Examples of the present disclosure relate to systems and methods for utilizing an inner diameter of a tool for jet cutting and hydraulically setting packer.
Hydraulic injection is a method performed by pumping fluid into a formation at a pressure sufficient to create fractures in the formation. When a fracture is open, a propping agent may be added to the fluid. The propping agent, e.g. sand or ceramic beads, remains in the fractures to keep the fractures open when the pumping rate and pressure decreases.
Conventionally, it is required to insert a water jet cutter inside casing to create perforations within the casing. Once the perforations within the casing are created, the water jet cutter may be removed from the casing, and a tool is inserted into the casing, wherein the tool is positioned based on the locations of the perforations in the casing. To generate sufficient pressure to create the fractures in the formations, the tool utilizes a packer to isolate a zone of interest. The packers are conventionally set Mechanically through manipulating the string, i.e.: moving up, moving down, rotation or combination of these three movement
To this end, conventional systems require a jet cutter and a mechanical packer to create the perforations within the casing and to isolate zones above from zones below before treating.
Accordingly, needs exist for system and methods for fracturing systems that hydraulically set packers via fluid flowing through an inner diameter of a tool, and jet cutters using fluid flowing through the same inner diameter of the tool to perforate a casing, hence eliminating the need of mechanical manipulation which can be challenging for horizontal wells.
Examples of the present disclosure relate to systems and methods for utilizing an inner diameter of a tool for jet cutting and hydraulically setting packer.
In embodiments, a tool may include an inner diameter, flow activated valve, packers, and jet cutters, wherein the tool may be configured to be positioned within an unperforated casing.
The inner diameter of the tool may be a hollow passageway that extends from a proximal end of the tool to the distal end of the tool. The inner diameter of the tool may be configured to allow fluid to flow through the tool, from the proximal end of the tool to the distal end of the tool, as well as from the distal end of the tool to the proximal end of the tool.
The flow activated valve may be a moveable stop configured to block, limit, impede, etc. the flow of fluid through the inner diameter of the tool. The flow activated valve may be configured to be positioned proximate to the distal end of the tool. In a first mode, the flow activated valve may not cover the distal end of the tool. In a second mode, the flow activated valve may cover the distal end of the tool.
The packers may be sealing elements that are configured to seal radially. In the first mode, the packers may be configured to not seal across an annulus between an outer diameter of the tool and an inner diameter of the casing. In the second mode, the packers may be configured to seal across the annulus.
The jet cutters may be a device configured to perforate the casing using a high pressure jet of fluid. The jet cutters may be positioned on the tool, and may be configured to perforate the casing. The jet cutters may be configured to utilize fluid flowing through the inner diameter of the tool.
In embodiments, a first type of fluid may be configured to flow through an inner diameter of the tool. Responsive to the first type of fluid flowing through the inner diameter of the tool at a flow rate that is above a flow rate threshold, the flow activated valve may dynamically move from the first mode to the second mode. Moving the flow activated valve from the first mode to the second mode may create a pressure difference between the inner diameter of the tool and the annulus, which may cause the packers to radially seal across the annulus. When the packers are set and radially sealing, a second type of fluid may flow through the inner diameter of the tool and through the jet cutters. The jet cutters and the second type of fluid may perforate the casing.
Once the casing is perforated, a third type of fluid may flow through the annulus to perform a fracturing process within a geological formation. While the third type of fluid is flowing through the annulus, fluid may simultaneously be flowing through the inner diameter of the tool to maintain a positive pressure level within the inner diameter of the tool to maintain the packers in the second mode.
Then, in embodiments, fluid flowing through the inner diameter of the tool may cease or be reduced in conjunction with flowing fluid in annulus. This may cause the packer to automatically return to the first mode from the second mode; allowing the fluid in annulus to be circulated or reverse circulated back to surface. The tool may then move to a next zone for treatment, which may be a higher or lower zone.
