Trandermal delivery of medicants is limited primarily to the difficult-to-penetrate nature of the stratum corneum layer of skin. The stratum corneum layer forms a barrier that keeps moisture in and keeps practically everything else out. Accordingly, attempts to topically apply a medicant and deliver the medicant across the stratum corneum layer to tissue located beneath it must overcome this barrier property in order to be effect.
The bioavailability of topically applied medicants is typically very low. For example, the bioavailability of topically applied lidocaine is approximately 3%. See, Campbell, et al. J. Pharm. Sci. 91(5), pp. 1343-50 (May 2002). In other words, more than 30 times the desired amount of lidocaine needs to be applied topically for the desired effect. In the case of an expensive medicant or a medicant having various side effects, it is undesirable to require application of such an excess of medicant in order to have the desired effect.
Workarounds for this limited bioavailability of topically applied medicants generally include physically puncturing the skin, which is undesirable, because some patients can have aversion to the needles associated with such procedures.
Low-frequency sonophoresis is a known method for enhancing transdermal drug delivery. However, these existing methods employ low-frequencies, low peak intensities, require long application times, or some combination of these to achieve improved transdermal drug delivery.
Accordingly, a need exists for new systems and methods that overcome the aforementioned shortcomings.
The present disclosure overcomes the aforementioned drawbacks by presenting systems and methods for ultrasound assisted delivery of a medicant to tissue.
In one aspect, this disclosure provides an ultrasound assisted medicant delivery system. The system can include an ultrasound probe and a control system. The ultrasound probe can include an ultrasound transducer. The ultrasound probe and the ultrasound transducer can be configured for coupling to a medicant administered to a skin surface. The control system can be electronically coupled to the ultrasound trasndcuer. The control system can, in use, cause the ultrasound transducer to apply a first pulse acoustic energy field to the skin surface. The first pulsed acoustic energy field can have a frequency from 1 MHz to 30 MHz, a peak intensity from 100 W/cm2 to 100 kW/cm2, and a pulse width from 33 nanoseconds to 5 seconds. The first pulsed acoustic energy field can generate inertial cavitation, acoustic streaming, or a combination thereof in the stratum corneum layer and drive the medicant through the stratum corneum layer.
In another aspect, this disclosure provides a method for ultrasound assisted delivery of a medicant through a stratum corneum layer of a skin surface. The method can include: administering the medicant to a skin surface; coupling an ultrasound transducer to the medicant and the skin surface; and applying a first pulse acoustic energy field from the ultrasound transducer to the skin surface. The first pulse acoustic energy field can have a frequency from 1 MHz to 30 MHz, a peak intensity from 100 W/cm2 to 100 kW/cm2, and a pulse width from 33 nanoseconds to 5 seconds. The first pulsed acoustic energy field can generate inertial cavitation, acoustic streaming, or a combination thereof in the stratum corneum layer and drive the medicant through the stratum corneum layer.
In a further aspect, this disclosure provides a method for reducing or eliminating pain generated by ultrasound treatment. The method can include: applying a coupling medium comprising a medicant to a skin surface above a region of intere, the medicant comprising an anesthetic configured to numb a tissue in the region of interest; coupling an ultrasound energy source to the coupling medium, the skin surface, and the region of interest; directing a first acoustic energy field from the ultrasound energy source into the skin surface, thereby delivering the medicant into the tissue in the region of interest and numbing the tissue in a portion of the region of interest; and directing a second acoustic energy field to a target volume in the tissue in the region of interest, the second acoustic energy field ablating the tissue in the target volume, the medicant reducing or eliminating pain generated by the ablating of the tissue.
In yet another aspect, this disclosure provides a method of ultrasound assisted transdermal drug delivery. The method can include: contacting a skin surface with a coupling medium comprising a non-anesthetic medicant and an anesthetic; coupling an ultrasound energy source to the coupling medium and the skin surface; and applying a first pulsed acoustic energy field from the ultrasound transducer to the skin surface. The first pulse acoustic energy field can have a peak intensity from 100 W/cm2 to 100 kW/cm2. The first pulsed acoustic energy field can drive the medicant and the anesthetic across a stratum corneum layer of the skin surface and into an epidermis layer beneath the skin surface. The anesthetic can alleviate pain or swelling associated with the application of the first pulsed acoustic energy field.
The foregoing and other aspects and advantages of the invention will appear from the following description. In the description, reference is made to the accompanying drawings which form a part hereof, and in which there is shown by way of illustration a preferred aspect of the disclosure. Such aspect does not necessarily represent the full scope of the disclosure, however, and reference is made therefore to the claims and herein for interpreting the scope of the disclosure.
Before the present invention is described in further detail, it is to be understood that the invention is not limited to the particular embodiments described. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. The scope of the present invention will be limited only by the claims. As used herein, the singular forms “a”, “an”, and “the” include plural embodiments unless the context clearly dictates otherwise.
Specific structures, devices, and methods relating to improved ultrasound treatment efficiency and operation are disclosed. It should be apparent to those skilled in the art that many additional modifications beside those already described are possible without departing from the inventive concepts. In interpreting this disclosure, all terms should be interpreted in the broadest possible manner consistent with the context. Variations of the term “comprising” should be interpreted as referring to elements, components, or steps in a non-exclusive manner, so the referenced elements, components, or steps may be combined with other elements, components, or steps that are not expressly referenced. Embodiments referenced as “comprising” certain elements are also contemplated as “consisting essentially of” and “consisting of” those elements.
This disclosure provides methods and systems for enhancing medicant delivery across the stratum corneum layer of skin and into the epidermis layer. The systems and methods also facilitate movement of the medicant deeper into the epidermis or into the dermis layer and subcutaneous tissue beneath the dermis layer.
As will be described with respect to
Examples of suitable power supplies 26 can include, but are not limited to, one or more direct current (DC) power supplies, single-use or rechargeable batteries, or other power supplies configured to provide electrical energy to the ultrasound assisted drug delivery probe 10, including to the ultrasound source 28, transducers 30, electronics 28, control modules 30, or any other aspect of the ultrasound assisted drug delivery probe 10 that requires electrical energy. Associated sensors for monitoring the performance of the power supplies 26 are contemplated, such as current sensors, power sensors, and the like.
Examples of suitable electronics 28 can include, but are not limited to, amplifiers or drivers, such as multi-channel or single channel power amplifiers or drivers; power converters configured to adjust voltages; open-loop feedback systems; closed-loop feedback systems; filters, such as harmonic filters or matching filters; and the like.
Control modules 30 can include components suitable for controlling the emission characteristics of the ultrasound assisted drug delivery probe 10, including but not limited to, a computing system adapted to control the ultrasound assisted drug delivery probe 10; timing circuits; software and algorithms to provide control and user interfacing; input controls, such as switches, buttons, touchscreens, and the like; outputs, such as lighting or audio signals or displays; storage elements, such as memory to store calibration and usage data; and the like.
The ultrasound assisted drug delivery probe 10 can also include sensors suitable for measuring certain aspects of the ultrasound assisted drug delivery probe 10. Examples of sensors include, but are not limited to, temperature sensors, motion sensors, location sensors, coupling sensors, such as capacitive or acoustic coupling sensors, and the like.
The transducer 30 can be configured as a spherically-focused single element transducer, an annular/multi-element transducer, an annular array having an imaging region, a line-focused single-element transducer, a one-dimensional linear array, a one-dimensional curved linear array, a two-dimensional array with a mechanical focus, a convex lens focus, a concave lens focus, a compound lens focus, or a multiple lens focus, a two-dimensional planar array, or other transducer arrangements suitable for producing the ultrasound energy described herein and corresponding effects.
Referring to
Referring to
It should be appreciated that there exist intermediate states between the state of the arrangement illustrated in
Referring to
It should be appreciated that there exist intermediate states between the state of the arrangement in
Referring to
A method for ultrasound-assisted delivery of a medicant through a stratum corneum layer of a skin surface can include the following steps: administering the medicant to the skin surface; coupling an ultrasound transducer to the medicant and the skin surface; and applying a first pulsed acoustic energy field from the ultrasound transducer to the skin surface, the first pulsed acoustic energy field having one or more of the properties described elsewhere herein, the first pulsed acoustic energy field generating intertial cavitation, acoustic streaming, or a combination thereof in the stratum corneum layer and driving the medicant through the stratum corneum layer.
As will be described with respect to
Referring to
It should be appreciated that there exist intermediate states between the state of the arrangement in
Referring to
It should be appreciated that there exist intermediate states between the state of the arrangement in
Referring to
In certain aspects, the delivery system 44 can be configured as a transdermal patch. For example, the delivery system 44 can be configured for off-the-shelf operation, where the delivery system 44 include the medicant 34 in appropriate dosage within the standoff 46 and a suitable portable power supply, such as battery power, to power the delivery system 44. After removing any packaging for the delivery system 44, the delivery system 44 can be applied to a location by a patient or a user. In certain aspects, the delivery system 44 can include an adhesive material on the bottom surface 48 of the standoff 46 or a patch that extends over the ultrasound assisted drug delivery probe 10 to facilitate retention of coupling between the probe 10 and the skin surface 12.
In certain aspects, the delivery system 44 can have an on-off switch or a separate on-off device that allows a patient or user to turn the delivery system 44 on (and subsequently off) when the ultrasound assisted drug delivery probe 10 is properly located on the skin surface 12. The delivery system 44 can utilize at least one ultrasound energy effect to move the medicant 34 from the standoff 46 to below the skin surface 12.
A delivery system 44 as described herein can have significant advantages over a traditional transdermal patch. For example, the delivery system 44 can deliver medicants 34 having a higher molecular weight, for example, medicants 34 having a molecular weight of at least about 100 Da or at least about 500 Da. As another example, the delivery system 44 does not rely on mechanical diffusion, so lower doses of the medicant 34 can be deployed because more of the medicant 34 reaches areas beneath the skin surface 12. As yet another example, the delivery system 44 is not limited to deploying medicants 34 having an affinity for both lipophilic and hydrophilic phases or medicants 34 that are non-ionic. In certain aspects, the delivery system 44 can include a solar panel, which can optionally be no bigger than the area of a patch covering the ultrasound assisted drug delivery probe 10, to supplement power to the delivery system 44.
Referring to
The microchannel device 50, the first ultrasound device 54, the second ultrasound device 56, and the third ultrasound device 58 can move from right to left across the illustrated skin surface 12, either collectively or independently. A coupling medium 32 can be applied to the skin surface 12 before or after the microchannel creation means 52 has created a microchannel 60. If the microchannel device 50, the first ultrasound device 54, the second ultrasound device 56, and the third ultrasound device 58 are operating in series, then the coupling medium 32 is typically applied to the skin surface 12 after the microchannel creation means 52 has created the microchannel 60 to avoid loss of the medicant 34 or contamination of the medicant 34 by the microchannel creation means 52. The microchannel device 50, the first ultrasound device 54, the second ultrasound device 56, and the third ultrasound device 58 can be controlled by a control module 30, either collectively or independently. In certain aspects, the microchannel device 50, the first ultrasound device 54, the second ultrasound device 56, and the third ultrasound device 58 can each be housed in individual cylinders or spheres that are configured to roll across the skin surface 12.
The first ultrasound device 54 can be configured to direct a fourth acoustic energy field 62 into the skin surface 12. The fourth acoustic energy field 62 can be configured to drive the medicant 34 through the microchannel 60. In certain aspect, the fourth acoustic energy field 62 can have the properties of the first acoustic energy field 36, as described herein.
The second ultrasound device 56 can be configured to direct a fifth acoustic energy field 64 into the skin surface 12. The fifth acoustic energy field 64 can be configured to drive the medicant 34 through the epidermis 16 and optionally through the dermis 18. In certain aspects, the fifth acoustic energy field 64 can have the properties of the second acoustic energy field 38, as described herein.
The third ultrasound device 58 can be configured to direct a sixth acoustic energy field 66 into the skin surface 12. The sixth acoustic energy field 66 can be configured to interact with the medicant 34 or with tissue containing or proximate to the medicant 34. In certain aspect, the sixth ultrasound acoustic energy field 66 can have the properties of the third acoustic energy field 40, as described herein.
In addition to the first acoustic energy field 36, the second acoustic energy field 38, the third acoustic energy field 40, the fourth acoustic energy field 62, the fifth acoustic energy field 64, or the sixth acoustic energy field 66, the methods described herein can utilize additional acoustic energy fields configured to provide one or more effects described herein.
In certain aspects, a system such as an ultrasound assisted drug delivery probe 10, a delivery device 44, a microchannel device 50, a first ultrasound device 40, a second ultrasound device 56, a third ultrasound device 58, or any combination thereof can include various components described herein. For example, a system can include a control module 30. As one non-limiting example, such a control module 30 can be the control module 20 described above, which can be configured to receive at least one communication and control a distribution of the acoustic energy field transmitted by the ultrasound energy source, such as, for example, an acoustic transducer 24. The control module 30 can be configured to receive a treatment start signal and a treatment stop signal. The control module 30 can be programmed to provide treatment to the ROI 20 for a desired outcome. The control module 30 can initiate and run a treatment program (treatment function), which can include the control of spatial parameters and/or temporal parameters of the ultrasound source, to provide programmed distribution of the acoustic energy field in the ROI 20. The control module 30 can be configured to receive feedback from one or more sensors and/or detectors, and the control module 30 can terminate the treatment program based on the feedback.
The control module 30 can be configured to communicate with the probe 10 via wireless interface. In some embodiments, the control module 20 can be a wireless device, which has a display and a user interface such as, for example, a keyboard. Examples of a wireless device can include but are not limited to: a personal data assistant (PDA), a cell phone, a smart phone, an iPhone, an iPad, a computer, a laptop, a netbook, a tablet, or any other such device now known or developed in the future. Examples of wireless interface include but are not limited to any wireless interface described herein and any such wireless interface now known or developed in the future. Accordingly, the probe 10 can comprise any hardware, such as, for example, electronics, antenna, and the like, as well as, any software that may be used to communicate via wireless interface.
The wireless device can be configured to display an image generated by the probe 10. The wireless device can be configured to control at least a portion of the probe 10. The wireless device can be configured to store data generated by the probe 10 and sent to the wireless device.
