Methods and systems for triggering with unknown inspiratory flow

Information

  • Patent Grant
  • 9981096
  • Patent Number
    9,981,096
  • Date Filed
    Wednesday, March 13, 2013
    12 years ago
  • Date Issued
    Tuesday, May 29, 2018
    7 years ago
Abstract
This disclosure describes systems and methods for providing novel back-up ventilation that allows the patient to trigger or initiate the delivery of breath. Further, this disclosure describes systems and methods for triggering ventilation when base flow and/or inspiratory flow is unknown or indeterminable by the ventilator.
Description

Medical ventilator systems have long been used to provide ventilatory and supplemental oxygen support to patients. These ventilators typically comprise a source of pressurized oxygen which is fluidly connected to the patient through a conduit or tubing. As each patient may require a different ventilation strategy, modern ventilators can be customized for the particular needs of an individual patient. For example, several different ventilator modes or settings have been created to provide better ventilation for patients in various different scenarios, such as mandatory ventilation modes and assist control ventilation modes.


Triggering with Unknown Inspiratory Flow

This disclosure describes systems and methods for providing novel back-up ventilation that allows the patient to trigger or initiate the delivery of breath. Further, this disclosure describes systems and methods for triggering ventilation when base flow and/or inspiratory flow is unknown or indeterminable by the ventilator.


In part, this disclosure describes a method for ventilating a patient with a ventilator. The method includes:


a) delivering a fixed base flow that is indeterminable;


b) monitoring an exhalation flow during exhalation;


c) monitoring accumulator pressure during exhalation;


d) estimating a base flow based on the monitored accumulator pressure;


e) detecting a flow deviation based on the estimated base flow and the monitored exhalation flow;


f) comparing the flow deviation to an inspiratory trigger threshold; and


g) triggering inspiration based on the comparison.


The disclosure further describes a ventilator system that includes: a pressure generating system, a ventilation tubing system, a first sensor, a second sensor, a base flow estimator module, and a trigger module. The pressure generating system is adapted to generate a flow of breathing gas. The pressure generating system delivers an indeterminable fixed base flow. The ventilation tubing system includes an inspiratory limb, an expiratory limb, and patient interface for connecting the pressure generating system to a patient. The pressure generating system includes an accumulator. The first sensor is operatively coupled to the accumulator and capable of generating a first output indicative of accumulator pressure. The second sensor is operatively coupled to at least one of the pressure generating system and the expiratory limb and capable of generating a second output indicative of an exhalation flow. The base flow estimator module determines an estimated base flow based on the first output. The flow deviation module determines a flow deviation based on the estimated base flow and the second output. The trigger module triggers inspiration based on a comparison of the flow deviation to an inspiratory trigger threshold.


The disclosure additionally describes a computer-readable medium having computer-executable instructions for performing a method for ventilating a patient with a ventilator. The method includes:


a) repeatedly delivering a fixed base flow that is indeterminable;


b) repeatedly monitoring an exhalation flow during exhalation;


c) repeatedly monitoring accumulator pressure during exhalation;


d) repeatedly estimating a base flow based on the monitored accumulator pressure;


e) repeatedly detecting a flow deviation based on the estimated base flow and the monitored exhalation flow;


f) repeatedly comparing the flow deviation to an inspiratory trigger threshold; and


g) repeatedly triggering inspiration based on the comparison.


These and various other features as well as advantages which characterize the systems and methods described herein will be apparent from a reading of the following detailed description and a review of the associated drawings. Additional features are set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the technology. The benefits and features of the technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.





BRIEF DESCRIPTION OF THE DRAWINGS

The following drawing figures, which form a part of this application, are illustrative of embodiments of systems and methods described below and are not meant to limit the scope of the invention in any manner, which scope shall be based on the claims.



FIG. 1A illustrates an embodiment of a ventilator.



FIG. 1B illustrates an embodiment of a ventilator.



FIG. 2 illustrates an embodiment of a method for triggering inspiration during ventilation of a patient on a ventilator.



FIG. 3 illustrates an embodiment of a method for triggering inspiration during ventilation of a patient on a ventilator.



FIG. 4 illustrates an embodiment of a method for triggering inspiration during ventilation of a patient on a ventilator.



FIG. 5 illustrates an embodiment of a graph of an exhalation flow during one breath while ventilating a patient on a ventilator.





DETAILED DESCRIPTION

Although the techniques introduced above and discussed in detail below may be implemented for a variety of medical devices, the present disclosure will discuss the implementation of these techniques in the context of a medical ventilator for use in providing ventilation support to a human patient. A person of skill in the art will understand that the technology described in the context of a medical ventilator for human patients could be adapted for use with other systems such as ventilators for non-human patients and general gas transport systems.


Medical ventilators are used to provide a breathing gas to a patient who may otherwise be unable to breathe sufficiently. In modern medical facilities, pressurized air and oxygen sources are often available from wall outlets. Accordingly, ventilators may provide pressure regulating valves (or regulators) connected to centralized sources of pressurized air and pressurized oxygen. The regulating valves function to regulate flow so that respiratory gas having a desired concentration of oxygen is supplied to the patient at desired pressures and rates. Ventilators capable of operating independently of external sources of pressurized air are also available.


As each patient may require a different ventilation strategy, modern ventilators can be customized for the particular needs of an individual patient. For example, several different ventilator modes or settings have been created to provide better ventilation for patients in various different scenarios, such as mandatory ventilation modes and assist control ventilation modes. Assist control modes allow a spontaneously breathing patient to trigger inspiration during ventilation.


The response performance of a medical ventilator to a patient trigger from exhalation into inhalation phase represents an important characteristic of a medical ventilator. A ventilator's trigger response impacts the patient's work of breathing and the overall patient-ventilator synchrony. The trigger response performance of a ventilator is a function of a patient's inspiratory behavior (breathing effort magnitude and timing characteristics) as well as the ventilator's gas delivery dynamics and flow control parameters (actuator response, dead bands, etc.).


In conventional flow triggering modes, a patient's inspiratory trigger is detected based on the magnitude of flow deviations generated by the patient's inspiratory effort. In a flow triggering mode, the ventilator delivers a fixed base flow during the exhalation phase. Accordingly, flow deviations are sensed by the computation of the ventilator net flow (base flow-exhausted flow) and compared against a set trigger threshold for triggering.


Base flow is the delivered flow during exhalation and consists of a desired combination of appropriate gases. A fixed base flow may be generated by a controller regulating an actuator (valve) to maintain a constant desired flow rate from a regulated pressurized gas source into the ventilator circuit. The magnitude of the flow rate generated by the delivery valve at different open positions is determined by an inspiratory flow sensor. Therefore, base flow is determined by the ventilator by measuring the amount of flow delivered to the patient via an inspiration flow sensor during exhalation.


Exhausted flow is measured during the expiratory phase of a ventilator breath while a base flow is delivered through the patient circuit. To determine the volume of gas exhaled by the patient, the net flow (total delivered flow minus total flow through exhalation module) is used for integration. That is, the delivered base flow is subtracted from the sum of the base flow and patient flow exiting through the exhalation port. The flow exiting the exhalation module during the active phase of patient exhalation is the sum of base flow delivered by the ventilator and exhaled flow from the patient lung.


In the absence of an inspiratory flow sensor or under fault conditions when an inspiratory flow sensor may not be utilized, a fixed base flow may be generated by opening the delivery valve or regulator to a fixed position and/or by controlling the input pressure, which is generated by an accumulator, to the delivery valve. However, the magnitude of the generated base flow is indeterminable, so a conventional flow triggering algorithm cannot be used to compare the net flow (base flow−exhausted flow) against the trigger threshold. Accordingly, patient initiated triggers cannot be detected and prevent the use of a spontaneous mode of ventilation.


An example of a fault condition is presented by the Back-Up Ventilation (BUV) mode under which the data measurement and acquisition subsystem on the delivery side of the ventilator is deactivated because of a malfunction. Conventional ventilators declare an alarm and terminate ventilation. However, the BUV mode allows a ventilator to continue ventilating the patient under such conditions until an appropriate substitute device is made available. However, currently, the BUV mode does not allow for spontaneously breathing patients to trigger ventilation. Therefore, the BUV mode is uncomfortable for spontaneously breathing patients.


Accordingly, the systems and methods described herein provide for a triggering mechanism when inspiration flow is unknown, which means that a fixed base flow is also indeterminable by the ventilator. As used herein, a base flow is indeterminable by the ventilator when the base flow delivered is not measurable in the inhalation limb of the ventilator tubing system. Further, the base flow may be indeterminable by the ventilator in any situation in which the ability to control the inspiratory module is questioned. The terms unreliable, unknown, and indeterminable as used herein, while having different meanings, are utilized interchangeably in this disclosure. Accordingly, the term “unreliable” encompasses the terms “indeterminable” and “unknown, the term “unknown” encompasses the terms “unreliable” and “indeterminable” and the term “unreliable” encompasses the terms “indeterminable” and “unknown.” The capability of triggering without the knowledge of a flow rate for a fixed base flow allows a BUV mode to maintain comfortable patient-ventilator synchrony.


The ventilator monitors exhalation flow and accumulator pressure during exhalation. The ventilator estimates a base flow based on the accumulator pressure. The estimated base flow is substituted for the actual base flow allowing the traditional flow triggering algorithm to be utilized. For example, the ventilator is able to determine flow deviations by the computation of the ventilator net flow (base flow-exhausted) which is compared against a set trigger threshold for triggering. In some embodiments, the ventilator determines a stable portion of exhalation based on the monitored exhalation flow. In these embodiments, the ventilator may only detect for flow deviations during the stable portions of exhalations.



FIGS. 1A and 1B are diagrams illustrating an embodiment of an exemplary ventilator 100. The exemplary ventilator 100 illustrated in FIG. 1A is connected to a human patient 150. Ventilator 100 includes a pneumatic system 102 (also referred to as a pressure generating system 102) for circulating breathing gases to and from patient 150 via the ventilation tubing system 130, which couples the patient 150 to the pneumatic system 102 via an invasive (e.g., endotracheal tube, as shown) or a non-invasive (e.g., nasal mask) patient interface 180.


Ventilation tubing system 130 (or patient circuit 130) may be a two-limb (shown) or a one-limb circuit for carrying gases to and from the patient 150. In a two-limb embodiment, a fitting, typically referred to as a “wye-fitting” 170, may be provided to couple the patient interface 180 (shown as an endotracheal tube in FIG. 1A and as a nasal mask in FIG. 1B) to an inspiratory limb 132 and an expiratory limb 134 of the ventilation tubing system 130.


Pneumatic system 102 may be configured in a variety of ways. In the present example, pneumatic system 102 includes an expiratory module 108 coupled with the expiratory limb 134 and an inspiratory module 104 coupled with the inspiratory limb 132. Compressor 106, accumulator 105 and/or other source(s) of pressurized gases (e.g., air, oxygen, and/or helium) is coupled with inspiratory module 104 and the expiratory module 108 to provide a gas source for ventilatory support via inspiratory limb 132.


The inspiratory module 104 is configured to deliver gases to the patient 150 and/or through the inspiratory limb 132 according to prescribed ventilatory settings. The inspiratory module 104 is associated with and/or controls an inspiratory valve 101 for controlling gas delivery to the patient 150 and/or gas delivery through the inspiratory limb 132. In some embodiments, inspiratory module 104 is configured to provide ventilation according to various ventilator modes, such as mandatory, spontaneous, and assist modes.


