Methods and systems for ultrasound assisted delivery of a medicant to tissue

Information

  • Patent Grant
  • 11717661
  • Patent Number
    11,717,661
  • Date Filed
    Thursday, March 3, 2016
    8 years ago
  • Date Issued
    Tuesday, August 8, 2023
    8 months ago
Abstract
This disclosure provides methods and systems for ultrasound assisted delivery of a medicant to tissue. The delivery of the medicant is enhanced by the application of high intensity ultrasound pulses, which generate an intertial cavitation effect, an acoustic streaming effect, or both. This disclosure also provides methods and systems for alleviating pain or swelling associated with the application of ultrasound energy by delivering an anesthetic across a stratum corneum layer according to the methods described herein.
Description
BACKGROUND

Trandermal delivery of medicants is limited primarily to the difficult-to-penetrate nature of the stratum corneum layer of skin. The stratum corneum layer forms a barrier that keeps moisture in and keeps practically everything else out. Accordingly, attempts to topically apply a medicant and deliver the medicant across the stratum corneum layer to tissue located beneath it must overcome this barrier property in order to be effect.


The bioavailability of topically applied medicants is typically very low. For example, the bioavailability of topically applied lidocaine is approximately 3%. See, Campbell, et al. J. Pharm. Sci. 91(5), pp. 1343-50 (May 2002). In other words, more than 30 times the desired amount of lidocaine needs to be applied topically for the desired effect. In the case of an expensive medicant or a medicant having various side effects, it is undesirable to require application of such an excess of medicant in order to have the desired effect.


Workarounds for this limited bioavailability of topically applied medicants generally include physically puncturing the skin, which is undesirable, because some patients can have aversion to the needles associated with such procedures.


Low-frequency sonophoresis is a known method for enhancing transdermal drug delivery. However, these existing methods employ low-frequencies, low peak intensities, require long application times, or some combination of these to achieve improved transdermal drug delivery.


Accordingly, a need exists for new systems and methods that overcome the aforementioned shortcomings.


SUMMARY

The present disclosure overcomes the aforementioned drawbacks by presenting systems and methods for ultrasound assisted delivery of a medicant to tissue.


In one aspect, this disclosure provides an ultrasound assisted medicant delivery system. The system can include an ultrasound probe and a control system. The ultrasound probe can include an ultrasound transducer. The ultrasound probe and the ultrasound transducer can be configured for coupling to a medicant administered to a skin surface. The control system can be electronically coupled to the ultrasound trasndcuer. The control system can, in use, cause the ultrasound transducer to apply a first pulse acoustic energy field to the skin surface. The first pulsed acoustic energy field can have a frequency from 1 MHz to 30 MHz, a peak intensity from 100 W/cm2 to 100 kW/cm2, and a pulse width from 33 nanoseconds to 5 seconds. The first pulsed acoustic energy field can generate inertial cavitation, acoustic streaming, or a combination thereof in the stratum corneum layer and drive the medicant through the stratum corneum layer.


In another aspect, this disclosure provides a method for ultrasound assisted delivery of a medicant through a stratum corneum layer of a skin surface. The method can include: administering the medicant to a skin surface; coupling an ultrasound transducer to the medicant and the skin surface; and applying a first pulse acoustic energy field from the ultrasound transducer to the skin surface. The first pulse acoustic energy field can have a frequency from 1 MHz to 30 MHz, a peak intensity from 100 W/cm2 to 100 kW/cm2, and a pulse width from 33 nanoseconds to 5 seconds. The first pulsed acoustic energy field can generate inertial cavitation, acoustic streaming, or a combination thereof in the stratum corneum layer and drive the medicant through the stratum corneum layer.


In a further aspect, this disclosure provides a method for reducing or eliminating pain generated by ultrasound treatment. The method can include: applying a coupling medium comprising a medicant to a skin surface above a region of intere, the medicant comprising an anesthetic configured to numb a tissue in the region of interest; coupling an ultrasound energy source to the coupling medium, the skin surface, and the region of interest; directing a first acoustic energy field from the ultrasound energy source into the skin surface, thereby delivering the medicant into the tissue in the region of interest and numbing the tissue in a portion of the region of interest; and directing a second acoustic energy field to a target volume in the tissue in the region of interest, the second acoustic energy field ablating the tissue in the target volume, the medicant reducing or eliminating pain generated by the ablating of the tissue.


In yet another aspect, this disclosure provides a method of ultrasound assisted transdermal drug delivery. The method can include: contacting a skin surface with a coupling medium comprising a non-anesthetic medicant and an anesthetic; coupling an ultrasound energy source to the coupling medium and the skin surface; and applying a first pulsed acoustic energy field from the ultrasound transducer to the skin surface. The first pulse acoustic energy field can have a peak intensity from 100 W/cm2 to 100 kW/cm2. The first pulsed acoustic energy field can drive the medicant and the anesthetic across a stratum corneum layer of the skin surface and into an epidermis layer beneath the skin surface. The anesthetic can alleviate pain or swelling associated with the application of the first pulsed acoustic energy field.


The foregoing and other aspects and advantages of the invention will appear from the following description. In the description, reference is made to the accompanying drawings which form a part hereof, and in which there is shown by way of illustration a preferred aspect of the disclosure. Such aspect does not necessarily represent the full scope of the disclosure, however, and reference is made therefore to the claims and herein for interpreting the scope of the disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A illustrates an ultrasound assisted drug delivery probe and a first stage of a method of its use, according to one aspect of the present disclosure.



FIG. 1B illustrates an ultrasound assisted drug delivery probe and a second stage of a method of its use, according to one aspect of the present disclosure.



FIG. 1C illustrates an ultrasound assisted drug delivery probe and a third stage of a method of its use, according to one aspect of the present disclosure.



FIG. 1D illustrates an ultrasound assisted drug delivery probe and a fourth stage of a method of its use, according to one aspect of the present disclosure.



FIG. 2A illustrates an ultrasound assisted drug delivery probe and a first stage of a method of its use, according to one aspect of the present disclosure.



FIG. 2B illustrates an ultrasound assisted drug delivery probe and a second stage of a method of its use, according to one aspect of the present disclosure.



FIG. 2C illustrates an ultrasound assisted drug delivery probe and a third stage of a method of its use, according to one aspect of the present disclosure.



FIG. 2D illustrates an ultrasound assisted drug delivery probe and a fourth stage of a method of its use, according to one aspect of the present disclosure.



FIG. 3 illustrates a set of components for use in an ultrasound assisted drug delivery system, according to one aspect of the present disclosure.



FIG. 4 is a flowchart illustrating methods of ultrasound assisted drug delivery, according to one aspect of the present disclosure.



FIG. 5A is a picture showing the result of applying a method according to one aspect of the present disclosure with and without a 5% lidocaine ointment, as shown in Example 1.



FIG. 5B is a picture showing the result of applying a method according to one aspect of the present disclosure with and without a 5% lidocaine ointment, as shown in Example 1.





DETAILED DESCRIPTION

Before the present invention is described in further detail, it is to be understood that the invention is not limited to the particular embodiments described. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting. The scope of the present invention will be limited only by the claims. As used herein, the singular forms “a”, “an”, and “the” include plural embodiments unless the context clearly dictates otherwise.


Specific structures, devices, and methods relating to improved ultrasound treatment efficiency and operation are disclosed. It should be apparent to those skilled in the art that many additional modifications beside those already described are possible without departing from the inventive concepts. In interpreting this disclosure, all terms should be interpreted in the broadest possible manner consistent with the context. Variations of the term “comprising” should be interpreted as referring to elements, components, or steps in a non-exclusive manner, so the referenced elements, components, or steps may be combined with other elements, components, or steps that are not expressly referenced. Embodiments referenced as “comprising” certain elements are also contemplated as “consisting essentially of” and “consisting of” those elements.


This disclosure provides methods and systems for enhancing medicant delivery across the stratum corneum layer of skin and into the epidermis layer. The systems and methods also facilitate movement of the medicant deeper into the epidermis or into the dermis layer and subcutaneous tissue beneath the dermis layer.


As will be described with respect to FIGS. 1A, 1B, 1C, and 1D, an ultrasound assisted drug delivery probe 10 can be positioned atop and coupled to a skin surface 12. The skin surface 12 can be located above a stratum corneum 14, an epidermis 16, and a dermis 18. A region of interest 20 can be any contiguous location within the illustrated skin surface 12, the stratum corneum 14, the epidermis 16, the dermis 18, or a combination thereof. The region of interest 20 can be a region of interest as described herein. The ultrasound assisted drug delivery probe 10 can include an ultrasound source 22, which can include one or more transducers 24. The ultrasound source 22 can be any source described herein. The transducers 24 can be any transducers described herein. The one or more transducers 24 can each independently be a single transduction element, an array of transduction elements, or a group of arrays of transduction elements. The ultrasound assisted drug delivery probe 10 can be coupled to a power supply 26 and electronics 28 sufficient for the operation of an ultrasound system. The power supply 26 can be any power supply known to one of skill in the art to be suitable for powering an ultrasound probe, such as any power supply described herein, among others. The electronics 28 can be any electronics known to one of skill in the art to be suitable for operating an ultrasound probe, such as any electronics described herein, among others. The ultrasound assisted drug delivery probe 10 can be coupled to a control module 30 adapted to control the emission of ultrasound from the ultrasound assisted drug delivery probe 10. The control module 30 can be any control module or controller known to one of skill in the art to be suitable for controlling the emission characteristics of an ultrasound probe, such as any control module or controller described herein, among others.


Examples of suitable power supplies 26 can include, but are not limited to, one or more direct current (DC) power supplies, single-use or rechargeable batteries, or other power supplies configured to provide electrical energy to the ultrasound assisted drug delivery probe 10, including to the ultrasound source 28, transducers 30, electronics 28, control modules 30, or any other aspect of the ultrasound assisted drug delivery probe 10 that requires electrical energy. Associated sensors for monitoring the performance of the power supplies 26 are contemplated, such as current sensors, power sensors, and the like.


Examples of suitable electronics 28 can include, but are not limited to, amplifiers or drivers, such as multi-channel or single channel power amplifiers or drivers; power converters configured to adjust voltages; open-loop feedback systems; closed-loop feedback systems; filters, such as harmonic filters or matching filters; and the like.


Control modules 30 can include components suitable for controlling the emission characteristics of the ultrasound assisted drug delivery probe 10, including but not limited to, a computing system adapted to control the ultrasound assisted drug delivery probe 10; timing circuits; software and algorithms to provide control and user interfacing; input controls, such as switches, buttons, touchscreens, and the like; outputs, such as lighting or audio signals or displays; storage elements, such as memory to store calibration and usage data; and the like.


The ultrasound assisted drug delivery probe 10 can also include sensors suitable for measuring certain aspects of the ultrasound assisted drug delivery probe 10. Examples of sensors include, but are not limited to, temperature sensors, motion sensors, location sensors, coupling sensors, such as capacitive or acoustic coupling sensors, and the like.


The transducer 30 can be configured as a spherically-focused single element transducer, an annular/multi-element transducer, an annular array having an imaging region, a line-focused single-element transducer, a one-dimensional linear array, a one-dimensional curved linear array, a two-dimensional array with a mechanical focus, a convex lens focus, a concave lens focus, a compound lens focus, or a multiple lens focus, a two-dimensional planar array, or other transducer arrangements suitable for producing the ultrasound energy described herein and corresponding effects.


Referring to FIG. 1A, the ultrasound assisted drug delivery probe 10 can be coupled to the skin surface 12 by way of a coupling medium 32. The coupling medium 32 can include a medicant 34.


Referring to FIG. 1B, the arrangement illustrated in FIG. 1A is illustrated after the ultrasound assisted drug delivery probe 10 has begun emitting a first acoustic energy field 36 that penetrates at least through the skin surface 12 and the stratum corneum 14 and penetrates at least partially into the epidermis 16. In response to the first acoustic energy field 36, the medicant 34 can be driven from above the skin surface 12 through the skin surface 12, into or through the stratum corneum 14, and into the epidermis 16.


It should be appreciated that there exist intermediate states between the state of the arrangement illustrated in FIG. 1A and that illustrated in FIG. 1B, where the first acoustic energy field 36 penetrates only partially into the stratum corneum 14, or penetrates throughout the stratum corneum 14 but not into the epidermis 16, or penetrates throughout the stratum corneum 14 and partially into the epidermis 16 to a depth different than that illustrated. In similar intermediate states, the medicant 34 can penetrate only partially into the stratum corneum 14, or penetrates throughout the stratum corneum 14 but not into the epidermis 16, or penetrates throughout the stratum corneum 14 and partially into the epidermis 16 to a depth different than that illustrated.


Referring to FIG. 1C, the arrangement illustrated in FIGS. 1A and 1B is illustrated after the ultrasound assisted drug delivery probe 10 has begun emitting a second acoustic energy field 38 that penetrates at least through the skin surface 12, the stratum corneum 14, and the epidermis 16, and penetrates at least partially into the dermis 18. In response to the second acoustic energy field 38, the medicant 34 can be driven from the epidermis 16 to a deeper portion of the epidermis 16 or into the dermis 18.


It should be appreciated that there exist intermediate states between the state of the arrangement in FIG. 1B and that illustrated in FIG. 1C, where the second acoustic energy field 38 can penetrate throughout the epidermis 16 but not into the dermis 18, or can penetrate through the epidermis 16 and partially into the dermis 18, or can penetrate into the dermis 18 to a depth different than that illustrated. In similar intermediate states, the medicant 34 can penetrate throughout the epidermis 16 but not into the dermis 18, or can penetrate through the epidermis 16 and partially into the dermis 18, or can penetrate into the dermis 18 to a depth different than that illustrated.


Referring to FIG. 1D, the arrangement illustrated in FIGS. 1A, 1B, and 1C is illustrated after the medicant 34 has been driven into the dermis 18. In the dermis 18, the medicant 34 can interact with tissue or enter the blood stream via capillaries. In certain applications, a third acoustic energy field 40, optionally referred to as a therapeutic acoustic energy field 40, can be directed to a target volume 42 within the dermis 18. The target volume 42 can be located in a portion of the dermis 18 containing the medicant 34.


A method for ultrasound-assisted delivery of a medicant through a stratum corneum layer of a skin surface can include the following steps: administering the medicant to the skin surface; coupling an ultrasound transducer to the medicant and the skin surface; and applying a first pulsed acoustic energy field from the ultrasound transducer to the skin surface, the first pulsed acoustic energy field having one or more of the properties described elsewhere herein, the first pulsed acoustic energy field generating intertial cavitation, acoustic streaming, or a combination thereof in the stratum corneum layer and driving the medicant through the stratum corneum layer.


As will be described with respect to FIGS. 2A, 2B, 2C, and 2D, a delivery system 44 can include an ultrasound assisted drug delivery probe 10 and a standoff 46 comprising a medicant 34. The ultrasound assisted drug delivery probe 10 can include features described elsewhere herein. The standoff 46 can include a plurality of pores in a bottom surface 48, the plurality of pores being in fluid communication with the medicant 34. The plurality of pores can be of a size and shape that are sufficient to retain the medicant 34 within the standoff 46. In certain aspects, the medicant 34 is retained in the standoff 46 by virtue of a surface tension of the medicant 34. In certain aspects, the standoff 46 can include a gel pack coupled to the ultrasound assisted drug delivery probe 10. In certain aspects, the standoff 46 can be rigid or flexible.