Various sensing and monitoring components may also be implemented within control module. For example, monitoring, sensing, and interface control components may be capable of operating with the motion detection system implemented within the probe 10, to receive and process information such as acoustic or other spatial and temporal information from the ROI 20. Sensing and monitoring components may also comprise various controls, interfacing, and switches and/or power detectors. Such sensing and monitoring components may facilitate open-loop and/or closed-loop feedback systems within the probe 10.
In some aspects, sensing and monitoring components may further comprise a sensor that may be connected to an audio or visual alarm system to prevent overuse of the probe 10. The sensor may be capable of sensing the amount of energy transferred to the skin, and/or the time that the probe 10 has been actively emitting the acoustic energy. When a certain time or temperature threshold has been reached, the alarm may sound an audible alarm, or cause a visual indicator to activate to alert the user that a threshold has been reached. This may prevent overuse of the device. In some embodiments, the sensor may be operatively connected to the control module and force the control module 30, to stop emitting the acoustic energy from the probe 10. In some embodiments, the control module 30 is operable to control the power supply to change an amount of power provided to the acoustic transducer 24 in the probe 10.
A position sensor may be located behind a transducer, in front of a transducer, or integrated into a transducer array. The probe 18 may comprise more than one position sensor, such as, for example, a laser position sensor and a motion sensor, or a laser position sensor and a visual device, or a motion sensor and a visual device, or a laser position sensor, a motion sensor, and a visual device. In some embodiments, position sensor may determine a distance between pulses of the acoustic energy to create a plurality of treatment zones which are evenly spaced or disposed in any spatial configuration in 1-D or 2-D patterns. As the probe 18 is moved in direction, the position sensor determines distance, regardless of a speed that the ultrasound source is move, at which a pulse of acoustic energy is to be emitted in to ROI 12.
In some aspects, the system can further comprise a contact sensor operable to determine if the ultrasound source is coupled to the ROI 12. The tissue contact sensor can communicate to the control module 20 whether the ultrasound source is coupled to the ROI 12.
The first acoustic energy field 36, second acoustic energy field 38, or third acoustic energy field 40 can be planar, focused, weakly focused, unfocused, or defocused. The first acoustic energy field 36, second acoustic energy field 38, or third acoustic energy field 40 can have a frequency in the range of about 1 MHz to about 30 MHz, including, but not limited to, a frequency in the range of about 5 MHz to about 15 MHz, from about 2 MHz to about 12 MHz, from about 3 MHz to about 7 MHz, from about 1 MHz to about 7 MHz, from about 2 MHz to about 5 MHz, from about 3 MHz to about 10 MHz, or from about 1 MHz to about 10 MHz, or other combinations of the lower and upper limits of these ranges not explicitly recited. The first acoustic energy field 36, second acoustic energy field 38, or third acoustic energy field 40 can be configured to avoid damaging the cells in the stratum corneum 14 or the epidermis 16.
The first acoustic energy field 36, second acoustic energy field 38, or third acoustic energy field 40 can be pulsed and have a delay of from about 1 μs to about 100 seconds between pulses. The first acoustic energy field 36, second acoustic energy field 38, or third acoustic energy field 40 can be continuous wave. In certain aspects, the first acoustic energy field 36, second acoustic energy field 38, or third acoustic energy field 40 can be pulsed and have a pulse repetition rate of one pulse per 10 μs to one pulse per 100 seconds.
In certain applications, such as generating inertial cavitation in the stratum corneum 14 which can create microchannels having an intercellular route from the skin surface 12 to the epidermis 16, the first acoustic energy field 36 can have a pulse width in a range from about 33 ns to about 100 s. In these certain applications, the first acoustic energy field 36 can be pulsed and can have a pulse width in the range of about 1 μs to about 1 second, or in the range of about 0.01 seconds to about 5 seconds. In these certain applications, the first acoustic energy field 36 can have a peak intensity of greater than 3 W/cm2 and less than or equal to about 100 kW/cm2 at the skin surface 12. In certain aspects, the first acoustic energy field 36 can have a peak intensity of greater than 10 W/cm2, greater than 50 W/cm2, greater than 100 W/cm2, greater than 300 W/cm2, greater than 500 W/cm2, greater than 1 kW/cm2, greater than 3 kW/cm2, or greater than 5 kW/cm2. The intensity of the first acoustic energy field 36 can be below a threshold value for creating a shock wave. A person having ordinary skill in the art will appreciate that this threshold value can vary based on material properties and the specific parameters of the ultrasound being used, and can determine this threshold value for specific materials and sets of parameters experimentally or computationally.
In certain applications, such as generating acoustic streaming providing acoustic streaming pressure to the stratum corneum 14, the epidermis 16, or a combination thereof, the first acoustic energy field 36 can be pulsed and the pulses can have a pulse width in a range of about 33 ns to about 100 s, including, but not limited to, a range of about 1 μs to about 10 seconds or a range of about 0.001 seconds to about 5 seconds. In these certain applications, the first acoustic energy field 36 can have a peak intensity in the range from about 5 W/cm2 to about 100 kW/cm2 at the skin surface 12. In certain aspects, the first acoustic energy field 36 can have a peak intensity of greater than 10 W/cm2, greater than 50 W/cm2, greater than 100 W/cm2, greater than 300 W/cm2, greater than 500 W/cm2, greater than 1 kW/cm2, greater than 3 kW/cm2, or greater than 5 kW/cm2. Acoustic streaming can generate microchannels having a transcellular route from the skin surface 12 to the epidermis 16. In these certain applications, acoustic streaming generated by the first acoustic energy field 36 can create pressures ranging from about 10 kPa to about 120 MPa, including, but not limited to, pressures ranging from about 10 kPa to about 10 MPa and pressures ranging from about 10 MPa to about 120 MPa, in the stratum corneum 14, the epidermis 16, or a combination thereof.
In certain applications, such as generating inertial cavitation in the stratum corneum 14 and acoustic streaming providing acoustic streaming pressure to the stratum corneum 14, the epidermis 16, or a combination thereof, which can generate microchannels having both an intercellular route and a transcellular route from the skin surface 12 to the epidermis 16, the first acoustic energy 36 can provide two or more effects, such as inertial cavitation and acoustic streaming, simultaneously or alternating. In certain aspects, generating inertial cavitation and acoustic streaming can facilitate moving a larger medicant, such as a medicant with a molecular weight greater than 500 Da, through the stratum corneum 14.
In certain applications, the second acoustic energy 38 can be configured to generate inertial cavitation or acoustic streaming in the epidermis 16, the dermis 18, or a combination thereof. In certain aspects, the second acoustic energy 38 can be configured to increase diffusion of the medicant 34 through the epidermis 16 and the dermis 18. In certain aspects, the second acoustic energy 38 can provide a pressure in a range from about 100 kPa to about 100 MPa to push the medicant 34 through the epidermis 16 and into the dermis 18.
It should be appreciated that the effects described herein are tissue-dependent, so the ultrasound energy necessary to generate inertial cavitation or acoustic streaming in one type of tissue might be different than the ultrasound energy necessary to generate inertial cavitation or acoustic streaming in a different type of tissue. It should also be appreciated that for a certain effect to be generated, the threshold for generating that effect must be exceeded. However, the thresholds for generating the effects described herein, such as inertial cavitation and subsequent acoustic streaming, in tissues are generally unknown.
With respect to inertial cavitation, aside from a single experimental study regarding the frequency-dependence of the threshold for inertial cavitation in canine skeletal muscle, a recent article by Church et al. states that “too little information on the experimental threshold for inertial cavitation in other tissues is available” to make conclusions regarding frequency-dependent trends. See, Church C C, et al. “Inertial cavitation from ARFI imaging and the MI”, Ultrasound in Med. & Biol., Vol. 41, No. 2, pp. 472-485 (2015). This observation is solely about the inertial cavitation threshold as it relates to frequency, and does not take into account the other spatial and temporal parameters aside from frequency. Accordingly, one of skill in the art should appreciate that the present invention is disclosed in terms of effects that have been shown to produce a specific result, i.e., transporting a medicant across the stratum corneum, and a set of general parameters that are suitable for achieving that result are set forth above. One of skill in the art should also appreciate that the presence of inertial cavitation can be identified by a characteristic broadband signal that is the result of the complex dynamics associated with inertial cavitation.
With respect to acoustic streaming, this effect can be generated by an effect including the aforementioned inertial cavitation or without the inertial cavitation. In instances without the inertial cavitation, acoustic streaming can be accomplished by introducing heat into a tissue, for example the stratum corneum, which expands the tissue, then applying a pressure to the medicant or a carrier containing the medicant to initiate acoustic streaming.
The inertial cavitation and acoustic streaming effects are described herein with respect to the discrete layers of the skin, but can penetrate to a greater depth beneath the skin surface to enhance the penetration of the medicant deeper into the skin or into subcutaneous tissue.
In certain aspects, the first acoustic energy 36 and the second acoustic energy 38 can be substantially the same. In certain aspects, the second acoustic energy 38 can have a frequency that concentrates the acoustic energy deeper and moves the medicant 34 into the dermis 18. In certain aspects, the second acoustic energy 38 can be configured to cause a thermal effect in the epidermis 16 or the dermis 18, which is non-destructive to the cells of the epidermis 16 or dermis 18.
The first acoustic energy 36, second acoustic energy 38, or third acoustic energy 40 can be generated from one or more ultrasound sources.
In certain aspects, the ultrasound assisted drug delivery probe 10 can be configured to create an intensity gain from the ultrasound assisted drug delivery probe 10 to the target volume 42 of at least about 5, including, but not limited to, an intensity gain of at least about 10, at least about 25, at least about 50, or at least about 100. In aspects having a focused or a strongly focused ultrasound, the ultrasound assisted drug delivery probe 10 can be configured to create an intensity gain from the ultrasound assisted drug delivery probe 10 to the target volume 42 of at least about 50, including, but not limited to, an intensity gain of at least about 100, or at least about 500. In aspects having a weakly focused ultrasound, the ultrasound assisted drug delivery probe 10 can be configured to create an intensity gain from the ultrasound assisted drug delivery probe 10 to the target volume 42 of at least about 5.
In certain aspects with pulsed ultrasound, a first pulse can be ultrasound having a first type of focus, a second pulse can be ultrasound having a second type of focus, a third pulse can be ultrasound having the first type of focus or a third type of focus, and so on. Any combination of focused, defocused, or unfocused energy can be used for any of the various pulses.
In certain aspects, the first acoustic energy 36, second acoustic energy 38, or third acoustic energy 40 can create a thermal effect, a mechanical effect, or a combination thereof in the target volume 42. A mechanical effect is a non-thermal effect within a medium that is created by acoustic energy. A mechanical effect can be one of, for example, acoustic resonance, acoustic streaming, disruptive acoustic pressure, shock waves, inertial cavitation, and non-inertial cavitation.
Referring to
At optional process block 212, the method 200 can include directing a therapeutic acoustic energy field 40 into the target volume 42. When the medicant is located in or near the target volume 42, at optional process block 214, the method 200 can include directing a third acoustic energy field 40 into the target volume 42 to activate the medicant 34.
In certain aspects, the systems and methods disclosed herein can utilize an anesthetic coupled with a non-anesthetic medicant, where the anesthetic can reduce pain and inflammation associated with application of the ultrasound energy, including pain and inflammation associated with the transdermal delivery of the medicant or other ultrasound-generated effects described herein.
In certain aspects, the medicant can be at least partially transparent to ultrasound energy. In certain aspects, the medicant can be substantially transparent to ultrasound energy.
In certain aspects, the stratum corneum layer 14 can be substantially intact prior to the application of ultrasound energy. For example, prior to the application of ultrasound energy, the stratum corneum layer 14 can have no punctures, microchannels, wounds, other means of improving permeability of a medicant, or combinations thereof.
The medicant can be mixed into or be a component of an acoustic coupling medium. In some embodiments, an acoustic coupling medium, such as an acoustic coupling gel or an acoustic coupling cream, can comprise the medicant. In some embodiments, a medicant is administered to a skin surface above the ROI. In some applications, the medicant can be the acoustic coupling medium. In some applications, the medicant can be a combination of medicants, such as any combination of those described herein.
The medicant can be mixed into or can be a component of a biocompatible carrier. Example of a biocompatible medicant carrier include, but are not limited to, glycerin, liposomes, nanoparticles, microbubbles, and the like. In certain aspects, the carrier can enhance and/or lower the threshold for inertial cavitation.
A medicant can comprise an anesthetic. In some aspects, the anesthetic can comprise lidocaine, benzocaine, prilocaine, tetracaine, novocain, butamben, dibucaine, oxybuprocaine, pramoxine, proparacaine, proxymetacaine, tetracaine, or any combination thereof. The anesthetic an eliminate or reduce the pain generated by the application of ultrasound energy to the skin, for example, the creation of the microchannels in the skin by ultrasound energy. The anesthetic can constrict blood flow, which can eliminate or reduce any blood flowing that emerges to the skin surface by way of damage from the application of ultrasound energy to the skin, for example, blood flowing up a microchannel generated by ultrasound energy and onto the skin surface. Further, the use of an anesthetic, such as lidocaine, in the acoustic coupling medium substantially eliminates skin irritation from the application of ultrasound energy, such as the ultrasound-induced creation of microchannels penetrating the skin surface.
A medicant can comprise a drug, a vaccine, a nutraceatical, or an active ingredient. A medicant can comprise blood or a blood component, an allergenic, a somatic cell, a recombinant therapeutic protein, or any living cells that are used as therapeutics to treat diseases or as actives to produce a cosmetic or a medical effect. A medicant can comprise a biologic, such as for example a recombinant DNA therapy, synthetic growth hormone, monoclonal antibodies, or receptor constructs. A medicant can comprise stem cells.
A medicant can comprise adsorbent chemicals, such as zeolites, and other hemostatic agents are used in sealing severe injuries quickly. A medicant can comprise thrombin and/or fibrin glue, which can be used surgically to treat bleeding and to thrombose aneurysms. A medicant can comprise Desmopressin, which can be used to improve platelet function by activating arginine vasopressin receptor 1A. A medicant can comprise a coagulation factor concentrates, which can be used to treat hemophilia, to reverse the effects of anticoagulants, and to treat bleeding in patients with impaired coagulation factor synthesis or increased consumption. A medicant can comprise a Prothrombin complex concentrate, cryoprecipitate and fresh frozen plasma, which can be used as coagulation factor products. A medicant can comprise recombinant activated human factor VII, which can be used in the treatment of major bleeding. A medicant can comprise tranexamic acid and/or aminocaproic acid, which can inhibit fibrinolysis, and lead to a de facto reduced bleeding rate. A medicant can comprise platelet-rich plasma (PRP), mesenchymal stem cells, or growth factors. For example, PRP is typically a fraction of blood that has been centrifuged. The PRP is then used for stimulating healing of the injury. The PRP typically contains thrombocytes (platelets) and cytokines (growth factors). The PRP may also contain thrombin and may contain fibenogen, which when combined can form fibrin glue.