The expiratory module 108 is configured to release gases from the patient's lungs according to prescribed ventilatory settings. The expiratory module 108 is associated with and/or controls an expiratory valve 109 for releasing gases from the patient 150. Further, the expiratory module 108 and/or the inspiratory module 104 may instruct the pressure generating system 102 and/or the inspiratory module 104 to deliver a base flow during exhalation. In an alternative embodiment, the pressure generating system 102 may instruct the inspiratory module 104 to deliver a base flow during exhalation.


The ventilator 100 may also include one or more sensors 107 communicatively coupled to ventilator 100. The sensors 107 may be located in the pneumatic system 102, ventilation tubing system 130, and/or on the patient 150. The embodiment of FIG. 1A illustrates a sensor 107 in pneumatic system 102.


Sensors 107 may communicate with various components of ventilator 100, e.g., pneumatic system 102, other sensors 107, expiratory module 108, inspiratory module 104, processor 116, controller 110, trigger module 115, flow deviation module 117, base flow estimator module 118, and any other suitable components and/or modules. In one embodiment, sensors 107 generate output and send this output to pneumatic system 102, other sensors 107, expiratory module 108, inspiratory module 104, processor 116, controller 110 trigger module 115, flow deviation module 117, base flow estimator module 118, and any other suitable components and/or modules.


Sensors 107 may employ any suitable sensory or derivative technique for monitoring one or more patient parameters or ventilator parameters associated with the ventilation of a patient 150. Sensors 107 may detect changes in patient parameters indicative of patient inspiratory or expiratory triggering, for example. Sensors 107 may be placed in any suitable location, e.g., within the ventilatory circuitry or other devices communicatively coupled to the ventilator 100. For example, in some embodiments, one or more sensors 107 may be located in an accumulator 105. Further, sensors 107 may be placed in any suitable internal location, such as, within the ventilatory circuitry or within components or modules of ventilator 100. For example, sensors 107 may be coupled to the inspiratory and/or expiratory modules 104, 108 for detecting changes in, for example, circuit pressure and/or flow. In other examples, sensors 107 may be affixed to the ventilatory tubing or may be embedded in the tubing itself. According to some embodiments, sensors 107 may be provided at or near the lungs (or diaphragm) for detecting a pressure in the lungs. Additionally or alternatively, sensors 107 may be affixed or embedded in or near wye-fitting 170 and/or patient interface 180. Any sensory device useful for monitoring changes in measurable parameters during ventilatory treatment may be employed in accordance with embodiments described herein.


For example, in some embodiments, the one or more sensors 107 of the ventilator 100 include an inspiratory flow sensor 107a and an expiratory flow sensor 107b as illustrated in FIG. 1B. In one embodiment, the inspiratory flow sensor 107a is located in the inspiratory limb 132 and is controlled by the inspiratory module 104. However, the inspiratory flow sensor 107a may be located in any suitable position for monitoring inspiratory flow and may be monitored by any suitable ventilator component, such as a pressure generating system 102. In one embodiment, the expiratory flow sensor 107b is located in the expiratory limb 134 and is monitored by the expiratory module 108. However, the expiratory flow sensor 107b may be located in any suitable position for monitoring expiratory flow and may be monitored by any suitable ventilator component, such as a pressure generating system 102. In another example, a pressure sensor 107c may be located in the accumulator 105 (as illustrated in FIG. 1B) or located in a valve attached to the accumulator 105. The pressure sensor 107c may generate output indicative of the pressure within the accumulator 105. However, the pressure sensor 107c may be located in any suitable position for monitoring accumulator pressure and may be monitored by any suitable ventilator component, such as a pressure generating system 102.


As should be appreciated, with reference to the Equation of Motion, ventilatory parameters are highly interrelated and, according to embodiments, may be either directly or indirectly monitored. That is, parameters may be directly monitored by one or more sensors 107, as described above, or may be indirectly monitored or estimated by derivation according to the Equation of Motion or other known relationships from the monitored parameters.


The pneumatic system 102 may include a variety of other components, including mixing modules, valves, tubing, accumulators 105, filters, etc. In the event that the inspiratory module 104 malfunctions, in one embodiment, the pressure generating system 102 may instruct an accumulator 105 to deliver inspiratory flow and/or base flow through a bypass limb 135 and a back-up valve 103 to the ventilation tubing system 130, as illustrated in FIG. 1B. In some embodiments, the bypass limb 135 is tubing that connects the pressure generating system 102 to the patient 150 and the expiratory limb 134 while bypassing the inspiratory module 104 and/or the inspiratory flow sensor 107a. The back-up valve 103 is a valve that controls the flow of gas through the bypass limb 135. In some embodiments, the bypass limb 135 is a portion of the ventilation tubing system 130.


In some embodiments, when the inspiratory module 104 malfunctions, so too does the inspiratory flow sensor 107a. In further embodiments, the delivered flow does not pass by and/or through the inspiratory flow sensor 107a during an inspiratory module 104 malfunction as illustrated in FIG. 1B. Accordingly, during some malfunctions, the delivered flow is not measured or is not accurately measured by an inspiratory flow sensor 107a. In other embodiments, the ventilator 100 does not contain an inspiratory flow sensor 107a.


Controller 110 is operatively coupled with pneumatic system 102, signal measurement and acquisition systems, and an operator interface 120 that may enable an operator to interact with the ventilator 100 (e.g., change ventilator settings, select operational modes, view monitored parameters, etc.).


In one embodiment, the operator interface 120 of the ventilator 100 includes a display 122 communicatively coupled to ventilator 100. Display 122 provides various input screens, for receiving clinician input, and various display screens, for presenting useful information to the clinician. In one embodiment, the display 122 is configured to include a graphical user interface (GUI). The GUI may be an interactive display, e.g., a touch-sensitive screen or otherwise, and may provide various windows and elements for receiving input and interface command operations. Alternatively, other suitable means of communication with the ventilator 100 may be provided, for instance by a wheel, keyboard, mouse, or other suitable interactive device. Thus, operator interface 120 may accept commands and input through display 122.


Display 122 may also provide useful information in the form of various ventilatory data regarding the physical condition of a patient 150. The useful information may be derived by the ventilator 100, based on data collected by a processor 116, and the useful information may be displayed to the clinician in the form of graphs, wave representations, pie graphs, text, or other suitable forms of graphic display. For example, patient data may be displayed on the GUI and/or display 122. Additionally or alternatively, patient data may be communicated to a remote monitoring system coupled via any suitable means to the ventilator 100. In some embodiments, the display 122 may illustrate an estimated base flow, an exhalation flow, a restricted period, a trigger threshold, a flow deviation, and/or any other information known, received, or stored by the ventilator 100.


In some embodiments, controller 110 includes memory 112, one or more processors 116, storage 114, and/or other components of the type commonly found in command and control computing devices. Controller 110 may further include a trigger module 115, flow deviation module 117, and base flow estimator module 118, as illustrated in FIG. 1. In alternative embodiments, the trigger module 115, flow deviation module 117, and base flow estimator module 118 are located in other components of the ventilator 100, such as in the pressure generating system 102 (also known as the pneumatic system 102).


The memory 112 includes non-transitory, computer-readable storage media that stores software that is executed by the processor 116 and which controls the operation of the ventilator 100. In an embodiment, the memory 112 includes one or more solid-state storage devices such as flash memory chips. In an alternative embodiment, the memory 112 may be mass storage connected to the processor 116 through a mass storage controller (not shown) and a communications bus (not shown). Although the description of computer-readable media contained herein refers to a solid-state storage, it should be appreciated by those skilled in the art that computer-readable storage media can be any available media that can be accessed by the processor 116. That is, computer-readable storage media includes non-transitory, volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. For example, computer-readable storage media includes RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by the computer.


The base flow estimator module 118 determines an estimated base flow when a fixed base flow is indeterminable by the ventilator 100. In some embodiments, the fixed base flow is indeterminable by the ventilator in any situation in which the inspiratory module and/or flow sensor are called into question. More specifically, in some embodiments, a fixed base flow is indeterminable by the ventilator 100 when at least one of the following conditions occur: an absence of an inspiratory flow sensor 107a; a malfunction of the inspiratory flow sensor 107a; a malfunction that prevents utilization of the inspiratory flow sensor 107a; an inspiratory module 104 malfunction; a malfunction that deactivates at least one of a data measurement subsystem and a data acquisition subsystem, and any other ventilator malfunction that prevents the ventilator 100 from being able to accurately and/or reliably measure inspiration flow. In some embodiments, the data measurement subsystem and the data acquisition subsystem are part of the pneumatic system 102 or controller 110. In some embodiments, during a malfunction, the ventilator 100 is capable of delivering an appropriate flow rate, such as a fixed base flow, by controlling the input pressure as generated by an accumulator 105 to a back-up valve 103, which may be held open in a fixed position. However, the amount of fixed base flow delivered cannot be determined by the ventilator 100, such as in a back-up ventilation.


The base flow estimator module 118 estimates a base flow based on output from a pressure sensor or pressure transducer 107c operatively coupled to the accumulator 105. The generated output is indicative of the accumulator pressure. Accordingly, the base flow estimator module 118 derives an estimated base flow based on accumulator pressure.


The flow deviation module 117 monitors for and determines a flow deviation based on the estimated base flow and the monitored exhalation flow. The flow deviation module 117 receives the estimated base flow from another component of the ventilator such as the base flow estimator module 118, controller 110, and/or processor 116. Further, the flow deviation module 117 receives the monitored exhalation flow from another component of the ventilator such as the base flow estimator module 118, sensor 107, controller 110, and/or processor 116. The estimated base flow is substituted for the actual base flow allowing the traditional flow triggering algorithm to be utilized. Accordingly, the flow deviation module 117 of the ventilator is able to determine flow deviations by the computation of the ventilator net flow (estimated base flow−exhausted flow). In other words, the flow deviation module 117 determines a flow deviation by subtracting exhalation flow from the estimated base flow measured during the same time period. Measurements taken during the same time period time are measurements taken within 1 second or less of each other. In some embodiments, the same time period includes measurements taken within 900 ms, 800 ms, 700 ms, 600 ms, 500 ms, 400 ms, 300 ms, 200 ms, 100 ms, 50 ms, 40 ms, 30 ms, 20 ms, 10 ms, 5 ms, or 1 ms or less of each other.


In some embodiments, the flow deviation module 117 determines a stable portion of exhalation before monitoring for flow deviations. In one embodiment, the stable portion of exhalation is the portion of exhalation when a patient 150 is contributing very little or no flow through the expiratory limb 134 and is prior to the beginning of inspiration as illustrated in FIG. 5. FIG. 5 illustrates an embodiment of a graph 500 of an exhalation flow during one breath while ventilating a patient 150 on a ventilator 100. In order to determine the stable portion of exhalation, the ventilator 100 monitors exhalation pressure and/or exhalation flow. In one embodiment, the exhaled flow and/or pressure is monitored with an expiratory flow sensor 107b. In some embodiments, the exhaled flow and/or pressure is monitored with an expiratory flow sensor 107b.


In some embodiments, the flow deviation module 117 collects multiple exhalation pressure and/or exhalation flow readings in at least two different circular buffers for a set period during exhalation after the expiration of a restricted period. The restricted period as used herein is a predetermined time period that starts at the beginning of exhalation. A patient 150 is prevented from triggering ventilation during the predetermined time period of the restricted period. For example, the restricted period may be 25 ms, 50 ms, 100 ms, and/or any other suitable time period for preventing a patient 150 from triggering inspiration.