Referring to FIG. 2A, the delivery system 44 is positioned above the skin surface 12. In FIG. 2B, the arrangement illustrated in FIG. 2A is illustrated after the delivery system 44 has been coupled to the skin surface 12. The ultrasound assisted drug delivery probe 10 can emit a first acoustic energy field 36 that penetrates at least through the skin surface 12 and the stratum corneum 14 and penetrates at least partially into the epidermis 16. In response to the first acoustic energy field 36, the medicant 34 can be driven from above the skin surface 12 through the skin surface 12, into or through the stratum corneum 14, and into the epidermis.


It should be appreciated that there exist intermediate states between the state of the arrangement in FIG. 2A and that illustrated in FIG. 2B, where the first acoustic energy field 36 can penetrate only partially into the stratum corneum 14 or can penetrate throughout the stratum corneum 14 but not into the epidermis 16, or can penetrate through the stratum corneum 14 and partially into the epidermis 16 to a depth different than that illustrated. In similar intermediate states, the medicant 34 can penetrate only partially into the stratum corneum 14, or can penetrate throughout the stratum corneum 14 but not into the epidermis 16, or can penetrate throughout the stratum corneum 14 and partially into the epidermis 16 to a depth different than that illustrated.


Referring to FIG. 2C, the arrangement illustrated in FIGS. 2A and 2B is illustrated after the ultrasound assisted drug delivery probe 10 has begun emitting a second acoustic energy field 38 that penetrates at least through the skin surface 12, the stratum corneum 14, and the epidermis 16, and penetrates at least partially into the dermis 18. In response to the second acoustic energy field 38, the medicant 34 can be driven from the epidermis to a deeper portion of the epidermis 16, partially into the dermis 18, or entirely into the epidermis.


It should be appreciated that there exist intermediate states between the state of the arrangement in FIG. 2B and that illustrated in FIG. 2C, where the second acoustic energy field 38 can penetrate throughout the epidermis 16 but not into the dermis 18, or can penetrate through the epidermis 16 and partially into the dermis 18, or can penetrate into the dermis 18 to a depth different than that illustrated. In similar intermediate states, the medicant 34 can penetrate throughout the epidermis 16 but not into the dermis 18, or can penetrate through the epidermis 16 and partially into the dermis 18, or can penetrate into the dermis 18 to a depth different than that illustrated.


Referring to FIG. 2D, the arrangement illustrated in FIGS. 2A, 2B, and 2C is illustrated after the medicant 34 has been driven into the dermis 18. In the dermis, the medicant 34 can interact with the tissue or enter the blood stream via capillaries. In certain applications, a third acoustic energy field 40, optionally referred to as a therapeutic acoustic energy field 40, can be directed to a target volume 42 within the dermis 18. The target volume 42 can be located in a portion of the dermis 18 containing the medicant 34.


In certain aspects, the delivery system 44 can be configured as a transdermal patch. For example, the delivery system 44 can be configured for off-the-shelf operation, where the delivery system 44 include the medicant 34 in appropriate dosage within the standoff 46 and a suitable portable power supply, such as battery power, to power the delivery system 44. After removing any packaging for the delivery system 44, the delivery system 44 can be applied to a location by a patient or a user. In certain aspects, the delivery system 44 can include an adhesive material on the bottom surface 48 of the standoff 46 or a patch that extends over the ultrasound assisted drug delivery probe 10 to facilitate retention of coupling between the probe 10 and the skin surface 12.


In certain aspects, the delivery system 44 can have an on-off switch or a separate on-off device that allows a patient or user to turn the delivery system 44 on (and subsequently off) when the ultrasound assisted drug delivery probe 10 is properly located on the skin surface 12. The delivery system 44 can utilize at least one ultrasound energy effect to move the medicant 34 from the standoff 46 to below the skin surface 12.


A delivery system 44 as described herein can have significant advantages over a traditional transdermal patch. For example, the delivery system 44 can deliver medicants 34 having a higher molecular weight, for example, medicants 34 having a molecular weight of at least about 100 Da or at least about 500 Da. As another example, the delivery system 44 does not rely on mechanical diffusion, so lower doses of the medicant 34 can be deployed because more of the medicant 34 reaches areas beneath the skin surface 12. As yet another example, the delivery system 44 is not limited to deploying medicants 34 having an affinity for both lipophilic and hydrophilic phases or medicants 34 that are non-ionic. In certain aspects, the delivery system 44 can include a solar panel, which can optionally be no bigger than the area of a patch covering the ultrasound assisted drug delivery probe 10, to supplement power to the delivery system 44.


Referring to FIG. 3, multiple devices, including a microchannel device 50 comprising a microchannel creation means 52, a first ultrasound device 54, a second ultrasound device 56, and a third ultrasound device 58, can be configured individually or as a part of a single system to independently or cooperatively provide delivery of a medicant 34. The microchannel device 50 comprising the microchannel creation means 52 is configured to create a microchannel 60 through the stratum corneum 14. The microchannel device 50 and microchannel creation means 52 can be any of the systems or methods described herein. For example, the microchannel device 50 can be an ultrasound probe and the microchannel creation means 52 can employ one or more acoustic energy fields, such as described in the description of FIGS. 1A, 1B, 1C, 1D, 2A, 2B, 2C, and 2D. The microchannel device 50 microchannel creation means 52 can also include one or more microneedles. The microchannel device 50 can be a photon-based energy source and the microchannel creation means 52 can include a photon-based energy field configured to generate microchannels 60 in the stratum corneum 14.


The microchannel device 50, the first ultrasound device 54, the second ultrasound device 56, and the third ultrasound device 58 can move from right to left across the illustrated skin surface 12, either collectively or independently. A coupling medium 32 can be applied to the skin surface 12 before or after the microchannel creation means 52 has created a microchannel 60. If the microchannel device 50, the first ultrasound device 54, the second ultrasound device 56, and the third ultrasound device 58 are operating in series, then the coupling medium 32 is typically applied to the skin surface 12 after the microchannel creation means 52 has created the microchannel 60 to avoid loss of the medicant 34 or contamination of the medicant 34 by the microchannel creation means 52. The microchannel device 50, the first ultrasound device 54, the second ultrasound device 56, and the third ultrasound device 58 can be controlled by a control module 30, either collectively or independently. In certain aspects, the microchannel device 50, the first ultrasound device 54, the second ultrasound device 56, and the third ultrasound device 58 can each be housed in individual cylinders or spheres that are configured to roll across the skin surface 12.


The first ultrasound device 54 can be configured to direct a fourth acoustic energy field 62 into the skin surface 12. The fourth acoustic energy field 62 can be configured to drive the medicant 34 through the microchannel 60. In certain aspect, the fourth acoustic energy field 62 can have the properties of the first acoustic energy field 36, as described herein.


The second ultrasound device 56 can be configured to direct a fifth acoustic energy field 64 into the skin surface 12. The fifth acoustic energy field 64 can be configured to drive the medicant 34 through the epidermis 16 and optionally through the dermis 18. In certain aspects, the fifth acoustic energy field 64 can have the properties of the second acoustic energy field 38, as described herein.


The third ultrasound device 58 can be configured to direct a sixth acoustic energy field 66 into the skin surface 12. The sixth acoustic energy field 66 can be configured to interact with the medicant 34 or with tissue containing or proximate to the medicant 34. In certain aspect, the sixth ultrasound acoustic energy field 66 can have the properties of the third acoustic energy field 40, as described herein.


In addition to the first acoustic energy field 36, the second acoustic energy field 38, the third acoustic energy field 40, the fourth acoustic energy field 62, the fifth acoustic energy field 64, or the sixth acoustic energy field 66, the methods described herein can utilize additional acoustic energy fields configured to provide one or more effects described herein.


In certain aspects, a system such as an ultrasound assisted drug delivery probe 10, a delivery device 44, a microchannel device 50, a first ultrasound device 40, a second ultrasound device 56, a third ultrasound device 58, or any combination thereof can include various components described herein. For example, a system can include a control module 30. As one non-limiting example, such a control module 30 can be the control module 20 described above, which can be configured to receive at least one communication and control a distribution of the acoustic energy field transmitted by the ultrasound energy source, such as, for example, an acoustic transducer 24. The control module 30 can be configured to receive a treatment start signal and a treatment stop signal. The control module 30 can be programmed to provide treatment to the ROI 20 for a desired outcome. The control module 30 can initiate and run a treatment program (treatment function), which can include the control of spatial parameters and/or temporal parameters of the ultrasound source, to provide programmed distribution of the acoustic energy field in the ROI 20. The control module 30 can be configured to receive feedback from one or more sensors and/or detectors, and the control module 30 can terminate the treatment program based on the feedback.


The control module 30 can be configured to communicate with the probe 10 via wireless interface. In some embodiments, the control module 20 can be a wireless device, which has a display and a user interface such as, for example, a keyboard. Examples of a wireless device can include but are not limited to: a personal data assistant (PDA), a cell phone, a smart phone, an iPhone, an iPad, a computer, a laptop, a netbook, a tablet, or any other such device now known or developed in the future. Examples of wireless interface include but are not limited to any wireless interface described herein and any such wireless interface now known or developed in the future. Accordingly, the probe 10 can comprise any hardware, such as, for example, electronics, antenna, and the like, as well as, any software that may be used to communicate via wireless interface.


The wireless device can be configured to display an image generated by the probe 10. The wireless device can be configured to control at least a portion of the probe 10. The wireless device can be configured to store data generated by the probe 10 and sent to the wireless device.


Various sensing and monitoring components may also be implemented within control module. For example, monitoring, sensing, and interface control components may be capable of operating with the motion detection system implemented within the probe 10, to receive and process information such as acoustic or other spatial and temporal information from the ROI 20. Sensing and monitoring components may also comprise various controls, interfacing, and switches and/or power detectors. Such sensing and monitoring components may facilitate open-loop and/or closed-loop feedback systems within the probe 10.


In some aspects, sensing and monitoring components may further comprise a sensor that may be connected to an audio or visual alarm system to prevent overuse of the probe 10. The sensor may be capable of sensing the amount of energy transferred to the skin, and/or the time that the probe 10 has been actively emitting the acoustic energy. When a certain time or temperature threshold has been reached, the alarm may sound an audible alarm, or cause a visual indicator to activate to alert the user that a threshold has been reached. This may prevent overuse of the device. In some embodiments, the sensor may be operatively connected to the control module and force the control module 30, to stop emitting the acoustic energy from the probe 10. In some embodiments, the control module 30 is operable to control the power supply to change an amount of power provided to the acoustic transducer 24 in the probe 10.


A position sensor may be located behind a transducer, in front of a transducer, or integrated into a transducer array. The probe 18 may comprise more than one position sensor, such as, for example, a laser position sensor and a motion sensor, or a laser position sensor and a visual device, or a motion sensor and a visual device, or a laser position sensor, a motion sensor, and a visual device. In some embodiments, position sensor may determine a distance between pulses of the acoustic energy to create a plurality of treatment zones which are evenly spaced or disposed in any spatial configuration in 1-D or 2-D patterns. As the probe 18 is moved in direction, the position sensor determines distance, regardless of a speed that the ultrasound source is move, at which a pulse of acoustic energy is to be emitted in to ROI 12.


In some aspects, the system can further comprise a contact sensor operable to determine if the ultrasound source is coupled to the ROI 12. The tissue contact sensor can communicate to the control module 20 whether the ultrasound source is coupled to the ROI 12.


The first acoustic energy field 36, second acoustic energy field 38, or third acoustic energy field 40 can be planar, focused, weakly focused, unfocused, or defocused. The first acoustic energy field 36, second acoustic energy field 38, or third acoustic energy field 40 can have a frequency in the range of about 1 MHz to about 30 MHz, including, but not limited to, a frequency in the range of about 5 MHz to about 15 MHz, from about 2 MHz to about 12 MHz, from about 3 MHz to about 7 MHz, from about 1 MHz to about 7 MHz, from about 2 MHz to about 5 MHz, from about 3 MHz to about 10 MHz, or from about 1 MHz to about 10 MHz, or other combinations of the lower and upper limits of these ranges not explicitly recited. The first acoustic energy field 36, second acoustic energy field 38, or third acoustic energy field 40 can be configured to avoid damaging the cells in the stratum corneum 14 or the epidermis 16.


The first acoustic energy field 36, second acoustic energy field 38, or third acoustic energy field 40 can be pulsed and have a delay of from about 1 μs to about 100 seconds between pulses. The first acoustic energy field 36, second acoustic energy field 38, or third acoustic energy field 40 can be continuous wave. In certain aspects, the first acoustic energy field 36, second acoustic energy field 38, or third acoustic energy field 40 can be pulsed and have a pulse repetition rate of one pulse per 10 μs to one pulse per 100 seconds.


In certain applications, such as generating inertial cavitation in the stratum corneum 14 which can create microchannels having an intercellular route from the skin surface 12 to the epidermis 16, the first acoustic energy field 36 can have a pulse width in a range from about 33 ns to about 100 s. In these certain applications, the first acoustic energy field 36 can be pulsed and can have a pulse width in the range of about 1 μs to about 1 second, or in the range of about 0.01 seconds to about 5 seconds. In these certain applications, the first acoustic energy field 36 can have a peak intensity of greater than 3 W/cm2 and less than or equal to about 100 kW/cm2 at the skin surface 12. In certain aspects, the first acoustic energy field 36 can have a peak intensity of greater than 10 W/cm2, greater than 50 W/cm2, greater than 100 W/cm2, greater than 300 W/cm2, greater than 500 W/cm2, greater than 1 kW/cm2, greater than 3 kW/cm2, or greater than 5 kW/cm2. The intensity of the first acoustic energy field 36 can be below a threshold value for creating a shock wave. A person having ordinary skill in the art will appreciate that this threshold value can vary based on material properties and the specific parameters of the ultrasound being used, and can determine this threshold value for specific materials and sets of parameters experimentally or computationally.


In certain applications, such as generating acoustic streaming providing acoustic streaming pressure to the stratum corneum 14, the epidermis 16, or a combination thereof, the first acoustic energy field 36 can be pulsed and the pulses can have a pulse width in a range of about 33 ns to about 100 s, including, but not limited to, a range of about 1 μs to about 10 seconds or a range of about 0.001 seconds to about 5 seconds. In these certain applications, the first acoustic energy field 36 can have a peak intensity in the range from about 5 W/cm2 to about 100 kW/cm2 at the skin surface 12. In certain aspects, the first acoustic energy field 36 can have a peak intensity of greater than 10 W/cm2, greater than 50 W/cm2, greater than 100 W/cm2, greater than 300 W/cm2, greater than 500 W/cm2, greater than 1 kW/cm2, greater than 3 kW/cm2, or greater than 5 kW/cm2. Acoustic streaming can generate microchannels having a transcellular route from the skin surface 12 to the epidermis 16. In these certain applications, acoustic streaming generated by the first acoustic energy field 36 can create pressures ranging from about 10 kPa to about 120 MPa, including, but not limited to, pressures ranging from about 10 kPa to about 10 MPa and pressures ranging from about 10 MPa to about 120 MPa, in the stratum corneum 14, the epidermis 16, or a combination thereof.