In addition, a medicant can comprise a steroid, such as, for example, like the glucocorticoid cortisol. A medicant can comprise an active compound, such as, for example, alpha lipoic Acid, DMAE, vitamin C ester, tocotrienols, and/or phospholipids. A medicant can comprise a pharmaceutical compound such as for example, cortisone, Etanercept, Abatacept, Adalimumab, or Infliximab. A medicant can comprise Botox. A medicant can comprise lignin peroxidase, which can be derived from fungus and can be used for skin lightening applications. A medicant can comprise hydrogen peroxide, which can be used for skin lighting applications.
The medicant can comprise an anti-inflammatory agent, such as, for example, a non-steroidal anti-inflammatory drug (NSAID), such as aspirin, celecoxib (Celebrex), diclofenac (Voltaren), diflunisal (Dolobid), etodolac (Lodine), ibuprofen (Motrin), indomethacin (Indocin), ketoprofen (Orudis), ketorolac (Toradol), nabumetone (Relafen), naproxen (Aleve, Naprosyn), oxaprozin (Daypro), piroxicam (Feldene), salsalate (Amigesic), sulindac (Clinoril), or tolmetin (Tolectin).
Still further, a medicant can comprise an active ingredient which provides a cosmetic and/or therapeutic effect to the area of application on the skin. Such active ingredients can include skin lightening agents, anti-acne agents, emollients, non-steroidal anti-inflammatory agents, topical anesthetics, artificial tanning agents, antiseptics, anti-microbial and anti-fungal actives, skin soothing agents, sunscreen agents, skin barrier repair agents, anti-wrinkle agents, anti-skin atrophy actives, lipids, sebum inhibitors, sebum inhibitors, skin sensates, protease inhibitors, skin tightening agents, anti-itch agents, hair growth inhibitors, desquamation enzyme enhancers, anti-glycation agents, compounds which stimulate collagen production, and mixtures thereof.
Other examples of such active ingredients can include any of panthenol, tocopheryl nicotinate, benzoyl peroxide, 3-hydroxy benzoic acid, flavonoids (e.g., flavanone, chalcone), farnesol, phytantriol, glycolic acid, lactic acid, 4-hydroxy benzoic acid, acetyl salicylic acid, 2-hydroxybutanoic acid, 2-hydroxypentanoic acid, 2-hydroxyhexanoic acid, cis-retinoic acid, trans-retinoic acid, retinol, retinyl esters (e.g., retinyl propionate), phytic acid, N-acetyl-L-cysteine, lipoic acid, tocopherol and its esters (e.g., tocopheryl acetate), azelaic acid, arachidonic acid, tetracycline, hydrocortisone, acetominophen, resorcinol, phenoxyethanol, phenoxypropanol, phenoxyisopropanol, 2,4,4′-trichloro-2′-hydroxy diphenyl ether, 3,4,4′-trichlorocarbanilide, octopirox, lidocaine hydrochloride, clotrimazole, miconazole, ketoconazole, neomycin sulfate, theophylline, and mixtures thereof.
A medicant can be any natural or synthetic compound or any combination of compounds, or a drug, or a biologic, as described herein, or is known to one skilled in the art, or is developed in the future.
A medicant can be diluted with an appropriate solvent for delivery. For example, a medicant can be diluted or mixed with a solvent to lower viscosity to improve transfer of the medicant. For example, a medicant can be diluted or mixed with a solvent that is a vehicle for transfer of the medicant, such as, for example, mixing a medicant with a formulation of polyethylene glycol (PEG). In some applications, the medicant can be mixed with a solvent to improve a tissue effect, such as uptake into the tissue, such as, for example, mixing a medicant with dimethyl sulfoxide (DMSO). In some applications, the medicant can be mixed with a solvent, which can restrict or inhibit an ultrasound energy effect. For example, a medicant can be mixed with ethanol (EtOH), which inhibits the thermal effect of ablation. In some applications, the medicant can be mixed with a solvent, which can amplify an ultrasound energy effect. For example, a medicant can be mixed with a contrast agent, which can be configured to promote higher attenuation and/or cavitation at lower acoustic pressures.
A medicant can be in a non-liquid state. In some applications, a medicant can be a gel or a solid, which by using a thermal effect, can melt into a liquid state suitable for delivery. For example, a medicant can be mixed into a thermally responsive hydrogel, which is configured to transform into an injectable state upon receiving a suitable amount of thermal energy emitted from a transducer.
In some aspects, a medicant can be administered to a skin surface above the ROI. The medicant can be mixed into or be a component of an acoustic coupling medium. In some applications, the medicant can be the acoustic coupling medium. In some aspects, the acoustic coupling medium can comprise a preservative and/or a preservative enhancer, such as, for example, water-soluble or solubilizable preservatives including Germall 115, methyl, ethyl, propyl and butyl esters of hydroxybenzoic acid, benzyl alcohol, sodium metabisulfite, imidazolidinyl urea, EDTA and its salts, Bronopol (2-bromo-2-nitropropane-1,3-diol) and phenoxypropanol; antifoaming agents; binders; biological additives; bulking agents; coloring agents; perfumes, essential oils, and other natural extracts.
In certain aspects, microchannels 60 can be long enough for fluid communication between the skin surface 12 and the epidermis 16. The microchannels 60 can have a diameter large enough to allow the medicant to pass from the skin surface 12 to the epidermis 16. The microchannels 60 can have a diameter small enough to prevent bleeding from subcutaneous tissue to the skin surface 12.
In certain aspects, a single ultrasound pulse can provide sufficient effect to drive the medicant through the stratum corneum 14. In some aspects, two more ultrasound pulses, including but not limited to, two, three, four, five, six, seven, eight, nine, ten, or more ultrasound pulses can provide sufficient effect to drive the medicant through the stratum corneum 14.
In certain aspects, the systems and methods described herein can drive medicant through the stratum corneum 14 after application of ultrasound energy for a total length of time of less than 5 minutes, including but not limited to, less than 3 minutes, less than 1 minute, less than 50 seconds, less than 40 seconds, less than 30 seconds, less than 25 seconds, less than 20 seconds, less than 15 seconds, less than 10 seconds, less than 5 seconds, less than 4 seconds, less than 3 seconds, less than 2 seconds, or less than 1 second.
The systems and methods described herein can be employed in numerous clinical applications. For example, a treatment for scars can include a medicant directed by acoustic energy through microchannels to a scar location. A second acoustic energy can be directed to the scar location and be configured to interact with the medicant to remodel and/or modify the scar tissue and eventually replace the scar tissue via remodeling. The treatment can also include directing therapeutic acoustic energy into the scar tissue. In some applications, the therapeutic acoustic energy can be configured to ablate a portion of the scar tissue, thereby removing a portion of the scar tissue. In some applications, the therapeutic acoustic energy can be configured to create a lesion in or near the scar tissue, thereby facilitating skin tightening above the lesion. In some applications, the therapeutic acoustic energy can be configured to remodel and/or increase an amount of collagen around the scar tissue, thereby replacing portions of the scar tissue with newly formed collagen.
In another example, the systems and methods described herein can be used in the treatment of hyperpigmentation. A medicant can be a skin lightening agent, which can be any active ingredient that improves hyperpigmentation. Without being bound by theory, use of skin lightening agents can effectively stimulate the epidermis, particularly the melanocyte region, where the melanin is generated. The combined use of the skin lightening agent and ultrasound energy can provide synergistic skin lightening benefit. A medicant comprise a skin lightening agent, such as, for example, ascorbic acid compounds, vitamin B3 compounds, azelaic acid, butyl hydroxyanisole, gallic acid and its derivatives, glycyrrhizinic acid, hydroquinone, kojic acid, arbutin, mulberry extract, and mixtures thereof. Use of combinations of skin lightening agents can be advantageous as they may provide skin lightening benefit through different mechanisms.
In one aspect, a combination of ascorbic acid compounds and vitamin B3 compounds can be used. Examples of ascorbic acid compounds can include L-ascorbic acid, ascorbic acid salt, and derivatives thereof. Examples of ascorbic acid salts include sodium, potassium, lithium, calcium, magnesium, barium, ammonium and protamine salts. Examples of ascorbic acid derivatives include for example, esters of ascorbic acid, and ester salts of ascorbic acid. Examples of ascorbic acid compounds include 2-O-D-glucopyranosyl-L-ascorbic acid, which is an ester of ascorbic acid and glucose and usually referred to as L-ascorbic acid 2-glucoside or ascorbyl glucoside, and its metal salts, and L-ascorbic acid phosphate ester salts such as sodium ascorbyl phosphate, potassium ascorbyl phosphate, magnesium ascorbyl phosphate, and calcium ascorbyl phosphate. In addition, medicant can comprise lignin peroxidase, which can be derived from fungus used for skin lightening applications. In another example, medicant can comprise hydrogen peroxide, which can be used for skin lighting applications.
In an exemplary application, a coupling agent can comprise a medicant, which comprises a skin lighting agent. Ultrasound energy can direct the lightening agent into the epidermis and into contact with melanin. The lightening agent can remove excess melanin. Additional ultrasound energy can be directed to the epidermis to provide a cavitation effect to break up the excess melanin pigment. In some examples, additional ultrasound energy can be directed to the epidermis to provide a thermal effect, which can be configured to increase the effectiveness of the skin lightening agent. In one example, the skin lightening agent can be hydrogen peroxide and the ultrasound energy can increase the temperature of the hydrogen peroxide by at least 1° C. and to about 15° C., which increases the effectiveness of the skin lightening agent.
In another example of a clinical application, the systems and methods described herein can be used in the treatment of hypopigmentation. In an exemplary application, a coupling agent can comprise a medicant, which can comprise a corticosteroid. Ultrasound energy can direct the corticosteroid into the epidermis at the light colored areas of the skin. A second ultrasound energy can be directed to the treatment location and be configured to interact with the corticosteroid to provide a synergistic treatment to increase pigment concentration at the treatment location. A second energy, such as, a photon-based energy from a laser can be directed to the treatment location to further increase the pigment concentration in the treatment location. A third energy, such as, ultrasound energy can be directed to the treatment location to disperse the generated pigment and provide an even coloring pattern at the treatment location.
In another example, large molecule medicants can be delivered using the systems and methods described herein. A large molecule can be greater than 500 Da. A large molecule can be any medicinal product manufactured in or extracted from biological sources. Examples of large molecule include vaccines, blood or blood components, allergenics, somatic cells, gene therapies, tissues, recombinant therapeutic protein and living cells. In one example, a large molecule comprises stem cells. An energy effect is provided by an acoustic energy field, which is configured to drive the large molecule through the microchannels and into subcutaneous tissue. The energy effect can be acoustic streaming and/or inertial cavitation. In some applications, the energy effect is a thermal effect, which can be configured to lower the viscosity of a large molecule for improved transfer through the microchannels.
In another example, chemotherapy drugs can be delivered using the systems and methods described herein. Some of the advantages, of using such systems and methods, include concentrating the chemotherapy drug to the tumor site (as opposed to exposing the whole body to the drug), lower doses may be required (due to the site specific treatment), and greater effectiveness of the drug.
In some applications, a chemotherapy drug can be a large molecule. In some applications, the systems and methods, described herein, can deliver anti-body drug conjugates, which target cancer stem cells to destroy a tumor. In some applications, a chemotherapy drug is a liposome encapsulated chemotherapy drug, which can be delivered through the microchannels to a treatment site by an acoustic energy field, and then a second acoustic energy field can be delivered to melt the liposome and release the chemotherapy drug. In some applications, an acoustic energy field can be delivered, which is configured to provide microbubbles (cavitation) to a tumor in a treatment site without generating heat, which can lead to reduction or elimination of the tumor. These microbubbles can increase microvessel permeability of drugs, enhance drug penetration through the interstitial space, and increase tumor cell uptake of the drugs, thus enhancing the antitumor effectiveness of the drugs.
In some applications of chemotherapy, a drug-loaded nanoemulsion can be driven through the microchannels to a tumor site via an acoustic energy field. A second acoustic energy field can be delivered to the tumor site and can be configured to trigger drug release from nanodroplets, which can be created by microbubbles. A third acoustic energy field can be delivered to the tumor site and can be configured to produce an energy effect, for example, a thermal effect and/or cavitation, which enhances uptake of the drug by the tumor.
In another example, photodynamic therapy can be delivered using the systems and methods described herein. As known to one skilled in the art, photodynamic therapy is a medical treatment that utilizes a medicant, which comprises a photosensitizing agent and a photon-emission source to activate the administered medicant. In some applications, the medicant comprising a photosensitizing agent is delivered through the microchannels into tissue via an acoustic energy field. After the medicant has been delivered, a second acoustic energy field can be delivered to enhance permeability and/or uptake of the medicant by the tissue. After the medicant has been delivered, a photon energy field at a specific wavelength is delivered from the photon-emission source to the tissue, which activates the medicant. The photon-emission source can include, but are not limited to: laser, LED or intense pulsed light. The optimal photon-emission source is determined by the ideal wavelength for activation of the medicant and the location of the target tissue. The photon energy field is directly applied to the target tissue for a specific amount of time. The medicant can be Levulan, which is used for the treatment of skin cancer. The medicant can be Metvix, which is used for the treatment of skin cancer. The medicant can be Photofin, which is used for the treatment of bladder cancer, lung cancer and esophagus cancer. The medicant can be aminolevulinic acid, which has been used in the treatment of various skin conditions, such as, for example, acne, rosacea, sun damage, enlarged sebaceous glands, wrinkles, warts, hidradenitis suppurativa, and psoriasis.