In one embodiment, flow deviation module 117 measures exhalation flow and pressure in two 10-slot circular buffers beginning one second after the end of the restricted period. In this embodiment, to determine stability, the flow deviation module 117 may monitor the exhalation flow every computation cycle. In some embodiments, the computational cycle is every 5 ms. Next, during this embodiment, the flow deviation module 117 determines if the difference between the maximum exhalation pressure and the minimum exhalation pressure is less that 1.5 cm of H2O ((Max(Pe)−Min(Pe))<1.5 cm H2O) and determines if the difference between maximum exhalation flow and minimum exhalation flow is less than 1.5 LPM ((Max(Qe)−Min(Qe))<1.5 LPM) during a certain interval. In this embodiment, the maximum and minimum values are calculated and compared based on the flow and pressure data saved in the 10-point buffer (pertaining to a 50 ms time period) after the initial exhalation restricted period has elapsed. Maximum and minimum values for the moving 10-point windows are tracked each computation cycle during exhalation. If the difference between the maximum exhalation pressure and the minimum exhalation pressure is less that 1.5 cm of H2O and the difference between maximum exhalation flow and minimum exhalation flow is less than 1.5 LPM, then the flow deviation module 117 determines that the patient 150 is in the stable portion of exhalation (or when active exhalation has been completed) and monitors for flow deviations. If the difference between the maximum exhalation pressure and the minimum exhalation pressure is not less than 1.5 cm of H2O and/or the difference between maximum exhalation flow and minimum exhalation flow is not less than 1.5 LPM for either computation cycle, then the flow deviation module 117 determines that the patient 150 is not in the stable portion of exhalation and does not monitor for flow deviations.


The minimum pressure and flow values of 1.5 are based on the characteristics of an exemplary ventilator. Other values and different pressure and flow levels may be used as appropriate based on the ventilator being currently utilized. Further, depending on the utilized ventilator, the flow and pressure stability thresholds may not necessarily have the same magnitude. The thresholds are selected to provide minimal respiratory activity by the patient.


In other embodiments, the flow deviation module 117 monitors the slope of the patient exhalation flow after a restricted period. If the flow deviation module 117 determines that the slope of the exhalation flow is at zero or about zero, then the flow deviation module 117 determines that the patient 150 is in the stable portion of exhalation (or when active exhalation has been completed) and monitors for flow deviations. If the flow deviation module 117 determines that the slope of the exhalation flow is not at about zero, then the flow deviation module 117 determines that the patient 150 is not in the stable portion of exhalation and does not monitor for flow deviations.


The embodiments, discussed above are merely exemplary and are not meant to be limiting. Any suitable method for determining a stable period of exhalation may be utilized by the present disclosure. In some embodiments, the flow deviation module 117 continuously updates the estimated base flow during exhalation throughout ventilation based on newly generated output from the sensor 107c operatively coupled to the accumulator 105.


Ventilators 100, depending on their mode of operation, may trigger automatically and/or in response to a detected change in a ventilator 100 and/or patient parameter. The trigger module 115 receives and/or determines one or more inspiration trigger thresholds. In some embodiments, the trigger module 115 receives an inspiration trigger threshold from operator input. In other embodiments, the trigger module 115 determines an inspiration trigger threshold based on ventilator and/or patient parameters. During exhalation, in one embodiment, the trigger module 115 monitors ventilator and/or patient parameters and compares these parameters to one or more inspiration trigger thresholds to determine if the parameters meet and/or exceed the inspiration trigger thresholds. In some embodiments, the trigger module 115 receives the ventilator and/or patient parameter form other modules of the ventilator 100, such as the pressure generating system 102, flow deviation module 117, and the base flow estimator module 118. Sensors 107 suitable for this detection may include any suitable sensing device as known by a person of skill in the art for a ventilator 100.


When a fixed base flow is indeterminable by the ventilator 100, the trigger module 115 utilizes at least one of the following trigger thresholds. In some embodiments, when a fixed base flow is indeterminable by the ventilator 100, the trigger module 115 triggers inspiration based on the first one of any of the following trigger thresholds to occur or to be exceeded.


In one embodiment, the ventilator 100 is preconfigured to deliver an inspiration after a predetermined amount of exhalation time to prevent a patient 150 from becoming under-ventilated. Accordingly, the predetermined amount of exhalation time (e.g., known as an apnea interval in some ventilators) is the trigger threshold in this embodiment. For example, the trigger module 115 will automatically trigger an inspiration after 20 seconds, 30 seconds, or 60 seconds of exhalation time. In some embodiments, the predetermined amount of time is determined by the clinician and/or ventilator 100 based on whether the patient 150 is an infant, child, adult, male, female, and/or suffering from a specific disease state.


In other embodiments, the trigger module 115 of the ventilator 100 may detect a flow-triggered event. If the ventilator 100 detects a slight drop in the base flow through the exhalation module during exhalation, this may indicate that the patient 150 is attempting to inspire. During flow triggering, the ventilator 100 is detecting a drop in base flow or a flow deviation attributable to a slight redirection of gases into the patient's lungs (in response to a slightly negative pressure gradient as discussed above). However, in some scenarios, such as during BUV, the delivered base flow is indeterminable by the ventilator 100. Accordingly, in one embodiment, a flow-triggering method when a fixed base flow is indeterminable involves the trigger module 115 comparing the flow deviation received from the flow deviation module 117 to the flow trigger threshold. As discussed above, the flow deviation determined by the flow deviation module 117 is based on the estimated base flow.


In embodiments, the trigger module 115 utilizes a change in flow rate as an inspiration trigger threshold. For example, the inspiration trigger threshold may be a change in flow rate of −2 LPM, −3 LPM, −4 LPM, −5 LPM, −6 LPM, −7 LPM, and −8 LPM or may be a range of a change in flow rate, such as a range of −3 LPM to −6 LPM or −4 LPM to −7 LPM. This list is exemplary only and is not meant to be limiting. Any suitable changes in flow rate may be utilized by the trigger module 115 for triggering an inspiration.


If the trigger module 115 determines that ventilator and/or patient parameters meet and/or exceed an inspiration trigger threshold during exhalation, the trigger module 115 instructs the inspiratory module 104 to deliver an inspiration, which effectively ends the exhalation phase. If the trigger module 115 determines that ventilator and/or patient parameters do not meet and/or exceed an inspiration trigger threshold during exhalation, the trigger module 115 continues to monitor the ventilator and/or patient parameters and compare them to a trigger threshold until the ventilator and/or patient parameters meet and/or exceed a trigger threshold.



FIG. 2 illustrates an embodiment of a method 200 for triggering inspiration during ventilation of a patient on a ventilator. Method 200 begins at the start of exhalation. As illustrated, method 200 includes a deliver an indeterminable fixed base flow operation 202. During the deliver an indeterminable fixed base flow operation 202, the ventilator delivers a fixed but indeterminable base flow through the inspiratory limb. In some embodiments, a fixed base flow is indeterminable by the ventilator when at least one of the following conditions occur: an absence of an inspiratory flow sensor; a malfunction of the inspiratory flow sensor; a malfunction that prevents utilization of the inspiratory flow sensor; an inspiratory module malfunction; a malfunction that deactivates at least one of a data measurement subsystem and a data acquisition subsystem, and any other ventilator malfunction that prevents the ventilator from being able to measure inspiration flow. In some embodiments, during a malfunction, the ventilator is capable of delivering a fixed base flow by controlling the input pressure to a backup valve, which is generated by an accumulator.


Method 200 includes a monitoring operation 204. During the monitoring operation 204, the ventilator monitors ventilator and/or patient parameters. As used herein ventilator parameters include all parameter determined by the operator and/or ventilator. As used herein patient parameters include any parameter that is not determined by the ventilator and/or operator. The ventilator during the monitoring operation 204 performs at least two separate operations: an exhalation flow monitoring operation 204a; and an accumulator pressure monitoring operation 204b. These operations (204a and 204b) may be performed in any order, be performed simultaneously, or at least partially overlap in performance. The ventilator during the exhalation flow monitoring operation 204a monitors exhalation flow and/or exhalation pressure. Further, the ventilator during the accumulator pressure monitoring operation 204b monitors accumulator pressure. In some embodiments, the ventilator during the monitoring operation 204 additionally monitors exhalation time, exhalation flow (if not already monitored), exhalation pressure (if not already monitored), and/or a restricted period. Sensors suitable for this detection may include any suitable sensing device as known by a person of skill in the art for a ventilator, such as a flow sensor or a pressure sensor.


Further, method 200 includes an estimating operation 206. During the estimating operation 206 the ventilator estimates a base flow based on the monitored accumulator pressure. The ventilator derives an estimated base flow from the accumulator pressure measured by the ventilator during monitoring operation 204. In some embodiments, the monitored accumulator pressure is received from output from a pressure sensor operatively coupled to an accumulator. In some embodiments, the sensor is attached to the accumulator.


Next, method 200 includes a detecting flow deviation decision operation 208. During the detecting flow deviation decision operation 208 the ventilator monitors for a flow deviation based on the estimated base flow. The estimated base flow is substituted for the actual base flow allowing the traditional flow triggering algorithm to be utilized. Accordingly, the ventilator during the detecting flow deviation decision operation 208 determines a flow deviation by determining ventilator net flow (estimated base flow−exhausted flow). In other words, the ventilator during the detecting flow deviation decision operation 208 determines a flow deviation by subtracting exhalation flow from the estimated base flow measured during the same time period. Measurements taken during the same time period time are measurements taken within 1 second or less of each other. In some embodiments, the same time period includes measurements taken within 900 ms, 800 ms, 700 ms, 600 ms, 500 ms, 400 ms, 300 ms, 200 ms, 100 ms, 50 ms, 40 ms, 30 ms, 20 ms, 10 ms, 5 ms, or 1 ms or less of each other.


If the ventilator during the detecting flow deviation decision operation 208 determines a flow deviation, then the ventilator selects to perform comparing operation 210. If the ventilator during the detecting flow deviation decision operation 208 does not determine a flow deviation, then the ventilator selects to perform monitoring operation 204 again.


As illustrated, method 200 includes a comparing operation 210. The ventilator during the comparing operation 210 compares a detected flow deviation to an inspiration trigger threshold. In some embodiments, the inspiration trigger threshold is received from operator input. In other embodiments, the inspiration trigger threshold is based on ventilator and/or patient parameters.


In some embodiments, the inspiratory trigger threshold is at least one of the following inspiration trigger thresholds. In one embodiment, the ventilator may be preconfigured to deliver an inspiration after a predetermined amount of exhalation time to prevent a patient from becoming under-ventilated. Accordingly, the predetermined amount of exhalation time is the trigger threshold in this embodiment. For example, the predetermined amount of exhalation time may be 20 second, 30 seconds, or 60 seconds of exhalation time. In some embodiments, the predetermined amount of time is determined by the clinician and/or ventilator based on whether the patient is an infant, child, adult, male, female, and/or suffering from a specific disease state.


In some embodiments, a net negative change in flow rate below a delivered base flow is the inspiration trigger threshold. For example, the inspiration trigger threshold may be a change in flow rate of −2 LPM, −3 LPM, −4 LPM, −5 LPM, −6 LPM, −7 LPM, and −8 LPM or may be a range of a change in flow rate, such as a range of −3 LPM to −6 LPM or −4 LPM to −7 LPM. This list is exemplary only and is not meant to be limiting. Any suitable change in flow rate below the delivered base flow may be utilized by the ventilator as an inspiration trigger threshold.