In certain applications, such as generating inertial cavitation in the stratum corneum 14 and acoustic streaming providing acoustic streaming pressure to the stratum corneum 14, the epidermis 16, or a combination thereof, which can generate microchannels having both an intercellular route and a transcellular route from the skin surface 12 to the epidermis 16, the first acoustic energy 36 can provide two or more effects, such as inertial cavitation and acoustic streaming, simultaneously or alternating. In certain aspects, generating inertial cavitation and acoustic streaming can facilitate moving a larger medicant, such as a medicant with a molecular weight greater than 500 Da, through the stratum corneum 14.


In certain applications, the second acoustic energy 38 can be configured to generate inertial cavitation or acoustic streaming in the epidermis 16, the dermis 18, or a combination thereof. In certain aspects, the second acoustic energy 38 can be configured to increase diffusion of the medicant 34 through the epidermis 16 and the dermis 18. In certain aspects, the second acoustic energy 38 can provide a pressure in a range from about 100 kPa to about 100 MPa to push the medicant 34 through the epidermis 16 and into the dermis 18.


It should be appreciated that the effects described herein are tissue-dependent, so the ultrasound energy necessary to generate inertial cavitation or acoustic streaming in one type of tissue might be different than the ultrasound energy necessary to generate inertial cavitation or acoustic streaming in a different type of tissue. It should also be appreciated that for a certain effect to be generated, the threshold for generating that effect must be exceeded. However, the thresholds for generating the effects described herein, such as inertial cavitation and subsequent acoustic streaming, in tissues are generally unknown.


With respect to inertial cavitation, aside from a single experimental study regarding the frequency-dependence of the threshold for inertial cavitation in canine skeletal muscle, a recent article by Church et al. states that “too little information on the experimental threshold for inertial cavitation in other tissues is available” to make conclusions regarding frequency-dependent trends. See, Church C C, et al. “Inertial cavitation from ARFI imaging and the MI”, Ultrasound in Med. & Biol., Vol. 41, No. 2, pp. 472-485 (2015). This observation is solely about the inertial cavitation threshold as it relates to frequency, and does not take into account the other spatial and temporal parameters aside from frequency. Accordingly, one of skill in the art should appreciate that the present invention is disclosed in terms of effects that have been shown to produce a specific result, i.e., transporting a medicant across the stratum corneum, and a set of general parameters that are suitable for achieving that result are set forth above. One of skill in the art should also appreciate that the presence of inertial cavitation can be identified by a characteristic broadband signal that is the result of the complex dynamics associated with inertial cavitation.


With respect to acoustic streaming, this effect can be generated by an effect including the aforementioned inertial cavitation or without the inertial cavitation. In instances without the inertial cavitation, acoustic streaming can be accomplished by introducing heat into a tissue, for example the stratum corneum, which expands the tissue, then applying a pressure to the medicant or a carrier containing the medicant to initiate acoustic streaming.


The inertial cavitation and acoustic streaming effects are described herein with respect to the discrete layers of the skin, but can penetrate to a greater depth beneath the skin surface to enhance the penetration of the medicant deeper into the skin or into subcutaneous tissue.


In certain aspects, the first acoustic energy 36 and the second acoustic energy 38 can be substantially the same. In certain aspects, the second acoustic energy 38 can have a frequency that concentrates the acoustic energy deeper and moves the medicant 34 into the dermis 18. In certain aspects, the second acoustic energy 38 can be configured to cause a thermal effect in the epidermis 16 or the dermis 18, which is non-destructive to the cells of the epidermis 16 or dermis 18.


The first acoustic energy 36, second acoustic energy 38, or third acoustic energy 40 can be generated from one or more ultrasound sources.


In certain aspects, the ultrasound assisted drug delivery probe 10 can be configured to create an intensity gain from the ultrasound assisted drug delivery probe 10 to the target volume 42 of at least about 5, including, but not limited to, an intensity gain of at least about 10, at least about 25, at least about 50, or at least about 100. In aspects having a focused or a strongly focused ultrasound, the ultrasound assisted drug delivery probe 10 can be configured to create an intensity gain from the ultrasound assisted drug delivery probe 10 to the target volume 42 of at least about 50, including, but not limited to, an intensity gain of at least about 100, or at least about 500. In aspects having a weakly focused ultrasound, the ultrasound assisted drug delivery probe 10 can be configured to create an intensity gain from the ultrasound assisted drug delivery probe 10 to the target volume 42 of at least about 5.


In certain aspects with pulsed ultrasound, a first pulse can be ultrasound having a first type of focus, a second pulse can be ultrasound having a second type of focus, a third pulse can be ultrasound having the first type of focus or a third type of focus, and so on. Any combination of focused, defocused, or unfocused energy can be used for any of the various pulses.


In certain aspects, the first acoustic energy 36, second acoustic energy 38, or third acoustic energy 40 can create a thermal effect, a mechanical effect, or a combination thereof in the target volume 42. A mechanical effect is a non-thermal effect within a medium that is created by acoustic energy. A mechanical effect can be one of, for example, acoustic resonance, acoustic streaming, disruptive acoustic pressure, shock waves, inertial cavitation, and non-inertial cavitation.


Referring to FIG. 4, a flowchart illustrating a method 200 of ultrasound assisted drug delivery is provided. At process block 202, the method 200 can include administering a medicant 34 to a skin surface 12. At process block 203, the method 200 can include creating microchannels 60 through the stratum corneum 14. At process block 204, the method 200 can include applying a first acoustic energy field 36 to direct the medicant 34 through the microchannels 60. At process block 206, the method 200 can include applying a second acoustic energy field 38 to direct the medicant 34 through the epidermis 16 and into the dermis 18. At process block 208, the method 200 can include moving the medicant 34 into a target volume 42 to interact with tissue, be transported via blood vessels, or a combination thereof. At process block 210, the method 200 can include monitoring the medicant 34 effect. At decision block 218, the method 200 can include determining whether the treatment is complete. If the treatment is determined to be complete by answering yes 222 to decision block 218, then the method 200 can be completed. If the treatment is determined to be incomplete by answering no 220 to decision block 218, then the method 200 can return to process block 202 or can proceed to optional process block 212.


At optional process block 212, the method 200 can include directing a therapeutic acoustic energy field 40 into the target volume 42. When the medicant is located in or near the target volume 42, at optional process block 214, the method 200 can include directing a third acoustic energy field 40 into the target volume 42 to activate the medicant 34.


In certain aspects, the systems and methods disclosed herein can utilize an anesthetic coupled with a non-anesthetic medicant, where the anesthetic can reduce pain and inflammation associated with application of the ultrasound energy, including pain and inflammation associated with the transdermal delivery of the medicant or other ultrasound-generated effects described herein.


In certain aspects, the medicant can be at least partially transparent to ultrasound energy. In certain aspects, the medicant can be substantially transparent to ultrasound energy.


In certain aspects, the stratum corneum layer 14 can be substantially intact prior to the application of ultrasound energy. For example, prior to the application of ultrasound energy, the stratum corneum layer 14 can have no punctures, microchannels, wounds, other means of improving permeability of a medicant, or combinations thereof.


The medicant can be mixed into or be a component of an acoustic coupling medium. In some embodiments, an acoustic coupling medium, such as an acoustic coupling gel or an acoustic coupling cream, can comprise the medicant. In some embodiments, a medicant is administered to a skin surface above the ROI. In some applications, the medicant can be the acoustic coupling medium. In some applications, the medicant can be a combination of medicants, such as any combination of those described herein.


The medicant can be mixed into or can be a component of a biocompatible carrier. Example of a biocompatible medicant carrier include, but are not limited to, glycerin, liposomes, nanoparticles, microbubbles, and the like. In certain aspects, the carrier can enhance and/or lower the threshold for inertial cavitation.


A medicant can comprise an anesthetic. In some aspects, the anesthetic can comprise lidocaine, benzocaine, prilocaine, tetracaine, novocain, butamben, dibucaine, oxybuprocaine, pramoxine, proparacaine, proxymetacaine, tetracaine, or any combination thereof. The anesthetic an eliminate or reduce the pain generated by the application of ultrasound energy to the skin, for example, the creation of the microchannels in the skin by ultrasound energy. The anesthetic can constrict blood flow, which can eliminate or reduce any blood flowing that emerges to the skin surface by way of damage from the application of ultrasound energy to the skin, for example, blood flowing up a microchannel generated by ultrasound energy and onto the skin surface. Further, the use of an anesthetic, such as lidocaine, in the acoustic coupling medium substantially eliminates skin irritation from the application of ultrasound energy, such as the ultrasound-induced creation of microchannels penetrating the skin surface.


A medicant can comprise a drug, a vaccine, a nutraceatical, or an active ingredient. A medicant can comprise blood or a blood component, an allergenic, a somatic cell, a recombinant therapeutic protein, or any living cells that are used as therapeutics to treat diseases or as actives to produce a cosmetic or a medical effect. A medicant can comprise a biologic, such as for example a recombinant DNA therapy, synthetic growth hormone, monoclonal antibodies, or receptor constructs. A medicant can comprise stem cells.


A medicant can comprise adsorbent chemicals, such as zeolites, and other hemostatic agents are used in sealing severe injuries quickly. A medicant can comprise thrombin and/or fibrin glue, which can be used surgically to treat bleeding and to thrombose aneurysms. A medicant can comprise Desmopressin, which can be used to improve platelet function by activating arginine vasopressin receptor 1A. A medicant can comprise a coagulation factor concentrates, which can be used to treat hemophilia, to reverse the effects of anticoagulants, and to treat bleeding in patients with impaired coagulation factor synthesis or increased consumption. A medicant can comprise a Prothrombin complex concentrate, cryoprecipitate and fresh frozen plasma, which can be used as coagulation factor products. A medicant can comprise recombinant activated human factor VII, which can be used in the treatment of major bleeding. A medicant can comprise tranexamic acid and/or aminocaproic acid, which can inhibit fibrinolysis, and lead to a de facto reduced bleeding rate. A medicant can comprise platelet-rich plasma (PRP), mesenchymal stem cells, or growth factors. For example, PRP is typically a fraction of blood that has been centrifuged. The PRP is then used for stimulating healing of the injury. The PRP typically contains thrombocytes (platelets) and cytokines (growth factors). The PRP may also contain thrombin and may contain fibenogen, which when combined can form fibrin glue.


In addition, a medicant can comprise a steroid, such as, for example, like the glucocorticoid cortisol. A medicant can comprise an active compound, such as, for example, alpha lipoic Acid, DMAE, vitamin C ester, tocotrienols, and/or phospholipids. A medicant can comprise a pharmaceutical compound such as for example, cortisone, Etanercept, Abatacept, Adalimumab, or Infliximab. A medicant can comprise Botox. A medicant can comprise lignin peroxidase, which can be derived from fungus and can be used for skin lightening applications. A medicant can comprise hydrogen peroxide, which can be used for skin lighting applications.


The medicant can comprise an anti-inflammatory agent, such as, for example, a non-steroidal anti-inflammatory drug (NSAID), such as aspirin, celecoxib (Celebrex), diclofenac (Voltaren), diflunisal (Dolobid), etodolac (Lodine), ibuprofen (Motrin), indomethacin (Indocin), ketoprofen (Orudis), ketorolac (Toradol), nabumetone (Relafen), naproxen (Aleve, Naprosyn), oxaprozin (Daypro), piroxicam (Feldene), salsalate (Amigesic), sulindac (Clinoril), or tolmetin (Tolectin).


Still further, a medicant can comprise an active ingredient which provides a cosmetic and/or therapeutic effect to the area of application on the skin. Such active ingredients can include skin lightening agents, anti-acne agents, emollients, non-steroidal anti-inflammatory agents, topical anesthetics, artificial tanning agents, antiseptics, anti-microbial and anti-fungal actives, skin soothing agents, sunscreen agents, skin barrier repair agents, anti-wrinkle agents, anti-skin atrophy actives, lipids, sebum inhibitors, sebum inhibitors, skin sensates, protease inhibitors, skin tightening agents, anti-itch agents, hair growth inhibitors, desquamation enzyme enhancers, anti-glycation agents, compounds which stimulate collagen production, and mixtures thereof.


Other examples of such active ingredients can include any of panthenol, tocopheryl nicotinate, benzoyl peroxide, 3-hydroxy benzoic acid, flavonoids (e.g., flavanone, chalcone), farnesol, phytantriol, glycolic acid, lactic acid, 4-hydroxy benzoic acid, acetyl salicylic acid, 2-hydroxybutanoic acid, 2-hydroxypentanoic acid, 2-hydroxyhexanoic acid, cis-retinoic acid, trans-retinoic acid, retinol, retinyl esters (e.g., retinyl propionate), phytic acid, N-acetyl-L-cysteine, lipoic acid, tocopherol and its esters (e.g., tocopheryl acetate), azelaic acid, arachidonic acid, tetracycline, hydrocortisone, acetominophen, resorcinol, phenoxyethanol, phenoxypropanol, phenoxyisopropanol, 2,4,4′-trichloro-2′-hydroxy diphenyl ether, 3,4,4′-trichlorocarbanilide, octopirox, lidocaine hydrochloride, clotrimazole, miconazole, ketoconazole, neomycin sulfate, theophylline, and mixtures thereof.


A medicant can be any natural or synthetic compound or any combination of compounds, or a drug, or a biologic, as described herein, or is known to one skilled in the art, or is developed in the future.


A medicant can be diluted with an appropriate solvent for delivery. For example, a medicant can be diluted or mixed with a solvent to lower viscosity to improve transfer of the medicant. For example, a medicant can be diluted or mixed with a solvent that is a vehicle for transfer of the medicant, such as, for example, mixing a medicant with a formulation of polyethylene glycol (PEG). In some applications, the medicant can be mixed with a solvent to improve a tissue effect, such as uptake into the tissue, such as, for example, mixing a medicant with dimethyl sulfoxide (DMSO). In some applications, the medicant can be mixed with a solvent, which can restrict or inhibit an ultrasound energy effect. For example, a medicant can be mixed with ethanol (EtOH), which inhibits the thermal effect of ablation. In some applications, the medicant can be mixed with a solvent, which can amplify an ultrasound energy effect. For example, a medicant can be mixed with a contrast agent, which can be configured to promote higher attenuation and/or cavitation at lower acoustic pressures.


A medicant can be in a non-liquid state. In some applications, a medicant can be a gel or a solid, which by using a thermal effect, can melt into a liquid state suitable for delivery. For example, a medicant can be mixed into a thermally responsive hydrogel, which is configured to transform into an injectable state upon receiving a suitable amount of thermal energy emitted from a transducer.


In some aspects, a medicant can be administered to a skin surface above the ROI. The medicant can be mixed into or be a component of an acoustic coupling medium. In some applications, the medicant can be the acoustic coupling medium. In some aspects, the acoustic coupling medium can comprise a preservative and/or a preservative enhancer, such as, for example, water-soluble or solubilizable preservatives including Germall 115, methyl, ethyl, propyl and butyl esters of hydroxybenzoic acid, benzyl alcohol, sodium metabisulfite, imidazolidinyl urea, EDTA and its salts, Bronopol (2-bromo-2-nitropropane-1,3-diol) and phenoxypropanol; antifoaming agents; binders; biological additives; bulking agents; coloring agents; perfumes, essential oils, and other natural extracts.


