Vaginal Wall Tension Rather Than Urethral Closure, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 37-39 (1990). |
Petros, Peter E. Papa et al., Cure of Urge Incontinence by the Combined Intravaginal Sling and Tuck Operation, Acta Obstet Gynecol Scand, vol. 69, Sup. 153, pp. 61-62 (1990). |
Petros, Peter E. Papa et al., Further Development of the Intravaginal Slingplasty Procedure—IVS III—(With Midline “Tuck”), Scandinavian Journal of Neurourology and Urodynamics, Sup 153, p. 69-71 (1993). |
Petros, Peter E. Papa et al., Medium-Term Follow-Up of the Intravaginal Slingplasty Operation Indicates Minimal Deterioration of Urinary Continence With Time, (3 pages) (1999). |
Petros, Peter E. Papa et al., Non Stress Non Urge Female Urinary Incontinence—Diagnosis and Cure: A Preliminary Report, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 69-70 (1990). |
Petros, Peter E. Papa et al., Part I: Theoretical, Morphological, Radiographical Correlations and Clinical Perspective, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 5-28 (1993). |
Petros, Peter E. Papa et al., Part II: The Biomechanics of Vaginal Tissue and Supporting Ligaments With Special Relevance to the Pathogenesis of Female Urinary Incontinence, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 29-40 plus cover sheet (1993). |
Petros, Peter E. Papa et al., Part III: Surgical Principles Deriving From the Theory, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 41-52 (1993). |
Petros, Peter E. Papa et al., Part IV: Surgical Appliations of the Theory—Development of the Intravaginal Sling Pklasty (IVS) Procedure, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 53-54 (1993). |
Petros, Peter E. Papa et al., Pinch Test for Diagnosis of Stress Urinary Incontinence, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 33-35 (1990). |
Petros, Peter E. Papa et al., Pregnancy Effects on the Intravaginal Sling Operation, Acta Obstet Gynecol Scand, vol. 89, Sup 153, pp. 77-79 (1990). |
Petros, Peter E. Papa et al., The Autogenic Ligament Procedure: A Technique for Planned Formation of an Artificial Neo-Ligament, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 43-51 (1990). |
Petros, Peter E. Papa et al., The Combined Intravaginal Sling and Tuck Operation an Ambulatory Procedure for Cure of Stress and Urge Incontinence, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 53-59 (1990). |
Petros, Peter E. Papa et al., The Development of the Intravaginal Slingplasty Procedure: IVS II—(With Bilateral “Tucks”), Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 61-67 (1993). |
Petros, Peter E. Papa et al., The Free Graft Procedure for Cure of the Tethered Vagina Syndrome, Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 85-87(1993). |
Petros, Peter E. Papa et al., The Further Development of the Intravaginal Slingplasty Procedure—IVS IV—(With “Double Breasted” Unattached Vaginal Flap Repair and “Free” Vaginal Tapes), Scandinavian Journal of Neurourology and Urodynamics, Sup 153, p. 73-75 (1993). |
Petros, Peter E. Papa et al., The Further Development of the Intravaginal Slingplasty Procedure—IVS V—(With “Double Breasted” Unattached Vaginal Flap Repair and Permanent Sling)., Scandinavian Journal of Neurourology and Urodynamics, Sup 153, pp. 77-79 (1993). |
Petros, Peter E. Papa et al., The Intravaginal Slingplasty Operation, A Minimally Invasive Technique for Cure of Urinary Incontinence in the Female, Aust. NZ J Obstet Gynaecol, vol. 36, n. 4, pp. 453-481 (1996). |