Next, method 200 includes an inspiration decision operation 212. During the inspiration decision operation 212, the ventilator determines if an inspiratory trigger is detected. The ventilator during the inspiration decision operation 212 detects an inspiratory trigger based on the comparison of the detected flow deviation to the inspiration trigger threshold as performed by the ventilator during comparing operation 210. In some embodiments, an inspiratory trigger is detected when a monitored patient and/or ventilator parameter exceeds or meets an inspiratory trigger threshold. In some embodiments, the ventilator during inspiration decision operation 212 determines a patient initiated inspiration based on the first one of a plurality of trigger thresholds to be met or exceeded.


If the ventilator during inspiration decision operation 212 determines that an inspiration threshold has been met or exceeded, the ventilator selects to perform the delivering inspiration operation 214. If the ventilator during inspiration decision operation 212 determines that an inspiration trigger threshold has not been met or exceeded, the ventilator selects to perform monitoring operation 204 again.


Method 200 includes delivering inspiration operation 214. The ventilator during delivering inspiration operation 214 delivers inspiration to the patient and ends exhalation. The inspiration provided to the patient may be determined by the ventilator and/or patient parameters. For example, the delivered inspiration may be based on a selected breath type or ventilation mode, such as BUV.


In other embodiments, method 200 includes a display operation. The ventilator during the display operation displays any suitable information for display on a ventilator. In one embodiment, the display operation displays at least one of an estimated base flow, an exhalation flow, an exhalation pressure, an accumulator pressure, a restricted period during which no inspiratory trigger is allowed, a trigger threshold, and/or any other information known, received, or stored by the ventilator.


In some embodiments, a microprocessor-based ventilator that accesses a computer-readable medium having computer-executable instructions for performing the method of ventilating a patient with a medical ventilator is disclosed. This method includes repeatedly performing the steps disclosed in method 200 above and/or as illustrated in FIG. 2.


In some embodiments, the ventilator system includes: means for delivering a fixed base flow that is indeterminable; means for monitoring an exhalation flow during exhalation; means for monitoring accumulator pressure during exhalation; means for estimating a base flow based on the monitored accumulator pressure; means for detecting a flow deviation based on the estimated base flow; means for comparing the flow deviation to an inspiratory trigger threshold; and means for triggering inspiration based on the comparison.



FIGS. 3 and 4 illustrate alternative embodiments of a method 300 and 400 for triggering inspiration during ventilation of a patient on a ventilator. Methods 300 and 400 provide a method for triggering inspiration when a delivered base flow is indeterminable by the ventilator. However, methods 300 and 400 require a stable portion decision operation 203 in addition to the operations disclosed in method 200.


Methods 300 and 400 begin at the start of exhalation just like method 200. As illustrated in FIGS. 3 and 4, methods 300 and 400 include an exhalation flow monitoring operation 202a. The ventilator during the exhalation flow monitoring operation 202a monitors exhalation flow and/or exhalation pressure. The ventilator does not monitor the exhalation flow and exhalation pressure until after the restricted period during which no inspiratory triggers are allowed. The ventilator may utilize any suitable sensors or measuring devices for determining the exhalation flow and exhalation pressure, such as an exhalation flow sensor and/or an exhalation pressure sensor.


Next, methods 300 and 400 include a stable portion decision operation 203. During the stable portion decision operation 203, the ventilator determines if the patient is in the stable portion of exhalation. In one embodiment, the stable portion of exhalation is the portion of exhalation when a patient is contributing very little or no flow through the patient circuit and is prior to the beginning of inspiration as illustrated in FIG. 5.


In order to determine the stable portion of exhalation, the ventilator utilizes the monitored exhalation pressure and exhalation flow. In some embodiments, the stable portion of exhalation is a time during exhalation when a slope of patient exhalation flow is about zero after a restricted period. In other embodiments, the ventilator determines if the difference between the maximum exhalation pressure and the minimum exhalation pressure is less that 1.5 cm of H2O ((Max(Pe)−Min(Pe))<1.5 cm H2O) and determines if the difference between maximum exhalation flow and minimum exhalation flow is less than 1.5 LPM ((Max(Qe)−Min(Qe))<1.5 LPM) for a defined interval during exhalation. If the difference between the maximum exhalation pressure and the minimum exhalation pressure is less that 1.5 cm of H2O and the difference between maximum exhalation flow and minimum exhalation flow is less than 1.5 LPM for a defined interval, then the ventilator determines that the patient is in the stable portion of exhalation. If the difference between the maximum exhalation pressure and the minimum exhalation pressure is not less than 1.5 cm of H2O and/or the difference between maximum exhalation flow and minimum exhalation flow is not less than 1.5 LPM for either computation cycle, then the ventilator determines that the patient is not in the stable portion of exhalation.


The embodiments, discussed above are merely exemplary and are not meant to be limiting. Any suitable method for determining a stable period of exhalation may be utilized by the present disclosure.


If the ventilator during stable portion decision operation 203 determines that the patient has entered the stable portion of exhalation, the ventilator selects to perform the accumulator pressure monitoring operation 204b. If the ventilator during stable portion decision operation 203 determines that the patient has not entered the stable portion of exhalation, the ventilator selects to perform the exhalation flow monitoring operation 204a.


As illustrated, methods 300 and 400 also include the estimating operation 206. The estimating operation 206 is disclosed and described above in method 200.


Next, method 300 includes a detecting flow deviation decision operation 208. The detecting flow deviation decision operation 208 is disclosed and described above in method 200, except that if the ventilator during the detecting flow deviation decision operation 208 during method 300 does not determine a flow deviation, then the ventilator selects to perform, specifically, the exhalation flow monitoring operation 204a. Similarly to method 200, if the ventilator during the detecting flow deviation decision operation 208 during method 300 determines a flow deviation, then, just like in method 200, the ventilator selects to perform comparing operation 210.


Further, method 400 includes a detecting flow deviation decision operation 208. The detecting flow deviation decision operation 208 is disclosed and described above in method 200, except that if the ventilator during the detecting flow deviation decision operation 208 during method 400 does not determine a flow deviation, then the ventilator selects to perform, specifically, the exhalation flow monitoring operation 204a as illustrated in FIG. 4. However, the ventilator during method 400 after performing the exhalation flow monitoring operation 204a performs the accumulator pressure monitoring operation 204b instead of the stable portion decision operation 203 as performed in method 300. Similarly to method 200, if the ventilator during detecting flow deviation decision operation 208 during method 400 determines a flow deviation, then, just like in method 200, the ventilator selects to perform comparing operation 210.


Therefore, during method 300 if a flow deviation is not detected by the ventilator, the ventilator rechecks to confirm if the patient is in a stable portion of exhalation (or re-performs the stable portion decision operation 203) as illustrated in FIG. 3. In contrast, during method 400 if a flow deviation is not detected by the ventilator, the ventilator does not recheck to confirm that the patient is still in a stable portion of exhalation (or does not re-perform the stable portion decision operation 203) as illustrated in FIG. 4.


As illustrated, methods 300 and 400 also include the comparing operation 210. The comparing operation 210 is disclosed and described above in method 200.


Next, method 300 includes an inspiration decision operation 212. The inspiration decision operation 212 is disclosed and described above in method 200, except that if the ventilator during the inspiration decision operation 212 during method 300 determines that an inspiration trigger threshold has not been met or exceeded, the ventilator selects to perform, specifically, the exhalation flow monitoring operation 204a as illustrated in FIG. 3. Similarly to method 200, if the ventilator during inspiration decision operation 212 during method 300 determines that an inspiration threshold has been met or exceeded, the ventilator selects to perform the delivering inspiration operation 214.


Further, method 400 includes an inspiration decision operation 212. The inspiration decision operation 212 is disclosed and described above in method 200, except that if the ventilator during the inspiration decision operation 212 during method 400 determines that an inspiration trigger threshold has not been met or exceeded, the ventilator selects to perform, specifically, the exhalation flow monitoring operation 204a as illustrated in FIG. 4. However, the ventilator during method 400 after performing the exhalation flow monitoring operation 204a performs the accumulator pressure monitoring operation 204b instead of the stable portion decision operation 203 as performed in method 300. Similarly to method 200, if the ventilator during inspiration decision operation 212 during method 400 determines that an inspiration threshold has been met or exceeded, the ventilator selects to perform the delivering inspiration operation 214.


Therefore, during method 300 if an inspiration trigger is not detected by the ventilator, the ventilator rechecks to confirm if the patient is in a stable portion of exhalation (or re-performs the stable portion decision operation 203) as illustrated in FIG. 3. In contrast, during method 400 if an inspiration trigger is not detected by the ventilator, the ventilator does not recheck to confirm that the patient is still in a stable portion of exhalation (or does not re-perform the stable portion decision operation 203) as illustrated in FIG. 4.


As illustrated, methods 300 and 400 also include the delivering inspiration operation 214. The delivering inspiration operation 214 is disclosed and described above in method 200.


In other embodiments, a microprocessor-based ventilator that accesses a computer-readable medium having computer-executable instructions for performing the method of ventilating a patient with a ventilator is disclosed. This method includes repeatedly performing the steps disclosed in methods 300 or 400 above and/or as illustrated in FIGS. 3 and 4.


Those skilled in the art will recognize that the methods and systems of the present disclosure may be implemented in many manners and as such are not to be limited by the foregoing exemplary embodiments and examples. In other words, functional elements being performed by a single or multiple components, in various combinations of hardware and software or firmware, and individual functions, can be distributed among software applications at either the client or server level or both. In this regard, any number of the features of the different embodiments described herein may be combined into single or multiple embodiments, and alternate embodiments having fewer than or more than all of the features herein described are possible. Functionality may also be, in whole or in part, distributed among multiple components, in manners now known or to become known. Thus, myriad software/hardware/firmware combinations are possible in achieving the functions, features, interfaces and preferences described herein. Moreover, the scope of the present disclosure covers conventionally known manners for carrying out the described features and functions and interfaces, and those variations and modifications that may be made to the hardware or software firmware components described herein as would be understood by those skilled in the art now and hereafter.


Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the disclosure and as defined in the appended claims. While various embodiments have been described for purposes of this disclosure, various changes and modifications may be made which are well within the scope of the present invention. Numerous other changes may be made which will readily suggest themselves to those skilled in the art and which are encompassed in the spirit of the disclosure and as defined in the claims.