These, and other, aspects of the invention will be better appreciated and understood when considered in conjunction with the following description and the accompanying drawings. The following description, while indicating various embodiments of the invention and numerous specific details thereof, is given by way of illustration and not of limitation. Many substitutions, modifications, additions or rearrangements may be made within the scope of the invention, and the invention includes all such substitutions, modifications, additions or rearrangements.
Non-limiting and non-exhaustive embodiments of the present invention are described with reference to the following figures, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified.
Corresponding reference characters indicate corresponding components throughout the several views of the drawings. Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve understanding of various embodiments of the present disclosure. Also, common but well-understood elements that are useful or necessary in a commercially feasible embodiment are often not depicted in order to facilitate a less obstructed view of these various embodiments of the present disclosure.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present embodiments. It will be apparent, however, to one having ordinary skill in the art, that the specific detail need not be employed to practice the present embodiments. In other instances, well-known materials or methods have not been described in detail in order to avoid obscuring the present embodiments.
Flow activated valve 110 may be a valve configured to be positioned proximal to distal end 104 of tool 100. However, flow activated valve 110 may be any type of closing mechanism, which enables packer 120 to be hydraulically set based on fluid flowing through inner diameter 105. Flow activated valve 110 may include a valve 112 that is configured to move in a linear or nonlinear axis parallel to the longitudinal axis of tool 100, wherein valve 112 may be any form of sealing mechanism. In the first mode, valve 112 may be configured to not cover the distal end 104 of tool 100. In the second mode, valve 112 may be configured to cover and seal the distal end 104 of tool 100. Responsive to valve 112 covering distal end 104 of tool 100, packer 120 may be set. Responsive to valve 112 not covering distal end 104, packer 120 may be unset. In embodiments, flow activated valve 110 may move from the first mode to the second mode by flowing a first type of fluid through the inner diameter 105 at a flow rate that is higher than a first flow rate threshold. The flow activated valve 110 may remain in the second mode as long as the flow rate within inner diameter 105 is higher than a second flow rate threshold. Responsive to the flow rate within inner diameter 105 being at pre-determined flow rate threshold, flow activated valve 110 may move from the second mode to the first mode.
Packer 120 may be sealing elements that are configured to be hydraulically set and unset. When packer 120 are set, packer 120 seal radially from an outer diameter of tool 100. When valve 112 covers the distal end 104 of tool 100 based on the fluid flow rate through inner diameter 105, packer 120 may be set, extend across an annulus, and engage a wellbore wall. Packer 120 may be unset by limiting the fluid flow rate through inner diameter 105 in conjunction with annular fluid flow, which may move valve 112 from the second mode to the first mode. When packer 120 is unset, packer 120 may not extend across the annulus. This may equalize the pressure above and below the packer within the annulus.
Jet cutters 130 may be a device configured to perforate a casing surrounding tool 100 using a high pressure jet of fluid. Jet cutters 130 may be orifices within tool 100 that allow fluid to flow through inner diameter 105, through the orifices, across the annulus, and perforate the casing. In embodiments, jet cutters 130 may be any device that is configured to focus a high pressure of fluid into a beam. Jet cutters 130 may be positioned at even intervals or uneven intervals along the circumference of tool 100. In embodiments, jet cutters 130 may be positioned closer to the proximal end 102 of tool than packer 120 and flow activated valve 120. In embodiments, jet cutters 130 may utilize a second type of fluid, which may be different than the first type of fluid or the same type of fluid as the first type of fluid, to perforate the casing. While jet cutters 130 are using the second type of fluid to perforate the casing, the fluid flow rate through the inner diameter 105 may remain above or below the second flow rate threshold of the lower.
As depicted in
Responsive to a fluid flow rate within the inner diameter 105 of tool 100 being above the first flow threshold, flow activated valve 110 may activate by sealing distal end 104 of tool 100. By sealing distal end 104 of tool 100, the pressure within the inner diameter of tool 105 may increase, causing packer 120 to hydraulically set. When packer 120 are set, packer 120 may extend across the annulus 220 and seal the annulus above from annuls below the packer.