In another example, injuries to muscles can be treated using the systems and methods described herein. For treating an injury to a muscle, ligament, or tendon, a medicant can comprise platelet-rich plasma (PRP), mesenchymal stem cells, or growth factors. For example, PRP is typically a fraction of blood that has been centrifuged. The PRP is then used for stimulating healing of the injury. The PRP typically contains thrombocytes (platelets) and cytokines (growth factors). The PRP may also contain thrombin and may contain fibenogen, which when combined can form fibrin glue. The medicant is directed through a microchannels to the injury, such as, for example a tear in the tissue. An acoustic energy field can then be directed to the injury to activate the medicant and/or disperse the medicant. The acoustic energy field can create a thermal effect to heat the injury location which can initiate interaction of the medicant with the tissue at the injury location and/or increase blood perfusion in the injury location. The acoustic energy field can ablate a portion of tissue in the injury location, which can peak inflammation and increase the speed of the healing process. The acoustic energy field can be directed to the injury location and weld together the tear using both an ablative thermal effect and various mechanical effects.
In an example, acne can be treated using the systems and methods described herein. A medicant can comprise any one or more of cis-retinoic acid, trans-retinoic acid, retinol, retinyl esters (e.g., retinyl propionate), phytic acid, N-acetyl-L-cysteine, lipoic acid, tocopherol and its esters (e.g., tocopheryl acetate), azelaic acid, arachidonic acid, tetracycline, ibuprofen, naproxen, ketoprofen, hydrocortisone, acetominophen, resorcinol, phenoxyethanol, phenoxypropanol, phenoxyisopropanol, 2,4,4′-trichloro-2′-hydroxy diphenyl ether, 3,4,4′-trichlorocarbanilide, octopirox, lidocaine hydrochloride, clotrimazole, miconazole, ketoconazole, neomycin sulfate, theophylline. The medicant is directed through the microchannels to a ROI comprising a sebaceous gland. The medicant interacts with bacteria in the sebaceous gland to reduce or eliminate the bacteria responsible for acne. An acoustic energy field can provide a mechanical effect to disperse the medicant into one or more sebaceous gland. An acoustic energy field can provide a thermal effect to accelerate the reaction of the medicant to eliminate or reduce the amount of bacteria in the sebaceous gland. An acoustic energy field can provide a thermal effect to injure or destroy at least a portion of the sebaceous gland. A photon based energy field can be directed to the medicant in the ROI to initiate a photodymanic effect to activate the medicant. A photon based energy field can be directed to the medicant in the ROI to reduce photosensitivity of the tissue in the ROI from sunlight.
As used herein, pulse width is the time from the start of the pulse to the end of the pulse measured at a −3 dB or −6 dB power point.
As used herein, “acoustic streaming” refers to a force of acoustic energy which displaces a material through a tissue environment.
An ultrasound transducer was coupled to a forearm of two human patients with a standard acoustic coupling gel in one location and a 5% topical solution of lidocaine as an acoustic coupling gel in a second location. The 5% topical solution of lidocaine had negligible acoustic attenuation of less than 1 dB/cm/MHz. The ultrasound transducer transmitted ultrasound energy at 10 MHz, a pulse width of 25 ms, and an energy of 0.5 J. The ultrasound energy was focused to a depth of 1.5 mm beneath the surface of human skin. The presence of the 5% topical solution of lidocaine reduced pain from the application of the ultrasound energy by approximately 2 points on a 10-point pain scale when compared with the application of the ultrasound energy in the absence of the lidocaine. Referring to
An ultrasound transducer was coupled to an ex-vivo sample of pig skin with dyed water as a coupling agent. The water was dyed with a green food dye. The ultrasound transducer transmitted ultrasound energy in treatment lines of high intensity ultrasound point exposures at a frequency of 2.87 MHz, a pulse width of 170 ms, and a pulse power of 10 W. The ultrasound energy was focused to a depth of approximately 1.5 mm beneath the surface of the pig skin. Locations that were not treated with the ultrasound energy showed penetration of the dye ranging from 1.0 mm to 1.5 mm. Locations that were treated with the ultrasound energy showed penetration of the dye ranging from 2.0 mm to 2.8 mm, thereby showing that the application of the ultrasound energy enhanced the transdermal transport of the water containing the dye. The ultrasound energy that was utilized exhibited broadband spectral properties when applied to water, gel, and tissue, which is evidence of an inertial cavitation effect.
The present disclosure has been described above with reference to various exemplary configurations. However, those skilled in the art will recognize that changes and modifications may be made to the exemplary configurations without departing from the scope of the present invention. For example, the various operational steps, as well as the components for carrying out the operational steps, may be implemented in alternate ways depending upon the particular application or in consideration of any number of cost functions associated with the operation of the system, e.g., various of the steps may be deleted, modified, or combined with other steps. Further, it should be noted that while the method and system for ultrasound treatment as described above is suitable for use by a medical practitioner proximate the patient, the system can also be accessed remotely, i.e., the medical practitioner can view through a remote display having imaging information transmitted in various manners of communication, such as by satellite/wireless or by wired connections such as IP or digital cable networks and the like, and can direct a local practitioner as to the suitable placement for the transducer. Moreover, while the various exemplary embodiments may comprise non-invasive configurations, system can also be configured for at least some level of invasive treatment application. These and other changes or modifications are intended to be included within the scope of the present invention, as set forth in the following claims.
This application represents the national stage entry of PCT International Application PCT/US2016/020600 filed Mar. 3, 2016, which claims priority to, and incorporates herein by reference for all purposes U.S. patent application Ser. No. 14/637,237, filed Mar. 3, 2015, U.S. Provisional Patent Application No. 62/127,715 filed Mar. 3, 2015 and U.S. Provisional Patent Application 62/127,720 filed Mar. 3, 2015.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/020600 | 3/3/2016 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/141136 | 9/9/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
40403 | Gray | Oct 1863 | A |
2427348 | Bond | Sep 1947 | A |
3913386 | Saglio | Oct 1975 | A |
3965455 | Hurwitz | Jun 1976 | A |
3992925 | Perilhou | Nov 1976 | A |
4039312 | Patru | Aug 1977 | A |
4059098 | Murdock | Nov 1977 | A |
4101795 | Fukumoto et al. | Jul 1978 | A |
4166967 | Benes et al. | Sep 1979 | A |
4211948 | Smith et al. | Jul 1980 | A |
4211949 | Brisken et al. | Jul 1980 | A |
4213344 | Rose | Jul 1980 | A |
4276491 | Daniel | Jun 1981 | A |
4315514 | Drewes et al. | Feb 1982 | A |
4325381 | Glenn | Apr 1982 | A |
4343301 | Indech | Aug 1982 | A |
4372296 | Fahim | Feb 1983 | A |
4379145 | Masuho et al. | Apr 1983 | A |
4381007 | Doss | Apr 1983 | A |
4381787 | Hottinger | May 1983 | A |
4397314 | Vaguine | Aug 1983 | A |
4409839 | Taenzer | Oct 1983 | A |
4431008 | Wanner et al. | Feb 1984 | A |
4441486 | Pounds | Apr 1984 | A |
4452084 | Taenzer | Jun 1984 | A |
4484569 | Driller et al. | Nov 1984 | A |
4507582 | Glenn | Mar 1985 | A |
4513749 | Kino et al. | Apr 1985 | A |
4513750 | Heyman et al. | Apr 1985 | A |
4527550 | Ruggera et al. | Jul 1985 | A |
4528979 | Marchenko et al. | Jul 1985 | A |
4534221 | Fife et al. | Aug 1985 | A |
4566459 | Umemura et al. | Jan 1986 | A |
4567895 | Putzke | Feb 1986 | A |
4586512 | Do-Huu et al. | May 1986 | A |
4601296 | Yerushalmi | Jul 1986 | A |
4620546 | Aida et al. | Nov 1986 | A |
4637256 | Sugiyama et al. | Jan 1987 | A |
4646756 | Watmough et al. | Mar 1987 | A |
4663358 | Hyon et al. | May 1987 | A |
4668516 | Duraffourd et al. | May 1987 | A |
4672591 | Breimesser et al. | Jun 1987 | A |
4680499 | Umemura et al. | Jul 1987 | A |
4697588 | Reichenberger | Oct 1987 | A |
4754760 | Fukukita et al. | Jul 1988 | A |
4757820 | Itoh | Jul 1988 | A |
4771205 | Mequio | Sep 1988 | A |
4801459 | Liburdy | Jan 1989 | A |
4803625 | Fu et al. | Feb 1989 | A |
4807633 | Fry | Feb 1989 | A |
4817615 | Fukukita et al. | Apr 1989 | A |
4858613 | Fry et al. | Aug 1989 | A |
4860732 | Hasegawa et al. | Aug 1989 | A |
4865041 | Hassler et al. | Sep 1989 | A |
4865042 | Umemura et al. | Sep 1989 | A |
4867169 | Machida et al. | Sep 1989 | A |
4874562 | Hyon et al. | Oct 1989 | A |
4875487 | Seppi | Oct 1989 | A |
4891043 | Zeimer et al. | Jan 1990 | A |
4893624 | Lele | Jan 1990 | A |
4896673 | Rose et al. | Jan 1990 | A |
4900540 | Ryan et al. | Feb 1990 | A |
4901729 | Saitoh et al. | Feb 1990 | A |
4917096 | Englehart et al. | Apr 1990 | A |
4932414 | Coleman et al. | Jun 1990 | A |
4938216 | Lele | Jul 1990 | A |
4938217 | Lele | Jul 1990 | A |
4947046 | Kawabata et al. | Aug 1990 | A |
4951653 | Fry et al. | Aug 1990 | A |
4955365 | Fry et al. | Sep 1990 | A |
4958626 | Nambu et al. | Sep 1990 | A |
4973096 | Joyce | Nov 1990 | A |
4976709 | Sand | Dec 1990 | A |
4979501 | Valchanov et al. | Dec 1990 | A |
4992989 | Watanabe et al. | Feb 1991 | A |
5012797 | Liang et al. | May 1991 | A |
5018508 | Fry et al. | May 1991 | A |
5030874 | Saito et al. | Jul 1991 | A |
5036855 | Fry et al. | Aug 1991 | A |
5040537 | Katakura | Aug 1991 | A |
5054310 | Flynn | Oct 1991 | A |
5054470 | Fry et al. | Oct 1991 | A |
5070879 | Herres | Dec 1991 | A |
5088495 | Miyagawa | Feb 1992 | A |
5115814 | Griffith et al. | May 1992 | A |
5117832 | Sanghvi et al. | Jun 1992 | A |
5123418 | Saurel et al. | Jun 1992 | A |
5143063 | Fellner | Sep 1992 | A |
5143074 | Dory | Sep 1992 | A |
5149319 | Unger | Sep 1992 | A |
5150711 | Dory | Sep 1992 | A |
5150714 | Green | Sep 1992 | A |
5152294 | Mochizuki et al. | Oct 1992 | A |
5156144 | Iwasaki et al. | Oct 1992 | A |
5158536 | Sekins et al. | Oct 1992 | A |
5159931 | Pini | Nov 1992 | A |
5163421 | Bernstein et al. | Nov 1992 | A |
5163436 | Saitoh et al. | Nov 1992 | A |
5178135 | Uchiyama et al. | Jan 1993 | A |
5190518 | Takasu | Mar 1993 | A |
5190766 | Ishihara | Mar 1993 | A |
5191880 | McLeod et al. | Mar 1993 | A |
5205287 | Erbel et al. | Apr 1993 | A |