Claims
  • 1. A method for ventilating a patient with a ventilator, comprising: delivering a fixed base flow that is indeterminable with the ventilator;monitoring an exhalation flow during exhalation based on data from an expiratory flow sensor;monitoring accumulator pressure during exhalation based on data from an accumulator pressure sensor;estimating a base flow during exhalation based on the data from the accumulator pressure sensor with a controller;detecting a flow deviation based on the estimated base flow and the monitored exhalation flow with the controller;comparing the flow deviation to an inspiratory trigger threshold by the controller; andtriggering inspiration with the ventilator based on the comparison by the controller.
  • 2. The method of claim 1, wherein the fixed base flow is indeterminable because of at least one of the following conditions: an absence of an inspiratory flow sensor;a malfunction of the inspiratory flow sensor;a malfunction that prevents utilization of the inspiratory flow sensor;an inspiratory module malfunction; anda malfunction that deactivates at least one of a data measurement subsystem and a data acquisition subsystem.
  • 3. The method of claim 1, further comprising: determining a stable portion of exhalation based at least on the monitored exhalation flow, wherein the flow deviation must be detected during the stable portion of exhalation.
  • 4. The method of claim 3, wherein the stable portion of exhalation is a time during exhalation when a slope of patient exhalation flow is about zero after a restricted period.
  • 5. The method of claim 3, wherein the stable portion of exhalation occurs when (Max(Pe)−Min(Pe))<1.5 cm H2O) and (Max(Qe)−Min(Qe))<1.5 LPM) for each computation cycle, wherein Max(Pe) is maximum exhalation pressure,wherein Min(Pe) is minimum exhalation pressure,wherein Max(Qe) is maximum exhalation flow, andwherein Min(Qe) is minimum exhalation flow.
  • 6. The method of claim 1, wherein the inspiratory trigger threshold is a change in flow rate.
  • 7. The method of claim 6, wherein the change is at least 5 LPM.
  • 8. The method of claim 1, wherein the flow deviation is the monitored exhalation flow subtracted from the estimated base flow each measured at a same time period.
  • 9. The method of claim 1, wherein the comparison shows that the flow deviation is greater than the inspiratory trigger threshold.
  • 10. A non-transitory computer-readable medium having computer-executable instructions for performing a method of ventilating a patient with a ventilator, the method comprising: repeatedly delivering a fixed base flow that is indeterminable with a ventilator;repeatedly monitoring accumulator pressure during exhalation based on data from an accumulator sensor;repeatedly estimating a base flow during exhalation based on the data with a controller;repeatedly detecting a flow deviation based on the estimated base flow with a controller;repeatedly comparing the flow deviation to an inspiratory trigger threshold by the controller; andrepeatedly triggering inspiration with the ventilator based on the comparison by the controller.
US Referenced Citations (886)
Number Name Date Kind
3584621 Bird et al. Jun 1971 A
3586021 McGuinness Jun 1971 A
3633576 Gorsuch Jan 1972 A
3662751 Barkalow et al. May 1972 A
3664370 Warnow May 1972 A
3669108 Sundblom et al. Jun 1972 A
3695263 Kipling Oct 1972 A
3741208 Jonsson et al. Jun 1973 A
3753436 Bird et al. Aug 1973 A
3756229 Ollivier Sep 1973 A
3768468 Cox Oct 1973 A
3789837 Philips et al. Feb 1974 A
3827433 Shannon Aug 1974 A
3834382 Lederman et al. Sep 1974 A
3869771 Bollinger Mar 1975 A
3889669 Weigl Jun 1975 A
3889670 Loveland et al. Jun 1975 A
3896800 Cibulka Jul 1975 A
3903881 Weigl Sep 1975 A
3905362 Eyrick et al. Sep 1975 A
3908987 Boehringer Sep 1975 A
3910261 Ragsdale et al. Oct 1975 A
3923056 Bingmann et al. Dec 1975 A
3961627 Ernst et al. Jun 1976 A
3976052 Junginger et al. Aug 1976 A
3976065 Durkan Aug 1976 A
3981301 Warnow et al. Sep 1976 A
4003377 Dahl Jan 1977 A
4020834 Bird May 1977 A
4029120 Christianson Jun 1977 A
4044763 Bird Aug 1977 A
4050458 Friend Sep 1977 A
4057059 Reid, Jr. et al. Nov 1977 A
4060078 Bird Nov 1977 A
4082093 Fry et al. Apr 1978 A
4121578 Torzala Oct 1978 A
4155357 Dahl May 1979 A
4164219 Bird Aug 1979 A
4197843 Bird Apr 1980 A
4197856 Northrop Apr 1980 A
4206754 Cox et al. Jun 1980 A
4211221 Schwanbom et al. Jul 1980 A
4211239 Raemer et al. Jul 1980 A
4227523 Warnow et al. Oct 1980 A
4232666 Savelli et al. Nov 1980 A
4245633 Erceg Jan 1981 A
4265237 Schwanbom et al. May 1981 A
4267827 Racher et al. May 1981 A
4275722 Sorensen Jun 1981 A
4281651 Cox Aug 1981 A
4285340 Gezari et al. Aug 1981 A
4320754 Watson et al. Mar 1982 A
4323064 Hoenig et al. Apr 1982 A
4340044 Levy et al. Jul 1982 A
4351328 Bodai Sep 1982 A
4351329 Ellestad et al. Sep 1982 A
4351344 Stenzler Sep 1982 A
4401115 Monnier Aug 1983 A
4417573 De Vries Nov 1983 A
4436090 Darling Mar 1984 A
4457304 Molnar et al. Jul 1984 A
4459982 Fry Jul 1984 A
4459983 Beyreuther et al. Jul 1984 A
4462397 Suzuki Jul 1984 A
4502481 Christian Mar 1985 A
4527557 DeVries et al. Jul 1985 A
4539984 Kiszel et al. Sep 1985 A
4554916 Watt Nov 1985 A
4558710 Eichler Dec 1985 A
4566450 Brossman, Jr. Jan 1986 A
4596246 Lyall Jun 1986 A
4598706 Darowski et al. Jul 1986 A
4611591 Inui et al. Sep 1986 A
4612928 Tiep et al. Sep 1986 A
4622976 Timpe et al. Nov 1986 A
4640277 Meyer et al. Feb 1987 A
4648407 Sackner Mar 1987 A
4651731 Vicenzi et al. Mar 1987 A
4752089 Carter Jun 1988 A
4757824 Chaumet Jul 1988 A
4766894 Legrand et al. Aug 1988 A
4796618 Garraffa Jan 1989 A
4813409 Ismach Mar 1989 A
4821709 Jensen Apr 1989 A
4877023 Zalkin Oct 1989 A
4889116 Taube Dec 1989 A
4921642 LaTorraca May 1990 A
4924862 Levinson May 1990 A
4954799 Kumar Sep 1990 A
4981295 Belman et al. Jan 1991 A
4982735 Yagata et al. Jan 1991 A
5002050 McGinnis Mar 1991 A
5007420 Bird Apr 1991 A
5016626 Jones May 1991 A
5057822 Hoffman Oct 1991 A
5063925 Frank et al. Nov 1991 A
5065746 Steen Nov 1991 A
5067487 Bauman Nov 1991 A
5072737 Goulding Dec 1991 A
5099837 Russel, Sr. et al. Mar 1992 A
5150291 Cummings et al. Sep 1992 A
5154167 Hepburn Oct 1992 A
5158569 Strickland et al. Oct 1992 A
5161525 Kimm et al. Nov 1992 A
5165397 Arp Nov 1992 A
5165398 Bird Nov 1992 A
5222491 Thomas Jun 1993 A
5237987 Anderson et al. Aug 1993 A
5271389 Isaza et al. Dec 1993 A
5279549 Ranford Jan 1994 A
5299568 Forare et al. Apr 1994 A
5301667 McGrail et al. Apr 1994 A
5301921 Kumar Apr 1994 A
5303698 Tobia et al. Apr 1994 A
5315989 Tobia May 1994 A
5316009 Yamada May 1994 A
5318487 Golen et al. Jun 1994 A
5319540 Lsaza et al. Jun 1994 A
5323772 Linden et al. Jun 1994 A
5325861 Goulding Jul 1994 A
5333606 Schneider et al. Aug 1994 A
5335651 Foster et al. Aug 1994 A
5335654 Rapoport Aug 1994 A
5339807 Carter Aug 1994 A
5343857 Schneider et al. Sep 1994 A
5351522 Lura Oct 1994 A
5357946 Kee et al. Oct 1994 A
5368019 LaTorraca Nov 1994 A
5373842 Olsson et al. Dec 1994 A
5383449 Forare et al. Jan 1995 A
5385142 Brady et al. Jan 1995 A
5390666 Kimm et al. Feb 1995 A
5401135 Stoen et al. Mar 1995 A
5402796 Packer et al. Apr 1995 A
5404871 Goodman et al. Apr 1995 A
5407174 Kumar Apr 1995 A
5413110 Cummings et al. May 1995 A
5429123 Shaffer et al. Jul 1995 A
5433193 Sanders et al. Jul 1995 A
5438980 Phillips Aug 1995 A
5443075 Holscher Aug 1995 A
5458137 Axe et al. Oct 1995 A
5479920 Piper et al. Jan 1996 A
5487383 Levinson Jan 1996 A
5494028 DeVries et al. Feb 1996 A
5507282 Younes Apr 1996 A
5509406 Kock et al. Apr 1996 A
5513631 McWilliams May 1996 A
5517983 Deighan et al. May 1996 A
5520071 Jones May 1996 A
5524615 Power Jun 1996 A
5531221 Power Jul 1996 A
5535738 Estes et al. Jul 1996 A
5540220 Gropper et al. Jul 1996 A
5542415 Brady Aug 1996 A
5544674 Kelly Aug 1996 A
5549106 Gruenke et al. Aug 1996 A
5549655 Erickson Aug 1996 A
5551419 Froehlich et al. Sep 1996 A
5564416 Jones Oct 1996 A
5575283 Sjoestrand Nov 1996 A
5582163 Bonassa Dec 1996 A
5596984 O'Mahoney et al. Jan 1997 A
5603315 Sasso, Jr. Feb 1997 A
5606968 Mang Mar 1997 A
5615669 Olsson et al. Apr 1997 A
5630411 Holscher May 1997 A
5632269 Zdrojkowski May 1997 A
5632270 O'Mahony et al. May 1997 A
5645048 Brodsky et al. Jul 1997 A
5645053 Remmers et al. Jul 1997 A
5647345 Saul Jul 1997 A
5647351 Weismann et al. Jul 1997 A
5651360 Tobia Jul 1997 A
5660171 Kimm et al. Aug 1997 A