In certain aspects, microchannels 60 can be long enough for fluid communication between the skin surface 12 and the epidermis 16. The microchannels 60 can have a diameter large enough to allow the medicant to pass from the skin surface 12 to the epidermis 16. The microchannels 60 can have a diameter small enough to prevent bleeding from subcutaneous tissue to the skin surface 12.


In certain aspects, a single ultrasound pulse can provide sufficient effect to drive the medicant through the stratum corneum 14. In some aspects, two more ultrasound pulses, including but not limited to, two, three, four, five, six, seven, eight, nine, ten, or more ultrasound pulses can provide sufficient effect to drive the medicant through the stratum corneum 14.


In certain aspects, the systems and methods described herein can drive medicant through the stratum corneum 14 after application of ultrasound energy for a total length of time of less than 5 minutes, including but not limited to, less than 3 minutes, less than 1 minute, less than 50 seconds, less than 40 seconds, less than 30 seconds, less than 25 seconds, less than 20 seconds, less than 15 seconds, less than 10 seconds, less than 5 seconds, less than 4 seconds, less than 3 seconds, less than 2 seconds, or less than 1 second.


The systems and methods described herein can be employed in numerous clinical applications. For example, a treatment for scars can include a medicant directed by acoustic energy through microchannels to a scar location. A second acoustic energy can be directed to the scar location and be configured to interact with the medicant to remodel and/or modify the scar tissue and eventually replace the scar tissue via remodeling. The treatment can also include directing therapeutic acoustic energy into the scar tissue. In some applications, the therapeutic acoustic energy can be configured to ablate a portion of the scar tissue, thereby removing a portion of the scar tissue. In some applications, the therapeutic acoustic energy can be configured to create a lesion in or near the scar tissue, thereby facilitating skin tightening above the lesion. In some applications, the therapeutic acoustic energy can be configured to remodel and/or increase an amount of collagen around the scar tissue, thereby replacing portions of the scar tissue with newly formed collagen.


In another example, the systems and methods described herein can be used in the treatment of hyperpigmentation. A medicant can be a skin lightening agent, which can be any active ingredient that improves hyperpigmentation. Without being bound by theory, use of skin lightening agents can effectively stimulate the epidermis, particularly the melanocyte region, where the melanin is generated. The combined use of the skin lightening agent and ultrasound energy can provide synergistic skin lightening benefit. A medicant comprise a skin lightening agent, such as, for example, ascorbic acid compounds, vitamin B3 compounds, azelaic acid, butyl hydroxyanisole, gallic acid and its derivatives, glycyrrhizinic acid, hydroquinone, kojic acid, arbutin, mulberry extract, and mixtures thereof. Use of combinations of skin lightening agents can be advantageous as they may provide skin lightening benefit through different mechanisms.


In one aspect, a combination of ascorbic acid compounds and vitamin B3 compounds can be used. Examples of ascorbic acid compounds can include L-ascorbic acid, ascorbic acid salt, and derivatives thereof. Examples of ascorbic acid salts include sodium, potassium, lithium, calcium, magnesium, barium, ammonium and protamine salts. Examples of ascorbic acid derivatives include for example, esters of ascorbic acid, and ester salts of ascorbic acid. Examples of ascorbic acid compounds include 2-O-D-glucopyranosyl-L-ascorbic acid, which is an ester of ascorbic acid and glucose and usually referred to as L-ascorbic acid 2-glucoside or ascorbyl glucoside, and its metal salts, and L-ascorbic acid phosphate ester salts such as sodium ascorbyl phosphate, potassium ascorbyl phosphate, magnesium ascorbyl phosphate, and calcium ascorbyl phosphate. In addition, medicant can comprise lignin peroxidase, which can be derived from fungus used for skin lightening applications. In another example, medicant can comprise hydrogen peroxide, which can be used for skin lighting applications.


In an exemplary application, a coupling agent can comprise a medicant, which comprises a skin lighting agent. Ultrasound energy can direct the lightening agent into the epidermis and into contact with melanin. The lightening agent can remove excess melanin. Additional ultrasound energy can be directed to the epidermis to provide a cavitation effect to break up the excess melanin pigment. In some examples, additional ultrasound energy can be directed to the epidermis to provide a thermal effect, which can be configured to increase the effectiveness of the skin lightening agent. In one example, the skin lightening agent can be hydrogen peroxide and the ultrasound energy can increase the temperature of the hydrogen peroxide by at least 1° C. and to about 15° C., which increases the effectiveness of the skin lightening agent.


In another example of a clinical application, the systems and methods described herein can be used in the treatment of hypopigmentation. In an exemplary application, a coupling agent can comprise a medicant, which can comprise a corticosteroid. Ultrasound energy can direct the corticosteroid into the epidermis at the light colored areas of the skin. A second ultrasound energy can be directed to the treatment location and be configured to interact with the corticosteroid to provide a synergistic treatment to increase pigment concentration at the treatment location. A second energy, such as, a photon-based energy from a laser can be directed to the treatment location to further increase the pigment concentration in the treatment location. A third energy, such as, ultrasound energy can be directed to the treatment location to disperse the generated pigment and provide an even coloring pattern at the treatment location.


In another example, large molecule medicants can be delivered using the systems and methods described herein. A large molecule can be greater than 500 Da. A large molecule can be any medicinal product manufactured in or extracted from biological sources. Examples of large molecule include vaccines, blood or blood components, allergenics, somatic cells, gene therapies, tissues, recombinant therapeutic protein and living cells. In one example, a large molecule comprises stem cells. An energy effect is provided by an acoustic energy field, which is configured to drive the large molecule through the microchannels and into subcutaneous tissue. The energy effect can be acoustic streaming and/or inertial cavitation. In some applications, the energy effect is a thermal effect, which can be configured to lower the viscosity of a large molecule for improved transfer through the microchannels.


In another example, chemotherapy drugs can be delivered using the systems and methods described herein. Some of the advantages, of using such systems and methods, include concentrating the chemotherapy drug to the tumor site (as opposed to exposing the whole body to the drug), lower doses may be required (due to the site specific treatment), and greater effectiveness of the drug.


In some applications, a chemotherapy drug can be a large molecule. In some applications, the systems and methods, described herein, can deliver anti-body drug conjugates, which target cancer stem cells to destroy a tumor. In some applications, a chemotherapy drug is a liposome encapsulated chemotherapy drug, which can be delivered through the microchannels to a treatment site by an acoustic energy field, and then a second acoustic energy field can be delivered to melt the liposome and release the chemotherapy drug. In some applications, an acoustic energy field can be delivered, which is configured to provide microbubbles (cavitation) to a tumor in a treatment site without generating heat, which can lead to reduction or elimination of the tumor. These microbubbles can increase microvessel permeability of drugs, enhance drug penetration through the interstitial space, and increase tumor cell uptake of the drugs, thus enhancing the antitumor effectiveness of the drugs.


In some applications of chemotherapy, a drug-loaded nanoemulsion can be driven through the microchannels to a tumor site via an acoustic energy field. A second acoustic energy field can be delivered to the tumor site and can be configured to trigger drug release from nanodroplets, which can be created by microbubbles. A third acoustic energy field can be delivered to the tumor site and can be configured to produce an energy effect, for example, a thermal effect and/or cavitation, which enhances uptake of the drug by the tumor.


In another example, photodynamic therapy can be delivered using the systems and methods described herein. As known to one skilled in the art, photodynamic therapy is a medical treatment that utilizes a medicant, which comprises a photosensitizing agent and a photon-emission source to activate the administered medicant. In some applications, the medicant comprising a photosensitizing agent is delivered through the microchannels into tissue via an acoustic energy field. After the medicant has been delivered, a second acoustic energy field can be delivered to enhance permeability and/or uptake of the medicant by the tissue. After the medicant has been delivered, a photon energy field at a specific wavelength is delivered from the photon-emission source to the tissue, which activates the medicant. The photon-emission source can include, but are not limited to: laser, LED or intense pulsed light. The optimal photon-emission source is determined by the ideal wavelength for activation of the medicant and the location of the target tissue. The photon energy field is directly applied to the target tissue for a specific amount of time. The medicant can be Levulan, which is used for the treatment of skin cancer. The medicant can be Metvix, which is used for the treatment of skin cancer. The medicant can be Photofin, which is used for the treatment of bladder cancer, lung cancer and esophagus cancer. The medicant can be aminolevulinic acid, which has been used in the treatment of various skin conditions, such as, for example, acne, rosacea, sun damage, enlarged sebaceous glands, wrinkles, warts, hidradenitis suppurativa, and psoriasis.


In another example, injuries to muscles can be treated using the systems and methods described herein. For treating an injury to a muscle, ligament, or tendon, a medicant can comprise platelet-rich plasma (PRP), mesenchymal stem cells, or growth factors. For example, PRP is typically a fraction of blood that has been centrifuged. The PRP is then used for stimulating healing of the injury. The PRP typically contains thrombocytes (platelets) and cytokines (growth factors). The PRP may also contain thrombin and may contain fibenogen, which when combined can form fibrin glue. The medicant is directed through a microchannels to the injury, such as, for example a tear in the tissue. An acoustic energy field can then be directed to the injury to activate the medicant and/or disperse the medicant. The acoustic energy field can create a thermal effect to heat the injury location which can initiate interaction of the medicant with the tissue at the injury location and/or increase blood perfusion in the injury location. The acoustic energy field can ablate a portion of tissue in the injury location, which can peak inflammation and increase the speed of the healing process. The acoustic energy field can be directed to the injury location and weld together the tear using both an ablative thermal effect and various mechanical effects.


In an example, acne can be treated using the systems and methods described herein. A medicant can comprise any one or more of cis-retinoic acid, trans-retinoic acid, retinol, retinyl esters (e.g., retinyl propionate), phytic acid, N-acetyl-L-cysteine, lipoic acid, tocopherol and its esters (e.g., tocopheryl acetate), azelaic acid, arachidonic acid, tetracycline, ibuprofen, naproxen, ketoprofen, hydrocortisone, acetominophen, resorcinol, phenoxyethanol, phenoxypropanol, phenoxyisopropanol, 2,4,4′-trichloro-2′-hydroxy diphenyl ether, 3,4,4′-trichlorocarbanilide, octopirox, lidocaine hydrochloride, clotrimazole, miconazole, ketoconazole, neomycin sulfate, theophylline. The medicant is directed through the microchannels to a ROI comprising a sebaceous gland. The medicant interacts with bacteria in the sebaceous gland to reduce or eliminate the bacteria responsible for acne. An acoustic energy field can provide a mechanical effect to disperse the medicant into one or more sebaceous gland. An acoustic energy field can provide a thermal effect to accelerate the reaction of the medicant to eliminate or reduce the amount of bacteria in the sebaceous gland. An acoustic energy field can provide a thermal effect to injure or destroy at least a portion of the sebaceous gland. A photon based energy field can be directed to the medicant in the ROI to initiate a photodymanic effect to activate the medicant. A photon based energy field can be directed to the medicant in the ROI to reduce photosensitivity of the tissue in the ROI from sunlight.


As used herein, pulse width is the time from the start of the pulse to the end of the pulse measured at a −3 dB or −6 dB power point.


As used herein, “acoustic streaming” refers to a force of acoustic energy which displaces a material through a tissue environment.


Example 1

An ultrasound transducer was coupled to a forearm of two human patients with a standard acoustic coupling gel in one location and a 5% topical solution of lidocaine as an acoustic coupling gel in a second location. The 5% topical solution of lidocaine had negligible acoustic attenuation of less than 1 dB/cm/MHz. The ultrasound transducer transmitted ultrasound energy at 10 MHz, a pulse width of 25 ms, and an energy of 0.5 J. The ultrasound energy was focused to a depth of 1.5 mm beneath the surface of human skin. The presence of the 5% topical solution of lidocaine reduced pain from the application of the ultrasound energy by approximately 2 points on a 10-point pain scale when compared with the application of the ultrasound energy in the absence of the lidocaine. Referring to FIG. 5A, the ultrasound energy was applied in treatment lines to an area on the left with only the standard acoustic coupling gel present and the same ultrasound energy was applied to an area on the right with the 5% lidocaine solution present on the skin surface. Referring to FIG. 5B, the ultrasound energy was applied in treatment lines to an area on the right with only the standard acoustic coupling gel present and the same ultrasound energy was applied to an area on the left with a 5% lidocaine ointment present on the skin surface. FIGS. SA and SB show evidence of the treatment effect of lidocaine in this disclosure. After the application of the ultrasound energy, the treatment areas that did not have lidocaine applied to them were irritated, red, and welt-like, whereas the treatment areas that did have lidocaine applied to them were smooth and contained barely visible remnants. The ultrasound energy that was utilized exhibited broadband spectral properties when applied to water, gel, and tissue, which is evidence of an inertial cavitation effect.


Example 2

An ultrasound transducer was coupled to an ex-vivo sample of pig skin with dyed water as a coupling agent. The water was dyed with a green food dye. The ultrasound transducer transmitted ultrasound energy in treatment lines of high intensity ultrasound point exposures at a frequency of 2.87 MHz, a pulse width of 170 ms, and a pulse power of 10 W. The ultrasound energy was focused to a depth of approximately 1.5 mm beneath the surface of the pig skin. Locations that were not treated with the ultrasound energy showed penetration of the dye ranging from 1.0 mm to 1.5 mm. Locations that were treated with the ultrasound energy showed penetration of the dye ranging from 2.0 mm to 2.8 mm, thereby showing that the application of the ultrasound energy enhanced the transdermal transport of the water containing the dye. The ultrasound energy that was utilized exhibited broadband spectral properties when applied to water, gel, and tissue, which is evidence of an inertial cavitation effect.


The present disclosure has been described above with reference to various exemplary configurations. However, those skilled in the art will recognize that changes and modifications may be made to the exemplary configurations without departing from the scope of the present invention. For example, the various operational steps, as well as the components for carrying out the operational steps, may be implemented in alternate ways depending upon the particular application or in consideration of any number of cost functions associated with the operation of the system, e.g., various of the steps may be deleted, modified, or combined with other steps. Further, it should be noted that while the method and system for ultrasound treatment as described above is suitable for use by a medical practitioner proximate the patient, the system can also be accessed remotely, i.e., the medical practitioner can view through a remote display having imaging information transmitted in various manners of communication, such as by satellite/wireless or by wired connections such as IP or digital cable networks and the like, and can direct a local practitioner as to the suitable placement for the transducer. Moreover, while the various exemplary embodiments may comprise non-invasive configurations, system can also be configured for at least some level of invasive treatment application. These and other changes or modifications are intended to be included within the scope of the present invention, as set forth in the following claims.