5209720 | Unger | May 1993 | A |
5212671 | Fujii et al. | May 1993 | A |
5215680 | D'Arrigo | Jun 1993 | A |
5224467 | Oku | Jul 1993 | A |
5230334 | Klopotek | Jul 1993 | A |
5230338 | Allen et al. | Jul 1993 | A |
5247924 | Suzuki et al. | Sep 1993 | A |
5255681 | Ishimura et al. | Oct 1993 | A |
5257970 | Dougherty | Nov 1993 | A |
5265614 | Hayakawa et al. | Nov 1993 | A |
5267985 | Shimada et al. | Dec 1993 | A |
5269297 | Weng et al. | Dec 1993 | A |
5282797 | Chess | Feb 1994 | A |
5295484 | Marcus et al. | Mar 1994 | A |
5295486 | Wollschlager et al. | Mar 1994 | A |
5304169 | Sand | Apr 1994 | A |
5305756 | Entrekin et al. | Apr 1994 | A |
5321520 | Inga et al. | Jun 1994 | A |
5323779 | Hardy et al. | Jun 1994 | A |
5327895 | Hashimoto et al. | Jul 1994 | A |
5348016 | Unger et al. | Sep 1994 | A |
5360268 | Hayashi et al. | Nov 1994 | A |
5370121 | Reichenberger et al. | Dec 1994 | A |
5371483 | Bhardwaj | Dec 1994 | A |
5375602 | Lancee et al. | Dec 1994 | A |
5379773 | Hornsby | Jan 1995 | A |
5380280 | Peterson | Jan 1995 | A |
5380519 | Schneider et al. | Jan 1995 | A |
5383917 | Desai et al. | Jan 1995 | A |
5391140 | Schaetzle et al. | Feb 1995 | A |
5391197 | Burdette et al. | Feb 1995 | A |
5392259 | Bolorforosh | Feb 1995 | A |
5396143 | Seyed-Bolorforosh et al. | Mar 1995 | A |
5398689 | Connor et al. | Mar 1995 | A |
5406503 | Williams, Jr. et al. | Apr 1995 | A |
5417216 | Tanaka | May 1995 | A |
5419327 | Rohwedder et al. | May 1995 | A |
5423220 | Finsterwald et al. | Jun 1995 | A |
5435311 | Umemura et al. | Jul 1995 | A |
5438998 | Hanafy | Aug 1995 | A |
5458140 | Eppstein et al. | Aug 1995 | A |
5458596 | Lax et al. | Oct 1995 | A |
5460179 | Okunuki et al. | Oct 1995 | A |
5460595 | Hall et al. | Oct 1995 | A |
5469854 | Unger et al. | Nov 1995 | A |
5471488 | Bender | Nov 1995 | A |
5487388 | Rello et al. | Jan 1996 | A |
5492126 | Hennige et al. | Feb 1996 | A |
5496256 | Bock et al. | Mar 1996 | A |
5501655 | Rolt et al. | Mar 1996 | A |
5503152 | Oakley et al. | Apr 1996 | A |
5503320 | Webster et al. | Apr 1996 | A |
5507790 | Weiss | Apr 1996 | A |
5520188 | Hennige et al. | May 1996 | A |
5522869 | Burdette et al. | Jun 1996 | A |
5523058 | Umemura et al. | Jun 1996 | A |
5524620 | Rosenschein | Jun 1996 | A |
5524624 | Tepper et al. | Jun 1996 | A |
5524625 | Okazaki et al. | Jun 1996 | A |
5526624 | Berg | Jun 1996 | A |
5526812 | Dumoulin et al. | Jun 1996 | A |
5526814 | Cline et al. | Jun 1996 | A |
5526815 | Granz et al. | Jun 1996 | A |
5529070 | Augustine et al. | Jun 1996 | A |
5540235 | Wilson | Jul 1996 | A |
5558092 | Unger et al. | Sep 1996 | A |
5560362 | Sliwa, Jr. et al. | Oct 1996 | A |
5575291 | Hayakawa et al. | Nov 1996 | A |
5575807 | Faller | Nov 1996 | A |
5577502 | Darrow et al. | Nov 1996 | A |
5577507 | Snyder et al. | Nov 1996 | A |
5577991 | Akui et al. | Nov 1996 | A |
5580575 | Unger et al. | Dec 1996 | A |
5601526 | Chapelon et al. | Feb 1997 | A |
5603323 | Pflugrath et al. | Feb 1997 | A |
5609562 | Kaali | Mar 1997 | A |
5615091 | Palatnik | Mar 1997 | A |
5617858 | Taverna et al. | Apr 1997 | A |
5618275 | Bock | Apr 1997 | A |
5620479 | Diederich | Apr 1997 | A |
5622175 | Sudol et al. | Apr 1997 | A |
5638819 | Manwaring et al. | Jun 1997 | A |
5643179 | Fujimoto | Jul 1997 | A |
5644085 | Lorraine et al. | Jul 1997 | A |
5647373 | Paltieli | Jul 1997 | A |
5655535 | Friemel et al. | Aug 1997 | A |
5655538 | Lorraine et al. | Aug 1997 | A |
5657760 | Ying et al. | Aug 1997 | A |
5658328 | Johnson | Aug 1997 | A |
5660836 | Knowlton | Aug 1997 | A |
5662116 | Kondo et al. | Sep 1997 | A |
5665053 | Jacobs | Sep 1997 | A |
5665141 | Vago | Sep 1997 | A |
5671746 | Dreschel et al. | Sep 1997 | A |
5673699 | Trahey et al. | Oct 1997 | A |
5676692 | Sanghvi et al. | Oct 1997 | A |
5685820 | Riek et al. | Nov 1997 | A |
5687737 | Branham et al. | Nov 1997 | A |
5690608 | Watanabe et al. | Nov 1997 | A |
5694936 | Fujimoto et al. | Dec 1997 | A |
5697897 | Buchholtz et al. | Dec 1997 | A |
5701900 | Shehada et al. | Dec 1997 | A |
5704361 | Seward et al. | Jan 1998 | A |
5706252 | Le Verrier et al. | Jan 1998 | A |
5706564 | Rhyne | Jan 1998 | A |
5715823 | Wood et al. | Feb 1998 | A |
5720287 | Chapelon et al. | Feb 1998 | A |
5722411 | Suzuki et al. | Mar 1998 | A |
5727554 | Kalend et al. | Mar 1998 | A |
5735280 | Sherman et al. | Apr 1998 | A |
5743863 | Chapelon | Apr 1998 | A |
5746005 | Steinberg | May 1998 | A |
5746762 | Bass | May 1998 | A |
5748767 | Raab | May 1998 | A |
5749364 | Sliwa, Jr. et al. | May 1998 | A |
5755228 | Wilson et al. | May 1998 | A |
5755753 | Knowlton | May 1998 | A |
5762066 | Law et al. | Jun 1998 | A |
5763886 | Schulte | Jun 1998 | A |
5769790 | Watkins et al. | Jun 1998 | A |
5779644 | Eberle et al. | Jul 1998 | A |
5792058 | Lee et al. | Aug 1998 | A |
5795297 | Daigle | Aug 1998 | A |
5795311 | Wess | Aug 1998 | A |
5810009 | Mine et al. | Sep 1998 | A |
5810888 | Fenn | Sep 1998 | A |
5814599 | Mitragotri et al. | Sep 1998 | A |
5817013 | Ginn et al. | Oct 1998 | A |
5817021 | Reichenberger | Oct 1998 | A |
5820564 | Slayton et al. | Oct 1998 | A |
5823962 | Schaetzle et al. | Oct 1998 | A |
5827204 | Grandia et al. | Oct 1998 | A |
5840032 | Hatfield et al. | Nov 1998 | A |
5844140 | Seale | Dec 1998 | A |
5853367 | Chalek et al. | Dec 1998 | A |
5869751 | Bonin | Feb 1999 | A |
5871524 | Knowlton | Feb 1999 | A |
5873902 | Sanghvi et al. | Feb 1999 | A |
5876431 | Spehr et al. | Mar 1999 | A |
5879303 | Averkiou et al. | Mar 1999 | A |
5882557 | Hayakawa et al. | Mar 1999 | A |
5891034 | Bucholz | Apr 1999 | A |
5899861 | Friemel et al. | May 1999 | A |
5904659 | Duarte et al. | May 1999 | A |
5919219 | Knowlton | Jul 1999 | A |
5923099 | Bilir | Jul 1999 | A |
5924989 | Polz | Jul 1999 | A |
5928169 | Schatzle et al. | Jul 1999 | A |
5931805 | Brisken | Aug 1999 | A |
5938606 | Bonnefous | Aug 1999 | A |
5938612 | Kline-Schoder et al. | Aug 1999 | A |
5948011 | Knowlton | Sep 1999 | A |
5957844 | Dekel et al. | Sep 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5957941 | Ream | Sep 1999 | A |
5967980 | Ferre et al. | Oct 1999 | A |
5968034 | Fullmer et al. | Oct 1999 | A |
5971949 | Levin et al. | Oct 1999 | A |
5977538 | Unger et al. | Nov 1999 | A |
5984882 | Rosenschein et al. | Nov 1999 | A |
5990598 | Sudol et al. | Nov 1999 | A |
5997471 | Gumb et al. | Dec 1999 | A |
5997497 | Nita et al. | Dec 1999 | A |
5999843 | Anbar | Dec 1999 | A |
6004262 | Putz et al. | Dec 1999 | A |
6007499 | Martin et al. | Dec 1999 | A |
6013032 | Savord | Jan 2000 | A |
6016255 | Bolan et al. | Jan 2000 | A |
6019724 | Gronningsaeter et al. | Feb 2000 | A |
6022308 | Williams | Feb 2000 | A |
6022327 | Chang | Feb 2000 | A |
6036646 | Barthe et al. | Mar 2000 | A |
6039048 | Silberg | Mar 2000 | A |
6039689 | Lizzi | Mar 2000 | A |
6042556 | Beach et al. | Mar 2000 | A |
6049159 | Barthe et al. | Apr 2000 | A |
6050943 | Slayton et al. | Apr 2000 | A |
6059727 | Fowlkes et al. | May 2000 | A |
6071239 | Cribbs et al. | Jun 2000 | A |
6080108 | Dunham | Jun 2000 | A |
6083148 | Williams | Jul 2000 | A |
6086535 | Ishibashi et al. | Jul 2000 | A |
6086580 | Mordon et al. | Jul 2000 | A |
6090054 | Tagishi et al. | Jul 2000 | A |
6093883 | Sanghvi et al. | Jul 2000 | A |
6101407 | Groezinger | Aug 2000 | A |
6106469 | Suzuki et al. | Aug 2000 | A |
6113558 | Rosenschein et al. | Sep 2000 | A |
6113559 | Klopotek | Sep 2000 | A |
6120452 | Barthe et al. | Sep 2000 | A |
6123081 | Durette | Sep 2000 | A |
6126619 | Peterson et al. | Oct 2000 | A |
6135971 | Hutchinson et al. | Oct 2000 | A |
6139499 | Wilk | Oct 2000 | A |
6159150 | Yale et al. | Dec 2000 | A |
6171244 | Finger et al. | Jan 2001 | B1 |
6176840 | Nishimura et al. | Jan 2001 | B1 |
6183426 | Akisada et al. | Feb 2001 | B1 |
6183502 | Takeuchi | Feb 2001 | B1 |
6183773 | Anderson | Feb 2001 | B1 |
6190323 | Dias et al. | Feb 2001 | B1 |
6190336 | Duarte et al. | Feb 2001 | B1 |
6193658 | Wendelken et al. | Feb 2001 | B1 |
6210327 | Brackett et al. | Apr 2001 | B1 |
6213948 | Barthe et al. | Apr 2001 | B1 |
6216029 | Paltieli | Apr 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6234990 | Rowe et al. | May 2001 | B1 |
6241753 | Knowlton | Jun 2001 | B1 |
6246898 | Vesely et al. | Jun 2001 | B1 |
6251074 | Averkiou et al. | Jun 2001 | B1 |
6251088 | Kaufman et al. | Jun 2001 | B1 |
6268405 | Yao et al. | Jul 2001 | B1 |
6273864 | Duarte et al. | Aug 2001 | B1 |
6280402 | Ishibashi et al. | Aug 2001 | B1 |
6287257 | Matichuk | Sep 2001 | B1 |
6296619 | Brisken et al. | Oct 2001 | B1 |
6301989 | Brown et al. | Oct 2001 | B1 |
6309355 | Cain et al. | Oct 2001 | B1 |
6311090 | Knowlton | Oct 2001 | B1 |
6315741 | Martin et al. | Nov 2001 | B1 |
6322509 | Pan et al. | Nov 2001 | B1 |
6322532 | D'Sa et al. | Nov 2001 | B1 |
6325540 | Lounsberry et al. | Dec 2001 | B1 |
6325758 | Carol et al. | Dec 2001 | B1 |
6325769 | Klopotek | Dec 2001 | B1 |
6325798 | Edwards et al. | Dec 2001 | B1 |
6338716 | Hossack et al. | Jan 2002 | B1 |
6350276 | Knowlton | Feb 2002 | B1 |
6356780 | Licato et al. | Mar 2002 | B1 |
6361531 | Hissong | Mar 2002 | B1 |
6370411 | Osadchy et al. | Apr 2002 | B1 |
6375672 | Aksan et al. | Apr 2002 | B1 |
6377854 | Knowlton | Apr 2002 | B1 |
6377855 | Knowlton | Apr 2002 | B1 |
6381497 | Knowlton | Apr 2002 | B1 |
6381498 | Knowlton | Apr 2002 | B1 |
6387380 | Knowlton | May 2002 | B1 |
6390982 | Bova et al. | May 2002 | B1 |
6398753 | McDaniel | Jun 2002 | B2 |
6405090 | Knowlton | Jun 2002 | B1 |
6409720 | Hissong et al. | Jun 2002 | B1 |
6413216 | Cain et al. | Jul 2002 | B1 |
6413253 | Koop et al. | Jul 2002 | B1 |
6413254 | Hissong et al. | Jul 2002 | B1 |
6419648 | Vitek et al. | Jul 2002 | B1 |
6423007 | Lizzi et al. | Jul 2002 | B2 |
6425865 | Salcudean et al. | Jul 2002 | B1 |
6425867 | Vaezy et al. | Jul 2002 | B1 |
6425912 | Knowlton | Jul 2002 | B1 |
6428477 | Mason | Aug 2002 | B1 |
6428532 | Doukas et al. | Aug 2002 | B1 |
6430446 | Knowlton | Aug 2002 | B1 |
6432057 | Mazess et al. | Aug 2002 | B1 |
6432067 | Martin et al. | Aug 2002 | B1 |
6432101 | Weber et al. | Aug 2002 | B1 |
6436061 | Costantino | Aug 2002 | B1 |
6438424 | Knowlton | Aug 2002 | B1 |
6440071 | Slayton et al. | Aug 2002 | B1 |
6440121 | Weber et al. | Aug 2002 | B1 |
6443914 | Costantino | Sep 2002 | B1 |
6453202 | Knowlton | Sep 2002 | B1 |
6461378 | Knowlton | Oct 2002 | B1 |
6470216 | Knowlton | Oct 2002 | B1 |
6488626 | Lizzi et al. | Dec 2002 | B1 |
6491657 | Rowe et al. | Dec 2002 | B2 |
6500121 | Slayton et al. | Dec 2002 | B1 |
6500141 | Irion et al. | Dec 2002 | B1 |
6508774 | Acker et al. | Jan 2003 | B1 |
6511427 | Sliwa, Jr. et al. | Jan 2003 | B1 |
6511428 | Azuma et al. | Jan 2003 | B1 |
6514244 | Pope et al. | Feb 2003 | B2 |
6517484 | Wilk et al. | Feb 2003 | B1 |
6524250 | Weber et al. | Feb 2003 | B1 |
6540679 | Slayton et al. | Apr 2003 | B2 |
6540685 | Rhoads et al. | Apr 2003 | B1 |
6540700 | Fujimoto et al. | Apr 2003 | B1 |