Petros, Peter E. Papa et al., The Intravaginal Slingplasty Procedure: IVS VI—Further Development of the “Double Breasted” Vaginal Flap Repair—Attached Flap, Scandinavian Journal of Neurourology and Urodynamics Sup 153, pp. 81-84 (1993). |
Petros, Peter E. Papa et al., The Posterior Fornix Syndrome: A Multiple Symptom Complex of Pelvic Pain and Abnormal Urinary Symptoms Deriving From Laxity in the Posterior Fornix of Vagina, Scandinavian Journal of Neurourology and Urodynamics. Sup 153, pp. 89-93 (1993). |
Petros, Peter E. Papa et el., The Role of a Lax Posterior Vaginal Fornix in the Causation of Stress and Urgency Symptoms: A Preliminary Report, Acta Obstet Gynecol Scand, vol. 89, Sup 153, pp. 71-73 (1990). |
Petros, Peter E. Papa et al., The Tethered Vagina Syndrome, Post Surgical Incontinence I-Plasty Operation for Cure, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 63-67 (1990). |
Petros, Peter E. Papa et al., The Tuck Procedure: A Simplified Vaginal Repair for Treatment of Female Urinary Incontinence, Acta Obstet Gynecol Scand, vol. 69, Sup 153, pp. 41-42 (1992). |
Petros, Peter E. Papa et al., Urethral Pressure Increase on Effort Originates From Within the Urethra, and Continence From Musculovaginal Closure, Scandinavian Journal of Neurourology and Urodynamics, pp. 337-350 (1995). |
Petros, Peter E. Papa, Development of Generic Models for Ambulatory Vaginal Surgery—Preliminary Report,International Urogynecology Journal, pp. 20-27 (1998). |
Petros, Peter E. Papa, New Ambulatory Surgical Methods Using an Anatomical Classification of Urinary Dysfunction Improve Stress, Urge and Abnormal Emptying, Int. Urogynecology Journal Pelvic Floor Dystfunction, vol. 8 (5), pp. 270-278, (1997). |
Petros, Peter E. Papa, Vault Prolapse II: Restoration of Dynamic Vaginal Supports by Infracoccygeal Sacropexy, an Axial Day-Case Vaginal Procedure, Int. Urogynecol J, vol. 12, pp. 296-303 (2001). |
Rackley, Raymond R. et al., Tension-Free Vaginal Tape and Percutaneous Vaginal Tape Sling Procedures, Techniques in Urology, vol. 7, No. 2 pp. 90-100 (2001). |
Rackley, Raymond R. M.D., Synthetic Slings: Five Steps for Successful Placement, Urology Times, p. 48,48,49 (Jun. 2000). |
Raz, Shlomo, et al., The Raz Bladder Neck Suspension Results in 206 Patients, The Journal of Urology, pp. 845-846 (1992). |
Raz, Shlomo, Female Urology, pp. 80-86, 388-398, 435-442 (1996). |
Raz, Shlomo, MD, Modified Bladder Neck Suspension for Female Stress Incontinence, Urology, vol. XVII, No. 1, pp. 82-85 (Jan. 1981). |
Richardson, David A. et al., Delayed Reaction to the Dacron Buttress Used in Urethropexy, The Journal of Reproductive Medicine, pp. 689-692, vol. 29, No. 9 (Sep. 1984). |
Richter, K., Massive Eversion of the Vagina: Pathogenesis, Diagnosis and Therapy of the “True” Prolapse of the Vaginal Stump, Clin obstet gynecol, vol. 25, p.p 897-912 (1982). |
Ridley, John H., Appraisal of the Goebell-Frangenheim-Stoeckel Sling Procedure, American Journal Obst & Gynec., vol. 95, No. 5, pp. 741-721 (Jul. 1, 1986). |
Roberts, Henry, M.D., Cystourethrography in Women, Deptment of Obstetrics and Gynaecology, University of Liverpool, May 1952, vol. XXXV, No. 293, pp. 253-259. |
SABRE™ Bioabsorbable Sling, Generation Now, Mentor, 4 pages (May 2002). |
SABRE™ Surgical Procedure, Mentor, 6 pages. (Aug. 2002). |
Sanz, Luis E. et al., Modification of Abdominal Sacrocolpopexy Using a Suture Anchor System, The Journal of Reproductive Medicine, vol. 48, n. 7, pp. 400-500 (Jul. 2003). |
Seim, Arnfinn et al., A Study of Female Urinary Incontinence in General Practice—Demography, Medical History, and Clinical Findings, Scand J Urol Nephrol, vol. 30, pp. 465-472 (1996). |