Claims
  • 1. A method for ultrasound-assisted delivery of a medicant through a stratum corneum layer of a skin surface, the method comprising: a) administering the medicant and an anesthetic to the skin surface;b) coupling an ultrasound transducer to the medicant, the anesthetic, and the skin surface; andc) generating inertial cavitation in the stratum corneum layer and driving the medicant through the stratum corneum layer by applying a first pulsed acoustic energy field from the ultrasound transducer to the skin surface, the first pulsed acoustic energy field having a frequency from 1 MHz to 30 MHz, a peak intensity from 100 W/cm2 to 100 kW/cm2 at the skin surface, and a pulse width from 33 nanoseconds to 5 seconds, wherein the inertial cavitation initiates damage in or beneath the skin surface, the anesthetic alleviating pain or swelling associated with the damage in or beneath the skin surface.
  • 2. The method according to claim 1, wherein the first pulsed ultrasound energy has a pulse repetition rate from one pulse per 10 microseconds to one pulse per 100 seconds.
  • 3. The method according to claim 1, wherein the first pulsed acoustic energy field creates a thermal effect in a tissue beneath the stratum corneum layer, thereby raising a temperature of the tissue by 1° C. to 15° C.
  • 4. The method according to claim 1, the method further comprising: d) applying a second intermittent pulsed acoustic energy field between pulses of the first pulsed acoustic energy field, the second intermittent pulsed acoustic energy field having a frequency from 1 MHz to 30 MHz, a peak intensity from 5 W/cm2 to 100,000 W/cm2 at the skin surface, and a pulse width from 1 microsecond to 0.1 seconds, the first pulsed acoustic energy field and the second intermittent pulsed acoustic energy field generating inertial cavitation in the stratum corneum layer and driving the medicant through the stratum corneum layer.
  • 5. The method according to claim 1, the method further comprising: d) focusing a second pulsed acoustic energy field to a target volume at a depth beneath the stratum corneum layer, the second acoustic energy field configured to generate a thermal effect in the target volume, thereby ablating at least a portion of the target volume.
  • 6. The method according to claim 5, wherein the thermal effect raises a temperature in the target volume by 15° C. to 65° C. without damaging an intervening tissue between the skin surface and the target volume.
  • 7. The method according to claim 1, the method further comprising: d) applying a second pulsed acoustic energy field focused to a depth beneath the skin surface, wherein the second pulsed acoustic energy field is emitted from the ultrasound transducer or a different ultrasound transducer, the second pulsed acoustic energy field having a frequency from 1 MHz to 30 MHz, an intensity from 5 W/cm2 to 70,000 W/cm2, and a pulse width from 33 nanoseconds to 1 second, thereby creating acoustic streaming having a pressure from 10 kPa to 100 MPa and driving the medicant through an epidermis layer and into a dermis layer.
  • 8. The method according to claim 7, wherein the first pulsed acoustic energy field or the second pulsed acoustic energy field creates a thermal effect in the epidermis layer or the dermis layer, the thermal effect elevating a temperature by 1° C. to 15° C.
  • 9. The method according to claim 8, wherein the thermal effect increases blood perfusion within the epidermis layer or the dermis layer, thereby increasing absorption of the medicant into a bloodstream.
  • 10. The method according to claim 1, the method further comprising: d) applying a second pulsed acoustic energy field configured to provide an inertial cavitation effect at a depth of 0.5 millimeter to 7 millimeters beneath the skin surface, the second pulsed acoustic energy field having a frequency from 1 MHz to 30 MHz, a peak intensity from 3 W/cm2 to 100 kW/cm2, and a pulse width from 33 nanoseconds to 100 seconds, thereby increasing dispersion of the medicant in an epidermis layer or a dermis layer beneath the skin surface.
  • 11. A method for ultrasound-assisted delivery of a medicant through a stratum corneum layer of a skin surface, the method comprising: a) contacting a skin surface with a coupling medium comprising a medicant, the skin surface including a stratum corneum layer;b) coupling an ultrasound transducer to the medicant and the skin surface; andc) generating inertial cavitation in the stratum corneum layer and driving the medicant through the stratum corneum layer by applying a first pulsed acoustic energy field from the ultrasound transducer to the skin surface, the first pulsed acoustic energy field having a frequency from 1 MHz to 30 MHz, a peak intensity from 100 W/cm2 to 100 kW/cm2 at the skin surface, and a pulse width from 33 nanoseconds to 5 seconds, wherein the inertial cavitation initiates damage in or beneath the skin surface.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application represents the national stage entry of PCT International Application PCT/US2016/020600 filed Mar. 3, 2016, which claims priority to, and incorporates herein by reference for all purposes U.S. patent application Ser. No. 14/637,237, filed Mar. 3, 2015, U.S. Provisional Patent Application No. 62/127,715 filed Mar. 3, 2015 and U.S. Provisional Patent Application 62/127,720 filed Mar. 3, 2015.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2016/020600 3/3/2016 WO
Publishing Document Publishing Date Country Kind
WO2016/141136 9/9/2016 WO A
US Referenced Citations (828)
Number Name Date Kind
40403 Gray Oct 1863 A
2427348 Bond Sep 1947 A
3913386 Saglio Oct 1975 A
3965455 Hurwitz Jun 1976 A
3992925 Perilhou Nov 1976 A
4039312 Patru Aug 1977 A
4059098 Murdock Nov 1977 A
4101795 Fukumoto et al. Jul 1978 A
4166967 Benes et al. Sep 1979 A
4211948 Smith et al. Jul 1980 A
4211949 Brisken et al. Jul 1980 A
4213344 Rose Jul 1980 A
4276491 Daniel Jun 1981 A
4315514 Drewes et al. Feb 1982 A
4325381 Glenn Apr 1982 A
4343301 Indech Aug 1982 A
4372296 Fahim Feb 1983 A
4379145 Masuho et al. Apr 1983 A
4381007 Doss Apr 1983 A
4381787 Hottinger May 1983 A
4397314 Vaguine Aug 1983 A
4409839 Taenzer Oct 1983 A
4431008 Wanner et al. Feb 1984 A
4441486 Pounds Apr 1984 A
4452084 Taenzer Jun 1984 A
4484569 Driller et al. Nov 1984 A
4507582 Glenn Mar 1985 A
4513749 Kino et al. Apr 1985 A
4513750 Heyman et al. Apr 1985 A
4527550 Ruggera et al. Jul 1985 A
4528979 Marchenko et al. Jul 1985 A
4534221 Fife et al. Aug 1985 A
4566459 Umemura et al. Jan 1986 A
4567895 Putzke Feb 1986 A
4586512 Do-Huu et al. May 1986 A
4601296 Yerushalmi Jul 1986 A
4620546 Aida et al. Nov 1986 A
4637256 Sugiyama et al. Jan 1987 A
4646756 Watmough et al. Mar 1987 A
4663358 Hyon et al. May 1987 A
4668516 Duraffourd et al. May 1987 A
4672591 Breimesser et al. Jun 1987 A
4680499 Umemura et al. Jul 1987 A
4697588 Reichenberger Oct 1987 A
4754760 Fukukita et al. Jul 1988 A
4757820 Itoh Jul 1988 A
4771205 Mequio Sep 1988 A
4801459 Liburdy Jan 1989 A
4803625 Fu et al. Feb 1989 A
4807633 Fry Feb 1989 A
4817615 Fukukita et al. Apr 1989 A
4858613 Fry et al. Aug 1989 A
4860732 Hasegawa et al. Aug 1989 A
4865041 Hassler et al. Sep 1989 A
4865042 Umemura et al. Sep 1989 A
4867169 Machida et al. Sep 1989 A
4874562 Hyon et al. Oct 1989 A
4875487 Seppi Oct 1989 A
4891043 Zeimer et al. Jan 1990 A
4893624 Lele Jan 1990 A
4896673 Rose et al. Jan 1990 A
4900540 Ryan et al. Feb 1990 A
4901729 Saitoh et al. Feb 1990 A
4917096 Englehart et al. Apr 1990 A
4932414 Coleman et al. Jun 1990 A
4938216 Lele Jul 1990 A
4938217 Lele Jul 1990 A
4947046 Kawabata et al. Aug 1990 A
4951653 Fry et al. Aug 1990 A
4955365 Fry et al. Sep 1990 A
4958626 Nambu et al. Sep 1990 A
4973096 Joyce Nov 1990 A
4976709 Sand Dec 1990 A
4979501 Valchanov et al. Dec 1990 A
4992989 Watanabe et al. Feb 1991 A
5012797 Liang et al. May 1991 A
5018508 Fry et al. May 1991 A
5030874 Saito et al. Jul 1991 A
5036855 Fry et al. Aug 1991 A
5040537 Katakura Aug 1991 A
5054310 Flynn Oct 1991 A
5054470 Fry et al. Oct 1991 A
5070879 Herres Dec 1991 A
5088495 Miyagawa Feb 1992 A
5115814 Griffith et al. May 1992 A
5117832 Sanghvi et al. Jun 1992 A
5123418 Saurel et al. Jun 1992 A
5143063 Fellner Sep 1992 A
5143074 Dory Sep 1992 A
5149319 Unger Sep 1992 A
5150711 Dory Sep 1992 A
5150714 Green Sep 1992 A
5152294 Mochizuki et al. Oct 1992 A
5156144 Iwasaki et al. Oct 1992 A
5158536 Sekins et al. Oct 1992 A
5159931 Pini Nov 1992 A
5163421 Bernstein et al. Nov 1992 A
5163436 Saitoh et al. Nov 1992 A
5178135 Uchiyama et al. Jan 1993 A
5190518 Takasu Mar 1993 A
5190766 Ishihara Mar 1993 A
5191880 McLeod et al. Mar 1993 A
5205287 Erbel et al. Apr 1993 A
5209720 Unger May 1993 A
5212671 Fujii et al. May 1993 A
5215680 D'Arrigo Jun 1993 A
5224467 Oku Jul 1993 A
5230334 Klopotek Jul 1993 A
5230338 Allen et al. Jul 1993 A
5247924 Suzuki et al. Sep 1993 A
5255681 Ishimura et al. Oct 1993 A
5257970 Dougherty Nov 1993 A
5265614 Hayakawa et al. Nov 1993 A
5267985 Shimada et al. Dec 1993 A
5269297 Weng et al. Dec 1993 A
5282797 Chess Feb 1994 A
5295484 Marcus et al. Mar 1994 A
5295486 Wollschlager et al. Mar 1994 A
5304169 Sand Apr 1994 A
5305756 Entrekin et al. Apr 1994 A
5321520 Inga et al. Jun 1994 A
5323779 Hardy et al. Jun 1994 A
5327895 Hashimoto et al. Jul 1994 A
5348016 Unger et al. Sep 1994 A
5360268 Hayashi et al. Nov 1994 A
5370121 Reichenberger et al. Dec 1994 A
5371483 Bhardwaj Dec 1994 A
5375602 Lancee et al. Dec 1994 A
5379773 Hornsby Jan 1995 A
5380280 Peterson Jan 1995 A
5380519 Schneider et al. Jan 1995 A
5383917 Desai et al. Jan 1995 A
5391140 Schaetzle et al. Feb 1995 A
5391197 Burdette et al. Feb 1995 A
5392259 Bolorforosh Feb 1995 A
5396143 Seyed-Bolorforosh et al. Mar 1995 A
5398689 Connor et al. Mar 1995 A
5406503 Williams, Jr. et al. Apr 1995 A
5417216 Tanaka May 1995 A
5419327 Rohwedder et al. May 1995 A
5423220 Finsterwald et al. Jun 1995 A
5435311 Umemura et al. Jul 1995 A
5438998 Hanafy Aug 1995 A
5458140 Eppstein et al. Aug 1995 A
5458596 Lax et al. Oct 1995 A
5460179 Okunuki et al. Oct 1995 A
5460595 Hall et al. Oct 1995 A
5469854 Unger et al. Nov 1995 A
5471488 Bender Nov 1995 A
5487388 Rello et al. Jan 1996 A
5492126 Hennige et al. Feb 1996 A
5496256 Bock et al. Mar 1996 A
5501655 Rolt et al. Mar 1996 A
5503152 Oakley et al. Apr 1996 A
5503320 Webster et al. Apr 1996 A
5507790 Weiss Apr 1996 A
5520188 Hennige et al. May 1996 A
5522869 Burdette et al. Jun 1996 A
5523058 Umemura et al. Jun 1996 A
5524620 Rosenschein Jun 1996 A
5524624 Tepper et al. Jun 1996 A
5524625 Okazaki et al. Jun 1996 A
5526624 Berg Jun 1996 A
5526812 Dumoulin et al. Jun 1996 A
5526814 Cline et al. Jun 1996 A
5526815 Granz et al. Jun 1996 A
5529070 Augustine et al. Jun 1996 A
5540235 Wilson Jul 1996 A
5558092 Unger et al. Sep 1996 A
5560362 Sliwa, Jr. et al. Oct 1996 A
5575291 Hayakawa et al. Nov 1996 A
5575807 Faller Nov 1996 A
5577502 Darrow et al. Nov 1996 A
5577507 Snyder et al. Nov 1996 A
5577991 Akui et al. Nov 1996 A
5580575 Unger et al. Dec 1996 A
5601526 Chapelon et al. Feb 1997 A
5603323 Pflugrath et al. Feb 1997 A
5609562 Kaali Mar 1997 A
5615091 Palatnik Mar 1997 A
5617858 Taverna et al. Apr 1997 A
5618275 Bock Apr 1997 A
5620479 Diederich Apr 1997 A
5622175 Sudol et al. Apr 1997 A
5638819 Manwaring et al. Jun 1997 A
5643179 Fujimoto Jul 1997 A
5644085 Lorraine et al. Jul 1997 A
5647373 Paltieli Jul 1997 A
5655535 Friemel et al. Aug 1997 A
5655538 Lorraine et al. Aug 1997 A
5657760 Ying et al. Aug 1997 A
5658328 Johnson Aug 1997 A
5660836 Knowlton Aug 1997 A
5662116 Kondo et al. Sep 1997 A
5665053 Jacobs Sep 1997 A