6554771 | Buil et al. | Apr 2003 | B1 |
6569099 | Babaev | May 2003 | B1 |
6569108 | Sarvazyan et al. | May 2003 | B2 |
6572552 | Fukukita | Jun 2003 | B2 |
6575956 | Brisken et al. | Jun 2003 | B1 |
6595934 | Hissong et al. | Jul 2003 | B1 |
6599256 | Acker et al. | Jul 2003 | B1 |
6607498 | Eshel | Aug 2003 | B2 |
6618620 | Freundlich et al. | Sep 2003 | B1 |
6623430 | Slayton et al. | Sep 2003 | B1 |
6626854 | Friedman et al. | Sep 2003 | B2 |
6626855 | Weng et al. | Sep 2003 | B1 |
6638226 | He et al. | Oct 2003 | B2 |
6645162 | Friedman et al. | Nov 2003 | B2 |
6662054 | Kreindel et al. | Dec 2003 | B2 |
6663627 | Francischelli et al. | Dec 2003 | B2 |
6665806 | Shimizu | Dec 2003 | B1 |
6666835 | Martin et al. | Dec 2003 | B2 |
6669638 | Miller et al. | Dec 2003 | B1 |
6685640 | Fry et al. | Feb 2004 | B1 |
6692450 | Coleman | Feb 2004 | B1 |
6699237 | Weber et al. | Mar 2004 | B2 |
6716184 | Vaezy et al. | Apr 2004 | B2 |
6719449 | Laugham, Jr. et al. | Apr 2004 | B1 |
6719694 | Weng et al. | Apr 2004 | B2 |
6726627 | Lizzi et al. | Apr 2004 | B1 |
6733449 | Krishnamurthy et al. | May 2004 | B1 |
6749624 | Knowlton | Jun 2004 | B2 |
6773409 | Truckai et al. | Aug 2004 | B2 |
6775404 | Pagoulatos et al. | Aug 2004 | B1 |
6790187 | Thompson et al. | Sep 2004 | B2 |
6824516 | Batten et al. | Nov 2004 | B2 |
6835940 | Morikawa et al. | Dec 2004 | B2 |
6846290 | Lizzi et al. | Jan 2005 | B2 |
6875176 | Mourad et al. | Apr 2005 | B2 |
6882884 | Mosk et al. | Apr 2005 | B1 |
6887239 | Elstrom et al. | May 2005 | B2 |
6889089 | Behl et al. | May 2005 | B2 |
6896657 | Willis | May 2005 | B2 |
6902536 | Manna et al. | Jun 2005 | B2 |
6905466 | Salgo et al. | Jun 2005 | B2 |
6918907 | Kelly et al. | Jul 2005 | B2 |
6920883 | Bessette et al. | Jul 2005 | B2 |
6921371 | Wilson | Jul 2005 | B2 |
6932771 | Whitmore et al. | Aug 2005 | B2 |
6932814 | Wood | Aug 2005 | B2 |
6936044 | McDaniel | Aug 2005 | B2 |
6936046 | Hissong et al. | Aug 2005 | B2 |
6945937 | Culp et al. | Sep 2005 | B2 |
6948843 | Laugham, Jr. et al. | Sep 2005 | B2 |
6953941 | Nakano et al. | Oct 2005 | B2 |
6958043 | Hissong | Oct 2005 | B2 |
6971994 | Young et al. | Dec 2005 | B1 |
6974417 | Lockwood et al. | Dec 2005 | B2 |
6976492 | Ingle et al. | Dec 2005 | B2 |
6992305 | Maezawa et al. | Jan 2006 | B2 |
6997923 | Anderson et al. | Feb 2006 | B2 |
7006874 | Knowlton et al. | Feb 2006 | B2 |
7020528 | Neev | Mar 2006 | B2 |
7022089 | Ooba et al. | Apr 2006 | B2 |
7058440 | Heuscher et al. | Jun 2006 | B2 |
7063666 | Weng et al. | Jun 2006 | B2 |
7070565 | Vaezy et al. | Jul 2006 | B2 |
7074218 | Washington et al. | Jul 2006 | B2 |
7094252 | Koop | Aug 2006 | B2 |
7108663 | Talish et al. | Sep 2006 | B2 |
7115123 | Knowlton et al. | Oct 2006 | B2 |
7122029 | Koop et al. | Oct 2006 | B2 |
7142905 | Slayton et al. | Nov 2006 | B2 |
7165451 | Brooks et al. | Jan 2007 | B1 |
7179238 | Hissong | Feb 2007 | B2 |
7189230 | Knowlton | Mar 2007 | B2 |
7229411 | Slayton et al. | Jun 2007 | B2 |
7235592 | Muratoglu et al. | Jun 2007 | B2 |
7258674 | Cribbs et al. | Aug 2007 | B2 |
7273459 | Desilets et al. | Sep 2007 | B2 |
7294125 | Phalen et al. | Nov 2007 | B2 |
7297117 | Trucco et al. | Nov 2007 | B2 |
7303555 | Makin et al. | Dec 2007 | B2 |
7327071 | Nishiyama et al. | Feb 2008 | B2 |
7331951 | Eshel et al. | Feb 2008 | B2 |
7332985 | Larson, III et al. | Feb 2008 | B2 |
7347855 | Eshel et al. | Mar 2008 | B2 |
7393325 | Barthe et al. | Jul 2008 | B2 |
7398116 | Edwards | Jul 2008 | B2 |
7399279 | Abend et al. | Jul 2008 | B2 |
7491171 | Barthe et al. | Feb 2009 | B2 |
7510536 | Foley et al. | Mar 2009 | B2 |
7530356 | Slayton et al. | May 2009 | B2 |
7530958 | Slayton | May 2009 | B2 |
7571336 | Barthe et al. | Aug 2009 | B2 |
7601120 | Moilanen et al. | Oct 2009 | B2 |
7615015 | Coleman | Nov 2009 | B2 |
7615016 | Barthe et al. | Nov 2009 | B2 |
7686763 | Vaezy et al. | Mar 2010 | B2 |
7695437 | Quistgaard et al. | Apr 2010 | B2 |
7758524 | Barthe et al. | Jul 2010 | B2 |
7789841 | Huckle et al. | Sep 2010 | B2 |
7824348 | Barthe et al. | Nov 2010 | B2 |
7846096 | Mast et al. | Dec 2010 | B2 |
7857773 | Desilets et al. | Dec 2010 | B2 |
7875023 | Eshel et al. | Jan 2011 | B2 |
7914453 | Slayton et al. | Mar 2011 | B2 |
7914469 | Torbati | Mar 2011 | B2 |
7931611 | Novak et al. | Apr 2011 | B2 |
7955281 | Pedersen et al. | Jun 2011 | B2 |
7967764 | Lidgren et al. | Jun 2011 | B2 |
7967839 | Flock et al. | Jun 2011 | B2 |
8057389 | Barthe et al. | Nov 2011 | B2 |
8057465 | Sliwa, Jr. et al. | Nov 2011 | B2 |
8066641 | Barthe et al. | Nov 2011 | B2 |
8123707 | Huckle et al. | Feb 2012 | B2 |
8128618 | Gliklich et al. | Mar 2012 | B2 |
8133180 | Slayton et al. | Mar 2012 | B2 |
8133191 | Rosenberg et al. | Mar 2012 | B2 |
8166332 | Barthe et al. | Apr 2012 | B2 |
8197409 | Foley et al. | Jun 2012 | B2 |
8206299 | Foley et al. | Jun 2012 | B2 |
8211017 | Foley et al. | Jul 2012 | B2 |
8262591 | Pedersen et al. | Sep 2012 | B2 |
8273037 | Kreindel et al. | Sep 2012 | B2 |
8282554 | Makin et al. | Oct 2012 | B2 |
8333700 | Barthe et al. | Dec 2012 | B1 |
8366622 | Slayton et al. | Feb 2013 | B2 |
8409097 | Slayton et al. | Apr 2013 | B2 |
8444562 | Barthe et al. | May 2013 | B2 |
8480585 | Slayton et al. | Jul 2013 | B2 |
8506486 | Slayton et al. | Aug 2013 | B2 |
8523775 | Barthe et al. | Sep 2013 | B2 |
8535228 | Slayton et al. | Sep 2013 | B2 |
8585618 | Hunziker et al. | Nov 2013 | B2 |
8636665 | Slayton et al. | Jan 2014 | B2 |
8641622 | Barthe et al. | Feb 2014 | B2 |
8663112 | Slayton et al. | Mar 2014 | B2 |
8672848 | Slayton et al. | Mar 2014 | B2 |
8690778 | Slayton et al. | Apr 2014 | B2 |
8690779 | Slayton et al. | Apr 2014 | B2 |
8690780 | Slayton et al. | Apr 2014 | B2 |
8708935 | Barthe et al. | Apr 2014 | B2 |
8715186 | Slayton et al. | May 2014 | B2 |
8726781 | Eckhoff et al. | May 2014 | B2 |
20010009997 | Pope | Jul 2001 | A1 |
20010009999 | Kaufman | Jul 2001 | A1 |
20010014780 | Martin | Aug 2001 | A1 |
20010014819 | Ingle et al. | Aug 2001 | A1 |
20010031922 | Weng et al. | Oct 2001 | A1 |
20010039380 | Larson et al. | Nov 2001 | A1 |
20010041880 | Brisken et al. | Nov 2001 | A1 |
20020000763 | Jones | Jan 2002 | A1 |
20020002345 | Marlinghaus | Jan 2002 | A1 |
20020040199 | Klopotek | Apr 2002 | A1 |
20020040442 | Ishidera | Apr 2002 | A1 |
20020052550 | Madsen et al. | May 2002 | A1 |
20020055702 | Atala et al. | May 2002 | A1 |
20020062077 | Emmenegger et al. | May 2002 | A1 |
20020062142 | Knowlton | May 2002 | A1 |
20020072691 | Thompson et al. | Jun 2002 | A1 |
20020082528 | Friedman et al. | Jun 2002 | A1 |
20020082529 | Suorsa et al. | Jun 2002 | A1 |
20020082589 | Friedman et al. | Jun 2002 | A1 |
20020087080 | Slayton | Jul 2002 | A1 |
20020095143 | Key | Jul 2002 | A1 |
20020099094 | Anderson | Jul 2002 | A1 |
20020115917 | Honda et al. | Aug 2002 | A1 |
20020128592 | Eshel | Sep 2002 | A1 |
20020128648 | Weber et al. | Sep 2002 | A1 |
20020143252 | Dunne et al. | Oct 2002 | A1 |
20020156400 | Babaev | Oct 2002 | A1 |
20020161357 | Anderson et al. | Oct 2002 | A1 |
20020165529 | Danek | Nov 2002 | A1 |
20020168049 | Schriever et al. | Nov 2002 | A1 |
20020169394 | Eppstein | Nov 2002 | A1 |
20020169442 | Neev | Nov 2002 | A1 |
20020173721 | Grunwald et al. | Nov 2002 | A1 |
20020193784 | McHale et al. | Dec 2002 | A1 |
20020193831 | Smith, III | Dec 2002 | A1 |
20030009153 | Brisken | Jan 2003 | A1 |
20030014039 | Barzell et al. | Jan 2003 | A1 |
20030018255 | Martin et al. | Jan 2003 | A1 |
20030028111 | Vaezy et al. | Feb 2003 | A1 |
20030028113 | Gilbert et al. | Feb 2003 | A1 |
20030032900 | Ella | Feb 2003 | A1 |
20030036706 | Slayton | Feb 2003 | A1 |
20030040739 | Koop | Feb 2003 | A1 |
20030050678 | Sierra et al. | Mar 2003 | A1 |
20030055417 | Truckai et al. | Mar 2003 | A1 |
20030060736 | Martin et al. | Mar 2003 | A1 |
20030065313 | Koop et al. | Apr 2003 | A1 |
20030074023 | Kaplan et al. | Apr 2003 | A1 |
20030083536 | Eshel et al. | May 2003 | A1 |
20030092988 | Makin | May 2003 | A1 |
20030097071 | Halmann et al. | May 2003 | A1 |
20030099383 | Lefebvre | May 2003 | A1 |
20030100846 | Custer | May 2003 | A1 |
20030125629 | Ustuner | Jul 2003 | A1 |
20030139790 | Ingle et al. | Jul 2003 | A1 |
20030171678 | Batten et al. | Sep 2003 | A1 |
20030171701 | Babaev | Sep 2003 | A1 |
20030176790 | Slayton | Sep 2003 | A1 |
20030191396 | Sanghvi et al. | Oct 2003 | A1 |
20030200481 | Stanley | Oct 2003 | A1 |
20030212129 | Liu et al. | Nov 2003 | A1 |
20030212351 | Hissong et al. | Nov 2003 | A1 |
20030212393 | Knowlton et al. | Nov 2003 | A1 |
20030216795 | Harth et al. | Nov 2003 | A1 |
20030220536 | Hissong | Nov 2003 | A1 |
20030220585 | Hissong | Nov 2003 | A1 |
20030229331 | Brisken et al. | Dec 2003 | A1 |
20030233085 | Giammarusti | Dec 2003 | A1 |
20030236487 | Knowlton | Dec 2003 | A1 |
20040000316 | Knowlton et al. | Jan 2004 | A1 |
20040001809 | Brisker et al. | Jan 2004 | A1 |
20040002705 | Knowlton et al. | Jan 2004 | A1 |
20040010222 | Nunomura et al. | Jan 2004 | A1 |
20040015106 | Coleman | Jan 2004 | A1 |
20040030227 | Littrup et al. | Feb 2004 | A1 |
20040039312 | Hillstead et al. | Feb 2004 | A1 |
20040039418 | Elstrom et al. | Feb 2004 | A1 |
20040041563 | Lewin | Mar 2004 | A1 |
20040042168 | Yang et al. | Mar 2004 | A1 |
20040044375 | Diederich et al. | Mar 2004 | A1 |
20040049134 | Tosaya et al. | Mar 2004 | A1 |
20040049734 | Simske | Mar 2004 | A1 |
20040059266 | Fry et al. | Mar 2004 | A1 |
20040068186 | Ishida et al. | Apr 2004 | A1 |
20040073079 | Altshuler et al. | Apr 2004 | A1 |
20040073113 | Salgo et al. | Apr 2004 | A1 |
20040073115 | Horzewski et al. | Apr 2004 | A1 |
20040073116 | Smith | Apr 2004 | A1 |
20040073204 | Ryan et al. | Apr 2004 | A1 |
20040077977 | Ella et al. | Apr 2004 | A1 |
20040082857 | Schonenberger et al. | Apr 2004 | A1 |
20040082859 | Schaer | Apr 2004 | A1 |
20040102697 | Evron | May 2004 | A1 |
20040105559 | Aylward et al. | Jun 2004 | A1 |
20040122323 | Vortman et al. | Jun 2004 | A1 |
20040122493 | Ishibashi et al. | Jun 2004 | A1 |
20040143297 | Ramsey, III | Jul 2004 | A1 |
20040152982 | Hwang et al. | Aug 2004 | A1 |
20040158150 | Rabiner et al. | Aug 2004 | A1 |
20040186535 | Knowlton | Sep 2004 | A1 |
20040189155 | Funakubo | Sep 2004 | A1 |
20040206365 | Knowlton | Oct 2004 | A1 |
20040210214 | Knowlton | Oct 2004 | A1 |
20040217675 | Desilets et al. | Nov 2004 | A1 |
20040249318 | Tanaka | Dec 2004 | A1 |
20040254620 | Lacoste et al. | Dec 2004 | A1 |
20040267252 | Washington et al. | Dec 2004 | A1 |
20050033201 | Takahashi et al. | Feb 2005 | A1 |
20050033316 | Kertz | Feb 2005 | A1 |
20050038340 | Vaezy et al. | Feb 2005 | A1 |
20050055073 | Weber | Mar 2005 | A1 |
20050061834 | Garcia et al. | Mar 2005 | A1 |
20050070961 | Maki et al. | Mar 2005 | A1 |
20050074407 | Smith | Apr 2005 | A1 |
20050080469 | Larson et al. | Apr 2005 | A1 |
20050091770 | Mourad et al. | May 2005 | A1 |
20050096542 | Weng et al. | May 2005 | A1 |