5664560 Merrick et al. Sep 1997 A
5664562 Bourdon Sep 1997 A
5671767 Kelly Sep 1997 A
5672041 Ringdahl et al. Sep 1997 A
5673689 Power Oct 1997 A
5694926 DeVries et al. Dec 1997 A
5706799 Imai et al. Jan 1998 A
5715812 Deighan et al. Feb 1998 A
5720277 Olsson et al. Feb 1998 A
5727562 Beck Mar 1998 A
5730122 Lurie Mar 1998 A
5735267 Tobia Apr 1998 A
5738090 Lachmann et al. Apr 1998 A
5740796 Skog Apr 1998 A
5752509 Lachmann et al. May 1998 A
5762480 Adahan Jun 1998 A
5769072 Olsson et al. Jun 1998 A
5771884 Yarnell et al. Jun 1998 A
5791339 Winter Aug 1998 A
5794615 Estes Aug 1998 A
5794986 Gansel et al. Aug 1998 A
5803066 Rapoport et al. Sep 1998 A
5813399 Isaza et al. Sep 1998 A
5826575 Lall Oct 1998 A
5829441 Kidd et al. Nov 1998 A
5864938 Gansel et al. Feb 1999 A
5865168 Isaza Feb 1999 A
5865173 Froehlich Feb 1999 A
5868133 DeVries et al. Feb 1999 A
5881717 Isaza Mar 1999 A
5881723 Wallace et al. Mar 1999 A
5884623 Winter Mar 1999 A
5906204 Beran et al. May 1999 A
5909731 O'Mahony et al. Jun 1999 A
5915379 Wallace et al. Jun 1999 A
5915380 Wallace et al. Jun 1999 A
5915381 Nord Jun 1999 A
5915382 Power Jun 1999 A
5918597 Jones et al. Jul 1999 A
5921238 Bourdon Jul 1999 A
5927274 Servidio et al. Jul 1999 A
5931162 Christian Aug 1999 A
5934274 Merrick et al. Aug 1999 A
5970975 Estes et al. Oct 1999 A
5975081 Hood et al. Nov 1999 A
5983891 Fukunaga Nov 1999 A
6000396 Melker et al. Dec 1999 A
6003513 Readey et al. Dec 1999 A
6010459 Silkoff et al. Jan 2000 A
6024089 Wallace et al. Feb 2000 A
6029664 Zdrojkowski et al. Feb 2000 A
6029667 Lurie Feb 2000 A
6041780 Richard et al. Mar 2000 A
6042550 Haryadi et al. Mar 2000 A
6044841 Verdun et al. Apr 2000 A
6047860 Sanders Apr 2000 A
6066101 Johnson et al. May 2000 A
6067984 Piper May 2000 A
6076519 Johnson Jun 2000 A
6076523 Jones et al. Jun 2000 A
6095139 Psaros Aug 2000 A
6095140 Poon et al. Aug 2000 A
6102038 DeVries Aug 2000 A
6105575 Estes et al. Aug 2000 A
6116240 Merrick et al. Sep 2000 A
6116464 Sanders Sep 2000 A
6123073 Schlawin et al. Sep 2000 A
6123674 Rich Sep 2000 A
6135106 Dirks et al. Oct 2000 A
6138675 Berthon-Jones Oct 2000 A
6142150 O'Mahoney Nov 2000 A
6148814 Clemmer et al. Nov 2000 A
6152132 Psaros Nov 2000 A
6158432 Biondi et al. Dec 2000 A
6158433 Ong et al. Dec 2000 A
6161539 Winter Dec 2000 A
6192885 Jalde Feb 2001 B1
6200271 Kuck et al. Mar 2001 B1
6210342 Kuck et al. Apr 2001 B1
6213119 Brydon et al. Apr 2001 B1
6217524 Orr et al. Apr 2001 B1
6220244 McLaughlin Apr 2001 B1
6220245 Takabayashi et al. Apr 2001 B1
6230708 Radko May 2001 B1
6238351 Orr et al. May 2001 B1
6241681 Haryadi et al. Jun 2001 B1
6258038 Haryadi et al. Jul 2001 B1
6269812 Wallace et al. Aug 2001 B1
6273444 Power Aug 2001 B1
6283119 Bourdon Sep 2001 B1
6305373 Wallace et al. Oct 2001 B1
6305374 Zdrojkowski et al. Oct 2001 B1
6306098 Orr et al. Oct 2001 B1
6318365 Vogele et al. Nov 2001 B1
6321748 O'Mahoney Nov 2001 B1
6325785 Babkes et al. Dec 2001 B1
6345619 Finn Feb 2002 B1
6357438 Hansen Mar 2002 B1
6360745 Wallace et al. Mar 2002 B1
6369838 Wallace et al. Apr 2002 B1
6412483 Jones et al. Jul 2002 B1
6427692 Hoglund Aug 2002 B1
6439229 Du et al. Aug 2002 B1
6443154 Jalde et al. Sep 2002 B1
6450163 Blacker et al. Sep 2002 B1
6450968 Wallen et al. Sep 2002 B1
6467477 Frank et al. Oct 2002 B1
6467478 Merrick et al. Oct 2002 B1
6510846 O'Rourke Jan 2003 B1
6512938 Claure et al. Jan 2003 B2
6526970 DeVries et al. Mar 2003 B2
6532957 Berthon-Jones Mar 2003 B2
6532960 Yurko Mar 2003 B1
6537228 Lambert Mar 2003 B1
6539940 Zdrojkowski et al. Apr 2003 B2
6546930 Emerson et al. Apr 2003 B1
6553991 Isaza Apr 2003 B1
6557553 Borrello May 2003 B1
6560991 Kotliar May 2003 B1
6564798 Jalde May 2003 B1
6568387 Davenport et al. May 2003 B2
6571795 Bourdon Jun 2003 B2
6584973 Biondi et al. Jul 2003 B1
6588422 Berthon-Jones et al. Jul 2003 B1
6588423 Sinderby Jul 2003 B1
6595212 Arnott Jul 2003 B1
6601583 Pessala et al. Aug 2003 B2
6609517 Estes et al. Aug 2003 B1
6622725 Fisher et al. Sep 2003 B1
6622726 Du Sep 2003 B1
6626175 Jafari et al. Sep 2003 B2
6640806 Yurko Nov 2003 B2
6644310 Delache et al. Nov 2003 B1
6659100 O'Rourke Dec 2003 B2
6662032 Gavish et al. Dec 2003 B1
6668824 Isaza et al. Dec 2003 B1
6671529 Claure et al. Dec 2003 B2
6675801 Wallace et al. Jan 2004 B2
6679258 Strom Jan 2004 B1
6688307 Berthon-Jones Feb 2004 B2
6694978 Bennarsten Feb 2004 B1
6705314 O'Dea Mar 2004 B1
6718974 Moberg Apr 2004 B1
6722360 Doshi Apr 2004 B2
6725447 Gilman et al. Apr 2004 B1
6739337 Isaza May 2004 B2
6752151 Hill Jun 2004 B2
6758216 Berthon-Jones et al. Jul 2004 B1
6761167 Nadjafizadeh et al. Jul 2004 B1
6761168 Nadjafizadeh et al. Jul 2004 B1
6776159 Pelerossi et al. Aug 2004 B2
6782888 Friberg et al. Aug 2004 B1
6786216 O'Rourke Sep 2004 B2
6810876 Berthon-Jones Nov 2004 B2
6814074 Nadjafizadeh et al. Nov 2004 B1
6823866 Jafari et al. Nov 2004 B2
6848444 Smith et al. Feb 2005 B2
6854462 Berthon-Jones et al. Feb 2005 B2
6863068 Jamison et al. Mar 2005 B2
6863656 Lurie Mar 2005 B2
6866040 Bourdon Mar 2005 B1
6877511 DeVries et al. Apr 2005 B2
6899103 Hood et al. May 2005 B1
6915803 Berthon-Jones et al. Jul 2005 B2
6920878 Sinderby et al. Jul 2005 B2
6932084 Estes et al. Aug 2005 B2
6938619 Hickle Sep 2005 B1
6948497 Zdrojkowski et al. Sep 2005 B2
6960854 Nadjafizadeh et al. Nov 2005 B2
6962155 Sinderby Nov 2005 B1
6986347 Hickle Jan 2006 B2
6986349 Lurie Jan 2006 B2
6988498 Berthon-Jones et al. Jan 2006 B2
6990980 Richey, II Jan 2006 B2
7000612 Jafari et al. Feb 2006 B2
7008380 Rees et al. Mar 2006 B1
7011091 Hill et al. Mar 2006 B2
7011092 McCombs et al. Mar 2006 B2
7032589 Kerechanin, II et al. Apr 2006 B2
7036504 Wallace et al. May 2006 B2
7040318 Däscher et al. May 2006 B2
7056334 Lennox Jun 2006 B2
7066175 Hamilton et al. Jun 2006 B2
7066177 Pittaway et al. Jun 2006 B2
7070570 Sanderson et al. Jul 2006 B2
7077131 Hansen Jul 2006 B2
7077132 Berthon-Jones Jul 2006 B2
7080646 Wiesmann et al. Jul 2006 B2
RE39225 Isaza et al. Aug 2006 E
7087027 Page Aug 2006 B2
7089932 Dodds Aug 2006 B2
7096866 Be'eri et al. Aug 2006 B2
7100607 Zdrojkowski et al. Sep 2006 B2
7100609 Berthon-Jones et al. Sep 2006 B2
7104962 Lomask et al. Sep 2006 B2
7117438 Wallace et al. Oct 2006 B2
7121277 Ström Oct 2006 B2
7122010 Böhm et al. Oct 2006 B2
7128069 Farrugia et al. Oct 2006 B2
7137389 Berthon-Jones Nov 2006 B2
7152598 Morris et al. Dec 2006 B2
7152604 Hickle et al. Dec 2006 B2
7156095 Melker et al. Jan 2007 B2
7204251 Lurie Apr 2007 B2
7211049 Bradley et al. May 2007 B2
7219666 Friberg et al. May 2007 B2
7246618 Habashi Jul 2007 B2
7255103 Bassin Aug 2007 B2
7267122 Hill Sep 2007 B2
7267652 Coyle et al. Sep 2007 B2
7270126 Wallace et al. Sep 2007 B2
7270128 Berthon-Jones et al. Sep 2007 B2
7275540 Bolam et al. Oct 2007 B2
7276031 Norman et al. Oct 2007 B2
7278962 Lönneker Lammers Oct 2007 B2
7290544 Särelä et al. Nov 2007 B1
7296573 Estes et al. Nov 2007 B2
7308894 Hickle Dec 2007 B2
7311668 Lurie Dec 2007 B2
7320321 Pranger et al. Jan 2008 B2
7353824 Forsyth et al. Apr 2008 B1
7369757 Farbarik May 2008 B2
7370650 Nadjafizadeh et al. May 2008 B2
7390304 Chen et al. Jun 2008 B2
7392806 Yuen et al. Jul 2008 B2
7428902 Du et al. Sep 2008 B2
7460959 Jafari Dec 2008 B2
7465275 Stenqvist Dec 2008 B2
7467012 Park et al. Dec 2008 B1
7472702 Beck et al. Jan 2009 B2
7478634 Jam Jan 2009 B2
7481222 Reissmann Jan 2009 B2
7487773 Li Feb 2009 B2
7487774 Acker Feb 2009 B2
7487778 Freitag Feb 2009 B2
7527058 Wright et al. May 2009 B2
RE40814 Van Brunt et al. Jun 2009 E
7547285 Kline Jun 2009 B2
7552731 Jorczak et al. Jun 2009 B2
7556038 Kirby et al. Jul 2009 B2
7556041 Madsen Jul 2009 B2
7562657 Blanch et al. Jul 2009 B2
7574368 Pawlikowski et al. Aug 2009 B2
7581708 Newkirk Sep 2009 B2
7588033 Wondka Sep 2009 B2
7617824 Doyle Nov 2009 B2
7621270 Morris et al. Nov 2009 B2
7628151 Bassin Dec 2009 B2
7644713 Berthon-Jones Jan 2010 B2
7654802 Crawford, Jr. et al. Feb 2010 B2
7672720 Heath Mar 2010 B2
7682312 Lurie Mar 2010 B2
7686019 Weiss et al. Mar 2010 B2
7694677 Tang Apr 2010 B2
7708015 Seeger et al. May 2010 B2
7717113 Andrieux May 2010 B2
7717858 Massad May 2010 B2
7721736 Urias et al. May 2010 B2
7722546 Madaus et al. May 2010 B2
D618356 Ross Jun 2010 S
7730884 Sato et al. Jun 2010 B2
7735486 Payne Jun 2010 B2
7735492 Doshi et al. Jun 2010 B2
7775207 Jaffe et al. Aug 2010 B2
7784461 Figueiredo et al. Aug 2010 B2
7793656 Johnson Sep 2010 B2
7798145 Weismann et al. Sep 2010 B2