5665141 Vago Sep 1997 A
5671746 Dreschel et al. Sep 1997 A
5673699 Trahey et al. Oct 1997 A
5676692 Sanghvi et al. Oct 1997 A
5685820 Riek et al. Nov 1997 A
5687737 Branham et al. Nov 1997 A
5690608 Watanabe et al. Nov 1997 A
5694936 Fujimoto et al. Dec 1997 A
5697897 Buchholtz et al. Dec 1997 A
5701900 Shehada et al. Dec 1997 A
5704361 Seward et al. Jan 1998 A
5706252 Le Verrier et al. Jan 1998 A
5706564 Rhyne Jan 1998 A
5715823 Wood et al. Feb 1998 A
5720287 Chapelon et al. Feb 1998 A
5722411 Suzuki et al. Mar 1998 A
5727554 Kalend et al. Mar 1998 A
5735280 Sherman et al. Apr 1998 A
5743863 Chapelon Apr 1998 A
5746005 Steinberg May 1998 A
5746762 Bass May 1998 A
5748767 Raab May 1998 A
5749364 Sliwa, Jr. et al. May 1998 A
5755228 Wilson et al. May 1998 A
5755753 Knowlton May 1998 A
5762066 Law et al. Jun 1998 A
5763886 Schulte Jun 1998 A
5769790 Watkins et al. Jun 1998 A
5779644 Eberle et al. Jul 1998 A
5792058 Lee et al. Aug 1998 A
5795297 Daigle Aug 1998 A
5795311 Wess Aug 1998 A
5810009 Mine et al. Sep 1998 A
5810888 Fenn Sep 1998 A
5814599 Mitragotri et al. Sep 1998 A
5817013 Ginn et al. Oct 1998 A
5817021 Reichenberger Oct 1998 A
5820564 Slayton et al. Oct 1998 A
5823962 Schaetzle et al. Oct 1998 A
5827204 Grandia et al. Oct 1998 A
5840032 Hatfield et al. Nov 1998 A
5844140 Seale Dec 1998 A
5853367 Chalek et al. Dec 1998 A
5869751 Bonin Feb 1999 A
5871524 Knowlton Feb 1999 A
5873902 Sanghvi et al. Feb 1999 A
5876431 Spehr et al. Mar 1999 A
5879303 Averkiou et al. Mar 1999 A
5882557 Hayakawa et al. Mar 1999 A
5891034 Bucholz Apr 1999 A
5899861 Friemel et al. May 1999 A
5904659 Duarte et al. May 1999 A
5919219 Knowlton Jul 1999 A
5923099 Bilir Jul 1999 A
5924989 Polz Jul 1999 A
5928169 Schatzle et al. Jul 1999 A
5931805 Brisken Aug 1999 A
5938606 Bonnefous Aug 1999 A
5938612 Kline-Schoder et al. Aug 1999 A
5948011 Knowlton Sep 1999 A
5957844 Dekel et al. Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957941 Ream Sep 1999 A
5967980 Ferre et al. Oct 1999 A
5968034 Fullmer et al. Oct 1999 A
5971949 Levin et al. Oct 1999 A
5977538 Unger et al. Nov 1999 A
5984882 Rosenschein et al. Nov 1999 A
5990598 Sudol et al. Nov 1999 A
5997471 Gumb et al. Dec 1999 A
5997497 Nita et al. Dec 1999 A
5999843 Anbar Dec 1999 A
6004262 Putz et al. Dec 1999 A
6007499 Martin et al. Dec 1999 A
6013032 Savord Jan 2000 A
6016255 Bolan et al. Jan 2000 A
6019724 Gronningsaeter et al. Feb 2000 A
6022308 Williams Feb 2000 A
6022327 Chang Feb 2000 A
6036646 Barthe et al. Mar 2000 A
6039048 Silberg Mar 2000 A
6039689 Lizzi Mar 2000 A
6042556 Beach et al. Mar 2000 A
6049159 Barthe et al. Apr 2000 A
6050943 Slayton et al. Apr 2000 A
6059727 Fowlkes et al. May 2000 A
6071239 Cribbs et al. Jun 2000 A
6080108 Dunham Jun 2000 A
6083148 Williams Jul 2000 A
6086535 Ishibashi et al. Jul 2000 A
6086580 Mordon et al. Jul 2000 A
6090054 Tagishi et al. Jul 2000 A
6093883 Sanghvi et al. Jul 2000 A
6101407 Groezinger Aug 2000 A
6106469 Suzuki et al. Aug 2000 A
6113558 Rosenschein et al. Sep 2000 A
6113559 Klopotek Sep 2000 A
6120452 Barthe et al. Sep 2000 A
6123081 Durette Sep 2000 A
6126619 Peterson et al. Oct 2000 A
6135971 Hutchinson et al. Oct 2000 A
6139499 Wilk Oct 2000 A
6159150 Yale et al. Dec 2000 A
6171244 Finger et al. Jan 2001 B1
6176840 Nishimura et al. Jan 2001 B1
6183426 Akisada et al. Feb 2001 B1
6183502 Takeuchi Feb 2001 B1
6183773 Anderson Feb 2001 B1
6190323 Dias et al. Feb 2001 B1
6190336 Duarte et al. Feb 2001 B1
6193658 Wendelken et al. Feb 2001 B1
6210327 Brackett et al. Apr 2001 B1
6213948 Barthe et al. Apr 2001 B1
6216029 Paltieli Apr 2001 B1
6233476 Strommer et al. May 2001 B1
6234990 Rowe et al. May 2001 B1
6241753 Knowlton Jun 2001 B1
6246898 Vesely et al. Jun 2001 B1
6251074 Averkiou et al. Jun 2001 B1
6251088 Kaufman et al. Jun 2001 B1
6268405 Yao et al. Jul 2001 B1
6273864 Duarte et al. Aug 2001 B1
6280402 Ishibashi et al. Aug 2001 B1
6287257 Matichuk Sep 2001 B1
6296619 Brisken et al. Oct 2001 B1
6301989 Brown et al. Oct 2001 B1
6309355 Cain et al. Oct 2001 B1
6311090 Knowlton Oct 2001 B1
6315741 Martin et al. Nov 2001 B1
6322509 Pan et al. Nov 2001 B1
6322532 D'Sa et al. Nov 2001 B1
6325540 Lounsberry et al. Dec 2001 B1
6325758 Carol et al. Dec 2001 B1
6325769 Klopotek Dec 2001 B1
6325798 Edwards et al. Dec 2001 B1
6338716 Hossack et al. Jan 2002 B1
6350276 Knowlton Feb 2002 B1
6356780 Licato et al. Mar 2002 B1
6361531 Hissong Mar 2002 B1
6370411 Osadchy et al. Apr 2002 B1
6375672 Aksan et al. Apr 2002 B1
6377854 Knowlton Apr 2002 B1
6377855 Knowlton Apr 2002 B1
6381497 Knowlton Apr 2002 B1
6381498 Knowlton Apr 2002 B1
6387380 Knowlton May 2002 B1
6390982 Bova et al. May 2002 B1
6398753 McDaniel Jun 2002 B2
6405090 Knowlton Jun 2002 B1
6409720 Hissong et al. Jun 2002 B1
6413216 Cain et al. Jul 2002 B1
6413253 Koop et al. Jul 2002 B1
6413254 Hissong et al. Jul 2002 B1
6419648 Vitek et al. Jul 2002 B1
6423007 Lizzi et al. Jul 2002 B2
6425865 Salcudean et al. Jul 2002 B1
6425867 Vaezy et al. Jul 2002 B1
6425912 Knowlton Jul 2002 B1
6428477 Mason Aug 2002 B1
6428532 Doukas et al. Aug 2002 B1
6430446 Knowlton Aug 2002 B1
6432057 Mazess et al. Aug 2002 B1
6432067 Martin et al. Aug 2002 B1
6432101 Weber et al. Aug 2002 B1
6436061 Costantino Aug 2002 B1
6438424 Knowlton Aug 2002 B1
6440071 Slayton et al. Aug 2002 B1
6440121 Weber et al. Aug 2002 B1
6443914 Costantino Sep 2002 B1
6453202 Knowlton Sep 2002 B1
6461378 Knowlton Oct 2002 B1
6470216 Knowlton Oct 2002 B1
6488626 Lizzi et al. Dec 2002 B1
6491657 Rowe et al. Dec 2002 B2
6500121 Slayton et al. Dec 2002 B1
6500141 Irion et al. Dec 2002 B1
6508774 Acker et al. Jan 2003 B1
6511427 Sliwa, Jr. et al. Jan 2003 B1
6511428 Azuma et al. Jan 2003 B1
6514244 Pope et al. Feb 2003 B2
6517484 Wilk et al. Feb 2003 B1
6524250 Weber et al. Feb 2003 B1
6540679 Slayton et al. Apr 2003 B2
6540685 Rhoads et al. Apr 2003 B1
6540700 Fujimoto et al. Apr 2003 B1
6554771 Buil et al. Apr 2003 B1
6569099 Babaev May 2003 B1
6569108 Sarvazyan et al. May 2003 B2
6572552 Fukukita Jun 2003 B2
6575956 Brisken et al. Jun 2003 B1
6595934 Hissong et al. Jul 2003 B1
6599256 Acker et al. Jul 2003 B1
6607498 Eshel Aug 2003 B2
6618620 Freundlich et al. Sep 2003 B1
6623430 Slayton et al. Sep 2003 B1
6626854 Friedman et al. Sep 2003 B2
6626855 Weng et al. Sep 2003 B1
6638226 He et al. Oct 2003 B2
6645162 Friedman et al. Nov 2003 B2
6662054 Kreindel et al. Dec 2003 B2
6663627 Francischelli et al. Dec 2003 B2
6665806 Shimizu Dec 2003 B1
6666835 Martin et al. Dec 2003 B2
6669638 Miller et al. Dec 2003 B1
6685640 Fry et al. Feb 2004 B1
6692450 Coleman Feb 2004 B1
6699237 Weber et al. Mar 2004 B2
6716184 Vaezy et al. Apr 2004 B2
6719449 Laugham, Jr. et al. Apr 2004 B1
6719694 Weng et al. Apr 2004 B2
6726627 Lizzi et al. Apr 2004 B1
6733449 Krishnamurthy et al. May 2004 B1
6749624 Knowlton Jun 2004 B2
6773409 Truckai et al. Aug 2004 B2
6775404 Pagoulatos et al. Aug 2004 B1
6790187 Thompson et al. Sep 2004 B2
6824516 Batten et al. Nov 2004 B2
6835940 Morikawa et al. Dec 2004 B2
6846290 Lizzi et al. Jan 2005 B2
6875176 Mourad et al. Apr 2005 B2
6882884 Mosk et al. Apr 2005 B1
6887239 Elstrom et al. May 2005 B2
6889089 Behl et al. May 2005 B2
6896657 Willis May 2005 B2
6902536 Manna et al. Jun 2005 B2
6905466 Salgo et al. Jun 2005 B2
6918907 Kelly et al. Jul 2005 B2
6920883 Bessette et al. Jul 2005 B2
6921371 Wilson Jul 2005 B2
6932771 Whitmore et al. Aug 2005 B2
6932814 Wood Aug 2005 B2
6936044 McDaniel Aug 2005 B2
6936046 Hissong et al. Aug 2005 B2
6945937 Culp et al. Sep 2005 B2
6948843 Laugham, Jr. et al. Sep 2005 B2
6953941 Nakano et al. Oct 2005 B2
6958043 Hissong Oct 2005 B2
6971994 Young et al. Dec 2005 B1
6974417 Lockwood et al. Dec 2005 B2
6976492 Ingle et al. Dec 2005 B2
6992305 Maezawa et al. Jan 2006 B2
6997923 Anderson et al. Feb 2006 B2
7006874 Knowlton et al. Feb 2006 B2
7020528 Neev Mar 2006 B2
7022089 Ooba et al. Apr 2006 B2
7058440 Heuscher et al. Jun 2006 B2
7063666 Weng et al. Jun 2006 B2
7070565 Vaezy et al. Jul 2006 B2
7074218 Washington et al. Jul 2006 B2
7094252 Koop Aug 2006 B2
7108663 Talish et al. Sep 2006 B2
7115123 Knowlton et al. Oct 2006 B2
7122029 Koop et al. Oct 2006 B2
7142905 Slayton et al. Nov 2006 B2
7165451 Brooks et al. Jan 2007 B1
7179238 Hissong Feb 2007 B2
7189230 Knowlton Mar 2007 B2
7229411 Slayton et al. Jun 2007 B2
7235592 Muratoglu et al. Jun 2007 B2
7258674 Cribbs et al. Aug 2007 B2
7273459 Desilets et al. Sep 2007 B2
7294125 Phalen et al. Nov 2007 B2
7297117 Trucco et al. Nov 2007 B2
7303555 Makin et al. Dec 2007 B2
7327071 Nishiyama et al. Feb 2008 B2
7331951 Eshel et al. Feb 2008 B2
7332985 Larson, III et al. Feb 2008 B2
7347855 Eshel et al. Mar 2008 B2
7393325 Barthe et al. Jul 2008 B2
7398116 Edwards Jul 2008 B2
7399279 Abend et al. Jul 2008 B2
7491171 Barthe et al. Feb 2009 B2
7510536 Foley et al. Mar 2009 B2
7530356 Slayton et al. May 2009 B2
7530958 Slayton May 2009 B2
7571336 Barthe et al. Aug 2009 B2
7601120 Moilanen et al. Oct 2009 B2
7615015 Coleman Nov 2009 B2
7615016 Barthe et al. Nov 2009 B2
7686763 Vaezy et al. Mar 2010 B2
7695437 Quistgaard et al. Apr 2010 B2
7758524 Barthe et al. Jul 2010 B2
7789841 Huckle et al. Sep 2010 B2
7824348 Barthe et al. Nov 2010 B2
7846096 Mast et al. Dec 2010 B2
7857773 Desilets et al. Dec 2010 B2
7875023 Eshel et al. Jan 2011 B2
7914453 Slayton et al. Mar 2011 B2
7914469 Torbati Mar 2011 B2
7931611 Novak et al. Apr 2011 B2
7955281 Pedersen et al. Jun 2011 B2
7967764 Lidgren et al. Jun 2011 B2
7967839 Flock et al. Jun 2011 B2
8057389 Barthe et al. Nov 2011 B2
8057465 Sliwa, Jr. et al. Nov 2011 B2
8066641 Barthe et al. Nov 2011 B2
8123707 Huckle et al. Feb 2012 B2
8128618 Gliklich et al. Mar 2012 B2
8133180 Slayton et al. Mar 2012 B2
8133191 Rosenberg et al. Mar 2012 B2
8166332 Barthe et al. Apr 2012 B2
8197409 Foley et al. Jun 2012 B2
8206299 Foley et al. Jun 2012 B2
8211017 Foley et al. Jul 2012 B2
8262591 Pedersen et al. Sep 2012 B2
8273037 Kreindel et al. Sep 2012 B2
8282554 Makin et al. Oct 2012 B2
8333700 Barthe et al. Dec 2012 B1
8366622 Slayton et al. Feb 2013 B2
8409097 Slayton et al. Apr 2013 B2
8444562 Barthe et al. May 2013 B2
8480585 Slayton et al. Jul 2013 B2
8506486 Slayton et al. Aug 2013 B2
8523775 Barthe et al. Sep 2013 B2
8535228 Slayton et al. Sep 2013 B2
8585618 Hunziker et al. Nov 2013 B2
8636665 Slayton et al. Jan 2014 B2
8641622 Barthe et al. Feb 2014 B2
8663112 Slayton et al. Mar 2014 B2
8672848 Slayton et al. Mar 2014 B2
8690778 Slayton et al. Apr 2014 B2
8690779 Slayton et al. Apr 2014 B2
8690780 Slayton et al. Apr 2014 B2
8708935 Barthe et al. Apr 2014 B2
8715186 Slayton et al. May 2014 B2
8726781 Eckhoff et al. May 2014 B2
20010009997 Pope Jul 2001 A1
20010009999 Kaufman Jul 2001 A1
20010014780 Martin Aug 2001 A1
20010014819 Ingle et al. Aug 2001 A1
20010031922 Weng et al. Oct 2001 A1
20010039380 Larson et al. Nov 2001 A1
20010041880 Brisken et al. Nov 2001 A1
20020000763 Jones Jan 2002 A1
20020002345 Marlinghaus Jan 2002 A1
20020040199 Klopotek Apr 2002 A1
20020040442 Ishidera Apr 2002 A1
20020052550 Madsen et al. May 2002 A1
20020055702 Atala et al. May 2002 A1
20020062077 Emmenegger et al. May 2002 A1
20020062142 Knowlton May 2002 A1
20020072691 Thompson et al. Jun 2002 A1
20020082528 Friedman et al. Jun 2002 A1
20020082529 Suorsa et al. Jun 2002 A1
20020082589 Friedman et al. Jun 2002 A1
20020087080 Slayton Jul 2002 A1
20020095143 Key Jul 2002 A1
20020099094 Anderson Jul 2002 A1
20020115917 Honda et al. Aug 2002 A1
20020128592 Eshel Sep 2002 A1
20020128648 Weber et al. Sep 2002 A1
20020143252 Dunne et al. Oct 2002 A1
20020156400 Babaev Oct 2002 A1
20020161357 Anderson et al. Oct 2002 A1
20020165529 Danek Nov 2002 A1