20050104690 | Larson, III et al. | May 2005 | A1 |
20050113689 | Gritzky | May 2005 | A1 |
20050134314 | Prather et al. | Jun 2005 | A1 |
20050137656 | Malak | Jun 2005 | A1 |
20050143677 | Young et al. | Jun 2005 | A1 |
20050154313 | Desilets et al. | Jul 2005 | A1 |
20050154314 | Quistgaard | Jul 2005 | A1 |
20050154332 | Zanelli et al. | Jul 2005 | A1 |
20050154431 | Quistgaard et al. | Jul 2005 | A1 |
20050187495 | Quistgaard et al. | Aug 2005 | A1 |
20050191252 | Mitsui | Sep 2005 | A1 |
20050193451 | Quistgaard et al. | Sep 2005 | A1 |
20050197681 | Barolet et al. | Sep 2005 | A1 |
20050228281 | Nefos | Oct 2005 | A1 |
20050240170 | Zhang et al. | Oct 2005 | A1 |
20050251120 | Anderson et al. | Nov 2005 | A1 |
20050256406 | Barthe | Nov 2005 | A1 |
20050261584 | Eshel et al. | Nov 2005 | A1 |
20050261585 | Makin | Nov 2005 | A1 |
20050267454 | Hissong et al. | Dec 2005 | A1 |
20050288748 | Li et al. | Dec 2005 | A1 |
20060004306 | Altshuler et al. | Jan 2006 | A1 |
20060020260 | Dover et al. | Jan 2006 | A1 |
20060025756 | Francischelli et al. | Feb 2006 | A1 |
20060042201 | Curry | Mar 2006 | A1 |
20060058671 | Vitek et al. | Mar 2006 | A1 |
20060058707 | Barthe | Mar 2006 | A1 |
20060058712 | Altshuler et al. | Mar 2006 | A1 |
20060058664 | Barthe et al. | Apr 2006 | A1 |
20060074309 | Bonnefous | Apr 2006 | A1 |
20060074313 | Slayton | Apr 2006 | A1 |
20060074314 | Slayton | Apr 2006 | A1 |
20060074355 | Slayton | Apr 2006 | A1 |
20060079816 | Barthe | Apr 2006 | A1 |
20060079868 | Makin et al. | Apr 2006 | A1 |
20060084891 | Barthe | Apr 2006 | A1 |
20060089632 | Barthe | Apr 2006 | A1 |
20060089688 | Panescu | Apr 2006 | A1 |
20060094988 | Tosaya et al. | May 2006 | A1 |
20060111744 | Makin et al. | May 2006 | A1 |
20060116583 | Ogasawara et al. | Jun 2006 | A1 |
20060116671 | Slayton et al. | Jun 2006 | A1 |
20060122508 | Slayton et al. | Jun 2006 | A1 |
20060122509 | Desilets | Jun 2006 | A1 |
20060161062 | Arditi et al. | Jul 2006 | A1 |
20060184069 | Vaitekunas | Aug 2006 | A1 |
20060184071 | Klopotek | Aug 2006 | A1 |
20060189972 | Grossman | Aug 2006 | A1 |
20060206105 | Chopra et al. | Sep 2006 | A1 |
20060229514 | Wiener | Oct 2006 | A1 |
20060241440 | Eshel et al. | Oct 2006 | A1 |
20060241442 | Barthe | Oct 2006 | A1 |
20060241470 | Novak et al. | Oct 2006 | A1 |
20060250046 | Koizumi et al. | Nov 2006 | A1 |
20060282691 | Barthe | Dec 2006 | A1 |
20060291710 | Wang et al. | Dec 2006 | A1 |
20070032784 | Gliklich et al. | Feb 2007 | A1 |
20070035201 | Desilets et al. | Feb 2007 | A1 |
20070055154 | Torbati | Mar 2007 | A1 |
20070055155 | Owen et al. | Mar 2007 | A1 |
20070055156 | Desilets et al. | Mar 2007 | A1 |
20070055179 | Deem | Mar 2007 | A1 |
20070065420 | Johnson | Mar 2007 | A1 |
20070078290 | Esenaliev | Apr 2007 | A1 |
20070083120 | Cain et al. | Apr 2007 | A1 |
20070087060 | Dietrich et al. | Apr 2007 | A1 |
20070088245 | Babaev et al. | Apr 2007 | A1 |
20070088346 | Mirizzi et al. | Apr 2007 | A1 |
20070161902 | Dan | Jul 2007 | A1 |
20070166357 | Shaffer et al. | Jul 2007 | A1 |
20070167709 | Slayton | Jul 2007 | A1 |
20070208253 | Slayton | Sep 2007 | A1 |
20070219604 | Yaroslavsky et al. | Sep 2007 | A1 |
20070219605 | Yaroslavsky et al. | Sep 2007 | A1 |
20070238994 | Stecco et al. | Oct 2007 | A1 |
20070239075 | Rosenberg et al. | Oct 2007 | A1 |
20070239079 | Manstein et al. | Oct 2007 | A1 |
20070239142 | Altshuler et al. | Oct 2007 | A1 |
20080009885 | Del Giglio | Jan 2008 | A1 |
20080027328 | Klopotek et al. | Jan 2008 | A1 |
20080039724 | Seip et al. | Feb 2008 | A1 |
20080071255 | Barthe et al. | Mar 2008 | A1 |
20080086054 | Slayton et al. | Apr 2008 | A1 |
20080097253 | Pedersen et al. | Apr 2008 | A1 |
20080139974 | Da Silva | Jun 2008 | A1 |
20080146970 | Litman et al. | Jun 2008 | A1 |
20080167556 | Thompson et al. | Jul 2008 | A1 |
20080183077 | Moreau-Gobard et al. | Jul 2008 | A1 |
20080188745 | Chen et al. | Aug 2008 | A1 |
20080195000 | Spooner et al. | Aug 2008 | A1 |
20080200810 | Buchalter | Aug 2008 | A1 |
20080200813 | Quistgaard | Aug 2008 | A1 |
20080214966 | Slayton | Sep 2008 | A1 |
20080221491 | Slayton et al. | Sep 2008 | A1 |
20080223379 | Stuker et al. | Sep 2008 | A1 |
20080243035 | Crunkilton | Oct 2008 | A1 |
20080269608 | Anderson et al. | Oct 2008 | A1 |
20080275342 | Barthe | Nov 2008 | A1 |
20080281206 | Bartlett et al. | Nov 2008 | A1 |
20080281236 | Eshel et al. | Nov 2008 | A1 |
20080281237 | Slayton | Nov 2008 | A1 |
20080281255 | Slayton et al. | Nov 2008 | A1 |
20080294073 | Barthe | Nov 2008 | A1 |
20080319356 | Cain et al. | Dec 2008 | A1 |
20090005680 | Jones et al. | Jan 2009 | A1 |
20090012394 | Hobelsberger et al. | Jan 2009 | A1 |
20090043198 | Milner et al. | Feb 2009 | A1 |
20090043293 | Pankratov et al. | Feb 2009 | A1 |
20090069677 | Chen et al. | Mar 2009 | A1 |
20090093737 | Chomas et al. | Apr 2009 | A1 |
20090156969 | Santangelo | Jun 2009 | A1 |
20090171252 | Bockenstedt et al. | Jul 2009 | A1 |
20090177122 | Peterson | Jul 2009 | A1 |
20090177123 | Peterson | Jul 2009 | A1 |
20090182231 | Barthe et al. | Jul 2009 | A1 |
20090216159 | Slayton et al. | Aug 2009 | A1 |
20090226424 | Hsu | Sep 2009 | A1 |
20090227910 | Pedersen et al. | Sep 2009 | A1 |
20090253988 | Slayton et al. | Oct 2009 | A1 |
20090299175 | Bernstein et al. | Dec 2009 | A1 |
20090318909 | DeBenedictis et al. | Dec 2009 | A1 |
20100011236 | Barthe | Jan 2010 | A1 |
20100022919 | Peterson | Jan 2010 | A1 |
20100022922 | Barthe | Jan 2010 | A1 |
20100042020 | Ben-Ezra | Feb 2010 | A1 |
20100049178 | Deem et al. | Feb 2010 | A1 |
20100063422 | Hynynen et al. | Mar 2010 | A1 |
20100130891 | Taggart et al. | May 2010 | A1 |
20100160782 | Slayton | Jun 2010 | A1 |
20100160837 | Hunziker et al. | Jun 2010 | A1 |
20100168576 | Poland et al. | Jul 2010 | A1 |
20100191120 | Kraus et al. | Jul 2010 | A1 |
20100241035 | Barthe | Sep 2010 | A1 |
20100280420 | Barthe | Nov 2010 | A1 |
20100286518 | Lee et al. | Nov 2010 | A1 |
20110040171 | Foley et al. | Feb 2011 | A1 |
20110040190 | Jahnke et al. | Feb 2011 | A1 |
20110087099 | Eshel et al. | Apr 2011 | A1 |
20110087255 | McCormack et al. | Apr 2011 | A1 |
20110112405 | Barthe et al. | May 2011 | A1 |
20110178444 | Slayton | Jul 2011 | A1 |
20110190745 | Uebelhoer et al. | Aug 2011 | A1 |
20110264012 | Lautzenhiser et al. | Oct 2011 | A1 |
20120004549 | Barthe | Jan 2012 | A1 |
20120016239 | Barthe et al. | Jan 2012 | A1 |
20120029353 | Slayton et al. | Feb 2012 | A1 |
20120035475 | Barthe et al. | Feb 2012 | A1 |
20120035476 | Barthe et al. | Feb 2012 | A1 |
20120046547 | Barthe et al. | Feb 2012 | A1 |
20120053458 | Barthe et al. | Mar 2012 | A1 |
20120111339 | Barthe | May 2012 | A1 |
20120143056 | Slayton et al. | Jun 2012 | A1 |
20120165668 | Slayton et al. | Jun 2012 | A1 |
20120165848 | Slayton et al. | Jun 2012 | A1 |
20120197120 | Makin | Aug 2012 | A1 |
20120197121 | Slayton et al. | Aug 2012 | A1 |
20120215105 | Slayton | Aug 2012 | A1 |
20120271167 | Holland | Oct 2012 | A1 |
20120271294 | Barthe | Oct 2012 | A1 |
20120296240 | Azhari et al. | Nov 2012 | A1 |
20120316426 | Foley et al. | Dec 2012 | A1 |
20120330197 | Makin et al. | Dec 2012 | A1 |
20120330222 | Barthe | Dec 2012 | A1 |
20120330223 | Makin | Dec 2012 | A1 |
20130012755 | Slayton | Jan 2013 | A1 |
20130012816 | Slayton et al. | Jan 2013 | A1 |
20130012838 | Jaeger | Jan 2013 | A1 |
20130012842 | Barthe | Jan 2013 | A1 |
20130018286 | Slayton | Jan 2013 | A1 |
20130046209 | Slayton et al. | Feb 2013 | A1 |
20130066208 | Barthe et al. | Mar 2013 | A1 |
20130066237 | Smotrich et al. | Mar 2013 | A1 |
20130072826 | Slayton | Mar 2013 | A1 |
20130096471 | Slayton et al. | Apr 2013 | A1 |
20130190659 | Slayton | Jul 2013 | A1 |
20130211258 | Barthe et al. | Aug 2013 | A1 |
20130281853 | Slayton | Oct 2013 | A1 |
20130281891 | Slayton | Oct 2013 | A1 |
20130296697 | Slayton et al. | Nov 2013 | A1 |
20130296700 | Slayton | Nov 2013 | A1 |
20130303904 | Barthe et al. | Nov 2013 | A1 |
20130303905 | Barthe et al. | Nov 2013 | A1 |
20130310863 | Barthe | Nov 2013 | A1 |
20140082907 | Barthe | Mar 2014 | A1 |
20140142430 | Slayton | May 2014 | A1 |
20140148834 | Barthe et al. | May 2014 | A1 |
20140180174 | Slayton | Jun 2014 | A1 |
20140187944 | Slayton et al. | Jul 2014 | A1 |
20140188015 | Slayton et al. | Jul 2014 | A1 |
20140188145 | Slayton et al. | Jul 2014 | A1 |
Number | Date | Country |
---|---|---|
0344773 | Dec 1989 | EP |
1479412 | Nov 1991 | EP |
0473553 | Apr 1992 | EP |
0661029 | Jul 1995 | EP |
1050322 | Nov 2000 | EP |
1234566 | Aug 2002 | EP |
1262160 | Dec 2002 | EP |
1374944 | Jan 2004 | EP |
2113099 | Aug 1983 | GB |
1996025888 | Aug 1996 | WO |
1996039079 | Dec 1996 | WO |
1997035518 | Oct 1997 | WO |
1998032379 | Jul 1998 | WO |
1999033520 | Jul 1999 | WO |
1999049788 | Oct 1999 | WO |
2000006032 | Feb 2000 | WO |
2000015300 | Mar 2000 | WO |
2000021612 | Apr 2000 | WO |
2000048518 | Aug 2000 | WO |
2000053113 | Sep 2000 | WO |
2001082777 | Nov 2001 | WO |
2001082778 | Nov 2001 | WO |
2001087161 | Nov 2001 | WO |
2002009813 | Feb 2002 | WO |
2002024050 | Mar 2002 | WO |
2002092168 | Nov 2002 | WO |
03053266 | Jul 2003 | WO |
2003065347 | Aug 2003 | WO |
2003070105 | Aug 2003 | WO |
2003077833 | Aug 2003 | WO |
2003086215 | Oct 2003 | WO |
2003096883 | Nov 2003 | WO |
2003099177 | Dec 2003 | WO |
2003101530 | Dec 2003 | WO |
2004000116 | Dec 2003 | WO |
2004080147 | Sep 2004 | WO |
2004110558 | Dec 2004 | WO |
2005011804 | Feb 2005 | WO |
2005051455 | Jun 2005 | WO |
2005065408 | Jul 2005 | WO |
2005090978 | Sep 2005 | WO |
2006036870 | Apr 2006 | WO |
2006042163 | Apr 2006 | WO |
2006042168 | Apr 2006 | WO |
2006042201 | Apr 2006 | WO |
2006065671 | Jun 2006 | WO |
2006082573 | Aug 2006 | WO |
2007067563 | Jun 2007 | WO |
2008024923 | Feb 2008 | WO |
2008036622 | Mar 2008 | WO |
2009013729 | Jan 2009 | WO |
2009149390 | Dec 2009 | WO |
2010077980 | Jul 2010 | WO |
2001028623 | Apr 2011 | WO |
2014055708 | Apr 2014 | WO |
Entry |
---|
Bommannan et al. “Sonophoresis. II. Examination of the mechanism(s) of ultrasound-enhanced transdermal drug delivery”, 1992, Pharmaceutical Research, Aug; 9(8):1043-7 (Year: 1992). |
Mitragotri et al. “A mechanistic study of ultrasonically-enhanced transdermal drug delivery”, 1995, Journal of Pharmaceutical Sciences. Jun. 84(6):697-706 (Year: 1995). |
Chan et al. “Safety Study of Transcutaneous Focused Ultrasound for Non-lnvasive Skin Tightening in Asians”, 2011, Lasers in Surgery and Medicine 43: 366-375 (Year: 2011). |
Alam et al. “Ultrasound Tightening of Facial and Neck Skin: A Rater-Blinded Prospective Cohort Study”, 2009, The Journal of the American Academy of Dermatology, vol. 62, Iss. 2, p. 262-269 (Year: 2009). |
Singer at al. “Low-Frequency Sonophoresis: Pathologic and Thermal Effects in Dogs” 1998, The Academic Emergency Medicine. vol. 5, Iss. 1, p. 35-39 (Year: 1998). |