Sergent, F. et al., Prosthetic Restoration of the Pelvic Diaphragm in Genital Urinary Prolapse Surgery: Transobturator and Infacoccygeal Hammock Technique, J Gynecol Obstet Biol Reprod, vol. 32, pp. 120-126 (Apr. 2003). |
Sloan W. R. et al., Stress Incontinence of Urine: A Retrospective Study of the Complications and Late Results of Simple Suprapubic Suburethral Fascial Slings, The Journal of Urology, vol. 110, pp. 533-536 (Nov. 1973). |
Spencer, Julia R., et al., A Comparison of Endoscopic Suspension of the Vesical Neck With Suprapubic Vesicourethropexy for Treatment of Stress Urinary Incontinence, The Journal of Urology, vol. 137, pp. 411-415 (Mar. 1987). |
Stamey, Thomas A., M.D., Endoscopic Suspension of the Vesical Neck for Urinary Incontinence in Females, Ann. Surgery, vol. 192 No. 4, pp. 465-471 (Oct. 1980). |
Stanton, Stuart L., Suprapubic Approaches for Stress Incontinence in Women, Journal of American Geriatrics Society, vol. 38, No. 3, pp. 348-351 (Mar. 1990). |
Stanton, Stuart, Springer-Veglag, Surgery of Female Incontinence, pp. 105-113 (1986). |
Staskin et al., A Comparison of Tensile Strength among Three Preparations of Irradiated and Non-Irradiated Human Fascia Lata Allografts (2 pages). |
Staskin, David R. et al., The Gore-Tex Sling Procedure for Female Sphincteric Incontinence: Indications, Technique and Results, World Journal of Urology; vol. 15, pp. 295-299 (1997). |
Studdiford, William E., Transplantation of Abdominal Fascia for the Relief of Urinary Stress Incontinence, American Journal of Obstetrics and Gynecology, pp. 784-775 (1944). |
Subak, Leslee L. et al., Cost of Pelvic Organ Prolapse Surgery in the United States, Obstetrics & Gynecology, vol. 98, n. 4, pp. 646-651 (Oct. 2001) |
Sullivan, Eugene S. et al., Total Pelvic Mesh Repair a Ten-Year Experience, Dis. Colon Rectum, vol. 44, No. 6, pp. 857-863 (Jun. 2001). |
Swift, S.E., et al., Case-Control Study of Etiologic Factors in the Development of Sever Pelvic Organ Prolapse, Int Urogynecol J. vol. 12, pp. 187-192 (2001). |
TVT Tension-free Vaginal Tape, Gynecare, Ethicon, Inc., 23 pages (1999). |
Ulmsten, U. et al., A Multicenter Study of Tension-Free Vaginal Tape (TVT) for Surgical Treatment of Stress Urinary Incontinence, International Urogynecology Journal, vol. 9, pp. 210-213 (1998). |
Ulmsten, U. et al., An Ambulatory Surgical Procedure Under Local Anesthesia for Treatment of Female Urinary Incontinence, International Urogynecology Journal, vol. 7 pp. 81-86 (May 1996). |
Ulmsten, U., Female Urinary Incontinence—A Symptom, Not a Urodynamic Disease. Some Theoretical and Practical Aspects on the Diagnosis a Treatment of Female Urinary Incontinence, International Urogynecology Journal, vol. 6, pp. 2-3 (1995). |
Ulmsten Ulf et al., A Three Year Follow Up of Tension Free Vaginal Tape for Surgical Treatment of Female Stress Urinary Incontinence, British Journal of Obstetrics and Gynaecology, vol. 106, pp. 346-350 (1999). |
Ulmsten, Ulf et al., Different Biochemical Composition of Connective Tissue in Continent, Acta Obstet Gynecol Scand, pp. 455-457 (1987). |
Ulmsten, Ulf et al., Intravaginal Slingplasty (IVS): An Ambulatory Surgical Procedure for Treatment of Female Urinary Incontinence, Scand J Urol Nephrol, vol. 29, pp. 75-82 (1995). |
Ulmsten, Ulf et al., The Unstable Female Urethra, Am. J. Obstet, Gynecol., vol. 144 No. 1, pp. 93-97 (Sep. 1, 1982). |
UroMed Access Instrument System for the Sub-urethral Sling Procedure Catalog No. 120235, Directions for Use, (3 pages). |
Vesica® Percutaneous Bladder Neck Stabilization Kit, A New Approach to Bladder Neck Suspenison, Microvasive® Boston Scientific Corporation, 4 pages (1995). |