20020168049 Schriever et al. Nov 2002 A1
20020169394 Eppstein Nov 2002 A1
20020169442 Neev Nov 2002 A1
20020173721 Grunwald et al. Nov 2002 A1
20020193784 McHale et al. Dec 2002 A1
20020193831 Smith, III Dec 2002 A1
20030009153 Brisken Jan 2003 A1
20030014039 Barzell et al. Jan 2003 A1
20030018255 Martin et al. Jan 2003 A1
20030028111 Vaezy et al. Feb 2003 A1
20030028113 Gilbert et al. Feb 2003 A1
20030032900 Ella Feb 2003 A1
20030036706 Slayton Feb 2003 A1
20030040739 Koop Feb 2003 A1
20030050678 Sierra et al. Mar 2003 A1
20030055417 Truckai et al. Mar 2003 A1
20030060736 Martin et al. Mar 2003 A1
20030065313 Koop et al. Apr 2003 A1
20030074023 Kaplan et al. Apr 2003 A1
20030083536 Eshel et al. May 2003 A1
20030092988 Makin May 2003 A1
20030097071 Halmann et al. May 2003 A1
20030099383 Lefebvre May 2003 A1
20030100846 Custer May 2003 A1
20030125629 Ustuner Jul 2003 A1
20030139790 Ingle et al. Jul 2003 A1
20030171678 Batten et al. Sep 2003 A1
20030171701 Babaev Sep 2003 A1
20030176790 Slayton Sep 2003 A1
20030191396 Sanghvi et al. Oct 2003 A1
20030200481 Stanley Oct 2003 A1
20030212129 Liu et al. Nov 2003 A1
20030212351 Hissong et al. Nov 2003 A1
20030212393 Knowlton et al. Nov 2003 A1
20030216795 Harth et al. Nov 2003 A1
20030220536 Hissong Nov 2003 A1
20030220585 Hissong Nov 2003 A1
20030229331 Brisken et al. Dec 2003 A1
20030233085 Giammarusti Dec 2003 A1
20030236487 Knowlton Dec 2003 A1
20040000316 Knowlton et al. Jan 2004 A1
20040001809 Brisker et al. Jan 2004 A1
20040002705 Knowlton et al. Jan 2004 A1
20040010222 Nunomura et al. Jan 2004 A1
20040015106 Coleman Jan 2004 A1
20040030227 Littrup et al. Feb 2004 A1
20040039312 Hillstead et al. Feb 2004 A1
20040039418 Elstrom et al. Feb 2004 A1
20040041563 Lewin Mar 2004 A1
20040042168 Yang et al. Mar 2004 A1
20040044375 Diederich et al. Mar 2004 A1
20040049134 Tosaya et al. Mar 2004 A1
20040049734 Simske Mar 2004 A1
20040059266 Fry et al. Mar 2004 A1
20040068186 Ishida et al. Apr 2004 A1
20040073079 Altshuler et al. Apr 2004 A1
20040073113 Salgo et al. Apr 2004 A1
20040073115 Horzewski et al. Apr 2004 A1
20040073116 Smith Apr 2004 A1
20040073204 Ryan et al. Apr 2004 A1
20040077977 Ella et al. Apr 2004 A1
20040082857 Schonenberger et al. Apr 2004 A1
20040082859 Schaer Apr 2004 A1
20040102697 Evron May 2004 A1
20040105559 Aylward et al. Jun 2004 A1
20040122323 Vortman et al. Jun 2004 A1
20040122493 Ishibashi et al. Jun 2004 A1
20040143297 Ramsey, III Jul 2004 A1
20040152982 Hwang et al. Aug 2004 A1
20040158150 Rabiner et al. Aug 2004 A1
20040186535 Knowlton Sep 2004 A1
20040189155 Funakubo Sep 2004 A1
20040206365 Knowlton Oct 2004 A1
20040210214 Knowlton Oct 2004 A1
20040217675 Desilets et al. Nov 2004 A1
20040249318 Tanaka Dec 2004 A1
20040254620 Lacoste et al. Dec 2004 A1
20040267252 Washington et al. Dec 2004 A1
20050033201 Takahashi et al. Feb 2005 A1
20050033316 Kertz Feb 2005 A1
20050038340 Vaezy et al. Feb 2005 A1
20050055073 Weber Mar 2005 A1
20050061834 Garcia et al. Mar 2005 A1
20050070961 Maki et al. Mar 2005 A1
20050074407 Smith Apr 2005 A1
20050080469 Larson et al. Apr 2005 A1
20050091770 Mourad et al. May 2005 A1
20050096542 Weng et al. May 2005 A1
20050104690 Larson, III et al. May 2005 A1
20050113689 Gritzky May 2005 A1
20050134314 Prather et al. Jun 2005 A1
20050137656 Malak Jun 2005 A1
20050143677 Young et al. Jun 2005 A1
20050154313 Desilets et al. Jul 2005 A1
20050154314 Quistgaard Jul 2005 A1
20050154332 Zanelli et al. Jul 2005 A1
20050154431 Quistgaard et al. Jul 2005 A1
20050187495 Quistgaard et al. Aug 2005 A1
20050191252 Mitsui Sep 2005 A1
20050193451 Quistgaard et al. Sep 2005 A1
20050197681 Barolet et al. Sep 2005 A1
20050228281 Nefos Oct 2005 A1
20050240170 Zhang et al. Oct 2005 A1
20050251120 Anderson et al. Nov 2005 A1
20050256406 Barthe Nov 2005 A1
20050261584 Eshel et al. Nov 2005 A1
20050261585 Makin Nov 2005 A1
20050267454 Hissong et al. Dec 2005 A1
20050288748 Li et al. Dec 2005 A1
20060004306 Altshuler et al. Jan 2006 A1
20060020260 Dover et al. Jan 2006 A1
20060025756 Francischelli et al. Feb 2006 A1
20060042201 Curry Mar 2006 A1
20060058671 Vitek et al. Mar 2006 A1
20060058707 Barthe Mar 2006 A1
20060058712 Altshuler et al. Mar 2006 A1
20060058664 Barthe et al. Apr 2006 A1
20060074309 Bonnefous Apr 2006 A1
20060074313 Slayton Apr 2006 A1
20060074314 Slayton Apr 2006 A1
20060074355 Slayton Apr 2006 A1
20060079816 Barthe Apr 2006 A1
20060079868 Makin et al. Apr 2006 A1
20060084891 Barthe Apr 2006 A1
20060089632 Barthe Apr 2006 A1
20060089688 Panescu Apr 2006 A1
20060094988 Tosaya et al. May 2006 A1
20060111744 Makin et al. May 2006 A1
20060116583 Ogasawara et al. Jun 2006 A1
20060116671 Slayton et al. Jun 2006 A1
20060122508 Slayton et al. Jun 2006 A1
20060122509 Desilets Jun 2006 A1
20060161062 Arditi et al. Jul 2006 A1
20060184069 Vaitekunas Aug 2006 A1
20060184071 Klopotek Aug 2006 A1
20060189972 Grossman Aug 2006 A1
20060206105 Chopra et al. Sep 2006 A1
20060229514 Wiener Oct 2006 A1
20060241440 Eshel et al. Oct 2006 A1
20060241442 Barthe Oct 2006 A1
20060241470 Novak et al. Oct 2006 A1
20060250046 Koizumi et al. Nov 2006 A1
20060282691 Barthe Dec 2006 A1
20060291710 Wang et al. Dec 2006 A1
20070032784 Gliklich et al. Feb 2007 A1
20070035201 Desilets et al. Feb 2007 A1
20070055154 Torbati Mar 2007 A1
20070055155 Owen et al. Mar 2007 A1
20070055156 Desilets et al. Mar 2007 A1
20070055179 Deem Mar 2007 A1
20070065420 Johnson Mar 2007 A1
20070078290 Esenaliev Apr 2007 A1
20070083120 Cain et al. Apr 2007 A1
20070087060 Dietrich et al. Apr 2007 A1
20070088245 Babaev et al. Apr 2007 A1
20070088346 Mirizzi et al. Apr 2007 A1
20070161902 Dan Jul 2007 A1
20070166357 Shaffer et al. Jul 2007 A1
20070167709 Slayton Jul 2007 A1
20070208253 Slayton Sep 2007 A1
20070219604 Yaroslavsky et al. Sep 2007 A1
20070219605 Yaroslavsky et al. Sep 2007 A1
20070238994 Stecco et al. Oct 2007 A1
20070239075 Rosenberg et al. Oct 2007 A1
20070239079 Manstein et al. Oct 2007 A1
20070239142 Altshuler et al. Oct 2007 A1
20080009885 Del Giglio Jan 2008 A1
20080027328 Klopotek et al. Jan 2008 A1
20080039724 Seip et al. Feb 2008 A1
20080071255 Barthe et al. Mar 2008 A1
20080086054 Slayton et al. Apr 2008 A1
20080097253 Pedersen et al. Apr 2008 A1
20080139974 Da Silva Jun 2008 A1
20080146970 Litman et al. Jun 2008 A1
20080167556 Thompson et al. Jul 2008 A1
20080183077 Moreau-Gobard et al. Jul 2008 A1
20080188745 Chen et al. Aug 2008 A1
20080195000 Spooner et al. Aug 2008 A1
20080200810 Buchalter Aug 2008 A1
20080200813 Quistgaard Aug 2008 A1
20080214966 Slayton Sep 2008 A1
20080221491 Slayton et al. Sep 2008 A1
20080223379 Stuker et al. Sep 2008 A1
20080243035 Crunkilton Oct 2008 A1
20080269608 Anderson et al. Oct 2008 A1
20080275342 Barthe Nov 2008 A1
20080281206 Bartlett et al. Nov 2008 A1
20080281236 Eshel et al. Nov 2008 A1
20080281237 Slayton Nov 2008 A1
20080281255 Slayton et al. Nov 2008 A1
20080294073 Barthe Nov 2008 A1
20080319356 Cain et al. Dec 2008 A1
20090005680 Jones et al. Jan 2009 A1
20090012394 Hobelsberger et al. Jan 2009 A1
20090043198 Milner et al. Feb 2009 A1
20090043293 Pankratov et al. Feb 2009 A1
20090069677 Chen et al. Mar 2009 A1
20090093737 Chomas et al. Apr 2009 A1
20090156969 Santangelo Jun 2009 A1
20090171252 Bockenstedt et al. Jul 2009 A1
20090177122 Peterson Jul 2009 A1
20090177123 Peterson Jul 2009 A1
20090182231 Barthe et al. Jul 2009 A1
20090216159 Slayton et al. Aug 2009 A1
20090226424 Hsu Sep 2009 A1
20090227910 Pedersen et al. Sep 2009 A1
20090253988 Slayton et al. Oct 2009 A1
20090299175 Bernstein et al. Dec 2009 A1
20090318909 DeBenedictis et al. Dec 2009 A1
20100011236 Barthe Jan 2010 A1
20100022919 Peterson Jan 2010 A1
20100022922 Barthe Jan 2010 A1
20100042020 Ben-Ezra Feb 2010 A1
20100049178 Deem et al. Feb 2010 A1
20100063422 Hynynen et al. Mar 2010 A1
20100130891 Taggart et al. May 2010 A1
20100160782 Slayton Jun 2010 A1
20100160837 Hunziker et al. Jun 2010 A1
20100168576 Poland et al. Jul 2010 A1
20100191120 Kraus et al. Jul 2010 A1
20100241035 Barthe Sep 2010 A1
20100280420 Barthe Nov 2010 A1
20100286518 Lee et al. Nov 2010 A1
20110040171 Foley et al. Feb 2011 A1
20110040190 Jahnke et al. Feb 2011 A1
20110087099 Eshel et al. Apr 2011 A1
20110087255 McCormack et al. Apr 2011 A1
20110112405 Barthe et al. May 2011 A1
20110178444 Slayton Jul 2011 A1
20110190745 Uebelhoer et al. Aug 2011 A1
20110264012 Lautzenhiser et al. Oct 2011 A1
20120004549 Barthe Jan 2012 A1
20120016239 Barthe et al. Jan 2012 A1
20120029353 Slayton et al. Feb 2012 A1
20120035475 Barthe et al. Feb 2012 A1
20120035476 Barthe et al. Feb 2012 A1
20120046547 Barthe et al. Feb 2012 A1
20120053458 Barthe et al. Mar 2012 A1
20120111339 Barthe May 2012 A1
20120143056 Slayton et al. Jun 2012 A1
20120165668 Slayton et al. Jun 2012 A1
20120165848 Slayton et al. Jun 2012 A1
20120197120 Makin Aug 2012 A1
20120197121 Slayton et al. Aug 2012 A1
20120215105 Slayton Aug 2012 A1
20120271167 Holland Oct 2012 A1
20120271294 Barthe Oct 2012 A1
20120296240 Azhari et al. Nov 2012 A1
20120316426 Foley et al. Dec 2012 A1
20120330197 Makin et al. Dec 2012 A1
20120330222 Barthe Dec 2012 A1
20120330223 Makin Dec 2012 A1
20130012755 Slayton Jan 2013 A1
20130012816 Slayton et al. Jan 2013 A1
20130012838 Jaeger Jan 2013 A1
20130012842 Barthe Jan 2013 A1
20130018286 Slayton Jan 2013 A1
20130046209 Slayton et al. Feb 2013 A1
20130066208 Barthe et al. Mar 2013 A1
20130066237 Smotrich et al. Mar 2013 A1
20130072826 Slayton Mar 2013 A1
20130096471 Slayton et al. Apr 2013 A1
20130190659 Slayton Jul 2013 A1
20130211258 Barthe et al. Aug 2013 A1
20130281853 Slayton Oct 2013 A1
20130281891 Slayton Oct 2013 A1
20130296697 Slayton et al. Nov 2013 A1
20130296700 Slayton Nov 2013 A1
20130303904 Barthe et al. Nov 2013 A1
20130303905 Barthe et al. Nov 2013 A1
20130310863 Barthe Nov 2013 A1
20140082907 Barthe Mar 2014 A1
20140142430 Slayton May 2014 A1
20140148834 Barthe et al. May 2014 A1
20140180174 Slayton Jun 2014 A1
20140187944 Slayton et al. Jul 2014 A1
20140188015 Slayton et al. Jul 2014 A1
20140188145 Slayton et al. Jul 2014 A1
Foreign Referenced Citations (55)
Number Date Country
0344773 Dec 1989 EP
1479412 Nov 1991 EP
0473553 Apr 1992 EP
0661029 Jul 1995 EP
1050322 Nov 2000 EP
1234566 Aug 2002 EP
1262160 Dec 2002 EP
1374944 Jan 2004 EP
2113099 Aug 1983 GB
1996025888 Aug 1996 WO
1996039079 Dec 1996 WO
1997035518 Oct 1997 WO
1998032379 Jul 1998 WO
1999033520 Jul 1999 WO
1999049788 Oct 1999 WO
2000006032 Feb 2000 WO
2000015300 Mar 2000 WO
2000021612 Apr 2000 WO
2000048518 Aug 2000 WO
2000053113 Sep 2000 WO
2001082777 Nov 2001 WO
2001082778 Nov 2001 WO
2001087161 Nov 2001 WO
2002009813 Feb 2002 WO
2002024050 Mar 2002 WO
2002092168 Nov 2002 WO
03053266 Jul 2003 WO
2003065347 Aug 2003 WO
2003070105 Aug 2003 WO
2003077833 Aug 2003 WO
2003086215 Oct 2003 WO
2003096883 Nov 2003 WO
2003099177 Dec 2003 WO
2003101530 Dec 2003 WO
2004000116 Dec 2003 WO
2004080147 Sep 2004 WO
2004110558 Dec 2004 WO
2005011804 Feb 2005 WO
2005051455 Jun 2005 WO
2005065408 Jul 2005 WO
2005090978 Sep 2005 WO
2006036870 Apr 2006 WO
2006042163 Apr 2006 WO
2006042168 Apr 2006 WO
2006042201 Apr 2006 WO
2006065671 Jun 2006 WO
2006082573 Aug 2006 WO
2007067563 Jun 2007 WO
2008024923 Feb 2008 WO
2008036622 Mar 2008 WO
2009013729 Jan 2009 WO
2009149390 Dec 2009 WO
2010077980 Jul 2010 WO
2001028623 Apr 2011 WO
2014055708 Apr 2014 WO
Non-Patent Literature Citations (79)
Entry
Bommannan et al. “Sonophoresis. II. Examination of the mechanism(s) of ultrasound-enhanced transdermal drug delivery”, 1992, Pharmaceutical Research, Aug; 9(8):1043-7 (Year: 1992).