Tezel et al. “Interactions of Inertial Cavitation Bubbles with Stratum Corneum Lipid Bilayers during Low-Frequency Sonophoresis”, 2003, Biophysical Journal vol. 85, 3502-3512 (Year: 2003). |
Paliwal et al. “Ultrasound-Induced Cavitation: Applications in Drug and Gene Delivery”, 2006. Expert Opinion on Drug Delivery, #:6, 713-726 (Year: 2006). |
Alster, T. S., et al., “Cellulite Treatment using a Novel Combination Radiofrequency, Infrared Light, and Mechanical Tissue Manipulation Device,” Journal of Cosmetic & Laser Therapy, Jun. 2005, vol. 7, Issue 2, pp. 81-85. |
Arthur et al., “Non-invasive estimation of hyperthermia temperatures with ultrasound,” Int. J_ Hyperthermia, Sep. 2005, 21(6), pp. 589-600. |
Barthe et al., “Ultrasound therapy system and ablation results utilizing miniature imaging/therapy arrays,” Ultrasonics Symposium, 2004 IEEE, Aug. 23, 2004, pp. 1792-1795, vol. 3. |
Calderhead et al., One Mechanism Behind LED Photo-Therapy For Wound Healing and Skin Rejuvenation: Key Role of the Mast Cell, Laser Therapy, 2008, 17(3): 141-148. |
Campbell, B. J., et al. “Systemic absorption of topical lidocaine in normal volunteers, patients with post herpetic neuralgia, and patients with acute herpes zoster.” Journal of pharmaceutical sciences 91.5 (2002): 1343-1350. |
Chen. L. et al. ““Effect of Blood Perfusion on the ablation of liver perenchyma with high intensity focused ultrasound,”” Phys. Med. Biol; 38:1661-1673; 1993b. |
Church CC, et al. “A theoretical study of inertial cavitation from acoustic radiation force impulse imaging and implications for the mechanical index.” Ultrasound in medicine & biology 41.2 (2015): 472-485. |
Coon, J. et al., “Protein identification using sequential ion/ion reactions and tandem mass spectometry” Proceedings of the National Academy of Sciences of the USA, vol. 102, No. 27, Jul. 5, 2005, pp. 9463-9468. |
European Examination Report in related Application No. 05808908.7 dated Jun. 29, 2009. |
European Examination Report in related Application No. 05810308.6 dated Jun. 29, 2009. |
European Examination Report in related Application No. 09835856.7 dated Apr. 11, 2014. |
European Examination Report in related Application No. 10185100.4 dated Jan. 6, 2014. |
European Examination Report in related Application No. 10185120.2 dated Jan. 22, 2014. |
Written Opinion dated Aug. 12, 2008 for PCT/US2008/062930. |
Corry, P. M., et al., “Human Cancer Treatment with Ultrasound”, IEEE Transactions on Sonics and Ultrasonics, vol. SU-31, No. 5, Sep. 1984, pp. 444,456. |
Damianou et al., Application of the Thermal Dose Concept for Predicting the Necrosed Tissue Volume During Ultrasound Surgery, 1993 IEEE Ultrasound Symposium, pp. 1199-1202. |
Daum et al., “Design and Evaluation of a Feedback Based Phased Array System for Ultrasound Surgery,” IEEE Transactions on Ultrasonics, Feroelectronics, and Frequency Control, vol. 45, No. 2, Mar. 1998, pp. 431-438. |
Davis, B. J., et al., “An Acoustic Phase Shift Technique for the Non-lnvasive Measurement of Temperature Changes in Tissues”, 1985 Ultrasonics Symposium, pp. 921-924. |
Decision of the Korean Intellectual Property Tribunal dated Jun. 28, 2013 regarding Korean Patent No. 10-1142108, which is related to the pending application and/or an application identified in the Table on the pp. 2-5 of the information Disclosure Statement herein (English translation, English translation certification, and Korean decision included). |
European Patent Office, Examination Report, EP 05798870.1, Oct. 20, 2014, 5 pages. |
European Patent Office, Examination Report, EP 07814933.3, Aug. 5, 2014, 5 pages. |
European Patent Office, Examination Report, EP 10185112.9, Oct. 24, 2014, 5 pages. |
European Patent Office, Examination Report, EP 10185117.8, Oct. 24, 2014, 5 pages. |
European Patent Office, Examination Report, EP 10185120.2, Oct. 24, 2014, 4 pages. |
European Patent Office. Examination Report. EP 10185100.4. Oct. 24, 2014, 4 pages. |
Fry, W.J. et al., “Production of Focal Destructive Lesions in the Central Nervous System with Ultrasound,” J. Neurosurg., 11:471-478; 1954. |
Gliklich et al, “Clinical Pilot Study of Intense Ultrasound Therapy to Deep Dermal Facial Skin and Subcutaneous Tissues,” Arch Facial Plastic Surgery, Mar. 1, 2007, vol. 9, No. 1. |
Haar, G.R. et al., “Tissue Destruction with Focused Ultrasound in Vivo,” Eur. Ural. 23 (suppl. 1):8-11; 1993. |
Hassan et al., “Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods,” advanced in Polymer Science, 2000, pp. 37-65, vol. 153. |
Hassan et al., “Structure and Morphology of Freeze/Thawed PVA Hydrogels,” Macromolecules, Mar. 11, 2000, pp. 2472-2479, vol. 33, No. 7. |
Husseini et al, “Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles,” BMC Cancer 2002, 2:20, Aug. 30, 2002, pp. 1-6. |
Husseini et al, “The Role of Cavitation in Acoustically Activated Drug Delivery,” J_Control Release, Oct. 3, 2005, pp. 253-261, vol. 107(2). |
International Preliminary Report on Patentability for International application No. PCT/US2008/062930 dated Nov. 19, 2009. |
International Preliminary Report on Patentability in Application No. PCT/US2011/001366 dated Feb. 14, 2013. |
International Search Report and Written Opinion dated Jan. 23, 2014 in Application No. PCT/US2012/046122. |
International Search Report and Written Opinion dated Jan. 23, 2014 in Application No. PCT/US2012/046123. |
International Search Report and Written Opinion dated Jan. 28, 2013 in Application No. PCT/US2012/046125. |
International Search Report and Written Opinion dated Feb. 14, 2013 in Application No. PCT/US2011/001361. |
International Search Report and Written Opinion dated Feb. 14, 2013 in Application No. PCT/US2011/001362. |
International Search Report and Written Opinion dated Feb. 14, 2013 in Application No. PCT/US2011/001366. |
International Search Report and Written Opinion dated Feb. 14, 2013 in Application No. PCT/US2011/001367. |
International Search Report and Written Opinion dated Sep. 28, 2012 in Application No. PCT/US2012/046327. |
International Searching Authority, International Search Report and Written Opinion for application PCT/US2016/020600, dated May 18, 2016. |
Jeffers et al., “Evaluation of the Effect of Cavitation Activity on Drug-Ultrasound Synergisms,” 1993 IEEE Ultrasonics Symposium, pp. 925-928. |
Jenne, J., et al., “Temperature Mapping for High Energy US-Therapy”, 1994 Ultrasonics Symposium, pp. 1879-1882. |
Johnson, S.A., et al., “Non-lntrusive Measurement of Microwave and Ultrasound-Induced Hyperthermia by Acoustic temperature Tomography”, Ultrasonics Symposium Proceedings, pp. 977-982. 1977. |
Madersbacher, S et al., “Tissue Ablation in Bening Prostatic Hyperplasia with High Intensity Focused Ultrasound,” Dur. Ural., 23 (suppl. 1):39-43; 1993. |
Makin et al, “B-Scan Imaging and Thermal Lesion Monitoring Using Miniaturized Dual-Functionality Ultrasound Arrays,” Ultrasonics Symposium, 2004 IEEE, Aug. 23, 2004, pp. 1788-1791, vol. 3. |
Makin et al, “Conformal Bulk Ablation and Therapy Monitoring Using Intracorporeal Image-Treat Ultrasound Arrays,” 4th International Symposium on Theraputic Ultrasound, Sep. 19, 2004. |
Makin et al, “Miniaturized Ultrasound Arrays for Interstitial Ablation and Imaging,” Ultrasound Med. Biol. 2005, Nov. 1, 2005, pp. 1539-1550, vol. 31(11). |
Manohar et al, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” Journal of Biomedical Optics, Nov./Dec. 2004, pp. 1172-1181, vol. 9, No. 6. |
Mast et al, “Bulk Ablation of Soft Tissue with Intense Ultrasound: Modeling and Experiments,” J_Acoust. Soc. Am., Oct. 1, 2005, pp. 2715-2724, vol. 118(4). |
Mitragotri, S.; “Healing sound: the use of ultrasound in drug delivery and other therapeutic applications,” Nature Reviews; Drug Delivery, pp. 255-260, vol. 4. 2005. |
Paradossi et al., “Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications,” Journal of Materials Science: Materials in Medicine, 2003, pp. 687-691, vol. 14. |
PCT International Search Report and Written Opinion, PCT/US2014/030779, Sep. 1, 2014, 8 pages. |
Reid, Gavin, et al., “Tandem Mass spectrometry of ribonuclease A and B: N-linked glycosylation site analysis of whole protein ions,” Analytical Chemistry. Feb. 1, 2002, vol. 74, No. 3, pp. 577-583. |
Righetti et al, “Elastographic Characterization of HIFU-lnduced Lesions in Canine Livers,” 1999, Ultrasound in Med & Bio, vol. 25, No. 7, pp. 1099-1113. |
Saad et al., “Ultrasound-Enhanced Effects of Adriamycin Against Murine Tumors,” Ultrasound in Med. & Biol. vol. 18, No. 8, pp. 715-723 (1992). |
Sanghvi, N.T., et al., “Transrectal Ablation of Prostrate Tissue Using Focused Ultrasound,” 1993 Ultrasonics Symposium, IEEE, pp. 1207-1210. |
Sassen, S., “ATI's R520 architecture, the new king of the hill?” http://www.hardwareanalysis.com/content/article/1813, Sep. 16, 2005, 2 pages. |
Seip, R., et al., “Noninvasive Estimation of Tissue Temperature Response to Heating Fields Using Diagnostic Ultrasound,” IEEE Transactions on Biomedical Engineering, vol. 42, No. 8, Aug. 1995, pp. 828-839. |
Seip, R.. et al. “Noninvasive Detection of Thermal Effects Due to Highly Focused Ultrasonic Fiels,” IEEE Symposium, pp. 1229-1232, vol. 2, Oct. 3-Nov. 1993. |
Simon et al., “Applications of Lipid-Coated Microbubble Ultrasonic Contrast to Tumor Therapy,” Ultrasound in Med. & Biol. vol. 19, No. 2, pp. 123-125 (1993). |
Smith, N. B., et al., “Non-lnvasive In Vivo Temperature Mapping of Ultrasound Heating Using Magnetic Resonance Techniques”, 1994 Ultrasonics Symposium, pp. 1829-1832, vol. 3. |
Surry et al., “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol., Dec. 6, 2004, pp. 5529-5546, vol. 49. |
Syka J. E. P et al., “Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectometry,” Proceedings of the National Academy of Sciences of USA, National Academy of Aceince, Washington, DC, vol. 101, No. 26, Jun. 29, 2004, pp. 9528-9533. |
Talbert, D. G., “An Add-On Modification for Linear Array Real-Time Ultrasound Scanners to Produce 3D Displays,” UTS Int'l 1977 Brighton, England (Jun. 28-30, 1977) pp. 57-67. |
Tata et al., “Interaction of Ultrasound and Model Membrane Systems: Analyses and Predictions,” American Chemical Society, Phys. Chem. 1992, 96, pp. 3548-3555. |
Ueno, S., et al., “Ultrasound Thermometry in Hyperthermia”, 1990 Ultrasonic Symposium, pp. 1645-1652. |
Wang, H., et al., “Limits on Focused Ultrasound for Deep Hyperthermia”, 1994 Ultrasonic Symposium, Nov. 1-4, 1994, pp. 1869-1872, vol. 3. |
Wasson, S., “NVIDIA's GeForce 7800 GTX graphics processor Power MADD,” http://techreport.com/reviews/2005q2/geforce-7800gtx/index.x?pg=1, Jun. 22, 2005, 4 pages. |
White et al “Selective Creation of Thermal Injury Zones in the Superficial Musculoaponeurotic System Using Intense Ultrasound Therapy,” Arch Facial Plastic Surgery, Jan./Feb. 2007, vol. 9, No. 1. |
Number | Date | Country | |
---|---|---|---|
20180043147 A1 | Feb 2018 | US |
Number | Date | Country | |
---|---|---|---|
62127720 | Mar 2015 | US | |
62127715 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14637237 | Mar 2015 | US |
Child | 15555913 | US |