Vesica® Sling Kits, Simplifying Sling Procedures, Microvasive® Boston Scientific Corporation, 4 pages (1998). |
Villet, R., Reponse De R. Villet A L'Article De D. Dargent et al., Gynécolgie Obstétrique & Fertilité, vol. 31, p. 96 (2003). |
Visco, Anthony G. et al., Vaginal Mesh Erosion After Abdominal Sacral Colpopexy, Am J Obstet Gynecol, vol. 184, n. 3, pp. 297-302. |
Walters, Mark D., Percutaneous Suburethral Slings: State of the Art, Presented at the conference of the American Urogynecologic Society, Chicago, 29 pages (Oct. 2001). |
Waxman, Steve et al., Advanced Urologic Surgery for Urinary Incontinence, The Female Patent, pp. 93-100, vol. 21 (Mar. 1996). |
Weber, Anne M. et al., Anterior Vaginal Prolapse: Review of Anatomy and Techniques of Surgical Repair, Obstetrics and Gynecology, vol. 89, n. 2, pp. 311-318 (Feb. 1997). |
Webster, George et al., Voiding Dysfunction Following Cystourethropexy: Its Evaluation and Management, The Journal of Urology, vol. 144, pp. 670-673 (Sep. 1990). |
Winter, Chester C., Peripubic Urethropexy for Urinary Stress Incontinence in Women, Urology, vol. XX, No. 4, pp. 408-411 (Oct. 1982). |
Winters et al., Abdominal Sacral Colpopexy and Abdominal Enterocele Repair in the Management of Vaginal Vault Prolapse, Urology, vol. 66, supp. 6A, pp. 55-63 (2000). |
Woodside, Jeffrey R. et al., Suprapubic Endoscopic Vesical Neck Suspension for the Management of Urinary Incontinence in Myelodysplastic Girls, The Journal of Urology, vol. 135, pp. 97-99 (Jan. 1986). |
Zacharin, Robert et al., Pulsion Enterocele: Long-Term Results of an Abdominoperineal Technique, Obstetrics & Gynecology, vol. 55 No. 2, pp. 141-148 (Feb. 1980). |
Zacharin, Robert, The Suspensory Mechanism of the Female Urethra, Journal of Anatomy, vol. 97, Part 3, pp. 423-427 (1963). |
Zimmern, Phillippe E. et al., Four-Corner Bladder Neck Suspension, Vaginal Surgery for the Urologist, vol. 2, No. 1, pp. 29-36 (Apr. 1994). |
Mouly, Patrick et al., Vaginal Reconstruction of a Complete Vaginal Prolapse: The Trans Obturator Repair, Journal of Urology, vol. 169, p. 183 (Apr. 2003). |
Pourdeyhimi, B, Porosity of Surgical Mesh Fabrics: New Technology, J. Biomed. Mater. Res.: Applied Biomaterials, vol. 23, No. A1, pp. 145-152 (1989). |
Drutz, H.P. et al., Clinical and Urodynamic Re-Evaluation of Combined Abdominovaginal Marlex Sling Operations for Recurrent Stress Urinary Incontinence, International Urogynecology Journal, vol. 1, pp. 70-73 (1990). |
Petros, Papa PE et al., An Integral Theory and Its Method for the Diagnosis and Management of Female Urinary Incontience, Scandinavian Journal of Urology, and Nephrology, Supplement 153: p. 1 (1993). |
Mentor Porges, Uratape, ICS/IUGA Symp, Jul. 2002. |
Kettel, L. Michael et al., An Anatomical Evaluation of the Sacrospinous Ligament Colpopexy, Surg. Gynecol. Obstet. 168(4):318-22 Apr. 1989. |
Flynn, B.J. et al., Surgical Management of the Apical Vaginal Defect, Curr. Opin. Urol. 12(4):353-58, Jul. 2002. |
Buller, J.L. et al., Uterosacral Ligament; Description of Anatomic Relationships to Optimize Sergical Safety, Obstet. Gynecol. 97:873-79, 2001. |
Brochure, “GPS for Pelvic Floor Repair,” Gynecare Prolift, 6 pages, 2005. |
Number | Date | Country | |
---|---|---|---|
20150282920 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
60702705 | Jul 2005 | US | |
60702704 | Jul 2005 | US | |
60702700 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14025988 | Sep 2013 | US |
Child | 14743259 | US | |
Parent | 11989256 | US | |
Child | 14025988 | US |