7798148 Doshi et al. Sep 2010 B2
7802571 Tehrani Sep 2010 B2
7806120 Loomas et al. Oct 2010 B2
7810496 Estes et al. Oct 2010 B2
7810497 Pittman et al. Oct 2010 B2
7810498 Patterson Oct 2010 B1
7823588 Hansen Nov 2010 B2
7841347 Sonnenschein et al. Nov 2010 B2
7849854 DeVries et al. Dec 2010 B2
7850619 Gavish et al. Dec 2010 B2
7855716 McCreary et al. Dec 2010 B2
7866318 Bassin Jan 2011 B2
D632796 Ross et al. Feb 2011 S
D632797 Ross et al. Feb 2011 S
7886739 Soliman et al. Feb 2011 B2
7891354 Farbarik Feb 2011 B2
7893560 Carter Feb 2011 B2
7909034 Sinderby et al. Mar 2011 B2
D638852 Skidmore et al. May 2011 S
7938114 Matthews et al. May 2011 B2
7963283 Sinderby Jun 2011 B2
7970475 Tehrani et al. Jun 2011 B2
7971589 Mashak et al. Jul 2011 B2
7984712 Soliman et al. Jul 2011 B2
7984714 Hausmann et al. Jul 2011 B2
D643535 Ross et al. Aug 2011 S
7992557 Nadjafizadeh et al. Aug 2011 B2
7992564 Doshi et al. Aug 2011 B2
7997271 Hickle et al. Aug 2011 B2
8001967 Wallace et al. Aug 2011 B2
D645158 Sanchez et al. Sep 2011 S
8011363 Johnson Sep 2011 B2
8011364 Johnson Sep 2011 B2
8011366 Knepper Sep 2011 B2
8015974 Christopher et al. Sep 2011 B2
8020558 Christopher et al. Sep 2011 B2
8021308 Carlson et al. Sep 2011 B2
8021309 Zilberg Sep 2011 B2
8021310 Sanborn et al. Sep 2011 B2
D649157 Skidmore et al. Nov 2011 S
D652521 Ross et al. Jan 2012 S
D652936 Ross et al. Jan 2012 S
D653749 Winter et al. Feb 2012 S
8113062 Graboi et al. Feb 2012 B2
D655405 Winter et al. Mar 2012 S
D655809 Winter et al. Mar 2012 S
D656237 Sanchez et al. Mar 2012 S
8181648 Perine et al. May 2012 B2
8210173 Vandine Jul 2012 B2
8210174 Farbarik Jul 2012 B2
8240684 Ross et al. Aug 2012 B2
8267085 Jafari et al. Sep 2012 B2
8272379 Jafari et al. Sep 2012 B2
8272380 Jafari et al. Sep 2012 B2
8302600 Andrieux et al. Nov 2012 B2
8302602 Andrieux et al. Nov 2012 B2
8457706 Baker, Jr. Jun 2013 B2
D692556 Winter Oct 2013 S
D693001 Winter Nov 2013 S
D701601 Winter Mar 2014 S
8792949 Baker, Jr. Jul 2014 B2
8844526 Jafari Sep 2014 B2
D731048 Winter Jun 2015 S
D731049 Winter Jun 2015 S
D731065 Winter Jun 2015 S
D736905 Winter Aug 2015 S
D744095 Winter Nov 2015 S
20010004893 Biondi et al. Jun 2001 A1
20020017301 Lundin Feb 2002 A1
20020026941 Biondi et al. Mar 2002 A1
20020042564 Cooper et al. Apr 2002 A1
20020042565 Cooper et al. Apr 2002 A1
20020117173 Lynn et al. Aug 2002 A1
20020144681 Cewers et al. Oct 2002 A1
20030029453 Smith et al. Feb 2003 A1
20030140925 Sapienza et al. Jul 2003 A1
20030168066 Sallvin Sep 2003 A1
20030172929 Muellner Sep 2003 A1
20030225339 Orr et al. Dec 2003 A1
20040149282 Hickle Aug 2004 A1
20040244804 Olsen et al. Dec 2004 A1
20050034724 O'Dea Feb 2005 A1
20050034727 Shusterman et al. Feb 2005 A1
20050039748 Andrieux Feb 2005 A1
20050085865 Tehrani Apr 2005 A1
20050085867 Tehrani et al. Apr 2005 A1
20050085868 Tehrani et al. Apr 2005 A1
20050113668 Srinivasan May 2005 A1
20050139212 Bourdon Jun 2005 A1
20050166928 Jiang Aug 2005 A1
20050247311 Vacchiano et al. Nov 2005 A1
20050279358 Richey, II Dec 2005 A1
20060021618 Berthon-Jones et al. Feb 2006 A1
20060122662 Tehrani et al. Jun 2006 A1
20060142815 Tehrani et al. Jun 2006 A1
20060196507 Bradley Sep 2006 A1
20060196508 Chalvignac Sep 2006 A1
20060241708 Boute Oct 2006 A1
20060249153 DeVries et al. Nov 2006 A1
20060264762 Starr Nov 2006 A1
20060272637 Johnson Dec 2006 A1
20060283451 Albertelli Dec 2006 A1
20070017515 Wallace et al. Jan 2007 A1
20070017518 Farrugia et al. Jan 2007 A1
20070017522 Be-Eri et al. Jan 2007 A1
20070017523 Be-Eri et al. Jan 2007 A1
20070056588 Hayek Mar 2007 A1
20070062532 Choncholas Mar 2007 A1
20070062533 Choncholas et al. Mar 2007 A1
20070068528 Bohm et al. Mar 2007 A1
20070077200 Baker Apr 2007 A1
20070089741 Bohm et al. Apr 2007 A1
20070123792 Kline May 2007 A1
20070125377 Heinonen et al. Jun 2007 A1
20070129646 Heinonen et al. Jun 2007 A1
20070157931 Parker et al. Jul 2007 A1
20070181122 Mulier Aug 2007 A1
20070227537 Bemister et al. Oct 2007 A1
20070272241 Sanborn et al. Nov 2007 A1
20070283958 Naghavi Dec 2007 A1
20070284361 Nadjafizadeh et al. Dec 2007 A1
20080000475 Hill Jan 2008 A1
20080011296 Schatzl Jan 2008 A1
20080021379 Hickle Jan 2008 A1
20080033304 Dalal et al. Feb 2008 A1
20080041383 Matthews et al. Feb 2008 A1
20080045845 Pfeiffer et al. Feb 2008 A1
20080053441 Gottlib et al. Mar 2008 A1
20080060656 Isaza Mar 2008 A1
20080072896 Setzer et al. Mar 2008 A1
20080072901 Habashi Mar 2008 A1
20080072902 Setzer et al. Mar 2008 A1
20080072904 Becker et al. Mar 2008 A1
20080078390 Milne et al. Apr 2008 A1
20080078395 Ho et al. Apr 2008 A1
20080083644 Janbakhsh et al. Apr 2008 A1
20080091117 Choncholas et al. Apr 2008 A1
20080092894 Nicolazzi et al. Apr 2008 A1
20080097234 Nicolazzi et al. Apr 2008 A1
20080110460 Elaz et al. May 2008 A1
20080110461 Mulqueeny et al. May 2008 A1
20080110462 Chekal et al. May 2008 A1
20080135044 Freitag et al. Jun 2008 A1
20080163872 Negele et al. Jul 2008 A1
20080168990 Cooke et al. Jul 2008 A1
20080178874 Doshi et al. Jul 2008 A1
20080183057 Taube Jul 2008 A1
20080183239 Tehrani et al. Jul 2008 A1
20080183240 Tehrani et al. Jul 2008 A1
20080188903 Tehrani et al. Aug 2008 A1
20080196720 Kollmeyer et al. Aug 2008 A1
20080200775 Lynn Aug 2008 A1
20080202525 Mitton et al. Aug 2008 A1
20080202528 Carter et al. Aug 2008 A1
20080208281 Tehrani et al. Aug 2008 A1
20080221470 Sather et al. Sep 2008 A1
20080223361 Nieuwstad Sep 2008 A1
20080230061 Tham Sep 2008 A1
20080230062 Tham Sep 2008 A1
20080236582 Tehrani Oct 2008 A1
20080283060 Bassin Nov 2008 A1
20080295837 McCormick et al. Dec 2008 A1
20080312519 Maschke Dec 2008 A1
20080314385 Brunner et al. Dec 2008 A1
20090007914 Bateman Jan 2009 A1
20090013999 Bassin Jan 2009 A1
20090020119 Eger et al. Jan 2009 A1
20090038617 Berthon-Jones et al. Feb 2009 A1
20090071478 Kalfon Mar 2009 A1
20090090359 Daviet et al. Apr 2009 A1
20090095297 Hallett Apr 2009 A1
20090099621 Lin et al. Apr 2009 A1
20090107982 McGhin et al. Apr 2009 A1
20090114223 Bonassa May 2009 A1
20090137919 Bar-Lavie et al. May 2009 A1
20090139522 Thomson et al. Jun 2009 A1
20090145441 Doshi et al. Jun 2009 A1
20090159082 Eger Jun 2009 A1
20090165795 Nadjafizadeh et al. Jul 2009 A1
20090165798 Cong et al. Jul 2009 A1
20090171176 Andersohn Jul 2009 A1
20090183739 Wondka Jul 2009 A1
20090194109 Doshi et al. Aug 2009 A1
20090205660 Thomson et al. Aug 2009 A1
20090205661 Stephenson et al. Aug 2009 A1
20090205663 Vandine et al. Aug 2009 A1
20090210032 Beiski et al. Aug 2009 A1
20090241952 Nicolazzi et al. Oct 2009 A1
20090241953 Vandine et al. Oct 2009 A1
20090241956 Baker, Jr. et al. Oct 2009 A1
20090241957 Baker, Jr. Oct 2009 A1
20090241958 Baker, Jr. Oct 2009 A1
20090241962 Jafari et al. Oct 2009 A1
20090247849 McCutcheon et al. Oct 2009 A1
20090247853 Debreczeny Oct 2009 A1
20090247891 Wood Oct 2009 A1
20090250058 Lastow et al. Oct 2009 A1
20090260625 Wondka Oct 2009 A1
20090266360 Acker et al. Oct 2009 A1
20090272381 Dellaca et al. Nov 2009 A1
20090277448 Ahlmén et al. Nov 2009 A1
20090293872 Bocke Dec 2009 A1
20090293877 Blanch et al. Dec 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090301486 Masic Dec 2009 A1
20090301487 Masic Dec 2009 A1
20090301488 Sun Dec 2009 A1
20090301490 Masic Dec 2009 A1
20090301491 Masic et al. Dec 2009 A1
20090301492 Wysocki et al. Dec 2009 A1
20090308393 Luceros Dec 2009 A1
20090308394 Levi Dec 2009 A1
20090308398 Ferdinand et al. Dec 2009 A1
20090314297 Mathews Dec 2009 A1
20100011307 Desfossez et al. Jan 2010 A1
20100016694 Martin et al. Jan 2010 A1
20100018531 Bassin Jan 2010 A1
20100024818 Stenzler et al. Feb 2010 A1
20100024820 Bourdon Feb 2010 A1
20100031443 Georgiev et al. Feb 2010 A1
20100051026 Graboi Mar 2010 A1
20100051029 Jafari et al. Mar 2010 A1
20100069761 Karst et al. Mar 2010 A1
20100071689 Thiessen Mar 2010 A1
20100071692 Porges Mar 2010 A1
20100071695 Thiessen Mar 2010 A1
20100071696 Jafari Mar 2010 A1
20100071697 Jafari et al. Mar 2010 A1
20100076322 Shrivastav et al. Mar 2010 A1
20100076323 Shrivastav et al. Mar 2010 A1
20100078017 Andrieux et al. Apr 2010 A1
20100078018 Heinonen et al. Apr 2010 A1
20100078024 Andrieux et al. Apr 2010 A1
20100078026 Andrieux et al. Apr 2010 A1
20100081119 Jafari et al. Apr 2010 A1
20100081955 Wood, Jr. et al. Apr 2010 A1
20100089396 Richard et al. Apr 2010 A1
20100094366 McCarthy Apr 2010 A1
20100101575 Fedorko et al. Apr 2010 A1
20100108066 Martin et al. May 2010 A1