When packer 120 are hydraulically set, a second type of fluid may flow through inner diameter 105. The fluid my flow through inner diameter 105 and out of jet cutters 130 to perforate casing 200. In embodiments, the second type of fluid may be water or other liquid that is optimized to create the perforations within casing 200. Casing 200 may be perforated at locations corresponding to the positioning of jet cutters 130 on tool 100, such that the positioning the perforations may be known. While jet cutters 130 are perforating casing 200, a certain pressure differential is created across the jet cutter allowing the packer to stay set.
After the casing is perforated, a third type of fluid may flow through annulus 220 to perform a fracturing process within the geological formation through the perforations. While the third type of fluid is flowing through the annulus 220, fluid may simultaneously be flowing through inner diameter 105 of tool 100 and out from the jet cutter to maintain a positive pressure level within the inner diameter of tool 100, which may or may not be above the second fluid flow threshold. This may maintain the flow activated valve 110 in the closed position, such that packer 120 remain set. Then, when the fluid flowing through inner diameter of tool 105 is reduced below a certain threshold or when it cease to flow in conjunction with annular fluid flowing, this may cause the flow activated valve 110 to return to the first mode from the second mode, and also cause packer 120 to be unset automatically. When the flow activated valve 110 is returned to the first mode and packer unset, fluid positioned within annulus 220 may return to a proximal end 102 of tool 100 through the distal end 104 in tool 100.
At operation 310, fluid may flow within an inner diameter of a tool.
At operation 320, responsive to the fluid flowing through the inner diameter of the tool at a flow rate above a fluid flow threshold, a flow activated valve may be activated. The flow activated valve may be activated by moving a flow activated valve to create a seal on an open end of the tool.
At operation 330, by activating the flow activated valve, pressure within the inner diameter of the tool may increase to create a pressure differential between the inner diameter of the tool and an annulus between the tool and a casing.
At operation 340, the packers may be hydraulically set based on the pressure differential. When the packers are set, the packers may extend across the annulus positioned between the tool and the casing.
At operation 350, fluid may be pumped through the inner diameter of the tool. The fluid flowing through the inner diameter of the tool may be utilized by jet cutters to focus the flowing fluid across the annulus to form perforations in the casing.
At operation 360, fluid may be pumped through the annulus to perform a fracturing or injection operation.
At operation 370, while the fluid is being pumped through the annulus at operation 360, fluid may simultaneously be pumped through the inner diameter of the tool
At operation 380, the fluid flow rate through the inner diameter of the tool may decrease to be below a fluid flow threshold. Responsive to decreasing the fluid flow rate, the fluid flow valve may be unset, and the packers to be automatically un-set. Fluid may be then circulated or reverse circulated to through the tool bottom end. The tool may then be moved to a next zone for treatment, which may be a higher or a lower zone.
Reference throughout this specification to “one embodiment”, “an embodiment”, “one example” or “an example” means that a particular feature, structure or characteristic described in connection with the embodiment or example is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment”, “in an embodiment”, “one example” or “an example” in various places throughout this specification are not necessarily all referring to the same embodiment or example. Furthermore, the particular features, structures or characteristics may be combined in any suitable combinations and/or sub-combinations in one or more embodiments or examples. In addition, it is appreciated that the figures provided herewith are for explanation purposes to persons ordinarily skilled in the art and that the drawings are not necessarily drawn to scale. For example, in embodiments, the length of the dart may be longer than the length of the tool.
Although the present technology has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred implementations, it is to be understood that such detail is solely for that purpose and that the technology is not limited to the disclosed implementations, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, it is to be understood that the present technology contemplates that, to the extent possible, one or more features of any implementation can be combined with one or more features of any other implementation.
Number | Name | Date | Kind |
---|---|---|---|
6533037 | Eslinger | Mar 2003 | B2 |
20120186816 | Dirksen | Jul 2012 | A1 |
20150027724 | Symms | Jan 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20190106968 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15284913 | Oct 2016 | US |
Child | 16213471 | US |