Mitragotri et al. “A mechanistic study of ultrasonically-enhanced transdermal drug delivery”, 1995, Journal of Pharmaceutical Sciences. Jun. 84(6):697-706 (Year: 1995).
Chan et al. “Safety Study of Transcutaneous Focused Ultrasound for Non-lnvasive Skin Tightening in Asians”, 2011, Lasers in Surgery and Medicine 43: 366-375 (Year: 2011).
Alam et al. “Ultrasound Tightening of Facial and Neck Skin: A Rater-Blinded Prospective Cohort Study”, 2009, The Journal of the American Academy of Dermatology, vol. 62, Iss. 2, p. 262-269 (Year: 2009).
Singer at al. “Low-Frequency Sonophoresis: Pathologic and Thermal Effects in Dogs” 1998, The Academic Emergency Medicine. vol. 5, Iss. 1, p. 35-39 (Year: 1998).
Tezel et al. “Interactions of Inertial Cavitation Bubbles with Stratum Corneum Lipid Bilayers during Low-Frequency Sonophoresis”, 2003, Biophysical Journal vol. 85, 3502-3512 (Year: 2003).
Paliwal et al. “Ultrasound-Induced Cavitation: Applications in Drug and Gene Delivery”, 2006. Expert Opinion on Drug Delivery, #:6, 713-726 (Year: 2006).
Alster, T. S., et al., “Cellulite Treatment using a Novel Combination Radiofrequency, Infrared Light, and Mechanical Tissue Manipulation Device,” Journal of Cosmetic & Laser Therapy, Jun. 2005, vol. 7, Issue 2, pp. 81-85.
Arthur et al., “Non-invasive estimation of hyperthermia temperatures with ultrasound,” Int. J_ Hyperthermia, Sep. 2005, 21(6), pp. 589-600.
Barthe et al., “Ultrasound therapy system and ablation results utilizing miniature imaging/therapy arrays,” Ultrasonics Symposium, 2004 IEEE, Aug. 23, 2004, pp. 1792-1795, vol. 3.
Calderhead et al., One Mechanism Behind LED Photo-Therapy For Wound Healing and Skin Rejuvenation: Key Role of the Mast Cell, Laser Therapy, 2008, 17(3): 141-148.
Campbell, B. J., et al. “Systemic absorption of topical lidocaine in normal volunteers, patients with post herpetic neuralgia, and patients with acute herpes zoster.” Journal of pharmaceutical sciences 91.5 (2002): 1343-1350.
Chen. L. et al. ““Effect of Blood Perfusion on the ablation of liver perenchyma with high intensity focused ultrasound,”” Phys. Med. Biol; 38:1661-1673; 1993b.
Church CC, et al. “A theoretical study of inertial cavitation from acoustic radiation force impulse imaging and implications for the mechanical index.” Ultrasound in medicine & biology 41.2 (2015): 472-485.
Coon, J. et al., “Protein identification using sequential ion/ion reactions and tandem mass spectometry” Proceedings of the National Academy of Sciences of the USA, vol. 102, No. 27, Jul. 5, 2005, pp. 9463-9468.
European Examination Report in related Application No. 05808908.7 dated Jun. 29, 2009.
European Examination Report in related Application No. 05810308.6 dated Jun. 29, 2009.
European Examination Report in related Application No. 09835856.7 dated Apr. 11, 2014.
European Examination Report in related Application No. 10185100.4 dated Jan. 6, 2014.
European Examination Report in related Application No. 10185120.2 dated Jan. 22, 2014.
Written Opinion dated Aug. 12, 2008 for PCT/US2008/062930.
Corry, P. M., et al., “Human Cancer Treatment with Ultrasound”, IEEE Transactions on Sonics and Ultrasonics, vol. SU-31, No. 5, Sep. 1984, pp. 444,456.
Damianou et al., Application of the Thermal Dose Concept for Predicting the Necrosed Tissue Volume During Ultrasound Surgery, 1993 IEEE Ultrasound Symposium, pp. 1199-1202.
Daum et al., “Design and Evaluation of a Feedback Based Phased Array System for Ultrasound Surgery,” IEEE Transactions on Ultrasonics, Feroelectronics, and Frequency Control, vol. 45, No. 2, Mar. 1998, pp. 431-438.
Davis, B. J., et al., “An Acoustic Phase Shift Technique for the Non-lnvasive Measurement of Temperature Changes in Tissues”, 1985 Ultrasonics Symposium, pp. 921-924.
Decision of the Korean Intellectual Property Tribunal dated Jun. 28, 2013 regarding Korean Patent No. 10-1142108, which is related to the pending application and/or an application identified in the Table on the pp. 2-5 of the information Disclosure Statement herein (English translation, English translation certification, and Korean decision included).
European Patent Office, Examination Report, EP 05798870.1, Oct. 20, 2014, 5 pages.
European Patent Office, Examination Report, EP 07814933.3, Aug. 5, 2014, 5 pages.
European Patent Office, Examination Report, EP 10185112.9, Oct. 24, 2014, 5 pages.
European Patent Office, Examination Report, EP 10185117.8, Oct. 24, 2014, 5 pages.
European Patent Office, Examination Report, EP 10185120.2, Oct. 24, 2014, 4 pages.
European Patent Office. Examination Report. EP 10185100.4. Oct. 24, 2014, 4 pages.
Fry, W.J. et al., “Production of Focal Destructive Lesions in the Central Nervous System with Ultrasound,” J. Neurosurg., 11:471-478; 1954.
Gliklich et al, “Clinical Pilot Study of Intense Ultrasound Therapy to Deep Dermal Facial Skin and Subcutaneous Tissues,” Arch Facial Plastic Surgery, Mar. 1, 2007, vol. 9, No. 1.
Haar, G.R. et al., “Tissue Destruction with Focused Ultrasound in Vivo,” Eur. Ural. 23 (suppl. 1):8-11; 1993.
Hassan et al., “Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods,” advanced in Polymer Science, 2000, pp. 37-65, vol. 153.
Hassan et al., “Structure and Morphology of Freeze/Thawed PVA Hydrogels,” Macromolecules, Mar. 11, 2000, pp. 2472-2479, vol. 33, No. 7.
Husseini et al, “Investigating the mechanism of acoustically activated uptake of drugs from Pluronic micelles,” BMC Cancer 2002, 2:20, Aug. 30, 2002, pp. 1-6.
Husseini et al, “The Role of Cavitation in Acoustically Activated Drug Delivery,” J_Control Release, Oct. 3, 2005, pp. 253-261, vol. 107(2).
International Preliminary Report on Patentability for International application No. PCT/US2008/062930 dated Nov. 19, 2009.
International Preliminary Report on Patentability in Application No. PCT/US2011/001366 dated Feb. 14, 2013.
International Search Report and Written Opinion dated Jan. 23, 2014 in Application No. PCT/US2012/046122.
International Search Report and Written Opinion dated Jan. 23, 2014 in Application No. PCT/US2012/046123.
International Search Report and Written Opinion dated Jan. 28, 2013 in Application No. PCT/US2012/046125.
International Search Report and Written Opinion dated Feb. 14, 2013 in Application No. PCT/US2011/001361.
International Search Report and Written Opinion dated Feb. 14, 2013 in Application No. PCT/US2011/001362.
International Search Report and Written Opinion dated Feb. 14, 2013 in Application No. PCT/US2011/001366.
International Search Report and Written Opinion dated Feb. 14, 2013 in Application No. PCT/US2011/001367.
International Search Report and Written Opinion dated Sep. 28, 2012 in Application No. PCT/US2012/046327.
International Searching Authority, International Search Report and Written Opinion for application PCT/US2016/020600, dated May 18, 2016.
Jeffers et al., “Evaluation of the Effect of Cavitation Activity on Drug-Ultrasound Synergisms,” 1993 IEEE Ultrasonics Symposium, pp. 925-928.
Jenne, J., et al., “Temperature Mapping for High Energy US-Therapy”, 1994 Ultrasonics Symposium, pp. 1879-1882.
Johnson, S.A., et al., “Non-lntrusive Measurement of Microwave and Ultrasound-Induced Hyperthermia by Acoustic temperature Tomography”, Ultrasonics Symposium Proceedings, pp. 977-982. 1977.
Madersbacher, S et al., “Tissue Ablation in Bening Prostatic Hyperplasia with High Intensity Focused Ultrasound,” Dur. Ural., 23 (suppl. 1):39-43; 1993.
Makin et al, “B-Scan Imaging and Thermal Lesion Monitoring Using Miniaturized Dual-Functionality Ultrasound Arrays,” Ultrasonics Symposium, 2004 IEEE, Aug. 23, 2004, pp. 1788-1791, vol. 3.
Makin et al, “Conformal Bulk Ablation and Therapy Monitoring Using Intracorporeal Image-Treat Ultrasound Arrays,” 4th International Symposium on Theraputic Ultrasound, Sep. 19, 2004.
Makin et al, “Miniaturized Ultrasound Arrays for Interstitial Ablation and Imaging,” Ultrasound Med. Biol. 2005, Nov. 1, 2005, pp. 1539-1550, vol. 31(11).
Manohar et al, “Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms,” Journal of Biomedical Optics, Nov./Dec. 2004, pp. 1172-1181, vol. 9, No. 6.
Mast et al, “Bulk Ablation of Soft Tissue with Intense Ultrasound: Modeling and Experiments,” J_Acoust. Soc. Am., Oct. 1, 2005, pp. 2715-2724, vol. 118(4).
Mitragotri, S.; “Healing sound: the use of ultrasound in drug delivery and other therapeutic applications,” Nature Reviews; Drug Delivery, pp. 255-260, vol. 4. 2005.
Paradossi et al., “Poly(vinyl alcohol) as versatile biomaterial for potential biomedical applications,” Journal of Materials Science: Materials in Medicine, 2003, pp. 687-691, vol. 14.
PCT International Search Report and Written Opinion, PCT/US2014/030779, Sep. 1, 2014, 8 pages.
Reid, Gavin, et al., “Tandem Mass spectrometry of ribonuclease A and B: N-linked glycosylation site analysis of whole protein ions,” Analytical Chemistry. Feb. 1, 2002, vol. 74, No. 3, pp. 577-583.
Righetti et al, “Elastographic Characterization of HIFU-lnduced Lesions in Canine Livers,” 1999, Ultrasound in Med & Bio, vol. 25, No. 7, pp. 1099-1113.
Saad et al., “Ultrasound-Enhanced Effects of Adriamycin Against Murine Tumors,” Ultrasound in Med. & Biol. vol. 18, No. 8, pp. 715-723 (1992).
Sanghvi, N.T., et al., “Transrectal Ablation of Prostrate Tissue Using Focused Ultrasound,” 1993 Ultrasonics Symposium, IEEE, pp. 1207-1210.
Sassen, S., “ATI's R520 architecture, the new king of the hill?” http://www.hardwareanalysis.com/content/article/1813, Sep. 16, 2005, 2 pages.
Seip, R., et al., “Noninvasive Estimation of Tissue Temperature Response to Heating Fields Using Diagnostic Ultrasound,” IEEE Transactions on Biomedical Engineering, vol. 42, No. 8, Aug. 1995, pp. 828-839.
Seip, R.. et al. “Noninvasive Detection of Thermal Effects Due to Highly Focused Ultrasonic Fiels,” IEEE Symposium, pp. 1229-1232, vol. 2, Oct. 3-Nov. 1993.
Simon et al., “Applications of Lipid-Coated Microbubble Ultrasonic Contrast to Tumor Therapy,” Ultrasound in Med. & Biol. vol. 19, No. 2, pp. 123-125 (1993).
Smith, N. B., et al., “Non-lnvasive In Vivo Temperature Mapping of Ultrasound Heating Using Magnetic Resonance Techniques”, 1994 Ultrasonics Symposium, pp. 1829-1832, vol. 3.
Surry et al., “Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging,” Phys. Med. Biol., Dec. 6, 2004, pp. 5529-5546, vol. 49.
Syka J. E. P et al., “Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectometry,” Proceedings of the National Academy of Sciences of USA, National Academy of Aceince, Washington, DC, vol. 101, No. 26, Jun. 29, 2004, pp. 9528-9533.
Talbert, D. G., “An Add-On Modification for Linear Array Real-Time Ultrasound Scanners to Produce 3D Displays,” UTS Int'l 1977 Brighton, England (Jun. 28-30, 1977) pp. 57-67.
Tata et al., “Interaction of Ultrasound and Model Membrane Systems: Analyses and Predictions,” American Chemical Society, Phys. Chem. 1992, 96, pp. 3548-3555.
Ueno, S., et al., “Ultrasound Thermometry in Hyperthermia”, 1990 Ultrasonic Symposium, pp. 1645-1652.
Wang, H., et al., “Limits on Focused Ultrasound for Deep Hyperthermia”, 1994 Ultrasonic Symposium, Nov. 1-4, 1994, pp. 1869-1872, vol. 3.
Wasson, S., “NVIDIA's GeForce 7800 GTX graphics processor Power MADD,” http://techreport.com/reviews/2005q2/geforce-7800gtx/index.x?pg=1, Jun. 22, 2005, 4 pages.
White et al “Selective Creation of Thermal Injury Zones in the Superficial Musculoaponeurotic System Using Intense Ultrasound Therapy,” Arch Facial Plastic Surgery, Jan./Feb. 2007, vol. 9, No. 1.
Related Publications (1)
Number Date Country
20180043147 A1 Feb 2018 US
Provisional Applications (2)
Number Date Country
62127720 Mar 2015 US
62127715 Mar 2015 US
Continuations (1)
Number Date Country
Parent 14637237 Mar 2015 US
Child 15555913 US