20100108070 Kwok May 2010 A1
20100114218 Heath May 2010 A1
20100116270 Edwards et al. May 2010 A1
20100125227 Bird May 2010 A1
20100139660 Adahan Jun 2010 A1
20100147302 Selvarajan et al. Jun 2010 A1
20100147303 Jafari et al. Jun 2010 A1
20100148458 Ross et al. Jun 2010 A1
20100175695 Jamison Jul 2010 A1
20100186744 Andrieux Jul 2010 A1
20100218765 Jafari et al. Sep 2010 A1
20100218766 Milne Sep 2010 A1
20100218767 Jafari et al. Sep 2010 A1
20100236555 Jafari et al. Sep 2010 A1
20100241159 Li Sep 2010 A1
20100242961 Mougel et al. Sep 2010 A1
20100249549 Baker, Jr. et al. Sep 2010 A1
20100249584 Albertelli Sep 2010 A1
20100252037 Wondka et al. Oct 2010 A1
20100252040 Kapust et al. Oct 2010 A1
20100252041 Kapust et al. Oct 2010 A1
20100252042 Kapust et al. Oct 2010 A1
20100252046 Dahlström et al. Oct 2010 A1
20100258124 Madaus et al. Oct 2010 A1
20100275920 Tham et al. Nov 2010 A1
20100275921 Schindhelm et al. Nov 2010 A1
20100282259 Figueiredo et al. Nov 2010 A1
20100288283 Campbell et al. Nov 2010 A1
20100300445 Chatburn et al. Dec 2010 A1
20100300446 Nicolazzi et al. Dec 2010 A1
20100307507 Li et al. Dec 2010 A1
20100319691 Lurie et al. Dec 2010 A1
20100326442 Hamilton et al. Dec 2010 A1
20100326447 Loomas et al. Dec 2010 A1
20100331877 Li et al. Dec 2010 A1
20110005530 Doshi et al. Jan 2011 A1
20110009762 Eichler et al. Jan 2011 A1
20110011400 Gentner et al. Jan 2011 A1
20110017214 Tehrani Jan 2011 A1
20110023875 Ledwith Feb 2011 A1
20110023878 Thiessen Feb 2011 A1
20110023879 Vandine et al. Feb 2011 A1
20110023880 Thiessen Feb 2011 A1
20110023881 Thiessen Feb 2011 A1
20110029910 Thiessen Feb 2011 A1
20110030686 Wilkinson et al. Feb 2011 A1
20110036352 Estes et al. Feb 2011 A1
20110041849 Chen et al. Feb 2011 A1
20110041850 Vandine et al. Feb 2011 A1
20110061650 Heesch Mar 2011 A1
20110073112 DiBlasi et al. Mar 2011 A1
20110088697 DeVries et al. Apr 2011 A1
20110092841 Bassin Apr 2011 A1
20110100365 Wedler et al. May 2011 A1
20110108041 Sather et al. May 2011 A1
20110112424 Kesselman et al. May 2011 A1
20110112425 Muhlsteff et al. May 2011 A1
20110126829 Carter et al. Jun 2011 A1
20110126832 Winter et al. Jun 2011 A1
20110126834 Winter et al. Jun 2011 A1
20110126835 Winter et al. Jun 2011 A1
20110126836 Winter et al. Jun 2011 A1
20110126837 Winter et al. Jun 2011 A1
20110128008 Carter Jun 2011 A1
20110132361 Sanchez Jun 2011 A1
20110132362 Sanchez Jun 2011 A1
20110132363 Chalvignac Jun 2011 A1
20110132364 Ogilvie et al. Jun 2011 A1
20110132365 Patel et al. Jun 2011 A1
20110132366 Ogilvie et al. Jun 2011 A1
20110132367 Patel Jun 2011 A1
20110132368 Sanchez et al. Jun 2011 A1
20110132369 Sanchez Jun 2011 A1
20110132371 Sanchez et al. Jun 2011 A1
20110133936 Sanchez et al. Jun 2011 A1
20110138308 Palmer et al. Jun 2011 A1
20110138309 Skidmore et al. Jun 2011 A1
20110138311 Palmer Jun 2011 A1
20110138315 Vandine et al. Jun 2011 A1
20110138323 Skidmore et al. Jun 2011 A1
20110146681 Jafari et al. Jun 2011 A1
20110146683 Jafari et al. Jun 2011 A1
20110154241 Skidmore et al. Jun 2011 A1
20110175728 Baker, Jr. Jul 2011 A1
20110196251 Jourdain et al. Aug 2011 A1
20110197884 Duff et al. Aug 2011 A1
20110197886 Guttmann et al. Aug 2011 A1
20110197892 Koledin Aug 2011 A1
20110203598 Favet et al. Aug 2011 A1
20110209702 Vuong et al. Sep 2011 A1
20110209704 Jafari et al. Sep 2011 A1
20110209706 Truschel et al. Sep 2011 A1
20110209707 Terhark Sep 2011 A1
20110213215 Doyle et al. Sep 2011 A1
20110226248 Duff et al. Sep 2011 A1
20110230780 Sanborn et al. Sep 2011 A1
20110249006 Wallace et al. Oct 2011 A1
20110259330 Jafari et al. Oct 2011 A1
20110259332 Sanchez et al. Oct 2011 A1
20110259333 Sanchez et al. Oct 2011 A1
20110265024 Leone et al. Oct 2011 A1
20110271960 Milne et al. Nov 2011 A1
20110273299 Milne et al. Nov 2011 A1
20120000467 Milne et al. Jan 2012 A1
20120000468 Milne et al. Jan 2012 A1
20120000469 Milne et al. Jan 2012 A1
20120000470 Milne et al. Jan 2012 A1
20120029317 Doyle et al. Feb 2012 A1
20120030611 Skidmore Feb 2012 A1
20120060841 Crawford, Jr. et al. Mar 2012 A1
20120071729 Doyle et al. Mar 2012 A1
20120090611 Graboi et al. Apr 2012 A1
20120096381 Milne et al. Apr 2012 A1
20120133519 Milne et al. May 2012 A1
20120136222 Doyle et al. May 2012 A1
20120137249 Milne et al. May 2012 A1
20120137250 Milne et al. May 2012 A1
20120167885 Masic et al. Jul 2012 A1
20120185792 Kimm et al. Jul 2012 A1
20120197578 Vig et al. Aug 2012 A1
20120197580 Vij et al. Aug 2012 A1
20120211008 Perine et al. Aug 2012 A1
20120216809 Milne et al. Aug 2012 A1
20120216810 Jafari et al. Aug 2012 A1
20120216811 Kimm et al. Aug 2012 A1
20120226444 Milne et al. Sep 2012 A1
20120247471 Masic et al. Oct 2012 A1
20120272960 Milne Nov 2012 A1
20120272961 Masic et al. Nov 2012 A1
20120272962 Doyle et al. Nov 2012 A1
20120277616 Sanborn et al. Nov 2012 A1
20120279501 Wallace et al. Nov 2012 A1
20120304995 Kauc Dec 2012 A1
20120304997 Jafari et al. Dec 2012 A1
20130000644 Thiessen Jan 2013 A1
20130006133 Doyle et al. Jan 2013 A1
20130006134 Doyle et al. Jan 2013 A1
20130008443 Thiessen Jan 2013 A1
20130025596 Jafari et al. Jan 2013 A1
20130025597 Doyle et al. Jan 2013 A1
20130032151 Adahan Feb 2013 A1
20130042869 Andrieux et al. Feb 2013 A1
20130047983 Andrieux et al. Feb 2013 A1
20130047989 Vandine et al. Feb 2013 A1
20130053717 Vandine et al. Feb 2013 A1
20130074844 Kimm et al. Mar 2013 A1
20130081536 Crawford, Jr. et al. Apr 2013 A1
20130104896 Kimm et al. May 2013 A1
20130146055 Jafari et al. Jun 2013 A1
20130152923 Andrieux et al. Jun 2013 A1
20130158370 Doyle et al. Jun 2013 A1
20130159912 Baker, Jr. Jun 2013 A1
20130167842 Jafari et al. Jul 2013 A1
20130167843 Kimm et al. Jul 2013 A1
20130186397 Patel Jul 2013 A1
20130186400 Jafari et al. Jul 2013 A1
20130186401 Jafari et al. Jul 2013 A1
20130192599 Nakai et al. Aug 2013 A1
20130220324 Jafari et al. Aug 2013 A1
20130233314 Jafari et al. Sep 2013 A1
20130233319 Winter et al. Sep 2013 A1
20130239038 Skidmore et al. Sep 2013 A1
20130239967 Jafari et al. Sep 2013 A1
20130255682 Jafari et al. Oct 2013 A1
20130255685 Jafari et al. Oct 2013 A1
20130276788 Masic Oct 2013 A1
20130283197 Skidmore Oct 2013 A1
20130284172 Doyle et al. Oct 2013 A1
20130284173 Masic et al. Oct 2013 A1
20130284177 Li et al. Oct 2013 A1
20130327331 Bourdon Dec 2013 A1
20130333697 Carter et al. Dec 2013 A1
20130333703 Wallace et al. Dec 2013 A1
20130338514 Karst et al. Dec 2013 A1
20130345532 Doyle et al. Dec 2013 A1
20140000606 Doyle et al. Jan 2014 A1
20140012150 Milne et al. Jan 2014 A1
20140034054 Angelico et al. Feb 2014 A1
20140034056 Leone et al. Feb 2014 A1
20140041656 Jourdain et al. Feb 2014 A1
20140048071 Milne et al. Feb 2014 A1
20140048072 Angelico et al. Feb 2014 A1
20140121553 Milne et al. May 2014 A1
20140123979 Doyle et al. May 2014 A1
20140130798 Milne et al. May 2014 A1
20140182590 Platt et al. Jul 2014 A1
20140224250 Sanchez et al. Aug 2014 A1
20140251328 Graboi et al. Sep 2014 A1
20140261409 Dong et al. Sep 2014 A1
20140261424 Doyle et al. Sep 2014 A1
20140276176 Winter Sep 2014 A1
20140290657 Vandine et al. Oct 2014 A1
20140309507 Baker, Jr. Oct 2014 A1
20140345616 Masic Nov 2014 A1
20140360497 Jafari et al. Dec 2014 A1
20140366879 Kimm et al. Dec 2014 A1
20140373845 Dong Dec 2014 A1
20150034082 Kimm et al. Feb 2015 A1
20150045687 Nakai et al. Feb 2015 A1
20150090258 Milne et al. Apr 2015 A1
20150090264 Dong Apr 2015 A1
20150107584 Jafari et al. Apr 2015 A1
20160045694 Esmaeil-zadeh-azar Feb 2016 A1
20160114115 Glenn et al. Apr 2016 A1
Foreign Referenced Citations (1)
Number Date Country
2003055552 Jul 2003 WO
Non-Patent Literature Citations (5)
Entry
7200 Series Ventilator, Options, and Accessories: Operators Manual. Nellcor Puritan Bennett, Part No. 22300 A, Sep. 1990, pp. 1-196.
7200 Ventilatory System: Addendum/Errata. Nellcor Puritan Bennett, Part No. 4-023576-00, Rev. A, Apr. 1998, pp. 1-32.
800 Operators and Technical Reference Manual. Series Ventilator System, Nellcor Puritan Bennett, Part No. 4-070088-00, Rev. L, Aug. 2010, pp. 1-476.
840 Operators and Technical Reference Manual. Ventilator System, Nellcor Puritan Bennett, Part No. 4-075609-00, Rev. G, Oct. 2006, pp. 1-424.
Hari, “Flow Sensor Fault Causing Ventilator Malfunction”, Anaesthesia, 2005, 60, pp. 1042-2052; http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2044.2005.04396.x/pdf; Accessed Jan. 16, 2015).
Related Publications (1)
Number Date Country
20140261410 A1 Sep 2014 US